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Abstract

To best support highly parallel applications, Linux’s CFS
scheduler tends to spread tasks across the machine on task
creation and wakeup. It has been observed, however, that in
a server environment, such a strategy leads to tasks being
unnecessarily placed on long-idle cores that are running at
lower frequencies, reducing performance, and to tasks being
unnecessarily distributed across sockets, consuming more
energy. In this paper, we propose to exploit the principle of
core reuse, by constructing a nest of cores to be used in pri-
ority for task scheduling, thus obtaining higher frequencies
and using fewer sockets. We implement the Nest scheduler
in the Linux kernel. While performance and energy usage
are comparable to CFS for highly parallel applications, for a
range of applications using fewer tasks than cores, Nest im-
proves performance 10%–2× and can reduce energy usage.
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1 Introduction

The primary goal of an operating system (OS) task scheduler
is to allocate tasks to cores in a way that maximizes applica-
tion performance. A well-known desirable property is work
conservation, i.e., if a task is placed on a core that is not idle,
then no idle core should be available [10, 11]. However, in
choosing a core for a task, it is also important to consider
whether the chosen core will allow the task to access needed
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(hardware) resources efficiently. The performance that a task
can achieve is determined in part by the frequency of the cho-
sen core [7]. On modern CPUs, core frequencies may vary
significantly, as individual cores can adjust their frequency
independently. Nevertheless, the Linux kernel’s default CFS
scheduler does not take core frequency into account. Placing
tasks on cores in a way that causes higher frequencies to be
used can improve performance.
We consider scheduling on large multicore servers. Such

servers are today becoming more accessible and affordable.
They can be used for traditional high-performance comput-
ing, where applications are often designed to decompose to
the number of cores available, so that tasks can be pinned to
cores, making scheduling irrelevant. But multicore servers
can also be used as computing resources for applications
that are demanding in terms of compute cycles, memory,
or disk requirements. Such applications rely on the OS task
scheduler for task placement. The number of cores required
may vary from few to many, and back, across the course of
the application. To get the best performance, the OS task
scheduler must optimally adapt to all of these situations.
Modern servers offer “turbo” frequencies [1, 8] allowing

cores to run at a frequency higher than the nominal fre-
quency. Various turbo frequencies are available, depending
on the number of active cores on the socket, to respect ther-
mal constraints. The frequency is determined jointly by the
software and the hardware. The software, typically an OS
kernel-level power governor, suggests boundaries, and then
the hardware chooses a frequency for a core within these
boundaries according to the number of cores on the same
socket and their current degree of activity. To obtain the
highest possible frequencies, it is necessary to minimize the
number of cores used (“keeping tasks close together”) and
ensure a sustained activity (“keeping cores warm”).
In this paper, we propose the task scheduler Nest, de-

signed according to the principles reuse cores and keep cores
warm. To increase core reuse, Nest tries to place tasks within
a set of recently used cores (the nest). To keep cores warm,
with Nest, the idle process spins on a newly idle core for
a short period, to encourage the hardware to keep the fre-
quency high. Finally, when a task must be placed outside the
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nest because another task is using its previous core, Nest re-
members this previous core, and attempts to return the task
to the same core in the nest the next time a core is chosen for
the task. On purely sequential applications and applications
with as many or more tasks than cores, Nest performs simi-
larly to CFS. Nest is particularly beneficial for applications
with a moderate number of effective concurrent tasks, and
where tasks fork, block, and terminate frequently, resulting
in many task placements. We implement Nest within the
Linux kernel, by modifying the CFS scheduler.

Our contributions are as follows:

• We motivate two new principles for task schedulers:
reuse cores and keep cores warm, and implement these
principles in the Linux kernel v5.9.

• We show performance improvements with Nest on
a wide range of multicore benchmarks, on four 2- or
4-socket multicore machines, including improvements
on a 4-socket Intel Xeon 6130 of more than 20% on 8%
of our more than 200 Phoronix multicore tests.

• We show that these performance improvements can
also reduce CPU energy usage by up to 20%, on our
software configuration benchmark.

• Nest often achieves comparable or better performance
than the Linux kernel v5.9’s performance power gov-
ernor, which requests use of at least the nominal fre-
quency, while using the schedutil power governor, which
allows lower frequencies in periods of light activity.

The rest of this paper is organized as follows. Section 2
presents background about the Linux kernel’s CFS scheduler
and powermanagement. Section 3 presents Nest and Section
4 presents its implementation in the Linux kernel. Section 5
evaluates Nest on multicore benchmarks. Finally, Section 6
presents some related work and Section 7 concludes.

Terminology. We say concurrent tasks for the set of tasks
that are running at a given point in time. This does not
include tasks that are sleeping or waiting to run. We evaluate
Nest on Intel servers, where two hardware threads share
a single physical core (simultaneous multithreading). For
simplicity, we refer to the number of cores on a machine as
the number of hardware threads. We say that one core is a
hyperthread of another core if both share the same physical
core. A key concept in Linux’s Completely Fair scheduler is
the set of cores that share a last-level cache. We refer to such
cores as being on the same die.

2 Background

We present Linux’s Completely Fair (CFS) scheduler (as of
Linux v5.9), that Nest extends, as well as a recent scheduler,
𝑆move, that also targets better use of core frequencies. We
then present Linux’s power governors that influence the
frequency changes at the hardware level.

2.1 Linux’s CFS scheduler

CFS uses a collection of heuristics to place tasks on cores
on task fork, task exec, task wakeup, and load balancing.
Fork and wakeup are most relevant to Nest. We present the
most commonly used heuristics, which rely on the Linux
scheduling domains. Fork and wakeup represent around 1300
lines of code, out of the more than 11K lines of code in
fair.c, the main file implementing CFS.
Scheduling domains. The Linux kernel scheduler views
the available CPUs according to a hierarchy of domains,
organized into levels. On our multi-socket Intel servers, the
domains are NUMA (all cores on the machine), SMP (cores
on the same die), and SMT (hyperthreads sharing the same
physical core), from highest to lowest. Each core is associated
with the sequence of domains that contain it. Each domain
refers to a list of groups, which comprise the list of cores
associated with each of its child domains.
Fork. Starting from the highest domain, CFS searches for the
least loaded associated group, and then for the least loaded
core within that group. The load, of a group or a core, is
characterized by various criteria, including the number of
idle cores, the recent load on the cores, the expected time to
wake from idle states, and the new task’s NUMA preferences.
Cores are numbered by successive integers. The search for a
core within a group is carried out in numerical order, modulo
the number of cores available, starting from the core per-
forming the fork. When a core is selected, the search repeats
with the child domain containing the chosen core.

Search for a core across the entire machine favors work
conservation. On the other hand, searching in a fixed order
means that recently used cores may be overlooked, thus
hindering reuse, if other idle cores come earlier in the order.
Taking recent load into account also hinders reuse, as it
disfavors idle cores that have been recently used.
Wakeup. CFS first selects a target core, that is either the
woken task’s previous core or the core performing the wake-
up. Heuristics are used to choose between them, combining
information about core idleness, the type of wakeup, and the
recent load on the core. CFS then searches for an idle core on
the target’s die. First, it searches for a core where both the
core and its hyperthread are idle. If none is found, it searches
through a few cores to find one that is idle. If this search also
fails, CFS checks whether the hyperthread of the target is
idle. If all previous searches fail, CFS selects the target.
Wakeup is not work conserving, as it only considers a

single die, and it only makes a limited effort to find an idle
core on that die. It traverses the cores in a fixed order, and
thus it may overlook recently used idle cores. On the other
hand, it does not consider recent load in the final core choice,
and thus recently used idle cores are not disfavored.
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2.2 The 𝑆move scheduler, targeting core frequency

Gouicem et al. [7] identified the problem of frequency inver-
sion, in the common case where a task 𝑇parent forks or wakes
another task 𝑇child and then immediately sleeps to wait for
𝑇child ’s results. 𝑇parent ’s core is likely running at a high fre-
quency, while CFS will place 𝑇child on an idle core if one is
available.𝑇parent will thus be delayed until𝑇child completes on
an initially low-frequency core, while 𝑇parent ’s former high
frequency core is available. Gouicem et al. showed that this
problem causes a slowdown on a variety of applications.
Gouicem et al. proposed the scheduler 𝑆move that places

𝑇child on the core of𝑇parent , allowing𝑇child to benefit from that
core’s high frequency. If 𝑇parent does not immediately block
or if other tasks are waiting, such a strategy may cause𝑇child
to incur high latency. Thus, 𝑆move only makes this placement
when the core chosen by CFS has a low frequency and sets
a timer for 𝑇child , to move 𝑇child to the core chosen by CFS
if 𝑇child is not scheduled on 𝑇parent ’s core within a brief de-
lay. When the timer expires, however, 𝑆move does nothing to
ensure that 𝑇child ends up on a core with a high frequency.

2.3 Linux’s power governors

The scheduler has no control over core frequencies. Instead,
core frequency results from an interplay between the Linux
power governor and the hardware. The governor sets the
bounds in which the frequency should vary and can make
suggestions about what frequency should be used. The hard-
ware combines the information from the governor with its
observations about the current activity on the core and the
core’s socket, and chooses a frequency for the core accord-
ingly. The power governor has a significant impact on per-
formance for many applications. Thus, when we refer to a
scheduler, we refer to the used governor as well. We consider
the performance and schedutil governors, which are available
on most Linux systems and represent distinct strategies.
Performance requests that the hardware use the nomi-

nal frequency of the machine. The hardware can still freely
choose between the nominal frequency and the turbo fre-
quencies. Performance gives tasks high performance, but
misses the potential energy savings that can be obtained by
running non-demanding tasks at lower frequencies.
Schedutil takes into account information from the sched-

uler about recent task activity, to attempt to reconcile perfor-
mance and energy usage. It allows the machine to use its full
range of frequencies. When schedutil observes that the tasks
on a core have a high recent CPU utilization, it suggests to
the hardware to increase the frequency.

3 The Nest Approach

The key idea behind Nest is the use of a nest, defining a
limited set of recently used cores to consider in high priority
when placing a task. By limiting activity to a small number of
cores, Nest encourages the hardware to choose a high core

primary
nest

Search
strategy

Nest management
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nothing idle
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Figure 1. Core-search path through the nests (top) and core
movement between nests (bottom).

frequency. The challenge in creating a scheduler around this
idea is to design heuristics that properly dimension the nest
according to applications’ current needs. A nest that is too
large will result in task dispersal, replicating the dispersal
problem of CFS. A nest that is too small will result in tasks
competing for the same cores, inducing overloads.

3.1 Building the nest

As shown in Figure 1, Nest keeps track of two sets of cores
(nests), to consider in high priority for task placement. Cores
in the primary nest are currently in use or have been used
recently and are expected to be useful in the near future.
Cores in the reserve nest were previously in the primary nest
but have not been used recently and thus are considered
to be less likely to be used in the near future, or they have
recently been selected by CFS and have not yet proved their
necessity for the current set of tasks.

The top of Figure 1 (red arrows) describes the core-search
heuristic. For a forking or waking task, Nest first searches
for an idle core in the primary nest, then if none is found
it searches for an idle core in the reserve nest. If that also
fails, then it falls back on CFS. The search in the primary
nest starts at the task’s previous core (or the parent’s core,
for a fork), to reduce the risk of collision with concurrent
forks and wakeups on other cores. The search in the reserve
nest, which is expected to be accessed less often, starts from
a fixed core, chosen arbitrarily as the core on which the
system call that started Nest was executed, to reduce task
dispersal. In both cases, the search first considers cores on
the same die as the task’s previous core (or the parent’s core,
for a fork), before considering cores on the other dies. This
heuristic reduces the number of used dies, thus increasing
the chance of leaving some dies completely idle and saving
energy. Unlike CFS, Nest selects any core that is found to be
currently idle, independent of recent load, in order to favor
core reuse. Also unlike CFS, Nest does not take into account
activity on hyperthreads. Nevertheless, all cores that newly
enter the nests are initially chosen by CFS when there are no
idle cores in the nests, and thus they inherit CFS’s strategy
of selecting cores where the hyperthread is idle.

The bottom of Figure 1 (blue arrows) indicates how cores
move between the nests, to allow the nest size to adapt to
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the number of concurrent tasks. If a core is selected from the
reserve nest, then the core is promoted to the primary nest.
If a core is selected when Nest falls back to CFS, then it is
normally placed in the reserve nest. The size of the reserve
nest is, however, limited to 𝑅max cores; if this size is exceeded,
then a core selected using CFS is not added to any nest. On
the other hand, if a core in the primary nest has not been
used for some time (at most 𝑃remove ticks), it becomes eligible
for nest compaction, and is demoted to the reserve nest, or
discarded if the reserve nest is full, as soon as a task tries to
use it. Nest compaction is not applied to the reserve nest, due
to its bounded size. Finally, if a task terminates on a core and
the core becomes idle, then the core is considered no longer
useful and it is immediately demoted from the primary nest
to the reserve nest.
It may occur that too many tasks are trying to share the

primary nest. In this case, a task may bounce between cores,
if it often wakes up to find that the core on which it was
running previously is occupied by another task. If a task
finds that its previous core is not idle 𝑅impatient times in a row,
then the task is labeled as impatient. To place such a task,
Nest does not explore the primary nest, but rather turns
to the reserve nest and potentially CFS. In either case, the
chosen core is directly added to the primary nest, to increase
its size, and the task’s impatience counter is reset.

3.2 Keeping the cores in the nest warm

Our goal of keeping cores at a high frequency is hampered
by the fact that tasks often briefly pause, for synchronization
or to wait for I/O. These pauses may cause the hardware to
decrease the frequency, which is not desirable if the core
will soon be used again. Accordingly, we modify the idle
process to spin for up to a small number of ticks (𝑆max ) when
a task blocks. The spin continually checks whether there is
a task on the core’s hyperthread; if one appears the spinning
stops immediately, leaving it to the task running on the
hyperthread to keep the core warm.

3.3 Returning to the nest

It is desirable for a waking task to return to its previous
core; moving the task to another core may cause another
task to find its previous core occupied, triggering a cascade
of migrations. At the same time, to keep the nest small and
improve core reuse, we do not want to permanently place a
task on a core outside the primary nest just because the task
happens to wake up at the same time as e.g., a brief daemon
task. Accordingly, in addition to recording the core used on
the previous execution of the task, as done by CFS, Nest also
records the core used on the execution before that, creating
a history of size 2. If the cores used in the two previous
executions are the same, i.e., if the core has once returned to
its previous core, the task is considered to be attached to that
core. The first choice of a task is always the core to which it
is attached, if that core is in the primary nest and is idle. A

task can even reclaim a core that is in the primary nest and
is eligible for nest compaction, as long as no other task has
tried to use the core in the meantime.

3.4 Other issues

The primary nest is most effective when its size corresponds
to the number of tasks that are trying to run concurrently,
which means that work conservation (no task waiting on
a busy core when some core is idle) is an important prop-
erty. To reduce wakeup latency, CFS is not work-conserving
on task wakeups: it only considers the previous die of the
waking task and the die of the waker as possible sources of
idle cores. In the context of Nest, such a strategy hinders
the primary nest in reaching the optimal size. To propagate
tasks more quickly to cores where they can run with mini-
mal interference from other tasks, Nest enhances the degree
of work conservation of CFS. Specifically, Nest extends the
CFS core selection on task wakeup to examine all of the dies,
if CFS does not find an idle core on its chosen die.

The Linux kernel places a forked or waking task on a core
in two steps: first selecting a core, and then adding the task to
that core’s run queue. The absence of a global lock in the first
step means that cores that are forking or waking tasks at the
same time can choose the same core for their tasks, leading
to overload and degrading performance. This problem arises
with CFS, but is exacerbated with Nest, due to the smaller
number of cores considered. To prevent such collisions, Nest
associates a flag with each run queue, indicating whether a
task has been placed on the corresponding core. This flag
is checked using a compare-and-swap instruction, ensuring
that Nest places at most one task on a given core. This
optimization could be applied to CFS independently of Nest,
but we expect less impact, as the problem is more rare.

4 Implementation

We have implemented Nest in Linux v5.9.1 The implemen-
tation involves adding around 500 lines of code, across 6
files, with most of the changes in the implementation of CFS
(kernel/sched/fair.c) and the scheduler core (kernel/sched/-
core.c). For simplicity, in our prototype, we appropriate an
existing system call to allow a thread to indicate that it, and
all of its children, should be scheduled with Nest.
Table 1 shows the values chosen for the thresholds men-

tioned in Section 3. Notably, 𝑃remove , the delay before a core
becomes eligible for nest compaction, is small so that the pri-
mary mask can closely track the current number of runnable
threads, up to the number of cores on the machine. 𝑆max , the
spinning duration, is also small to reduce the chance that
spinning on idle cores prevents active cores on the same
1Linux v5.9 was the latest kernel version at the time of our initial experi-
ments. We also ported Nest to Linux v5.12, in around 1 hour. However, we
later learned that the Linux kernel developers had found some errors in the
Linux v5.12 code controlling thread placement, and returned to Linux v5.9
as a more accurate implementation of the CFS policy.
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Table 1. Chosen values of the Nest parameters.

Parameter Description Value
𝑃remove Delay before removing an idle core from the primary 2 ticks

nest (= 8ms)
𝑅max Maximum number of cores in the reserve nest 5
𝑅impatient Number of successive placement failures tolerated

before trying to expand the primary nest
2

𝑆max Maximum spin duration 2 ticks

socket from reaching the highest turbo frequencies. We eval-
uate the impact of these values in Section 5.

5 Evaluation

Evaluating a scheduler requires testing its impact on appli-
cations that exhibit a high diversity of task behaviors. To
comprehensively evaluate Nest, we compare its behavior
to that of CFS on a wide range of benchmarks, including
applications that involve a small, fixed number of tasks, that
use one task per core, and that have more variable task be-
haviors. Nest particularly targets applications in which the
number and set of concurrent tasks varies over time. We
aim to show that Nest improves the performance of such
applications and has negligible impact (±5%) on others. We
evaluate both performance and energy consumption.

5.1 Evaluation setting

The baseline for our experiments is the Linux kernel v5.9’s
CFS scheduler using the schedutil power governor.
Hardware. Table 2 describes the machines used: a 2-socket
64-core Intel 6130, a 4-socket 64-core Intel 6130, a 2-socket
64-core Intel 5218, and a 4-socket 160-core Intel E7-8870 v4.
These reflect three generations of Intel Xeon architectures,
released between 2016 and 2019. On these machines, a die
coincides with a socket, i.e., all of the cores on a given socket
share the same last level cache. The machines have been
chosen to illustrate the evolution in performance and power
management, and to illustrate a variety of machine classes.
We consider 2-socket 64-core machines from different gen-
erations (Skylake and Cascade Lake), 4-socket machines of
different generations (Broadwell and Skylake), and the same
model of Skylake with 2 and 4 sockets. Table 3 indicates the
turbo frequencies that can be achieved on these machines,
according to the number of active cores on a given socket.

All of our test machines have multiple sockets, amounting
to multiple NUMA nodes. We have not made any effort to
control the memory allocation across these NUMA nodes.
Measurements. For performance tests, we first perform two
warmup runs and then average over 10 runs. As we observe
low standard deviations in these performance results, fre-
quency traces are collected from one run. Power measure-
ments are over 30 runs, to reduce their standard deviation.
Speedups are obtained by dividing the average running time
with the given scheduler by the average running time with

CFS-schedutil. The bar graphs that compare an average value
for a given scheduler to the corresponding average value
for CFS-schedutil include error bars. These represent the
standard deviation of the improvement, computed by com-
paring each value obtained by the given scheduler with the
average value obtained for CFS-schedutil. All comparisons
are normalized such that 0 represents identical performance,
percentages greater than 0 represent improvements, and
percentages below 0 represent degradations. Speedup and
energy savings graphs include a horizontal dotted line at
±5%, to highlight the larger improvements.

We measure CPU energy consumption using turbostat,
with a 0.5-second measurement interval. We report the CPU
energy consumption for the entire machine.

5.2 Software configuration test suite evaluation

Typical software configuration code is based on shell scripts,
and forks off hundreds or even thousands of tasks, many
running alone and with a short lifespan, to test various con-
ditions and to attempt to run programs that the software
may require. Developers may run the configuration script
frequently, to test the software in different environments,
and thus care about its performance. Continuous integration
systems may run the configuration script repeatedly. The
frequent forking of short-lived tasks that mostly run alone
makes software configuration an ideal case for Nest.
Case study. We first illustrate the behavior of CFS on the
first 0.3 seconds of the configuration of LLVM using cmake,
for compilation using Ninja. Figure 2(a) shows the activation
of the various tasks and their frequencies with CFS on the
Intel 5218.2 Starting from the task in the lower left, tasks are
forked and are placed on cores with increasing core numbers.
This even occurs when cores closer to the starting task are
idle, due to the consideration of the load average; CFS prefers
a fully idle core to one that has recently been used. The tasks
end up dispersed across 8 cores. Even though only one or
two tasks run at a time, the processor does not react quickly
enough to the change of core activity, and the cores stay in
the lower turbo range. Eventually, the recent load’s influence
times out, and CFS starts using the cores near the initial one
again. The pattern repeats. This pattern makes up around
half of the execution; the remainder involves longer non-
concurrent tasks. In contrast (Figure 2(b)), Nest places the
tasks on only two cores, which mostly stay at the highest
frequencies.
To quantify this situation, we define the concept of un-

derload. Underload in a given time interval is the difference
between the number of cores used at any point in the interval
and the maximum number of tasks that are simultaneously
runnable in the interval. A positive underload indicates insuf-
ficient core reuse, as a long-idle core has been chosen rather

2In all execution traces, cores have been renumbered such that cores on the
same socket have adjacent numbers, for readability.
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Table 2. Hardware characteristics.

CPU Microarchitecture # cores Min freq Max freq Max turbo Power management
Intel Xeon E7-8870 v4 Broadwell 4x20x2 = 160 1.2GHz 2.1 GHz 3.0GHz Enhanced Intel SpeedStep
Intel Xeon Gold 6130 Skylake 2x16x2 = 64 1.0GHz 2.1GHz 3.7GHz Intel Speed Shift
Intel Xeon Gold 6130 Skylake 4x16x2 = 128 1.0GHz 2.1GHz 3.7GHz Intel Speed Shift
Intel Xeon Gold 5218 Cascade Lake 2x16x2 = 64 1.0GHz 2.3GHz 3.9GHz Intel Speed Shift

Table 3. Available turbo frequencies, in terms of the number
of cores used on a given socket.

1 2 3 4 5-8 9-12 13-16 17-20
E7-8870 v4 3.0 3.0 2.8 2.7 2.6 2.6 2.6 2.6
6130 3.7 3.7 3.5 3.5 3.4 3.1 2.8 –
5218 3.9 3.9 3.7 3.7 3.6 3.1 2.8 –
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Figure 2. Core frequency trace for LLVM configuration for
build with Ninja, when using the schedutil governor, on a
64-core, 2-socket, Intel Xeon Gold 5218.

than a core that was already used in the current interval. This
long-idle core may initially run at a lower frequency than a
core that could have been reused, thus decreasing the perfor-
mance. Figure 3 shows the underload occurring in the first
0.3 seconds of the execution of LLVM configuration for build
with Ninja, with CFS- and Nest-schedutil. We use an inter-
val of 4ms (one tick). While CFS-schedutil gives substantial
underload, with Nest-schedutil it has almost disappeared.
To facilitate comparisons, we compute the underload per

second, i.e., the average amount of underload occurringwithin
the execution of an application over 1 second. Nest is de-
signed to reduce this value without introducing overload, i.e.,
multiple tasks trying to run on a single core.
Performance analysis. As there is no software configura-
tion benchmark, we use the configuration scripts for the
software in the Phoronix Timed Code Compilation Test
Suite [16]. We consider only software where the configura-
tion scripts are generated using autotools or cmake, which
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d CFS 
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schedutil

Figure 3. Underload for LLVM configuration for build with
Ninja, when using the schedutil governor, on a 64-core, 2-
socket, Intel Xeon Gold 5218.

clearly separate configuration from the rest of the build. Fig-
ure 4 shows the underload per second for these scripts, with
CFS and Nest, using the schedutil and performance gover-
nors, based on one run. Figure 5 shows the speedups achieved
with Nest. Figure 6 shows the frequencies observed on the
cores that are executing the configuration script. Figure 4
shows that Nest reduces the number of cores used, almost
eliminating the underload. As a result, the cores running
tasks become highly utilized and, as shown by Figure 6, the
highest frequencies are almost always used. Speedups com-
pared to CFS-schedutil exceed 5% except on NodeJS, which
is trivial. The greatest speedup, on the E7-8870 v4, is 37%.

We next compare the speedups shown in Figure 5 by gov-
ernor. On the recent 6130 and 5218 machines, Nest gives
about the same speedup with both schedutil and performance,
and gives much greater speedup than CFS-performance. CFS-
performance gives little speedup (i.e., never more than 5%)
because CFS-schedutil already reaches the turbo frequencies.
Unlike Nest, performance alone does nothing to reduce the
number of used cores. On the older E7-8870 v4 machine,
Nest-schedutil sometimes gives slightly less speedup than
CFS-performance or Nest-performance. Indeed, with schedu-
til, whenever there are gaps in the computation, this machine
is prone to using subturbo frequencies, even when very few
cores are used. By forcing the minimal frequency to be the
nominal frequency, performance increases the likelihood that
cores will reach and remain at the turbo frequencies. Nest-
performance almost always achievesmore speedup than CFS-
performance, because CFS uses too many cores, preventing
the cores from reaching the highest turbo frequencies.

Next, we compare the speedups (Figure 5) across machines.
The speedups are comparable for the two 6130 machines. As
the computation fits into one socket, the number of sockets
is irrelevant. The 5218, which is faster than the 6130, shows
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Figure 4. Underload per second with CFS and Nest. “sched” abbreviates “schedutil” and “perf” abbreviates “performance”.
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Figure 5. Configuration tests, speedup as compared to CFS schedutil. The average execution time and the percentage standard
deviation with CFS-schedutil are shown at the top of each graph.

both better performance with Nest and better speedup than
observed on the 6130 machines. Finally, the older E7-8870
v4 is the slowest, as indicated by the running times for CFS-
schedutil listed at the top of the graph, which are always
around 2× that of the other machines. Still, it achieves the
greatest speedup (up to 37% for Nest-schedutil).
At high frequencies, cores consume more energy than

at lower frequencies, and thus Nest could increase energy
consumption. Figure 7 shows the CPU energy consumption.
As Nest reduces the execution time, it reduces the machine’s
CPU energy consumption by up to 19% between the start
and end of its execution. On these tests, Nest provides both
a consistent speedup and energy savings by ensuring that
the computation remains on a small number of cores.
Note that on the Intel Xeon, while the hardware sets the

core frequencies up and down, the CPU energy consumption
is determined by the consumption of the highest frequency

core on the socket. Furthermore, if any core on themachine is
active, all of the sockets remain in a high state of availability
in case of accesses to their associated memory. Thus, while
some energy can be saved by concentrating all of the tasks
on a single socket, the greatest CPU energy savings can only
be achieved by reducing the running time of the application.
Impact of Nest features. To understand the impact of the
various features of Nest, we perform a small ablation study,
removing the features one by one. We likewise consider mul-
tiplying each of the parameters shown in Table 1 by 0.5, 2, or
10. On these variants, we test llvm_ninja and mplayer config-
uration, using schedutil. The only change is if we remove the
reserve nest, degrading performance by around 5% on the
6130 and 5218 machines, and by up to 16% on the E7-8870
v4. The reserve nest allows the primary nest to remain small,
but allows some extra cores to be chosen just because they
are idle, without considering recent load as done by CFS.
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Comparisonwith 𝑆move. Figure 5 also compares 𝑆move-sched-
util to CFS-schedutil. While Nest gives speedups of 10% to
over 20% for almost all configuration scripts on the 6130’s
and the 5218, and even more speedup on the E7-8870 v4,
the speedup of 𝑆move on the 6130’s and the 5218 is always
under 5%, except on the configuration of LLVM, where it
reaches 9%. 𝑆move tentatively places the forked or woken task
on the core of the parent only when the frequency observed
at the last clock tick on the core chosen by CFS is low. On
the 6130’s and the 5218, when a core becomes idle there
is often no clock tick that observes a low frequency. Thus,
𝑆move considers that the core chosen by CFS is still at its a
high frequency, and thus that 𝑆move’s placement heuristic
is unnecessary. 𝑆move gives slightly higher speedups on the
E7-8870 v4, but they remain far from those of Nest.
Software configuration is a best case for 𝑆move, because

there is mostly only one executing task, with one task hand-
ing off control to another. As 𝑆move does not perform as well
as Nest even in this scenario, we do not include 𝑆move in our
remaining evaluations.

5.3 DaCapo benchmark suite evaluation

The DaCapo benchmark suite [3] comprises a number of
real-world Java applications. We use both the original ver-
sion and the evaluation version that contains more recent
applications.3 We give the latter applications names ending
in “-eval”. We omit the benchmarks that do not run on our
Debian OpenJDK 11.0.2.4 To avoid interference of the JIT
compiler and the garbage collector, the DaCapo benchmark
developers propose to consider only the last of 𝑁 runs. We
choose instead to report on the complete execution of 10
runs, to cover a wider range of behaviors. Each test runs
the application 10 times. Over 10 tests we have very small
standard deviations (most ≤ 2%).
Performance analysis. The DaCapo benchmarks include
both applications with a small fixed number of tasks and
highly multicore applications with varied execution patterns.
The results with Nest (Figure 10) range from a 6% degra-
dation with fop, which only involves one application task
(in addition to JIT compilation and garbage collection), on
the E7-8870 v4 (the only degradation of more than 5%) to a
speedup of more than 40%. Nest-schedutil achieves the high-
est speedups on h2, tradebeans, and graphchi-eval. These
applications have a high underload per second (indicated
as “u:X” in Figure 10). They achieve higher frequencies with
Nest (Figure 11). These applications also run significantly
faster on the two-socket machines than on the four-socket
6130. We focus on h2.

3Jar files dacapo-9.12-MR1-bach.jar and dacapo-evaluation-git+309e1fa.jar.
4Of the original DaCapo benchmarks, batik and eclipse crash. Tomcat gives
a failure result. Tradesoap crashes intermittently. Some of these problems
are documented here: https://github.com/eclipse-openj9/openj9/issues/4859.
h2o-eval goes into an infinite loop on some runs.
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Figure 9. A slow run of h2 on CFS.

We first consider the performance on the four-socket 6130.
Figure 8 shows a typical run of h2 on this machine, with CFS-
schedutil and with Nest-schedutil. CFS-schedutil disperses
the tasks over most of the cores of one socket, causing tasks
to spend almost 2/3 of their time at low turbo (at most 3.1
GHz) or subturbo frequencies. In contrast, Nest-schedutil
keeps the tasks on at most around 10 cores, causing the
tasks to spend more than 2/3 of their time at high turbo
frequencies (above 3.1 GHz), giving a speedup of around 20%.
Some CFS-schedutil runs disperse the tasks over multiple
sockets (Figure 9). In this case, there is little utilization of any
given core, causing the cores to drop to the lower frequencies
for more than 2/3 of the execution time. Nest always keeps
the h2 tasks on a single socket, and thus gives a speedup of
more than 2× as compared to Figure 9.

The performance governor forces the frequencies of active
cores to be at least the nominal frequency. Thus, on the four-
socket 6130, both CFS-performance and Nest-performance
mostly use the turbo frequencies. Still, with Nest, the higher
frequencies are used more often, because Nest reduces the
number of cores used. The results on the two-socket 6130
and 5218 are similar to the four-socket case, but with only
two sockets, the tasks are less dispersed, giving better per-
formance for CFS and thus less speedup with Nest.

The task placement of h2 on the older four-socket E7-8870
v4 is similar to that of the two-socket 6130 and 5218. Nest
again concentrates the tasks on around 10 cores of a single
socket. But the performance improvement is lower. Indeed,
on the E7-8870 v4, Nest-schedutil has little impact on the fre-
quency for many of the DaCapo benchmarks. These bench-
marks involve tasks that frequently sleep for brief periods,
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Figure 10. DaCapo tests, speedup as compared to CFS schedutil. Blue applications (underlined) involve only one or a few
tasks. The average execution time, the percentage standard deviation, and the underload per second (u:X) with CFS-schedutil
are shown at the top of each graph.

which causes the E7-8870 v4 to use the lowest frequencies.
Even Nest’s spinning is not sufficient to defeat this tendency.
As for the 6130 and 5218, the performance governor causes
the E7-8870 v4 to use turbo frequencies. For h2, as Nest-
performance also reduces the number of cores used, it gives
a larger speedup than CFS-performance.
Impact of Nest features.We study the performance of h2,
graphchi-eval, and tradebeans if we remove spinning, nest
compaction, or the reserve mask. Spinning has the greatest
impact; removing it gives a degradation of 10-21% on the
two-socket 6130 and 5218, and of 17-26% on the four-socket
6130. Without spinning, there is not enough core utilization
to motivate the use of the higher frequencies. A too short
spin (up to 1 tick) gives a small degradation of 2-7%. A too
long spin (up to 20 ticks) also reduces frequencies, due to the
large number of active cores. Eliminating nest compaction
allows h2 and graphchi to spread out across too many cores,
reducing their performance by around 5%. On the other hand,
several Nest features are detrimental to tradebeans. For
example, on the 2-socket machines, tradebeans’ performance

is improved by around 20% by reducing the nest compaction
delay to 1 tick. With this change, the threads stay within a
single socket, improving performance. Finally, unlike for the
configure benchmark, the reserve mask has little impact on
h2, graphchi-eval, and tradebeans; the primary mask builds
up a pool of cores that the tasks use, without falling back to
the reserve mask or CFS.

5.4 NAS Parallel Benchmarks evaluation

The NAS Parallel Benchmarks [2] are a collection of HPC
kernels. We use version 3.4 with OpenMP.5 For conciseness,
we show only the results for the “C” datasets, the largest
of the standard test problems.6 These benchmarks each in-
volve one task per core. In the optimal case, each task is
immediately placed on its own core at the time of fork, and
remains there throughout its execution. Overloading some
cores, while leaving others empty, causes the tasks to become

5https://github.com/mbdevpl/nas-parallel-benchmarks.git, tag v3.4
6We omit the benchmark DC that targets computational grids and is thus
out of the scope of scheduling for individual servers.
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Figure 11.DaCapo tests, frequency distribution. The numbers above the bars indicate the speedup as compared to CFS-schedutil.
Green numbers indicate a speedup of more than 5%. Red numbers indicate a degradation of more than 5%.

unsynchronized, requiring some to sleep to wait for others
to complete their current work. The challenge for Nest is to
achieve the optimal placement.
As shown in Figure 12, on the two-socket 6130 and 5218,

CFS and Nest have essentially the same performance. Typ-
ically, both schedulers place each task on its own core as
it is forked, the tasks remain synchronized as they execute,
and there is little movement between cores. For most of the
tests, the cores remain in the low turbo frequencies; higher
frequencies are not possible because all cores are active.

The performance on the four-socket 6130 is more variable,
with high speedups with both Nest-schedutil and Nest-
performance on BT (31% and 28%, respectively), LU (166%
and 160%, respectively), and UA (89% and 87%, respectively).

These results are difficult to interpret, due to the high stan-
dard deviation of CFS-schedutil on these benchmarks, up to
54% in the case of LU. When CFS-schedutil has a standard
deviation of under 10%, all of the schedulers give essentially
the same performance.

On the four-socket E7-8870 v4, Nest provides substantial
speedups, from 16% on BT (Nest-schedutil) to over 80% on
MG, on all tests except CG and EP. Lepers et al. [10] observed
that on highly multicore machines where cores do not reach
the highest frequencies quickly, CFS’s fork is not able to
place each NAS task on its own core. This causes overloads
that then must be gradually resolved via load balancing.
Nest is more aggressively work conserving than CFS on
task wakeup. This feature allows the primary nest to quickly
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Figure 12. NAS tests, speedup as compared to CFS schedutil.
The schedulers are color-coded as Figures 5, 7 and 10.

reach a size close to the number of concurrent tasks. But it
has the side effect of improving the performance of the NAS
benchmarks on the E7-8870 v4 as compared to CFS. Nest-
schedutil withoutwork conservation onwakeups gives about
the same performance on BT and MG as CFS-schedutil.

The Nest feature that most affects NAS is the favoring of
recently used cores, i.e., the attached core or the previously
used core. For example, on the 5218, MG has a 15% slowdown
without these features. These features help tasks stay on their
original cores. Features such as nest compaction, the reserve
nest, and spinning have less impact on NAS, as they are
rarely or never triggered.
The results on all four machines show that the nest does

not get in the way of highly parallel applications.

5.5 Phoronix multicore suite evaluation

Multicore applications have a wide variety of behaviors, and
thus large-scale testing of a scheduler is necessary to achieve
adoption. The Phoronix multicore suite [15] comprises 90
benchmarks, each involving one or more tests, for a total of
up to 222 tests that we were able to run (some tests were
omitted on some machines due to installation issues). This is
a much larger test set than used in recent scheduling papers
[4, 6, 7, 14].

The Phoronix tests involve various metrics; we say “speed-
up” to indicate an improvement in the metric value. Most
tests (Table 4) are unaffected by Nest, with a speedup of ±5%.
For all architectures, at least 7% of the tests have a speedup
above 5% for Nest-schedutil, and this is the case for 21% of
the tests on the E7-8870 v4.
Figure 13 shows results for those tests where either CFS-

performance or Nest-schedutil shows a speedup or degra-
dation of at least 20% on at least one machine. The tests are

Table 4. Overview of the Phoronix multicore results.

slower by same faster by
CPU scheduler > 20% (5,20]% (5,20]% > 20%

2 socket CFS-perf. 0 (0%) 1 (0%) 206 (93%) 9 (4%) 6 (3%)
6130 Nest-sched. 1 (0%) 15 (7%) 191 (86%) 11 (5%) 4 (2%)

4 socket CFS-perf. 2 (1%) 7 (3%) 190 (87%) 9 (4%) 10 (5%)
6130 Nest-sched. 1 (0%) 19 (9%) 159 (73%) 21 (10%) 18 (8%)

2 socket CFS-perf. 0 (0%) 1 (0%) 200 (92%) 10 (5%) 6 (3%)
5218 Nest-sched. 0 (0%) 12 (6%) 189 (87%) 12 (6%) 4 (2%)

4 socket CFS-perf. 0 (0%) 5 (3%) 94 (61%) 18 (12%) 37 (24%)
E7-8870 v4 Nest-sched. 1 (1%) 13 (8%) 107 (69%) 25 (16%) 8 (5%)

numbered according to their order on the Phoronix web site
[15]. A key is provided in Table 5 in the appendix.
We highlight some of the results that illustrate specific

patterns. We emphasize that these represent exceptional
cases, and are typically highly dependent on the number of
concurrent application tasks and the architecture.
Zstd compression 7 and 10 – high speedup with CFS-

performance andNest-schedutil.With Zstd compression
7 and 10, CFS-performance and Nest-schedutil both give sig-
nificant speedups on the 6130 and 5218 machines. As for
configuration (e.g., Figure 2), CFS-schedutil spreads the tasks
out over all of the cores, and the tasks run for very short
times, and thus obtain a low frequency. CFS-performance
restricts the hardware to higher frequencies, giving speedups
of 36-76% on all machines. Nest-schedutil reuses cores, plac-
ing all tasks on a small set of cores on a single socket, giving
speedups of 26-97% on the 6130 and 5218 machines. On the
E7-8870 v4, Nest-schedutil also concentrates the tasks on a
few cores of a single socket, but the degree of activity is still
too low, and the cores remain at a very low frequency.
Rodinia 5 – opposite behavior with CFS-performance

and Nest-schedutil. On the 6130 and 5218 machines, Ro-
dinia 5 gives a speedup with Nest, but no speedup with
CFS-performance. On the other hand, on the E7-8870 v4, Ro-
dinia 5 gives a speedup with CFS-performance, but a small
degradation (8%) with Nest. Rodinia uses 36 cores for most
of its computation. With CFS-schedutil, they remain on one
socket, while the wakeup work conservation of Nest al-
lows them to scatter across the machine. On the 6130 and
5218, with CFS-schedutil, intensively computing tasks share
physical cores, reducing their performance as compared to
Nest-schedutil, where tasks mostly run on a core that has
an idle hyperthread. On the E7-8870 v4, the scattering of
running tasks done by Nest’s wakeup work conservation
implies that the hardware sees less activity and thus uses
lower frequencies, reducing performance. CFS-performance
ensures high frequencies, solving the problem.
libavif avifenc 1 – degradation with Nest-schedutil on

all machines. The greatest degradation (22%) is on the four-
socket 6130. In this case, with CFS-schedutil, most of the
tasks start on one socket, but some migrate to other sockets
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Figure 13. Phoronix multicore suite, speedup as compared to CFS schedutil. The numbers at the top of each graph show the
metric value for CFS-schedutil. Cases where CFS-schedutil has a standard deviation of more than 15% are omitted.

over time, resulting in a number of concurrent tasks (up
to 12) on these other sockets that allows them to reach the
middle turbo frequencies. Nest-schedutil keeps the tasks
on the initial socket, where they run at the lowest turbo
frequency, reducing performance.

5.6 Other applications

We briefly consider some other benchmarks relevant to mul-
ticore scheduling and some other execution contexts.
Hackbench and schbench [5]. Hackbench involves pairs
of processes or threads that constantly exchange messages.
Its execution time is thus massively dominated by the time
to schedule the threads (96% system time with CFS). We run
hackbench -g 100 -l 10000, as used in the recent kernel
commit 04b4b006139b. Nest gives a substantial slowdown.
While the time on the 5218 with CFS-schedutil is 22.5 sec-
onds, with Nest-schedutil it is sometimes 76 seconds and
sometimes 380 or more seconds. The difference correlates
with the number of instruction cache misses: 30M with CFS-
schedutil, 49M with Nest-schedutil in the faster case, and
319Mwith Nest-schedutil in the slower case. Nest adds a lot
of code to core selection, which could be optimized. Further-
more, the behavior of hackbench is atypical, as evidenced by
our results on the very large Phoronix multicore suite.
Schbench is a scheduling benchmark that reports 99.9th

percentile tail latency. We test schbench via the Phoronix
infrastructure (2-32 message threads, and 2-32 workers per
message). There is not a clear advantage for either CFS or
Nest: sometimes the results are the same, sometimes CFS or
Nest has a significantly longer tail latency. Like hackbench,
schbench tests an extreme case.

Server tests.We evaluated CFS- and Nest-schedutil on the
Intel two-socket 6130 with tests from the Phoronix server
suite, including web-servers, databases and key value stores.
Nest is typically slower than CFS on the apache-siege

benchmarks as the number of concurrent users/requests
increases. On the other hand, for nginx, Nest has compa-
rable performance to CFS, even as the number of requests
increases. Nest also gives similar performance to CFS for
node.js and php. Nest improves the performance of the key-
value store leveldb by 25%, and improves the performance of
the key-value store redis by 7%. Nest improves the perfor-
mance of the perl benchmark by up to 16% but loses about
5% for a Random Read test of rocksdb.
Multiple concurrent applications.All of our previous tests
involve only one application. We now briefly consider the
impact of Nest when two applications run in parallel.
Figure 13 shows that Nest improves the performance of

compress-zstd Compression Level: 3, 8 Long Mode (Zstd-
compression-7, 10) and Libgav1 Chimera 1080p (libgav1-4)
by up to 96% and 46%, individually.Whenwe run them in par-
allel, we observed 4-48% improvement for Zstd-compression-
7, 3-12% improvement for Zstd-compression-10, and 2-34%
improvement for libgav1-4 compared to CFS in the multi-
application scenario. Moreover, Some applications are faster
with Nest in the multi-application scenario than with Nest
in the single-application scenario, by 19% for Zstd-compression-
7 and by 4-8% for libgav1-4.
Mono-socketmachines.While Nest primarily targets large
servers, we have also done some tests on two single socket
machines, an Intel Xeon 5220 (Cascade Lake, 36 cores, maxi-
mum turbo frequency 3.9GHz) and an AMD Ryzen 5 PRO
4650G (12 cores, maximum turbo frequency 4.2GHz).
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On the Intel 5220, for the configuration benchmarks, we
obtain speedups similar to those of the 6130 and 5218. The
small number of concurrent tasks again implies that the
number of sockets has little impact on the results. For the
DaCapo benchmarks, Nest only improves h2, graphchi-eval,
and tradebeans. The speedups are lower than on the larger
Intel machines. The thread dispersal of CFS does not result
in threads being placed on multiple sockets, and thus there
is less opportunity to improve performance with Nest. Fi-
nally, the performance of the NAS benchmarks with Nest
(schedutil and performance) is identical to that of CFS.

On the AMD 4650g, for the configuration benchmarks,
Nest-schedutil obtains high speedups of 20-80% in almost
all cases. The speedups approach those obtained with CFS-
performance. Nest-performance gives even higher speedups
of 27-157%. For the DaCapo benchmarks, Nest-schedutil im-
proves the performance of most benchmarks by 10-30%, but
typically lags behind CFS-performance. Nest-performance
meets and sometimes exceeds CFS-performance, with the
speedups of 20-180% in most cases. The performance of the
NAS benchmarks with Nest is again identical to that of CFS.

6 Related Work

Recent work [4, 7, 10, 11] has shown that for modern multi-
core servers a critical component of a scheduler is its core-
selection strategy. Lozi et al. [11] found that CFS could over-
look idle cores on some sockets while overloading cores on
others, violating work conservation and thus degrading per-
formance. Subsequently, Lepers et al. [10] proposed a strat-
egy for formally proving work conservation and showed
performance benefits. Gouicem et al. [7], however, found
that work conservation is not enough – CFS can induce sub-
optimal performance even when every task is placed on an
idle core, when low frequency cores are chosen.

Even when Nest concentrates all of the computation on a
single socket, the hardware does not put the other sockets
into the deepest sleep states, to facilitate any accesses to
memory on those sockets. Nitu et al. [12] suggested sepa-
rating the power supplies of sockets and memory, in order
to suspend servers in a cloud environment, but leave their
memory accessible, and thus reduce energy consumption.
Keeton [9] proposed a distributed system memory-centric
architecture that would provide a similar capability.

Solaris assigns each task a home node, and the scheduler
tries to keep a task on this node [13]. The goal is to improve
memory locality, rather than favoring a core with a higher
frequency. Indeed, on modern servers, core frequencies vary
independently, and thus attaching a task to a particular node
is not sufficient to obtain the best performance.

Lowering the core frequency (DVFS) to save energy has a
long history. Some work exploits DVFS on servers in order
to offer more energy efficient cloud computing [17, 18].

Our work targets the problem of tasks that run slowly be-
cause they are placed on idle cores that have dropped to a low
frequency. Cores may also run slowly to maintain thermal
properties in the case of AVX vector instructions. Gottschlag
et al. [6] adjust the CPU time accounting to maintain fairness
in this situation. We focus on the choice of cores, to avoid
placing tasks on slow cores when possible.

Core scheduling [19] adjusts core selection to avoid plac-
ing untrusted tasks on a core’s hyperthread, to prevent side-
channel attacks. It is orthogonal to Nest.

7 Conclusion

In this paper, we have presented the Nest scheduling policy
that favors concentrating tasks on a reduced set of cores. We
have evaluated Nest on a variety of recent Intel multicore
architectures, comprising moderate-size and large multicore
servers. Nest shows substantial performance improvements
on applications where the number and set of running tasks
changes frequently, and maintains the performance of CFS
on applications that involve only one or a handful of tasks as
well as applications that fully use all of the cores of the ma-
chine. Our results show that processor frequencies can have
a large impact on application performance. It may thus be
worth considering redesigning hardware to allow a greater
number of cores to run at the higher turbo frequencies.

Most of the implementation of Nest amounts to a single
block of code placed in front of the core selection function
of CFS, making Nest easy to port to other Linux kernel
versions. The effect of Nest is to concentrate tasks on a
small set of cores, without introducing overload. We have
seen that this strategy results in performance improvements
as compared to Linux v5.9’s scheduler on our test machines,
in which this placement strategy results in the cores running
at higher frequencies, and thus the applications terminating
more quickly. The impact of Nest in the more general case
will depend on the evolutions in the Linux kernel’s power
management strategy and the core frequency management
strategy of the target hardware.
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A Artifact Appendix

A.1 Abstract

The Nest artifact includes the Nest Linux kernel patch, the
configure, DaCapo, and NAS benchmark suites used in the
paper, tools for running these benchmarks, and instructions
for running the Phoronix benchmarks.

A.2 Description & Requirements

A.2.1 How to access. The artifact is available at https:
//gitlab.inria.fr/nest-public/nest-artifact and at https://do
i.org/10.5281/zenodo.6344960. This repository includesmore
detailed instructions for setting up and running the bench-
marks. In this appendix, all mentioned files are from this
repository.

A.2.2 Hardware dependencies. We have only tested the
artifact on the machines described in the paper. The exper-
iments are intended to be run on the hardware, not in a
virtual machine.

A.2.3 Software dependencies. There are many software
dependencies. The artifact relies on Debian 11. The required
packages are listed in image_creation/debian11_packages.
The file image_creation/debian11_list gives information
about version numbers. The file image_creation/README.md

(also available in pdf) explains how to install these packages.
This file also explains how to install some software that is
not available from Debian.

A.2.4 Benchmarks. The software tested for the config-
ure, DaCapo, and NAS experiments (Figures 5-12) is found in
configure-dacapo-nas/software. These experiments rely on
tools found in image_creation/ocaml-scripts and configu-
ration files found in configure-dacapo-nas/scripts.

The procedure for obtaining the Phoronix benchmarks is
located at the end of README.md.

A.3 Set-up

Please see image_creation/README.md for detailed environ-
ment set up instructions and README.md for detailed instruc-
tions on running the experiments.

A.4 Evaluation workflow

A.4.1 Major Claims. When there are fewer concurrently
running task than cores, CFS is prone to scatter the tasks
across the machine, causing tasks to often wake up on re-
cently idle cores running at a low frequency. We claim that
in this case performance can be improved, potentially with
no additional energy consumption, by restricting the tasks
to a smaller number of cores. Such cores are considered by
the OS and by the hardware to be more highly utilized and
thus run at a higher frequency. We further claim that while
applications that use all cores intensively do not benefit from
this strategy, they also incur little or no performance degra-
dation.
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These claims are mainly illustrated by Figures 2-13, and
the accompanying discussion in Section 5. We aim to make
these figures reproducible in this artifact.

A.4.2 Experiments. Detailed instructions on how to re-
produce the environment used by the experiments are found
in image_creation/README.md and how to run the experi-
ments in README.md. We give only an overview here. The
experiment times are very approximate.

Experiment (E1): [configure] [4 hours]: This experi-
ment produces Figures 5-7. It produces graphs describing
running times, core frequencies, and CPU energy consump-
tion. It compares CFS with the schedutil and performance
governors, Nest with the schedutil and performance gov-
ernors, and a previous approach 𝑆move with the schedutil
governor. This experiment is described in Section 5.2.

[Preparation] In image_creation/ocaml-scripts, run make

and sudo make install. This step is a prerequisite for all of
the experiments. Set the environment variable LC_MYNAME to
your username.

These experiments should be performed using the 5.9.0freq,
5.9.0Nest, and 5.9.0smoveoriginal kernels. The document
image_creation/README.md explains how to build and install
these kernels. The associated kernel patches are found in
image_creation/{freq,nest,smoveoriginal}.patch.

[Execution] In the directory configure-dacapo-nas/scripts,
edit the files configure.config and smove_configure.config

to add a block for your test machine. The name field should be
the result of running hostname on your test machine. It should
be sufficient to copy the other fields from another entry
as is. Then, as root, run run_everything configure.config

smove_configure.config. This command will place the re-
sults (.dat files, .json files, and .turbo files, for each test) in
the directory configuretraces in your home directory.

[Results] In the configuretraces subdirectory of your home
directory, graphs can bemade using read_csvs configure.tex

5.9.0freq_schedutil *json. The resulting file configure_-

acm.pdf resembles the graphs in the paper, although with a
less fine-tuned layout. The information found in the other
generated pdf files is described in README.md. Our versions
of these files are found in configure-dacapo-nas/results.
Experiment (E2): [DaCapo] [36 hours]: This experi-

ment produces Figure 10 and 11. It produces graphs describ-
ing running times and frequencies, comparing CFS with the
schedutil and performance governors with Nest with the
schedutil and performance governors. This experiment is
described in Section 5.3.

The experiment is done in essentially the same way as the
configure experiment. The main steps are:

• Add an entry for the local hostname to dacapo.config.
• run_everything dacapo.config

• read_csvs dacapo.tex 5.9.0freq_schedutil *json

Experiment (E3): [NAS] [2 hours]: This experiment
produces Figure 12. It produces graphs describing running
times, comparing CFS with the schedutil and performance
governors with Nest with the schedutil and performance
governors. This experiment is described in Section 5.4.

The experiment is done in essentially the same way as the
configure experiment. The main steps are:

• Add an entry for the local hostname to nas.config.
• run_everything nas.config

• read_csvs nas.tex 5.9.0freq_schedutil *json

Experiment (E4): [Phoronix] [24 hours]: This experi-
ment produces Figure 13. It presents results for benchmarks
from the phoronix multicore suite, comparing Nest schedutil
power governor with CFS schedutil and performance power
governors. The key observations are described in Section
5.5.

The main steps of this experiment are as follows:
• Install phoronix-test-suite version 10.4 from GitHub.
• Install the benchmarks with test-profiles provided in
nest-artifact.

• Boot with desired kernel and power governor using
the scripts provided in nest-artifact.

• Perform two warm-up runs followed by 10 runs of the
benchmark.

• Give the result file a descriptive name.
• Repeat the same steps for Nest schedutil, CFS schedutil
and CFS performance.

• Use read_csvs. provided in nest-artifact, to analyze
the results.

The considered Phoronix benchmarks are listed in Table 5.

Table 5. Considered Phoronix benchmarks.

askap 5 ASKAP1.0 - Test: Hogbom Clean OpenMP
cassandra 1 Apache Cassandra4.0 - Test: Writes
arrayfire 2 ArrayFire3.7 - Test: BLAS CPU
arrayfire 3 ArrayFire3.7 - Test: Conjugate Gradient CPU
cpuminer-opt 6 Cpuminer-Opt3.15.5 - Algorithm: Blake-2 S
cpuminer-opt 8 Cpuminer-Opt3.15.5 - Algorithm: Myriad-Groestl
cpuminer-opt 11 Cpuminer-Opt3.15.5 - Algorithm: Quad SHA-256, Pyrite
cpuminer-opt 7 Cpuminer-Opt3.15.5 - Algorithm: Skeincoin
cpuminer-opt 9 Cpuminer-Opt3.15.5 - Algorithm: Triple SHA-256, Onecoin
ffmpeg 1 FFmpeg4.0.2 - H.264 HD To NTSC DV
graphics-magick 4 GraphicsMagick1.3.33 - Operation: Resizing
oidn 1 Intel Open Image Denoise1.4.0 - Run: RT.hdr_alb_nrm.3840x2160
oidn 2 Intel Open Image Denoise1.4.0 - Run: RT.ldr_alb_nrm.3840x2160
oidn 3 Intel Open Image Denoise1.4.0 - Run: RTLightmap.hdr.4096x4096
rodinia 5 Rodinia3.1 - Test: OpenMP Leukocyte
zstd compression 10 Zstd Compression1.5.0 - Compression Level: 3, Long Mode -

Compression Speed
zstd compression 7 Zstd Compression1.5.0 - Compression Level: 8, Long Mode -

Compression Speed
libavif avifenc 1 libavif avifenc0.9.0 - Encoder Speed: 6, Lossless
libgav1 4 libgav10.16.3 - Video Input: Chimera 1080p
libgav1 3 libgav10.16.3 - Video Input: Chimera 1080p 10-bit
libgav1 2 libgav10.16.3 - Video Input: Summer Nature 1080p
libgav1 1 libgav10.16.3 - Video Input: Summer Nature 4K
onednn 5 oneDNN2.1.2 - Harness: IP Shapes 1D - Data Type: f32 - Engine: CPU
onednn 4 oneDNN2.1.2 - Harness: IP Shapes 3D - Data Type: f32 - Engine: CPU
onednn 11 oneDNN2.1.2 - Harness: Recurrent Neural Network Training -

Data Type: bf16bf16bf16 - Engine: CPU
onednn 7 oneDNN2.1.2 - Harness: Recurrent Neural Network Training -

Data Type: f32 - Engine: CPU
onednn 14 oneDNN2.1.2 - Harness: Recurrent Neural Network Training -

Data Type: u8s8f32 - Engine: CPU
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