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Abstract
Serverless platforms today impose rigid trade-offs between

resource use and user-perceived performance. Limited con-

trols, provided via toggling sandboxes between warm and

cold states and keep-alives, force operators to sacrifice signif-

icant resources to achieve good performance. We present a

serverless framework, Medes, that breaks the rigid trade-off

and allows operators to navigate the trade-off space smoothly.

Medes leverages the fact that the warm sandboxes running

on serverless platforms have a high fraction of duplication in

their memory footprints. We exploit these redundant chunks

to develop a new sandbox state, called a dedup state, that

is more memory-efficient than the warm state and faster to

restore from than the cold state. We develop novel mecha-

nisms to identify memory redundancy at minimal overhead

while ensuring that the dedup containers’ memory footprint

is small. Finally, we develop a simple sandbox management

policy that exposes a narrow, intuitive interface for operators

to trade-off performance for memory by jointly controlling

warm and dedup sandboxes. Detailed experiments with a

prototype using real-world serverless workloads demonstrate

that Medes can provide up to 1×-2.75× improvements in the

end-to-end latencies. The benefits of Medes are enhanced in

memory pressure situations, where Medes can provide up to

3.8× improvements in end-to-end latencies. Medes achieves

this by reducing the number of cold starts incurred by 10-50%

against the state-of-the-art baselines.

CCS Concepts: • Networks → Cloud computing; • Infor-
mation systems → Computing platforms; Data centers; •

Software and its engineering → n-tier architectures.

Keywords: Serverless, Memory Deduplication, Cloud Com-

puting, Virtualization
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1 Introduction
In the serverless computing paradigm, developers submit a

piece of code (function) to the serverless platform. A function

instance is invoked based on a developer provided-trigger

and launched to execute in a sandbox (e.g., a container) with

the needed libraries and dependencies loaded. The platform

scales the number of functions instances (up or down) based

on the number of function invocations per unit time. Server-

less computing has become quite popular because (1) it en-

ables application developers to focus on application logic by

shifting the burden of provisioning, managing, and scaling

resources onto the cloud providers, and (2) it offers cost-

efficiency via fine-grained billing where developers only pay

for the time when their functions were actually running.

With more demanding applications and workloads migrat-

ing to serverless platforms, a key question for providers is

how to meet tight performance requirements while also ensur-

ing resource efficiency. Performance heavily depends on how

quickly a function instance can start acting on an end-user

request. Resource efficiency is achieved by closely matching

actively operating sandboxes to the incoming demand.

Serverless platforms today manage performance and effi-

ciency by toggling sandboxes between two states: cold and

warm (or paused). A “cold” sandbox does not use any memory

resources but induces long cold startup delays (which could

be in the order of seconds, depending on the platform and

runtime [38]) due to the needs for the execution environment

of a function to be initialized and loaded before a function in-

stance can execute in the sandbox [10, 11, 13, 16, 26, 29, 38].

“Warm” or paused sandboxes are kept in memory for a cer-

tain amount of time – the keep-alive period [29, 38] – after

the completion of function execution, consuming significant

memory. However, they enable sandbox reuse – subsequent

function invocations that arrive before the keep-alive expiry

run on these sandboxes experiencing a “warm startup” which
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is significantly smaller (varying from 1ms to 20ms depending

on the runtimes [38]).

Unfortunately, today’s platforms induce highly constrain-

ing trade-offs between performance and efficiency, with good

performance achievable only at significant resource expense,

and make it difficult for operators to control such trade-offs,

i.e., tune the achieved performance by controlling resource

use. In this paper, we present a new mechanism that increases

the flexibility of the trade-off space, enabling better perfor-

mance (efficiency) for the same efficiency (performance) as

platforms today, and a simple way for operators to navigate

the trade-off space.

Prior works have attempted to improve trade-offs in a few

different ways, but they are either ineffective in practice or do

not offer enough flexibility to navigate the trade-offs. For ex-

ample, techniques such as eschewing fixed keep-alives (used

today [16, 29]) in favor of adaptive [29] keep-alive policies,

or provisioning sandbox resources in anticipation of future

invocations [6, 30] fall short because the unpredictable nature

of serverless workloads makes it very difficult to design a gen-

eral keep alive or pre-warming policy (Section 7.5). Recent

proposals [10, 11, 13] to reduce startup times offer cold starts

that are still orders of magnitude slower than warm starts or

sacrifice code compatibility/isolation, which precludes their

widespread adoption [8] (Section 8).

Our work improves the trade-off space today by introduc-

ing a new sandbox state with a memory footprint and startup

performance in between those of cold and warm states. The

third state is built on extending the “reusable sandbox” con-

struct that underlies the warm state today to that of a reusable
sandbox chunk (RSC). An RSC corresponds to any memory

chunk of warm sandboxes that can be “re-used” by other sand-

boxes. Our empirical study (Section 2) shows the promise

of RSCs – we find evidence of significant duplication in the

memory states of warm sandboxes; specifically, we find that

(1) sandboxes of the same function can have upto 85% du-

plication in their memory state; (2) even across sandboxes

of different functions, we can identify upto 80-90% duplica-

tion. Essentially, the RSC notion works by removing such

redundant memory chunks across sandboxes, thereby signifi-

cantly improving serverless platforms’ memory-performance

trade-offs.

The new sandbox state that RSCs help us introduce is

called the deduplicated state (or dedup for short). In this

state, all the redundant memory chunks of the sandbox are

“removed” and only “unique” chunks are stored in memory.

Specifically: (1) we store only one copy of an RSC in a

“base” sandbox, and dedup-ed sandboxes’ memory contents

exist as a collection of local completely-unique chunks and

redundant RSCs in multiple remote base sandboxes; (2) prior

to launching a function, we restore a dedup-ed sandbox by

putting together unique local chunks with redundant RSCs

read over the network from remote base sandboxes.

Our deduplication approach ensures that the dedup state

has a significantly smaller memory footprint than warm star-

tups and that dedup startups are significantly faster than cold

starts. By deduplicating more sandboxes, the overall memory

usage is smaller than that of a platform which only has warm

sandboxes. Further, we can utilize this saved memory to keep

more sandboxes, leading to improved performance. Thus,

we can leverage the dedup state to improve the flexibility

and scope of the memory-performance trade-off in serverless

computing.

We present Medes (Memory Deduplication for Serverless),

a novel serverless framework that incorporates the dedup

sandbox state. Medes makes use of a novel deduplication

mechanism that can identify potentially similar chunks in the

memory states of sandboxes across the cluster. Calculating

the amount of chunk-level duplication between the memory

states of two sandboxes, and exploiting said redundancy is

not trivial on a serverless platform, where a large number of

sandboxes could be in memory at the same time, each having

tens of thousands of pages in its memory state. Medes tackles

this by using three techniques (details in Section 4). First, to

ensure scaling and to lower the computational costs of dedu-

plication, while we identify redundancy at the chunk-level

(because it is the most effective), we perform deduplication

at the page granularity: for each page of a dedup sandbox,

Medes identifies a similar (base) memory page on the clus-

ter and computes a “patch” with respect to it. The choice

of this base page is based on an estimate of the number of

RSCs in common between the two pages. Second, to fur-

ther improve scaling, we restrict the number of base pages

to keep track of by demarcating certain sandboxes as base

sandboxes and using only the memory pages of these base

sandboxes as reference for computing patches. Third, we

leverage value-sampled fingerprints [9] to lower the computa-

tional and storage costs of redundancy identification - which

leads to overall faster function startup times than cold starts

and hence promises better function performance.

Medes allows serverless platform operators to control the

memory-performance easily trade-offs and navigate the trade-

off space via a novel sandbox management policy. Our policy

jointly controls the number of warm and dedup sandboxes in

memory and offers a narrow interface with simple, intuitive

parameters through which operators can: (a) reason about the

performance achieved for a given resource footprint, (b) con-

trol performance (memory) by directly and adjusting memory

footprint (performance goals), and (c) customize the policy

for different serverless functions.

We evaluate Medes against state-of-the-art keep-alive-based

sandbox management policies on real-world serverless work-

loads. We observe that Medes can deliver on its promise of

better performance and efficiency across a spectrum of set-

tings. Medes can provide up to 1×-2.75× smaller function

startups in the tail by reducing the number of cold starts in-

curred by 10-50% against the baselines. Medes achieves this
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Benchmark
Testcase Python Libraries Description

Vanilla Math, Time Simple mathematical computation.

LinAlg Numpy, Time Linear algebra functions.

ImagePro Numpy, Pillow Image processing operations.

VideoPro Numpy, OpenCV Video processing functions.

MapReduce Multiprocessing Multi-process mapreduce job.

HTTPServe Chameleon, JSON Serve an HTML table over HTTP.

AuthEnc Pyaes, JSON Encryption/decryption.

FeatureGen Scikit-learn Tf Idf Vector-
izer, Pandas

Data preprocessing and feature
generation operations.

ModelServe Pytorch
Serve an RNN model using server-
less functions.

ModelTrain Scikit-learn Tf Idf Vectorizer
and Logistic Regression

Train a classifier.

Table 1. Description of various python libraries in FunctionBench used in

our measurement study in Section 2.

by heavily deduplicating warm containers, using which it

can keep 7.74-37.7% more sandboxes in memory compared

to current state-of-the-art alternatives. Crucially, we observe

that the benefits provided by Medes increase under memory

pressure, where it provides up to 3.8× improvement in the

end-to-end latencies.

2 Background and Motivation
We begin by showing evidence of significant memory redun-

dancy in realistic serverless workloads through a measure-

ment study. We then describe the opportunity that memory

redundancy provides to make serverless platforms more per-

formant and memory-efficient.

2.1 Memory Redundancy in Serverless Workloads
Our initial hypothesis is that serverless workloads should

exhibit memory redundancy at any given point of time. The

intuition is that there are likely multiple warm sandboxes

corresponding to the same function in the cluster. Moreover,

we expect to see redundancy across different functions as

well because different functions can use the same runtime and

libraries depending on the use case (see Table 1).

To verify our hypothesis, we compare the memory state

of sandboxes corresponding to several real-world serverless

functions. We use the FunctionBench [20] suite which con-

sists of python serverless functions corresponding to common

use cases such as linear algebra, authentication, HTTP serv-

ing, image and data processing, as well as model training and

serving. The Python libraries in each use-case are summarized

in Table 1. The memory state is obtained by checkpointing

sandboxes using CRIU [3] and we initially turn off address

space layout randomization (ASLR) to measure the upper

bound on redundancy.

To compute the redundancy between two different sand-

boxes (say A and B), we use the Rabin fingerprinting ap-

proach [33], where we sample a chunk of K bytes at regular

fixed offsets of 2K bytes (the choice of K is discussed later).

Then, we compute the SHA1 hash values of sandbox A’s

chunks at this offset, add them to a hash table, and then check

for sandbox B’s chunks in the hash table. If there is a match,

we check if the actual bytes were the same. Thereafter, we

extend both the chunks to include the non-hashed bytes in

the memory state to a maximum of 2K bytes. We take the

maximum common subsequence of bytes from this 2K byte

sequence. The redundancy of sandbox B with respect to sand-

box A is calculated as the percentage of duplicated bytes in

sandbox B.

Same Function Sandboxes. We first measure the redun-

dancy present in sandboxes belonging to the same function.

Figure 1a demonstrates that there is significant redundancy

— as high as 90% — in sandboxes belonging to the same

function. Moreover, we see that the amount of redundancy re-

duces as the chunk size increases. This is because with larger

chunk sizes, the probability of one of the bits differing, in

the two chunks, increases. In a nutshell, we see that with a
sufficiently fine-grained chunk size, serverless functions ex-
hibit a high degree of redundancy across its sandboxes. We

observe that even after enabling ASLR, we can still identify

significant duplication in the memory states (see Figure 1b).

This is because we use a high sampling frequency to generate

fingerprints and the chunk sizes are smaller than the page

level address randomization employed by ASLR. The small

drop in duplication (∼5% for 64B chunks) is because ASLR

employs stack address randomization at the granularity of

16B. However, the sandbox memory state comprises majorly

of heap memory, file mappings, and shared libraries, across

which redundancy still exists.

Different Function Sandboxes. Next, we measure redun-

dancy across different function sandboxes. To do so, we mea-

sure the redundancy of each serverless function in Function-

Bench relative to the other serverless functions (using a chunk

size of 64B). We see in Figure 1c that there exists redundancy
across sandboxes corresponding to different functions and the

extent depends on the underlying runtime and libraries that

are common across the functions. For example, FeatureGen

and ModelTrain both use the common module of TfIdfVec-

torizer. This implies that the entire memory state that the

TfIdfVectorizer maintains will likely be largely present in

both functions.

Real-world Serverless Workload. Finally, we estimate the

amount of memory savings that can be obtained in real-world

serverless workloads by leveraging the memory redundancy

existing in serverless functions. To do so, we use the various

arrival patterns in the serverless production traces (30 min

duration) released by Azure [29] and assign them to the use

cases in FunctionBench. Figure 2 shows the amount of mem-

ory saving that could be achieved in real-world serverless

workloads, if we were to tap into the memory redundancy

that exists in warm sandboxes. Specifically, we observe that

we could get up to 30% memory savings relative to current

state-of-the-art platforms that do not leverage the redundancy.

2.2 Deduplicated Sandboxes via RSCs
We view this memory state redundancy among warm sand-

boxes as an opportunity to overcome the rigid tradeoff im-

posed by cold and warm starts today. Specifically, we leverage

716



EuroSys ’22, April 5–8, 2022, RENNES, France D. Saxena, T. Ji, A. Singhvi, J. Khalid, and A. Akella

64 128 256 512 1024
Chunk size (B)

0.5

0.6

0.7

0.8

0.9

1.0
M
em

or
y
re
du

nd
an
cy

Vanilla

LinAlg

ImagePro

VideoPro

MapReduce

HTTPServe

AuthEnc

FeatureGen

ModelServe

ModelTrain

(a)

64 128 256 512 1024
Chunk size (B)

0.5

0.6

0.7

0.8

0.9

1.0

M
em

or
y
re
du

nd
an
cy

Vanilla

LinAlg

ImagePro

VideoPro

MapReduce

HTTPServe

AuthEnc

FeatureGen

ModelServe

ModelTrain

(b)

Va
ni
lla

Au
th
En
c

M
ap
Re
du
ce

HT
TP
Se
rv
e

Li
nA
lg

Im
ag
eP
ro

Vi
de
oP
ro

Fe
at
ur
eG
en

M
od
elT
ra
in

M
od
elS
er
ve

Vanilla

AuthEnc

MapReduce

HTTPServe

LinAlg

ImagePro

VideoPro

FeatureGen

ModelTrain

ModelServe

0.88 0.88 0.89 0.88 0.88 0.88 0.89 0.86 0.89 0.88

0.88 0.89 0.88 0.88 0.88 0.88 0.88 0.86 0.88 0.88

0.89 0.88 0.9 0.88 0.88 0.88 0.89 0.86 0.89 0.88

0.88 0.88 0.88 0.89 0.89 0.89 0.88 0.86 0.88 0.89

0.88 0.88 0.87 0.88 0.85 0.89 0.88 0.85 0.87 0.89

0.88 0.88 0.87 0.88 0.89 0.88 0.87 0.85 0.87 0.89

0.89 0.88 0.89 0.88 0.88 0.88 0.89 0.86 0.89 0.88

0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.86 0.84 0.84

0.89 0.88 0.89 0.87 0.87 0.87 0.89 0.86 0.9 0.88

0.87 0.87 0.87 0.88 0.89 0.89 0.87 0.85 0.87 0.88

0.84 0.85 0.86 0.87 0.88 0.89

(c)
Figure 1. Memory redundancy in serverless workloads. Redundancy between sandboxes of the same function w.r.t. chunk size (a) with ASLR disabled and (b)

with ASLR enabled. (c) Cross function redundancy - redundancy of functions on vertical axis w.r.t. those on horizontal axis with 64B chunk size.
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Figure 2. Possible memory savings in real-world serverless workloads by

eliminating memory redundancy.

such redundancy by introducing a new sandbox state called

the deduplicated state (or dedup in short), which is a middle

ground between cold and warm in that it keeps only part of

a sandbox’s memory state that is unique in the cluster and

eliminates the chunks that exist in a warm sandbox.

For a dedup sandbox to recover, the duplicate chunks are

read from the location of the existing copy. In other words, we

are reusing the existing chunks in warm sandboxes. Therefore,

we call them reusable sandbox chunks (RSCs). We choose

64 bytes as the size of RSC for the rest of this paper for it

yields the highest redundancy, as discussed above. The dedup

state, as we will show later, on the one hand, saves memory

compared to the warm state - allowing more sandboxes to be

kept in memory at the same time, while on the other hand

shortens the start time compared to the cold state - reducing

the latency of individual function requests.

Section 8 discusses additional recent efforts that strive to

improve the performance and efficiency of serverless clusters.

3 Medes Overview
We present Medes, a serverless platform that incorporates

the dedup state and provides an easy interface to navigate

the trade-off space of performance and memory by jointly

controlling warm and dedup sandboxes.

3.1 Architecture
Figure 3 shows the architecture of Medes. Medes consists of

a controller and several nodes where functions are executed,

interconnected by a cluster/datacenter network.

Figure 3. Medes Architecture.

The controller has four major components: 1) the interface

to clients, through which function requests are submitted, and

results are retrieved; 2) the scheduler that keeps track of the

system-wide status (e.g., the resource usage and the warm

and dedup sandboxes on each node) spawns a new sandbox

or assigns an existing sandbox to serve an incoming request

and decides whether to transition a sandbox that has finished

to the warm or dedup state; 3) the fingerprint registry, which

is a hash table that contains the hash values of RSCs and their

corresponding location in the cluster for deduplication; and

4) the policy module that stores policy parameters such as

the latency and memory constraints. Specifically, to support

deduplication, Medes adds the latter two components to the

controller used by serverless platforms today for authentica-

tion and dispatching all incoming user requests [4]. Medes

takes several critical design decisions to ensure that the dedu-

plication overheads on the controller are minimal, which we

discuss in Sections 4.1.3 and 4.2. Additionally, we discuss

how the controller can be distributed across multiple nodes

to avoid a single node controller from being a scalability

bottleneck in Section 4.3.

Each node consists of 1) the daemon that manipulates local

sandboxes upon the controller’s directives and updates the

controller of the node’s status; and 2) the dedup agent that

performs the deduplication for local sandboxes as indicated by
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the controller (via the daemon), and restores local sandboxes

from the dedup state when requests are assigned to them.

Next, we provide intuition behind the functionality of these

components, outlining their operation at the chunk level and

ignoring concerns such as overhead and scale. In Sections 4

and 5, we provide a deep-dive into how Medes actually im-

plements these functionalities and addresses these concerns.

3.2 Basic Workflows at a High-Level
The client submits a function request to the controller’s in-

terface in the form of an RPC. The scheduler chooses an

available warm or dedup sandbox that can run the function

according to its knowledge of the status of the nodes, and

hands over the request to the daemon on the chosen sand-

box’s node. If such a sandbox does not exist, the scheduler

by default requests the daemon on the node with the least

memory usage to spawn a new one (as long as other resource

requirements of the function are met). The daemon prepares

the execution environment in case of a new sandbox, while a

warm sandbox needs minimal preparation to start. If a dedup

sandbox is chosen, the daemon invokes the dedup agent to

perform a procedure called the restore operation, in which

the dedup agent reconstructs the sandbox by reading back a

list of RSCs from their locations in the cluster. This list is

generated when the sandbox is put into the dedup state.

When a function finishes, the sandbox is moved to the

warm state, where the controller may decide whether to dedup

the sandbox. The decision is made according to the policy

module pre-configured by the administrator (discussed in Sec-

tion 5). If the controller decides to dedup, the dedup agent

invokes a procedure called dedup operation. The agent then

checks the chunks against the RSC hash values in the fin-

gerprint registry, purges the part of the state that is deemed

redundant and records the locations of the RSCs obtained

from the fingerprint registry, locally at the dedup agent. We

describe Medes’s implementation of the dedup and restore

operations in greater detail in Section 4.

3.3 Sandbox Lifecycle
As another perspective to Medes’ operation, Figures 4a and 4b

contrast the sandbox lifecycle state machine on existing plat-

forms and that with the dedup state under Medes. Upon com-

pleting execution, the sandbox goes into a warm state in both

cases. The sandbox is removed at the expiry of a ‘keep-alive’

period or if it is evicted in the face of memory pressure (to

make room for more sandboxes of other functions). In con-

trast with today’s platforms where a sandbox is purged after

a single keep-alive period, Medes allows running a custom

policy to determine which state the sandbox is to be tran-

sitioned into in order to manage memory and performance.

The policy is executed at the global controller to make use of

cluster-wide metrics to make decisions. This policy module

is invoked periodically by the dedup agent to get decisions

for sandboxes. To this end, Medes introduces two knobs in

addition to the ‘keep-alive’ period of traditional keep-alive

Spawn

Restart

RUNNING
Cold
Start

Warm Start

WARM

Request
Assigned

Purge
keep-alive

period
(a)

Spawn

Restart

RUNNING
Cold 
Start

Warm Start

WARM

Request 
Assigned

Purge

 
DEDUP

Deduplication

Policy

Request 
Assigned

Dedup Start

Restore

keep-dedup 
period

idle period

keep-alive 
period

(b)
Figure 4. Lifecycle of a sandbox running on (a) Existing Platforms (b) Medes

policies. The first is called the ‘idle period’. When a sandbox

is in a warm state, upon expiry of this period, the local node’s

daemon checks with the Medes controller regarding whether

to transition the sandbox to a dedup state or keep it warm. The

second parameter is the ‘keep-dedup period’. When this ex-

pires, the local node purges the dedup sandbox from memory.

This is similar to the ‘keep-alive’ period, but separating the

two enables Medes to keep dedup sandboxes for a different

duration of time, based on the memory-performance trade-off

imposed by dedup sandboxes.

4 Medes Dedup and Restore Operations
To extract the complete benefits offered via the dedup sandbox

state, the deduplication (dedup) and restoration operations

need to be scalable and fast as typically a serverless platform

handles execution requests corresponding to different func-

tions (possibly from different tenants) whose load can grow

arbitrarily.

Conversion of a warm sandbox to a dedup sandbox, through

the deduplication operation consists of the two high-level

steps - redundancy identification and redundancy elimination

(see Figure 5). The local dedup agent on the machine initiates

the memory checkpoint of the warm sandbox, which gives a

dump of the corresponding memory state. Given this memory

state, the dedup agent identifies duplicate memory chunks by

interacting with the controller, which maintains a complete

view of the already existing unique memory chunks strewn

across the cluster in the form of RSCs. Having identified the

redundancies, the dedup agent eliminates (removes) the du-

plicate memory chunks at the granularity of entire pages and,

in doing so, computes a patch for the page being eliminated

relative to the base page(s) corresponding to its RSCs. In this

manner, Medes reduces the memory footprint of a dedupli-

cated sandbox as it only maintains patches (including any

unique leftover pages and memory chunks).

The restore operation converts a deduplicated sandbox to a

warm one. This operation involves reading the base pages on

which the patches corresponding to this sandbox were calcu-

lated and then reconstructing the original pages and recreating
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Figure 5. Medes Workflow of the Deduplication Mechanism: 1. Sandbox

checkpoint gives the dump of the memory state. 2. RSCs from the mem-

ory state are sent to the global hash table on the controller for lookup. 3.

The controller sends back the information about redundant RSCs. 4. The

Dedup Agent reads all the physical addresses sent by the controller and

computes patches of the pages with RSCs. 5. Finally, the memory checkpoint

is removed, and only the (smaller) patch is kept in memory.

the memory checkpoint. Finally, the sandbox transitions to

the warm state via restoration from this checkpoint.

We now discuss the various design choices we made to

ensure that both these operations are fast, scalable, and effec-

tive.

4.1 Dedup Op Deep-Dive
We now discuss the granularities of redundancy identification

and of redundancy elimination, and the implications for scale,

low overhead, and deduplication effectiveness.

4.1.1 Redundancy Identification Granularity.
The redundancy identification granularity, which also corre-

sponds to the size of RSCs, plays a crucial role in identifying

duplicate memory chunks. Smaller identification granularities

lead to identifying more redundant chunks, but they can lead

to hash collisions in the fingerprint registry (as we show in

Section 7.8). On the other hand, large identification granulari-

ties lead to lesser hash collisions but identify fewer redundant

chunks.

In Medes, we balance this trade-off and choose 64B mem-

ory chunks as the granularities for identifying redundancies.

We empirically observe that this setting enables us to find

significant redundant chunks (see Figs. 1a-1c), leading to

memory efficiency while having minimal hash collisions.

4.1.2 Redundancy Elimination Granularity.
Once redundant memory chunk identification occurs at the

small 64B identification granularity, the next step is to re-

move the redundant memory chunks. As discussed earlier,

the dedup agents need to interact with the controller to get

information about the RSCs corresponding to the duplicate

memory chunks. A naive approach would eliminate chunks

at the same granularity of identification. However, this would

imply storing metadata for each small chunk (because we will

need to retrieve them during restoration). We observed that

sandbox memory states could span up to 100MB on the used

benchmarks, which corresponds to nearly ∼25K pages, and

using all 64B chunks imply metadata for nearly 1.6M chunks

for just one sandbox.

With Medes, our key insight is to decouple the granularities

of redundancy identification and redundancy elimination. To

avoid scalability bottlenecks, we default to memory pages as

the granularity for redundancy elimination. We now discuss

how to identify a redundant page given the RSC information

stored in the fingerprint registry.

A strawman approach would be to see if all the 64B mem-

ory chunks of the page have their RSCs present in the clus-

ter. However, this would again lead to the communication

channel between the dedup agent and controller becoming a

bottleneck. Instead, we use page fingerprints to reduce the

communication overhead and identify the best “base page”

corresponding to the page that is under consideration for

deduplication.

Page Fingerprints. With Medes, we use a small subset of

memory chunks, value sampled based on the last two bytes

of the chunk; i.e., we conduct a scan of each page over a

rolling 64B window and select a 64B chunk as a fingerprint if

it is last two bytes match a specific pattern. This approach is

straightforward and computationally lightweight as it involves

a single linear scan and a lightweight equality check over two

bytes.

We use five such value-sampled chunks per page (sensi-

tivity to this evaluated in Section 7.8). This unordered set

of five chunk hashes then acts as a fingerprint of the page.

The number of overlapping fingerprints between two pages

represents the similarity between the two pages. The use of

value sampling reduces the communication bottleneck. Still,

it delivers on memory efficiency via deduplication as two

‘similar’ pages typically have a high count of other duplicate

memory chunks between them.

Base Page. Given the page fingerprint, each value sampled

memory chunk is looked up in the fingerprint registry. For

each memory chunk found on the registry, we get a list of

candidate pages that have the corresponding RSC. Combining

all the candidate pages, we get a candidate set for each mem-

ory page. To keep the per-page metadata maintained at the

agent small, we choose a single best candidate page from this

candidate set - which we call the ‘base page’ for the respec-

tive dedup page. The candidate with the maximum number

of duplicate chunks amongst the sampled chunks is chosen

to be the base page. If more than one candidate has the same

maximum duplication, then the page available locally on the

same machine as the page to be deduplicated is chosen.

In this manner, Medes uses the 64B identification granu-

larity to identify a similar ‘base’ page. Thereafter, a diff or a

patch is computed for the deduplicated page against the base

page. This patch consists of the unique bytes of the dedu-

plicated page and short metadata information about which

range of bytes from the base pages should be appended at

what offsets on the patch. Since the base page is likely to be

significantly similar to the dedup page, the computed patch

is smaller in size than the original page, resulting in a lower

memory footprint per page. We use the Xdelta3 [1] library
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to compute patches of binary pages. Xdelta3 provides ten

compression levels - 0 through 9 (0 indicating no compres-

sion while 9 indicating maximum compression), and we use

the compression level of 1 to make the restore op fast (see

Section 4.2).

4.1.3 Low-footprint Fingerprint Registry.
Until now, we focused on how redundancy identification and

elimination occur by leveraging the deduplication informa-

tion present in the fingerprint registry. We now discuss which

sandboxes to use to populate the registry. Inserting memory

chunks from all sandboxes would cause the memory footprint

of the registry to explode. Given the sampling as mentioned

above, we still have nearly ∼100K chunks to be stored for

each sandbox. In our experiments, we observed that the plat-

form could have thousands of sandboxes at the same point in

time. Storing the RSCs from all of these sandboxes can lead

to high memory usage.

Hence, we demarcate specific warm sandboxes on the plat-

form as ‘base sandboxes’. Only the unique memory chunks

of these base sandboxes get inserted into the registry. This

design choice is based on the fact that the percentage of mem-

ory duplication between any two sandboxes of a given pair

of functions F1 and F2 remains the same. We leverage this

property to reduce the amount of warm state by just using

the memory chunks of any sandbox (among all sandboxes

that ran function F1, for example), we can identify the dupli-

cate chunks in all other sandboxes as well. To ensure that the

memory state of the base sandbox is not purged, a refcount is

maintained by the controller for each base sandbox.

To reduce the impact of the unavailability of a base sand-

box, we increment the number of base sandboxes as the num-

ber of dedup sandboxes for a function increases. Specifically,

we choose a threshold T and demarcate one more base sand-

box, when D/B > T , where D is the number of dedup sand-

boxes for a function, and B is the number of base sandboxes.

This approach reduces the size of the fingerprint registry to

the order of the number of base sandboxes (controlled by

the factor T), which is a small number compared to the total

number of sandboxes running on the platform.

For our implementation, we use T to be 40. We observe

in our evaluation that such an optimization is enough to effi-

ciently fulfill 5X magnified production traces without incur-

ring significant overheads (discussed in Section 7.7). Further,

increasing the number of base images may not always help

because the different base images are also likely to have a

high amount of redundancy, which imposes an unnecessary

memory cost.

4.2 Restore Op Deep-Dive
Deduplicated sandboxes would be required to serve requests

when all the existing warm sandboxes (if any) corresponding

to this function are busy. However, given that we only store

patches relative to the base pages for a deduplicated sandbox,

Warm
container

Memory
checkpoint

Medes Controller
Scheduler

 Dedup Agent

Dedup Page Table

Restore
Dedup container

Read base
pages

1

4

2
CheckpointPatch

3

RDMA

Figure 6. Workflow of the Restoration Mechanism: 1. The scheduler decides

when to make a dedup start. 2. The Dedup Agent fetches duplication infor-

mation about the sandbox from its local data structure. Then, it reads the

base pages from the respective nodes. 3. Original (pre-deduplicated) pages

of the dedup sandbox are computed using the patch and the base page. These

pages are collated to create the memory dump of the sandbox. 4. A container

restore mechanism puts the container back into its running state.

such a sandbox needs to be restored before it can serve the

incoming request.

The restore operation involves reconstructing the sandbox

using the stored patches and the corresponding (possibly re-

mote) base pages. Figure 6 shows a pictorial representation

of the restoration procedure. The key challenge is to ensure

that the reconstruction and restoration process is fast. In other

words, the time taken to reconstruct the memory state of a

dedup sandbox should be significantly smaller than the time

required to load a new sandbox in memory. Ensuring this

makes dedup starts significantly faster than cold starts and an

intermediate state between warm and cold.

Medes employs three techniques towards this goal. First,

dedup starts require restoration of the sandbox, which, apart

from restoring the sandbox memory state from the patches

and their base pages, involves additional steps such as sand-

box namespace creation as well as reconstruction of the pro-

cess tree (inturn invokes multiple fork() system calls) [3].

To speed up the sandbox restoration, Medes performs these

additional time-consuming [26] steps prior to deduplicating

the sandbox, leaving only memory state restoration during

dedup starts. Additionally, Medes saves the container mem-

ory checkpoints in-memory to ensure fast restores rather than

restoring from disk. In our implementation, these optimiza-

tions brought down the time spent to restore the memory state

of the dedup-sandbox (before beginning function execution)

from 650ms to ∼140ms. Secondly, the information required

to complete the restoration (e.g., patches and the address of

the base page) is stored locally on the machine where the

deduped sandbox resides and is managed by the dedup agent.

Finally, we leverage the RDMA read operation to directly

fetch base pages from the remote machine’s memory, which

avoids the use of remote CPU for communication and (also)

yields low latency [40].
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4.3 Controller Scalability
Medes adds two components to the serverless controller –

fingerprint registry and the policy module – to support dedu-

plication. Through key design decisions of using represen-

tative page fingerprints, populating only base sandboxes to

the fingerprint registry and avoiding communication with the

controller during restores, Medes reduces the overheads at

the controller so that it does not become a bottleneck and

can cater to workloads of varying scales. To further scale the

Medes controller, it can be seamlessly distributed on the same

lines as proposed by prior works for centralized serverless

controllers [17, 28, 30, 32]. Accesses to the fingerprint reg-

istry are independent lookups for each page and the policy

module runs the policy on a per-sandbox basis. Therefore,

these components can be distributed using conventional tech-

niques for sharding or key-based partitioning [12, 25] along

with chain replication [27] (for fault tolerance).

5 Sandbox Management Policy
With Medes, we expose an intuitive interface for the providers

to specify the performance and efficiency expectations on a

per-function basis. In turn, the platform leverages the ability to

deduplicate sandboxes to navigate the memory-performance

tradeoff. To this end, we develop a policy that decides whether

sandboxes should be kept in the warm state or deduplicated.

The policy runs after a warm sandbox does not receive any

request for the ‘idle period’ duration.

Ideally, such a policy should determine the optimal number

of warm and dedup sandboxes for any given function, such

that it can meet the request arrival rates for that function

while efficiently using cluster resources. Hence, the policy

must make decisions based on: (i) request arrival rates for the

function, (ii) cluster memory pressure, (iii) memory savings

because of deduplication, and (iv) overheads of restoring

deduplicated sandboxes.

5.1 Dedup and Restore Overhead Considerations
To develop a policy that can make well informed sandbox-

granular decisions, we need to account for the fact that the

dedup state imposes memory and performance overheads

compared to warm starts.

To quantitatively estimate the impact of dedup starts on

function performance, we define the sandbox reuse period as

the minimum time interval between two function invocations

on the same sandbox. This equals the request execution time

plus the sandbox startup time. If the sandbox reuse period is

R, then in time T , the sandbox can serve a maximum of T /R
requests. Compared to warm sandboxes, dedup sandboxes

have a higher reuse period (due to the additional time to

reconstruct the sandbox checkpoint and restore the sandbox

memory state from the checkpoint). They hence can serve

fewer requests in a given interval.

Furthermore, the reconstruction of the memory state during

the restore op entails additional memory to read the base

pages and compute patches. Hence, frequent dedup starts can

lead to memory overheads outweighing the memory savings.

5.2 Optimization Problem
The sandbox management policy must decide how many

sandboxes must be kept in the dedup state, given a certain load

requirement while satisfying a latency bound and a memory

constraint and accounting for dedup overheads.

5.2.1 Platform Constraints
We denote the current number of sandboxes on the platform

by C and the maximum request arrival rate that must be met

by λmax . Then, denoting the number of dedup sandboxes be

D and the number of warm sandboxes beW , we have

W + D = C (1)

IfC is insufficient to handle the load, the controller spins up

additional sandboxes (moves them from cold to warm states).

Similarly, the load-to-meet maps to:

W

RW
+

D

RD
> λmax (2)

where RW is the warm sandbox reuse period, and RD is the

dedup sandbox reuse period.

5.2.2 Platform Efficiency and Latency Measures
Denoting the memory footprint of warm sandboxes as mW ,

the memory footprint of dedup sandboxes as mD and the

overhead of dedup starts as mR , we can express the total

memory usage of D dedup andW warm sandboxes as:

M =W ×mW + D × (mD +mR ) (3)

If all the dedup and warm sandboxes on the platform were

used to fulfill N requests in time T , then the average startup

latency shall be given by:

S =
1

N

(
W ×

T

RW
× sw + D ×

T

RD
× sd

)
(4)

where sW is the warm startup latency, sD is the dedup startup

latency, and RW and RD have the same meaning as above.

5.2.3 Policy Interface
Using the platform constraints mentioned above, as well as ef-

ficiency and performance metrics, our framework can provide

easy access to the providers to control these metrics while

meeting the constraints. For example, in Medes, providers

can configure the policy in two ways (combinations of these

can also be configured trivially):

Meet an average startup latency target. Suppose the target

is α · sW , where α > 1. In this case, the policy optimally

keeps sandboxes so as to occupy least memory footprints

while meeting the latency targets:

Min
W ,D

M

s .t . S < α sW

and constraints 1, 2 are satisfied.

Limit the cluster memory usage. Suppose the maximum

desired memory usage is M0. The policy optimally manages
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sandboxes so as to get the best startup latency, using the

following optimization problem:

Min
W ,D

S

s .t . M < M0

and constraints 1, 2 are satisfied.

The solution to the above optimization problem acts as a

guidepost for the decisions of the sandbox management policy.

If the solution is feasible (i.e., the above system of equations is

consistent), the policy computes decisions for each function in

order to converge to the optimal number of dedup sandboxes

for that function. If, however, the solution is infeasible (for

example, if the solution gives negative values for D or D > C),

the policy aggressively employs deduplication and keeps the

sandboxes warm only if enough memory is available and the

available sandboxes are not enough to suffice the request rate.

5.3 Multi-function Policy
The sandbox management policy described in Section 5.2

gives the policy for a single function. This has the advantage

that the provider can regulate memory and performance met-

rics for each function separately. For example, critical func-

tions can be run on a tight latency constraint while best-effort

functions can be run on a loose latency constraint. Addition-

ally, the provider may also want to limit the overall serverless

platform memory usage. Medes can also support memory

constraint for multi-function workloads by dividing the to-

tal memory budget between functions in proportion of their

average request arrival rates.

6 Implementation
We build a prototype for Medes in C++ (∼6K sloc). We use

Docker as the sandbox environment. We implement the two

core components of Medes - a global controller and a ser-

vice module for each machine. The controller consists of

three major components - the scheduler, policy module, and

the fingerprint registry. The service module consists of three

components - the daemon, the dedup agent (to deduplicate

memory states and restore them), and the RDMA module

(for making remote memory accesses). We use REST APIs

to interact with the Docker daemon. The dedup agent and the

controller interact with each other using protocol buffers [5].

Additionally, Section 4 discusses the various implementation

choices we made related to dedup and restore ops.

7 Evaluation
We evaluate the performance benefits of Medes and its flexibil-

ity in navigating the performance-cost trade-off by answering

the following questions:

• Can Medes improve the function startup latencies?

(Section 7.2)

• Can Medes help reduce the overall memory footprints?

(Section 7.3)

• Can tuning fixed keep-alive policies achieve the same

performance-memory tradeoffs as Medes? (Section 7.5)

Notation Function Environment Average Exe-
cution Time

Memory
Usage

Vanilla Empty Environment 150ms 17MB

LinAlg Linear Algebra 250ms 32MB

ImagePro Image Processing 1200ms 26.4MB

VideoPro Video Processing 2000ms 48MB

MapReduce Map Reduce 500ms 32MB

HTMLServe HTML Serving Application 400ms 22.3MB

AuthEnc Authentication / Encryption 400ms 22.3MB

FeatureGen Feature Generation 1000ms 66MB

RNNModel RNN Model Serve 1000ms 90MB

ModelTrain Regression Model Training 3000ms 87.5MB

Table 2. Execution time and memory footprint for various functions in the

FunctionBench suite.

• How does Medes perform under memory pressure situ-

ations? (Section 7.4)

• What are the overheads of using the dedup state? (Sec-

tion 7.7)

7.1 Experimental Setup
We evaluate Medes on a 20 node cluster on CloudLab [15].

All nodes have 64GB memory and a 10Gbps NIC. One node

out of these acts as the controller. No sandbox runs on the con-

troller. The remaining nodes are all accessible via an RDMA

network.

Baselines: We compare Medes against state-of-the-art server-

less platforms using two baselines - first, we use the fixed

keep-alive policy, which is used by several commercial server-

less providers such as AWS Lambda as well as open-source

platforms like OpenFaas and OpenWhisk. For our experi-

ments, we take a fixed ten-minute duration as the keep-alive

period. We evaluate the baseline over a diverse range of keep-

warm periods in Section 7.5 and we found ten minutes to have

the best performance on our workloads. Additionally, we also

compare against an adaptive keep-alive policy [29] which is

adopted by Azure Functions, wherein the keep-alive period is

chosen based on the request inter-arrival times.

Workloads: For the request arrival patterns, we use arrival

patterns from the Azure Function trace [29]. We found that

the per function arrival rates were low; hence we scale up the

request rates 5×. We use multiple such one-hour traces for

our evaluation.

For the function environments, we use all ten functions

from the FunctionBench [20] suite (as tabulated in Table 1).

The execution time and the memory usage of each of the

functions we used are given in Table 2. We construct a full

benchmark trace, assigning each function a one-hour trace

chosen from the production traces. We use this workload

for evaluating performance and memory benefits of Medes

in Sections 7.2, 7.3 and 7.4. We use another smaller repre-

sentative trace for microbenchmarks (Section 7.5- 7.6) and

sensitivity analysis (Section 7.8).
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Figure 7. (a) Distribution of factor of improvement (ratio of per-request

end-to-end latencies) over Fixed keep-alive and Adaptive keep-alive policies.

(b) Function-wise improvements in the number of cold starts and 99.9th

percentile of end-to-end latencies.

7.2 Function Startup Time
We begin by evaluating whether Medes can provide better

function startup times and, in turn, evaluate the impact on

end-to-end latencies.

Methodology: To evaluate the function performance in Medes,

we operate the platform policy with latency as the objective

function (P1; Section 5).

Additionally, we keep a fixed software-defined limit on the

per-node memory usage of the testbed and provide this as

the parameter to the sandbox management policy. We use a

memory limit of 2GB per node to ensure that the cluster is

oversubscribed. This entails that the memory usage of all the

different policies remains the same, and we can evaluate the

trade-offs by comparing the function performance.

Metrics: Since cold starts impact the tail performance of a

system, we use the number of cold starts as a metric for com-

parison in our experiments. We also evaluate the improvement

factor of the end-to-end latencies of Medes compared to those

of the baselines on a request by request basis and then show a

distribution of this factor of improvement. We evaluate these

metrics on a per-application basis.

Figure 7 shows the application-wise performance benefits

of using Medes over the baselines. We observe that Medes

can provide up to 2.25× and 2.75× improvements in the end-

to-end latencies (Figure 7a). These figures also show that for
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Figure 8. Breakdown of dedup start times vs the cold start times for various

applications.

a small number of requests (< 1%), Medes leads to larger

end-to-end latencies. We observe that this is because some

requests, which would otherwise have been served by warm

sandboxes, are served by dedup sandboxes in Medes. How-

ever, in the tail Medes provides better performance because

the tail performance is impacted by cold starts. Figure 7b

demonstrate these improvements in the 99.9th percentile la-

tencies for the ten functions. We observe that Medes gives

1-2.24× improvements in the 99.9th percentile against the

Fixed keep-alive policy. Likewise, Medes gives up to 2.3×

improvements in the 99.9th percentile against the Adaptive

keep-alive policy.

Since the cluster memory pool is chosen to be oversub-

scribed – this improvement in function startup times demon-

strates that Medes is able to strike a better trade-off than the

baselines.

7.2.1 Sources of Improvement
The primary source of improvement is the reduction in the

number of cold starts for each of the functions (as shown in

Fig 7b). We observe that Medes can provide up to 1.85× and

6.2× reductions in the number of cold starts across applica-

tions, compared to the fixed and adaptive keep-alive policies,

respectively. Because of a significant drop in the number of

cold starts, we see a benefit in the tail latencies. This reduction

in the number of cold starts is because, on average, Medes

deduplicates about 39% of all sandboxes. This deduplica-

tion helps Medes to keep 7.74% and 37.7% more sandboxes

in memory compared to the fixed keep-alive and adaptive

keep-alive policies.

Insights: It is noteworthy that the tail latency improvements

not only depend on the number of cold starts but also on the

cold start overheads - which varies for different functions.

Figure 8 compares the dedup startup latencies against the

cold start latencies and shows that the dedup starts are signifi-

cantly faster than cold starts consistently across all functions.

It also breaks down the dedup startup latencies into the three

critical phases of sandbox restore - reading base pages, com-

puting original pages, and restoring the dump (as mentioned

in Section 4.2). Figure 7b also shows that Medes gains more

performance benefits for functions with larger memory us-

age (e.g., ModelTrain, FeatureGen and RNNModel) - this is

because deduplicating more memory-consuming functions

gives more memory savings.
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Function Environment Percent Savings
Vanilla 4.6MB

17MB = 27.06%

LinAlg 10.5MB
32MB = 32.81%

ImagePro 11.36MB
26.4MB = 43.03%

VideoPro 12.22MB
48MB = 25.46%

MapReduce 5.10MB
32MB = 15.94%

HTMLServe 9.88MB
22.3MB = 44.30%

AuthEnc 4.79MB
22.3MB = 21.48%

FeatureGen 25.67MB
66MB = 38.89%

RNNModel 52.23MB
90MB = 58.03%

ModelTrain 26.33MB
87.5MB = 30.09%

Table 3. Percent memory savings for each function environment

Enabling ASLR reduces memory savings because a finger-

print size of 5 chunks is insufficient to capture page similarity

fully. Specifically, we observe that the average memory sav-

ings per sandbox reduced from 28.8MB in the ASLR enabled

case to 12.1MB in the ASLR enabled case. However, increas-

ing the fingerprint size (number of chunks in the fingerprint)

would get similar memory savings even with ASLR enabled.

7.3 Cluster Memory Usage
In this section, we study the extent to which deduplicated

sandboxes save memory and how effective is Medes in identi-

fying the reusable sandbox chunks.

Methodology: To evaluate maximum memory savings possi-

ble in Medes, we operate the policy with memory usage as the

objective function, and we run the multi-function workload

as earlier. Since the fixed and adaptive keep-alive policies do

not have any method to ensure that a latency bound is met,

we use a tight latency bound for the workload (α in Policy P1

is set to be 2.5).

Total cluster memory usage: Figure 9a shows that Medes

uses 11.4% less memory on average compared to the fixed

keep-alive policy, while meeting the same latency targets. The

adaptive keep-alive policy has a smaller memory usage as its

short keep-warm periods lead to reduced memory usage, but

that comes at the cost of increased number of cold starts - it in-

curs at least 50% more cold starts than Medes (see Figure 9b).

We further observe that Medes can provide up to 1.58× im-

provement in the number of cold starts over the fixed keep

alive policy, which results in up to 1.9× improvements in the

end-to-end tail latencies. This is because the flexible policy

implemented by Medes allows it to deduplicate sandboxes

of functions with larger memory footprints, making more

space to keep warm sandboxes for other (smaller) functions

- such that both functions meet their respective latency tar-

gets. For example, by aggressively deduplicating sandboxes

of RNNModel and not keeping warm ones, Medes reduce the

memory usage at the expense of cold starts to the extent that

the latency targets are met. The resulting memory savings

can also be used to keep more warm sandboxes of other func-

tions. Overall, Medes can meet the latency targets in a smaller

memory footprint as compared to fixed keep-alive policies.
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Figure 9. Memory savings on Medes while meeting latency targets.

7.3.1 Sources of Improvement
We attribute the smaller memory footprint of Medes com-

pared to the fixed keep-alive policy to the memory savings

due to deduplication. Specifically, we calculate the dedup

benefit for each deduplicated sandbox. We calculate the total

size of saved bytes (= (page size - patch size)) for all dedupli-

cated pages of a dedup sandbox. Then we report the average

duplication of all the dedup sandboxes of a function. We find

in our experiments that for the smallest function (Vanilla),

our deduplication mechanism leads to a savings of ≈5MB

per sandbox, while for the largest function (RNN Model),

we can obtain ≈52MB of savings per sandbox. Using this

and the average memory usage of a sandbox as mentioned

in Table 2, we can calculate how much percent of the sand-

box memory actually got removed during the deduplication

operation. Table 3 calculates these savings.

Cross Function Duplication: In our evaluation, we observed

that among all the pages that were deduplicated - only 32.86

% were deduplicated with a page belonging to the same func-

tion, and roughly 67 % were deduplicated with a different

function. This cross-function duplication is critical to gain

the aforementioned memory savings (Section 2).

7.4 Medes under Memory Pressure
We now study the impact of Medes under memory pressure

using the same multi-function workload used in Section 7.2.

We decrease the overall memory pool of the platform by de-

creasing the software limit for the memory available per node.

We observe that the benefits provided by Medes relative to

the keep-alive baselines increase as the memory pressure in-

creases - in comparison to the fixed keep-alive policy, the

number of cold starts are improved by 22% in the no memory

pressure case to 37% and 40.67% in the memory pressure

cases (see Figure 10). Similarly, the number of cold starts re-

duces by about 52% in comparison to the adaptive keep-alive

policy, in all the three memory pressure situations. This is

primarily due to the keep-alive baselines incurring more cold

starts relative to Medes as they evict sandboxes under memory

pressure whereas with Medes, the memory footprint of sand-

boxes decreases due to deduplication. We observe that even

under extreme memory pressure situations, Medes can keep
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Figure 10. Cold starts incurred by Medes versus the fixed and adaptive

keep-alive policies under various scenarios of memory pressure: (a) Different

cluster pool sizes, (b) Function-wise breakdown for 30G and 20G cases
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Figure 11. Improvements in end-to-end latencies under (a) small memory

pressure, and (b) extreme memory pressure.

42.98% and 55.7% more sandboxes compared to fixed keep-

alive and adaptive keep-alive, respectively. This translates into

3.8× improvement in the tail latencies over these baselines

under memory pressure situations (see Figure 11). Further, we

observe that functions with larger memory footprint and setup

overheads see the most benefits due to Medes (see Feature-

Gen and ModelTrain functions in Figure 11). Deduplicating

large sandboxes helps in two ways - first, dedup starts being

faster than cold starts lead to improved function slowdowns,

and second, it also gives more memory savings - relieving the

memory pressure (Section 7.3).

7.5 Medes Vs. Different Keep-Alive Baseline Setting
In Section 7.2, we demonstrate that Medes outperforms a

standard fixed keep-alive policy as well as the adaptive keep-

alive policy. In this section, we answer the question - ‘Can

KA-5 KA-10 KA-15 KA-20 Medes
Policy

0

800

1600

2400

3200

4000

N
um

b
er

of
co
ld

st
ar
ts

Figure 12. A sweep over various keep-warm periods and comparison with

Medes.

varying the keep warm period give the same performance vs.

memory trade-offs as Medes?’

To this end, we use a smaller set of the multi-function work-

load used in Section 7.2, and run several keep-warm policies

that make use of various fixed keep-warm periods. We group

functions that observed roughly similar benefits (for function

startups and memory savings). We choose a representative set

of {LinAlg, FeatureGen, and ModelTrain} to carry out this

experiment. Figure 12 shows the performance of the various

keep warm policies along with Medes. We observe that as the

keep-alive period increases from 5 min to 10 min, it leads to a

9.4% reduction in the number of cold starts. However, going

from a keep-alive period of 10 min to 15 min and 20 min

gives a 3% and 36% increase in the number of cold starts -

thereby degrading the performance. We reconcile that beyond

a threshold - keeping these sandboxes in memory becomes

increasingly prohibitive as a lot of idle sandboxes lead to

evictions in the face of memory pressure (for example, keep

warm period of 20 minutes leads to more cold starts because

sandboxes are evicted before they hit the keep warm time-

out). Medes strikes a better trade-off owing to the smaller

footprints of deduplicated sandboxes, and gives a 38.2% re-

duction in the number of cold starts compared to the best

fixed keep-alive policy (=10 min).

7.6 Medes + Optimized Checkpoint-Restore
Many recent works have tried to bridge the gaps between

warm and cold starts by heavily optimizing the cold startup

times using checkpoint-restore mechanisms [8, 13, 26]. All

these works target redundancy of function memory state be-

tween subsequent invocations. Medes goes one step further

and also optimizes the redundancy between functions that

are in memory at the same time but in different locations. In

this section, we demonstrate that Medes can further improve

systems that make use of optimized checkpoint restore mech-

anisms by reducing the memory footprint needed to keep

sandboxes in memory. To this end, we emulate the sandbox

template method of Catalyzer [13]. We replace all cold starts

in the workload by a sandbox restore. We run this emulated

setup with and without Medes on the representative workload

used in Section 7.5. Figure 13 shows the improvement in the

number of cold starts when memory deduplication is used in

conjunction with sandbox restore optimizations. This is due

to the heavy deduplication employed by Medes leading to

42.8% of the sandboxes being deduplicated.
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Figure 15. Sensitivity to the keep dedup period.

7.7 Medes Overheads
In this section, we discuss the overheads of Medes at the

Dedup Agent and the controller.

Dedup Agent: In our experiments running 5× magnified

production traces, we did not observe significant overhead

due to Medes. The metadata and base sandbox checkpoint

maintained at the Dedup Agent was below 10% of the total

memory usage on each node. Further, even including this

metadata, Medes can provide a smaller memory footprint

compared to the baselines (Section 7.3) - owing to the memory

savings of deduplication.

Controller Overheads: While we avoid communication with

the controller during the critical path of sandbox restores,

these operations still happen in the background. In our exper-

iment running the complete function benchmark, we found

that the total time for deduplicating a sandbox varied from

2s for the Vanilla function to 3.3s for the ModelTrain func-

tion. This includes sending the page fingerprints over to the

controller and performing a lookup on the global fingerprint

registry. Specifically, the total time to lookup and identify

base pages for all pages of a dedup sandbox took from 130ms

for Vanilla (total 4k pages) to 1850ms for ModelTrain (total

22k pages). This amounts to a processing time of ∼80μs per

page in our single-threaded implementation. To further reduce

these overheads, the lookups can be parallelized given they

are independent (Section 4.3).

Further, we observe that compared to the baselines, the

memory usage at the controller only increases by 11.8%, due

to the addition of fingerprint registry and policy metadata.

7.8 Sensitivity Analysis
We now understand the sensitivity of Medes to the following

aspects of the design using the representative multi-function

workload, as described in Section 7.5.

Chunk Size: In Medes, we use a chunk size of 64 bytes

for RSCs. Medes samples 64B chunks by value from each
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Figure 16. Sensitivity to the fingerprint set cardinality.

page. Thus, the redundancy identification granularity is at 64

bytes. We evaluate the impact of choosing a larger or smaller

chunk size for RSCs. Figure 14 shows the number of cold

starts incurred by Medes for chunk sizes of 32B, 64B and

128B. We observe that using a larger size chunk reduces the

benefit of deduplication and the average memory savings per

sandbox drop to 22.8MB (compared to 28.8MB for 64B).

Hence, smaller memory savings lead to more evictions and

more cold starts. On the other hand, using a 32B chunk leads

to hash collisions on the fingerprint table - causing dis-similar

chunks to be labeled similar, which again leads to ineffective

deduplication. This is evident by the average patch size, which

increases to 940 Bytes (from 611B for 64B chunks).

Keep-Dedup Period: The keep-dedup parameter determines

how long a sandbox remains deduplicated. We vary the keep-

dedup parameter from 5 to 20 mins in increments of 5mins.

Figure 15 show that initially, as the keep-dedup period in-

creases, the number of cold starts improves by 10%-38% due

to the reduction in cold starts as there are dedup sandboxes

available. We observe that a longer keep-dedup parameter

implies that a dedup sandbox shall be around for a longer

time, courtesy of which 38% of the requests that would other-

wise incur cold starts now incur faster dedup starts. However,

we see that beyond a threshold, the benefits due to Medes

decrease (see Figure 15 Keep-Dedup-20mins), as deduped

sandboxes are kept around for unnecessarily long times –

resulting in more cold starts due to memory pressure.

Fingerprint Set Cardinality: The fingerprint set cardinal-

ity corresponds to the number of 64B chunks whose hashes

jointly represent the identity of the base page. As expected,

with higher cardinality, we get a more accurate representation

of the page, leading to higher redundancy identification and

elimination, leading to more memory savings — we observed

an increase in per-sandbox savings from 28.8 MB to 31.5 MB

to 32.54 MB. However, as we increase the set cardinality, we

observe that the tail latencies inflate due to more cold starts

(see Figures 16a- 16b). This is primarily due to the dedup

restore time increasing from 378ms to 478ms to 554ms as

the set cardinality increases as more fingerprints lead to more

base pages being needed for restoration.

8 Related Work
Serverless Workload Characterization. [21, 24, 31, 34, 38,

39] reverse engineer aspects of serverless platforms by ob-

serving the visible metrics. [29] characterizes workloads from

Azure Functions. Complimentary to these efforts, we look
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at the degree of memory redundancy present in serverless

workloads.

Memory Deduplication. Prior works have developed tech-

niques for memory deduplication to reduce memory require-

ments for virtual machines. They have also been deployed

in popular production systems ([36] in VMWare and [7] in

the Linux kernel). Such inter-VM deduplication approaches

employ coarse-grained intra-machine page sharing. Both [36]

and [7] employ memory scans to identify identical pages and

remap them. These approaches impose high deduplication

overhead as they require frequent scans over large chunks

of memory. Further, these approaches are insufficient to real-

ize the full performance benefits of the memory redundancy

that exists at the sub-page chunk granularity and the inter-

machine memory redundancy. Both of which are exploited

by Medes, without making expensive memory scans or any

guest OS modifications. [18] is an inter-VM approach that

also uses sub-page deduplication similar to Medes. However,

the deduplication by Difference Engine falls short as it takes

chunks at random offsets in a page to act as the fingerprint.

Medes uses value-sampled fingerprints, which is more ef-

fective at identifying sub-page level small-sized redundant

chunks [9]. Additionally, Medes reboots this sub-page dedu-

plication mechanism to deduplicate sandboxes on-demand on

a serverless platform efficiently while dealing with the chal-

lenges of the platform’s scale, deduplicating and restoring

sandboxes on-demand, and performing fast sandbox restores.

Reducing Sandbox Overheads. [29] proposes setting keep-

alive windows in a workload-aware manner. Likewise, in-

spired by traditional caching, [16] proposes a workload-aware

keep-alive policy that considers additional function character-

istics such as function size and initialization costs. However,

they are still required to choose between performance or ef-

ficiency and offer little flexibility. In contrast, through the

introduction of the dedup state, Medes improves the flexibil-

ity of navigating the memory-performance trade-off.

[11, 23] propose using unikernels to reduce overheads.

However, this limits their practical adoption due to code com-

patibility issues [8]. Photon [14] demonstrates memory redun-

dancy between invocations of the same function and proposes

to co-locate concurrent invocations of the a function on the

same sandbox. Hence, Photon exploits redundancy for func-

tions in execution (while running user code) while sacrificing

isolation. A similar approach is used by [19] to optimize inter-

function calls by trading off isolation as it proposes running

multiple chained functions in the same container. Medes takes

an aggressive approach to deduplication and reduces memory

footprints for warm functions (even when the sandbox is not

executing user code) between sandboxes of not just the same

function but different functions as well.

Function snapshotting proposals (Catalyzer [13], REAP [35])

reduce the startup overheads by restoring a sandbox from a

snapshot, either stored on disk or shared in memory. Catalyzer

employs an on-demand page restore mechanism, where only

minimal pages are loaded at cold-start, and subsequent pages

are fetched via page faults during execution. While this re-

duces cold start latencies, it significantly increases function

execution times [35]. On the other hand, REAP [35] avoids

in-execution page faults by pre-fetching all the pages of a

function working set. The basis is again that invocations of

the same function have nearly the same working set. Pre-

fetching is an expensive task but the assumption is that such

pre-fetching is needed infrequently. However, this assumption

is limiting for the fast-evolving serverless environment with

increasing support for microservices that may require frequent

invocations [37]. These works reduce memory overheads for

each function type independently and within a machine. In

contrast, Medes can reduce memory overheads and hence,

improve startup latencies by deduplicating across different

function types without any additional function execution costs.

In our evaluations, we observed that using Medes in combina-

tion with these snapshotting mechanisms can further improve

their performance (Section 7.6).

[10, 26] leverage fork-based techniques to reduce over-

heads. [2, 22] aim to use a sandbox per trust domain. However,

these proposals by design still have limited flexibility to navi-

gate the performance-memory trade-off space and sacrifice

isolation during request execution.

9 Summary
We propose a new serverless framework, Medes, that breaks

the rigid trade-off between memory efficiency and perfor-

mance in today’s platforms. We leverage the fact that warm

sandboxes have a high fraction of duplication in their memory

footprints and introduce the notion of a redundant sandbox

chunk and a new dedup sandbox state. We develop algorithms

to identify and eliminate duplication at low computation and

memory costs, move sandboxes to dedup states, and quickly

restore dedup sandboxes. We then propose a simple sandbox

management policy that allows operators to flexibly meet

memory efficiency and performance targets. Our results show

that Medes results in up to 1×-2.75× lesser end-to-end laten-

cies on real serverless workloads while occupying the same

memory footprints as the state-of-the-art alternatives. At the

same time, Medes can meet the same latency targets as the

fixed keep-alive policy while occupying 11.4% lesser mem-

ory on average. These benefits are primarily due to 10-50%

fewer cold starts, which we achieve by keeping 7.74-37.7%

more sandboxes in memory by heavily deduplicating idle

sandboxes.
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