
SciAuth: A Lightweight End-to-End Capability-Based
Authorization Environment for Scientific Computing

BRIAN AYDEMIR,Morgridge Institute for Research, USA
JIM BASNEY, National Center for Supercomputing Applications, University of Illinois, USA
BRIAN BOCKELMAN,Morgridge Institute for Research, USA
JEFF GAYNOR, National Center for Supercomputing Applications, University of Illinois, USA
DEREK WEITZEL, University of Nebraska-Lincoln, USA

We introduce a new end-to-end software environment that enables experimentation with using SciTokens for
capability-based authorization in scientific computing. This set of interconnected Docker containers enables
science projects to gain experience with the SciTokens model prior to adoption. It is a product of our SciAuth
project, which supports the adoption of the SciTokens model through community engagement, support for
coordinated adoption of community standards, assistance with software integration, security analysis and
threat modeling, training, and workforce development.

CCS Concepts: • Security and privacy→ Authorization.

Additional Key Words and Phrases: OAuth, JWT, distributed computing

ACM Reference Format:
Brian Aydemir, Jim Basney, Brian Bockelman, Jeff Gaynor, and Derek Weitzel. 2022. SciAuth: A Lightweight
End-to-End Capability-Based Authorization Environment for Scientific Computing. In Practice and Experience
in Advanced Research Computing (PEARC ’22), July 10–14, 2022, Boston, MA, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3491418.3535160

1 INTRODUCTION
SciTokens [14] is a capability-based authorization system for distributed scientific computing, using
JSON Web Token (JWT) [8] and OAuth [7] standards. While SciTokens has been incorporated
into many software components and used in production in Open Science Grid, it still remains
difficult for science projects to perform contained end-to-end experiments to better understand the
SciTokens approach prior to adoption. In this article, we present a new end-to-end experimental
environment, using popular software components (JupyterHub, HTCondor, GitHub), configured to
use SciTokens and packaged in Docker containers to enable community experiments to further
SciTokens adoption. We have developed this environment as part of the SciAuth project, which aims
to help the scientific community realize the benefits of an interoperable, capability-based ecosystem.
The software is publicly available at https://github.com/sciauth/sciauth-lightweight-environment.

2 RELATEDWORK
The JWT Profile for OAuth 2.0 Access Tokens [4] provides a standard for an approach to distributed
authorization that is being adopted across scientific computing environments and across the Internet.
Using JWTs to convey authorization enables interoperability and extensibility through a self-
describing token format that can be produced and consumed by a breadth of programming languages
and application frameworks. The OAuth 2.0 framework provides interoperable mechanisms for
token issuance [7], use [9], validation [11], and exchange [10].

PEARC ’22, July 10–14, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in Practice and Experience in Advanced Research Computing (PEARC ’22), July 10–14, 2022, Boston,
MA, USA, https://doi.org/10.1145/3491418.3535160.

1

HTTPS://ORCID.ORG/0000-0001-9048-5408
HTTPS://ORCID.ORG/0000-0002-0139-0640
HTTPS://ORCID.ORG/0000-0003-2981-3809
HTTPS://ORCID.ORG/0000-0002-3125-5538
HTTPS://ORCID.ORG/0000-0002-8115-7573
https://doi.org/10.1145/3491418.3535160
https://github.com/sciauth/sciauth-lightweight-environment
https://doi.org/10.1145/3491418.3535160


PEARC ’22, July 10–14, 2022, Boston, MA, USA Brian Aydemir, et al.

The WLCG Common JWT Profiles [1] extend SciTokens prior work to include authorization
for compute resources in addition to data, along with operational guidelines that further enable
interoperability and operational security in distributed scientific computing environments. Recent
releases of SciTokens libraries add support for the WLCG profiles to enable broader adoption.

GA4GH Passports [13] provide a JWT profile for authorization in genomics and health research
infrastructures, including ELIXIR Europe, the National Institutes of Health, and the Autism Sharing
Initiative. GA4GH and its partners provide demonstration implementations, but do not provide an
end-to-end experimental environment like SciAuth.

3 END-TO-END ENVIRONMENT
The goal of the SciAuth end-to-end environment is to provide an easy to use experimental envi-
ronment for the SciTokens technology. The environment consists of an integrated set of Docker
containers, created from existing software components and configured to produce and consume
JWTs to implement basic authorization policies for access to compute and data (e.g., HTCondor
workflows and GitHub repositories) via a standard web browser interface built on JupyterHub.
Users can log in to the environment using their GitHub, Google, ORCID, Microsoft, or university
account via CILogon [3], then experiment with different access policies, security configurations,
and system behaviors. Users can also experiment with integrating additional services into the
end-to-end environment using the common SciTokens authorization mechanism.

3.1 Overall Architecture

Fig. 1. The Architecture of the SciAuth End-to-End Environment

Figure 1 illustrates the overall system architecture of the SciAuth end-to-end environment. It
includes an OpenID Connect Provider (CILogon), which issues ID Tokens for authentication, and
two Authorization Servers (Lab and GitHub), which issue Access Tokens for authorization and
Refresh Tokens for refreshing the Access Tokens. JupyterHub is configured to use the OpenID
Connect Provider for authentication, with an access control list (ACL) that grants or denies access
to the JupyterHub environment based on the ID Token contents (user identifier, attributes, and
group memberships). JupyterHub is also configured with a Token Management Service to obtain
tokens from the two Authorization Servers and to refresh those tokens as needed. When the user

2



SciAuth PEARC ’22, July 10–14, 2022, Boston, MA, USA

launches a Jupyter Notebook, the Token Management Service delivers the Access Tokens into
the Notebook environment, so the Notebook can submit jobs to HTCondor (using the Lab Access
Token) and access GitHub repositories (using the GitHub Access Token). The Lab Authorization
Server is also configured to use the OpenID Connect Provider for authentication, while the GitHub
Authorization Server uses GitHub accounts for authentication.

The Docker containers provide the Lab Authorization Server, JupyterHub (with Token Man-
agement Service), example Jupyter Notebooks, and HTCondor services. These components are
shown inside a box in Figure 1 to illustrate that they constitute the end-to-end environment. The
environment connects to CILogon and GitHub as external services.

MADE WITH swimlanes.io

Web Browser JupyterHub CILogon Identity Provider

Web Browser JupyterHub CILogon Identity Provider

Log In

Redirect to CILogon

Select Identity Provider

Redirect to Identity Provider

Log In

Redirect to CILogon with Authentication Assertion

Authentication Assertion

Redirect to JupyterHub with ID Token

ID Token

Fig. 2. Logging in to JupyterHub using an ID Token

Figures 2, 3, and 4 illustrate the sequence of operations for logging in to JupyterHub, obtaining
Authorization Tokens for HTCondor and GitHub, and submitting HTCondor jobs and accessing
GitHub repositories through the Jupyter Notebook.

3.2 Authorization Server
We developed a lightweight issuer [6] for the end-to-end environment, based on prior SciTokens
work, to issue tokens using OAuth. The issuer is packaged as a Docker container. The user provides
configuration to describe how it is run and the policy it should enforce.

3.2.1 Configuration. The authorization server requires several configuration parameters.
• Host certificate to enable HTTPs connections
• Private keys to sign issued SciTokens
• Client id and Client secret to authenticate with CILogon service
• Public hostname of the issuer that clients can use to request tokens
• Issuer policy file (described below in 3.2.2).

The configuration is given to the issuer through either environment variables or mounted into
the container as a file or directory.

3.2.2 Authorization Server Policy. Policy in the authorization server is configured through a JSON
file mounted into the Docker container at runtime. The policy file determines each user’s scopes in
the generated SciTokens, keyed on the CILogon User Identifier of the users by default.

3



PEARC ’22, July 10–14, 2022, Boston, MA, USA Brian Aydemir, et al.

MADE WITH swimlanes.io

Web Browser Token Mgmt Service GitHub Authz Server Lab Authz Server

Web Browser Token Mgmt Service GitHub Authz Server Lab Authz Server

Request Authorization

Redirect to GitHub

Authorization Request

Authenticate User with GitHub ID

Redirect to Token Mgmt Service with Authz Grant

Authz Grant

Authz Grant

Access & Refresh Token

Redirect to Lab Server

Authorization Request

Authenticate User with CILogon

Redirect to Token Mgmt Service with Authz Grant

Authz Grant

Authz Grant

Access & Refresh Token

Fig. 3. Obtaining Authorization Tokens

Example Policy File

1 {

2 "http :// cilogon.org/serverA/users /12345": {

3 "eduPersonEntitlement ": [

4 "compute.write compute.read compute.cancel compute.modify"

5 ],

6 "audience ": "https :// htcondor.localdomain /"

7 },

8 }

The provided configuration issues SciTokens with permission to submit jobs to the local HT-
Condor container. Multiple users can be listed in the policy file, each with their own scopes and
audience, or more advanced policies can be configured using boolean logic and regular expressions.

3.3 JupyterHub Token Management Service
The Token Management Service is a Python package [2] that can be installed alongside JupyterHub
to enable it to act as an OAuth client for fetching and refreshing access tokens on a user’s behalf.
Users authorize the service to fetch tokens via a basic web UI, and they can retrieve tokens via
either the web UI or from inside their Jupyter notebook via a web API.

Setting up the service consists of installing the Python package, configuring JupyterHub to start
the service, and configuring the service with one or more OAuth clients for token issuers. The
end-to-end environment builds-in the first two of these steps and provides a template file for the
third, with placeholders for CILogon and GitHub registration parameters.

4



SciAuth PEARC ’22, July 10–14, 2022, Boston, MA, USA

MADE WITH swimlanes.io

Web Browser JupyterHub Notebook HTCondor GitHub

Web Browser JupyterHub Notebook HTCondor GitHub

Launch Notebook

Launch with Tokens

Redirect to Notebook

Access Notebook

Submit Jobs using Token

Access Repository using Token

Fig. 4. Accessing the Jupyter Notebook with External Resources

3.4 Resource Providers
Since the JupyterHub Token Management Service uses the OAuth standard, it can integrate with a
wide range of providers. The initial release of the SciAuth environment contains two integrations:

(1) HTCondor Software Suite. The HTCondor software suite provides a range of compute
services. HTCondor’s SchedD daemon exposes the ability to provide job management (sub-
mission, file transfer, removal) functionality over a remote network connection. HTCondor’s
underlying network protocol, CEDAR [12], includes a flexible negotiation of authentication
method and has recently been extended to include authentication based on SciTokens. This
provides the JupyterLab session with the ability to submit jobs to remote HTCondor systems
as illustrated with token 𝐴1 in Figure 1.

(2) GitHub. The OAuth model is used as an authorization mechanism across a wide range of
commercial service providers, so while SciTokens has been integrated in several community
services, the SciAuth environment is not limited to them. As illustrated for token𝐴2 of Figure
1, the token management service can acquire tokens from a service like GitHub, have it
placed into the Jupyter environment, and enable the user to access a GitHub-based source
repository from their notebook.

We plan to include additional integrations in in future releases. For example, the XRootD software
framework is commonly use in the High Energy Physics community to move data between sites [5].
It provides support for multiple data transfer protocols, including the xrootd protocol and HTTP.
XRootD now has an HTTP plugin for SciTokens, and the xrootd protocol has a new authentication
mechanism (termed “ZTN”) that adds support for tokens.

3.5 Deployment
Our end-to-end environment is implemented as a Docker Compose setup that is designed to be
deployed locally on any host where the user can start and stop Docker containers. Deploying the en-
vironment consists of cloning the Git repository at https://github.com/sciauth/sciauth-lightweight-
environment and following the provided instructions.
By default, our setup requires the user to be able to register an OIDC client with CILogon, for

authenticating users to JupyterHub and the lightweight token issuer, and an OAuth application
with GitHub, for providing GitHub Access Tokens. Aside from filling in configuration templates
with these OAuth client IDs and secrets, other configuration is handled automatically.

4 CONCLUSIONS AND FUTUREWORK
In conclusion, the SciAuth end-to-end experimental environment addresses the need for hands-on
access to SciTokens-enabled components prior to planning adoption across a scientific computing

5

https://github.com/sciauth/sciauth-lightweight-environment
https://github.com/sciauth/sciauth-lightweight-environment


PEARC ’22, July 10–14, 2022, Boston, MA, USA Brian Aydemir, et al.

environment. Since SciTokens is a technology for authorization in distributed systems, a true
evaluation environment requires multiple interconnected services. The SciAuth packaging of
service containers using Docker Compose eases deployment for experimenting with different
authorization policies, security configurations, and performance modes. JupyterHub provides a
standard web interface, avoiding the need for less friendly command-line interfaces.
Future work for the SciAuth project includes the development of training materials, using the

end-to-end environment for hands-on exercises, for both in-person training events and online
self-paced tutorials. For updates, please visit our project web site at https://sciauth.org/.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science Foundation under grant
numbers 1738962 and 2114989. The lightweight issuer is derived from prior work by Duncan Brown
for the SciTokens project.

REFERENCES
[1] Mine Altunay, Brian Bockelman, Andrea Ceccanti, Linda Cornwall, Matt Crawford, David Crooks, Thomas Dack,

David Dykstra, David Groep, Ioannis Igoumenos, Michel Jouvin, Oliver Keeble, David Kelsey, Mario Lassnig, Nicolas
Liampotis, Maarten Litmaath, Andrew McNab, Paul Millar, Mischa Sallé, Hannah Short, Jeny Teheran, and Romain
Wartel. 2019. WLCG Common JWT Profiles. Zenodo. https://doi.org/10.5281/zenodo.3460258

[2] Brian Aydemir. 2022. scitokens-jupyter 0.0.3. Zenodo. https://doi.org/10.5281/zenodo.6425179
[3] Jim Basney, Heather Flanagan, Terry Fleury, Jeff Gaynor, Scott Koranda, and Benn Oshrin. 2019. CILogon: Enabling

Federated Identity and Access Management for Scientific Collaborations. PoS ISGC2019 (2019), 031. https://doi.org/10.
22323/1.351.0031

[4] V. Bertocci. 2021. JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens. RFC 9068. IETF. https://doi.org/10.
17487/RFC9068

[5] Brian Bockelman, Andrew Hanushevsky, Oliver Keeble, Mario Lassnig, Paul Millar, Derek Weitzel, and Wei Yang. 2019.
Bootstrapping a new LHC data transfer ecosystem. In EPJ Web of Conferences, Vol. 214. EDP Sciences, EDP Sciences,
France, 04045. https://doi.org/10.1051/epjconf/201921404045

[6] Duncan Brown, Derek Weitzel, and Jeff Gaynor. 2022. scitokens/lightweight-issuer: First release. Zenodo. https:
//doi.org/10.5281/zenodo.6418252

[7] D. Hardt. 2012. The OAuth 2.0 Authorization Framework. RFC 6749. IETF. https://doi.org/10.17487/RFC6749
[8] M. Jones, J. Bradley, and N. Sakimura. 2015. JSONWeb Token (JWT). RFC 7519. IETF. https://doi.org/10.17487/RFC7519
[9] M. Jones and D. Hardt. 2012. The OAuth 2.0 Authorization Framework: Bearer Token Usage. RFC 6750. IETF. https:

//doi.org/10.17487/RFC6750
[10] M. Jones, A. Nadalin, B. Campbell, J. Bradley, and C. Mortimore. 2020. OAuth 2.0 Token Exchange. RFC 8693. IETF.

https://doi.org/10.17487/RFC8693
[11] M. Jones, N. Sakimura, and J. Bradley. 2018. OAuth 2.0 Authorization Server Metadata. RFC 8414. IETF. https:

//doi.org/10.17487/RFC8414
[12] Zach Miller, Dan Bradley, Todd Tannenbaum, and Igor Sfiligoi. 2010. Flexible session management in a distributed

environment. Journal of Physics: Conference Series 219, 4 (2010), 042017. https://doi.org/10.1088/1742-6596/219/4/042017
[13] Craig Voisin, Mikael Linden, Stephanie O.M. Dyke, Sarion R. Bowers, Pinar Alper, Maxmillian P. Barkley, David Bernick,

Jianpeng Chao,Mélanie Courtot, Francis Jeanson, Melissa A. Konopko,Martin Kuba, Jonathan Lawson, Jaakko Leinonen,
Stephanie Li, Vivian Ota Wang, Anthony A. Philippakis, Kathy Reinold, Gregory A. Rushton, J. Dylan Spalding, Juha
Törnroos, Ilya Tulchinsky, Jaime M. Guidry Auvil, and Tommi H. Nyrönen. 2021. GA4GH Passport standard for digital
identity and access permissions. Cell Genomics 1, 2 (2021), 100030. https://doi.org/10.1016/j.xgen.2021.100030

[14] Alex Withers, Brian Bockelman, Derek Weitzel, Duncan Brown, Jason Patton, Jeff Gaynor, Jim Basney, Todd Tannen-
baum, You Alex Gao, and Zach Miller. 2019. SciTokens: Demonstrating Capability-Based Access to Remote Scientific
Data using HTCondor. In Proceedings of the Practice and Experience in Advanced Research Computing (Chicago, IL,
USA) (PEARC ’19). ACM, New York, NY, USA, Article 118, 4 pages. https://doi.org/10.1145/3332186.3333258

6

https://sciauth.org/
https://doi.org/10.5281/zenodo.3460258
https://doi.org/10.5281/zenodo.6425179
https://doi.org/10.22323/1.351.0031
https://doi.org/10.22323/1.351.0031
https://doi.org/10.17487/RFC9068
https://doi.org/10.17487/RFC9068
https://doi.org/10.1051/epjconf/201921404045
https://doi.org/10.5281/zenodo.6418252
https://doi.org/10.5281/zenodo.6418252
https://doi.org/10.17487/RFC6749
https://doi.org/10.17487/RFC7519
https://doi.org/10.17487/RFC6750
https://doi.org/10.17487/RFC6750
https://doi.org/10.17487/RFC8693
https://doi.org/10.17487/RFC8414
https://doi.org/10.17487/RFC8414
https://doi.org/10.1088/1742-6596/219/4/042017
https://doi.org/10.1016/j.xgen.2021.100030
https://doi.org/10.1145/3332186.3333258

	Abstract
	1 Introduction
	2 Related Work
	3 End-to-End Environment
	3.1 Overall Architecture
	3.2 Authorization Server
	3.3 JupyterHub Token Management Service 
	3.4 Resource Providers
	3.5 Deployment

	4 Conclusions and Future Work
	Acknowledgments
	References

