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Abstract

Mobile clients that consume and produce data are abundant in fog
environments and low latency access to this data can only be achieved by
storing it in their close physical proximity. To adapt data replication in
fog data stores in an efficient manner and make client data available at
the fog node that is closest to the client, the systems need to predict both
client movement and pauses in data consumption.

In this paper, we present variations of Markov model algorithms that
can run on clients to increase the data availability while minimizing excess
data. In a simulation, we find the availability of data at the closest node
can be improved by 35% without incurring the storage and communication
overheads of global replication.

1 Introduction

Fog computing enables novel application domains such as the Internet
of Things (IoT), or connected driving [9, 33, 8, 6]. To leverage its full
potential, application platforms such as data management systems need
to be redesigned for an increasing degree of geo-distribution. Application
clients that move through the physical world constantly reconnect to fog
nodes to improve their quality of service (QoS) and expect their client-
specific data to be available at their nearest node. Full replication of
such client-specific data across an entire fog network is infeasible given
network and storage constraints if the client only ever accesses it at a single
location at a time. Fog data management systems such as FBase [19, 18]
allow applications to control replica placement directly, which optimizes
efficiency by moving data replicas with clients but places a burden on
application developers.

One alternative is to reactively replicate data to a fog node once the
client connects to it and thus let the data follow the client. Depending on
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the amount of data, this leads to significant delays before it is available
to the client. Instead, we propose predicting future client locations using
past access patterns to proactively initiate data movement [26] before the
data are accessed. Specifically, this encompasses three challenges: First,
each client must be able to predict the next data replica location it will
connect to. Second, the client must also be able to predict when such
data movement should take place to limit the amount of time that data
are replicated across more nodes than desired. Third, a client may also
stop their application and thus stop accessing their data. The client must
be able to predict such pauses, their duration, and where the application
may be started again.

In this paper, we make the following contributions:

• We propose algorithms based on client-side Markov chains to pre-
dict next hops, which allows such predictive data replication in a
distributed fog environment (Section 3).

• We propose two novel algorithms to solve the problem of startup
prediction for applications on moving clients (Section 4)

• We evaluate our algorithms in an extensive simulation using real-
world movement traces (Section 5).

• We critically discuss the applicability and limitations of our algo-
rithms (Section 7).

2 Background

In this section, we give an overview of fog computing and Markov models,
and introduce the terminology used in the rest of our paper.

2.1 Fog Computing

There are multiple competing definition for the term fog computing. For
our purposes, it describes environments that combine highly scalable re-
sources in the cloud with low-latency geo-distributed compute nodes on
the edge as well as any intermediary node (small to medium sized data
centers) in the network in-between. Fog applications can, thus, combine
the best of both worlds and address both scalability, latency, bandwidth,
and privacy needs [9, 8].

2.2 Markov Chains

A Markov model is a stochastic model that can be used to model transition
probabilities between states [4]. A common Markov model is the Markov
chain that occurs when the system state is fully observable. When we refer
to a Markov model in this paper, we generally mean a Markov chain, yet
other Markov models such as Hidden Markov Models may be applied to
next location prediction as well.

The probabilities of a Markov model can be modeled by domain ex-
perts or can be learned online. This means that new training data can
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be easily integrated into the model, without the need to perform complex
computations to generate a model that is ready for prediction.

Several extensions to basic Markov models have been proposed in the
past, e.g., the Multi Order Markov Model (MOMM) of order k, where k is
the number of last states used to predict a future state [10]. Yet if a history
of a certain size does not appear in the training data, no prediction can be
made. The Variable Order Markov Model (VOMM) uses kmax MOMM of
orders 1 through kmax and adaptively queries the model with the highest
order that yields a prediction for a certain input [3, 29].

3 Next Node Prediction

Next node prediction tries to predict the next node that a client will
connect to as well as when the client arrives there, under the assumption
that the application remains active. Client-specific data may then be
preloaded to that location to improve data availability. We further note
that the problem of selecting a “nearest” node is an orthogonal question,
as a physically closest node or one with the least network distance may
be used. We also assume that some primary replica exists somewhere for
durability reasons, e.g., in the cloud or on the edge node nearest to the
end user’s home.

3.1 Using Markov Models for Next Node Predic-
tion

Markov models for next place prediction have been used multiple times in
the past [24, 1, 2]. When applying Markov models to our problem of next
node prediction, each state of the Markov model represents a fog node. A
state transition represents a client disconnecting from one fog node and
connecting to the next. Whenever a transition occurs for some client,
the algorithm enters this transition into the transition matrix. When the
client starts up or arrives at a new node, the matrix is queried for the
next state with the highest probability given the client’s location history
since the application started, and the client can instruct the system to
replicate data to the corresponding fog node.

Please, note that we assume a single model per client that moves with
that client. The alternative approach, in which a global transition table
considering all clients’ movements runs on the fog infrastructure itself, can
equally be used for this and all subsequent algorithms. Overall, a client-
side, single-client model has the advantage of scalability and privacy with
the cost of slightly increased resource consumption on clients.

3.2 Fusion Multi Order Markov Model (FOMM)

Markov models as described in Section 2.2, however, do not include the
notion of time. As time is continuous, we require a discretization to model
a certain time as a state, i.e., Discrete Time Markov Models [20]. Several
discretization methods are possible for time, e.g., using a day of the week,
yet a single method might be too specific or too broad to capture certain
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Algorithm 1 Fusion Multi Order Markov Model Prediction

Input: x = [x1, x2, ..., xn] .the nodes of the current trip
Input: t .the time of the start of the trip
Output: the probability vector of the predictions
for m ∈ models do

p← m.pred(
[xn−m.depth+1, ..., xn],
m.dayOfWeek split(t),
m.timeOfDay split(t))

p← p×m.weight
end for
q ←

∑
m p .aggregate over all models

q ← q∑
q

.normalization

return q

patterns. Instead, we follow the approach of the VOMM to train and
query multiple models with different discretization methods and orders,
and we then combine their results. We consider a discretization by day
of week or weekday/weekend to capture patterns on weekly bases, and
discretize the time of day in 4 ranges á 6 hours and 24 ranges á 1 hour
to capture patterns on a daily basis. Other discretization methods, e.g.,
capturing recurring movement on basis of month of the year are also pos-
sible. The Fusion Multi Order Markov Model (FOMM) then trains the
cartesian product of possible time discretization methods and state his-
tory sizes to a kmax. With, e.g., a maximum history size of 2, two possible
day of week splits (weekend/weekdays, each day alone), and two time of
day splits (4 groups of 6 hours, 24 groups of 1 hour), 23 models result.
Each model is then assigned a weight corresponding to how specific it is,
which is then used to merge the results from the different models for a
prediction. This way, the results of more specific models are prioritized
over the results of less specific models. The exact weights in these dimen-
sions and computation of these weights are implementation-specific and
might be adjustable.

When querying the models for prediction, the same input transforma-
tion is applied and each model returns all possible next nodes with the
corresponding probabilities. Algorithm 1 shows the process of merging the
results in pseudo-code, where all models are first queried, and the result
probabilities are multiplied by the weight of the model. The probabilities
for each predicted next node are then summed over all models and the
next node with the highest probability is returned. A more specific model
can either return a more accurate result or no result at all when a specific
state does not exist. Less specific models are almost always able to return
some prediction, albeit with less accuracy.
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3.3 Extensions

We further develop three extensions that can be added to the algorithms
we have presented so far to improve their performance.

End-of-Trip Extension The first extension predicts whether a next
location exists or the trip ends at the current node. All of our models
assume that some next node exists for a client, which is not the case when
the application using the data replicas is terminated. Therefore, we train
our Markov models with an additional End-of-Trip (EoT ) state. When
this state is predicted, the data is not loaded to any next node, reducing
excess data.

Dynamic topN Extension We also extend the algorithms to return
a dynamic number of predictions based on the certainty of each prediction
until their cumulative probability is above some threshold, e.g., 90%. For
states where the prediction of the next node is relatively certain, only
one or two next nodes are returned. For cases, however, where many
options, each with medium probability exist, multiple next nodes would
be returned. In the latter case, we propose to cluster the proposed nodes
based on their network distance and to store a replica in one or two of
the clusters – in the end, application data do not need to be stored on
the exact fog node where access will happen but rather in close proximity.
In practice, this will often mean that data are pushed from the edge to
an intermediary fog node. Overall, this extension can reduce excess data
while improving data availability.

Duration Extension Starting to replica data to the predicted next
location immediately after arriving at a node might not always be neces-
sary, as a user might stay significantly longer at the current node than it
takes to replicate the data to the next node, increasing excess data and
therefore storage cost. Therefore, this extension also predicts the stay
duration at a node while the application is active to reduce excess data
storage. We include the average historical duration as metadata in the
Markov model for each predicted state. Then, when the algorithms re-
quire a prediction, this duration, together with an estimated transfer time
and a configurable buffer, can be used to start the process of moving the
data to the next node later, reducing excess data.

4 Startup Prediction

In contrast to next node prediction, we assume that no application compo-
nent or fog node is aware of the client’s location until the client application
is started, hence we consider the client invisible to the fog network. There-
fore, the predictor has to make a prediction based on past location and
startup data to predict when and at which node a client that is currently
disconnected will access the fog network again.
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4.1 Short Pauses

In scenarios where a client application is typically used while the client is
moving, a client application may be stopped only for some short duration
before being started again at the same location. A simple way to make sure
that the data is available when the application is started again is to keep
the data at the current node for some amount of time instead of deleting
it immediately. This duration can either be configurable or learned from
past user data, e.g., the client’s median pause duration. Alternatively,
it could be computed for each combination of user and node and the
maximum duration could be set depending on the last node of a trip.
This improves accuracy as, e.g., stopping at the coffee shop might have
another duration than stopping at work or home for the night. While this
also leads to excess data, as data is stored when it is not used, in practice
such data might be marked as “can be deleted”, e.g., when the system is
running out of disk space.

4.2 Pause Length Markov Model

In some cases, however, the client will stay offline for a longer duration.
We therefore propose the Pause Length Markov Model (PLMM) based on
FOMM that can predict the node at which the client starts up again and
the duration of the pause. With this information, the algorithm can then
decide whether to keep the data at the closest node for some time after
a shutdown or remove it immediately. PLMM uses a history size of one,
i.e., only the node at which the application is shut down is considered
to predict the next node. That next node is the location at which the
application is started next, and the duration is the length of the pause.

This prediction happens when the application is shut down, as the
algorithm then has to determine whether or not to keep the data at the
closest node. When a prediction occurs, the model returns the expected
next node and the expected duration. When the expected startup node
and the current node are equal, and the predicted duration is below some
threshold, the data is kept at the closest node even after shutdown for
some duration.

This algorithm should improve data availability, as data might be im-
mediately available at application startup. Yet it also generates excess
data by both wrong predictions, when data is unnecessarily kept when
the application is not started up again at the same node as the shutdown
node within the specified duration, and even by correct predictions, as the
data is kept for some time between the shutdown and startup although it
is not needed. Such data could again be marked for possible deletion in
case of contention.

5 Evaluation

To evaluate our approach, we implemented a simulation of a distributed
fog storage platform and present the results of running the different al-
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gorithms we developed within that simulation tool. Our implementation
and data are available as open-source1.

5.1 Simulation

We simulate a fog data management system setup with moving clients,
including a network model of the fog infrastructure and location traces of
clients. Our simulation assumes that clients are not always online, i.e., do
not continuously interact with the platform, and that data are not shared
across users.

In addition to a simple network model with a fixed data transfer time
between nodes, we also develop a more sophisticated network simulation
with fog nodes and cloud servers connected by links with limited band-
width, allowing a more realistic data transfer simulation. The simulation
of such a network works on a higher abstraction than packet-level network
simulators such as ns3 [11]. While these are more accurate they also re-
quire significantly more resources. With our approach, it is feasible to
run multiple years of network traffic of more than 100 users in about 30
seconds.

5.2 Scenario

For the evaluation of our algorithms on the simulation framework, we use
the GeoLife GPS trajectory dataset [36, 34, 35] comprising GPS traces
of 182 users, mainly in Beijing, China, from 2007 to 2012. Unless noted
otherwise, the edge node locations are determined by a 10 × 10 grid of
fog nodes over the city of Beijing, China. In this setup, any data transfer
of the client data takes 5 minutes, which, while quite a large duration,
allows us to show clearly the problems of the baseline algorithm and the
improvements of our algorithms. A more complex network simulation will
be presented in Section 5.8.

We note again that we assume a fog data management platform that
lets applications control replica placement directly, e.g., FBase [19, 18],
that clients automatically connect to their physically closest node, and
that this node provides the best QoS for clients.

5.3 Metrics

To compare our algorithms, we develop metrics that help us quantify to
what extent the right data for a client is available at a node, what data
replication costs an algorithm incurs beyond that required data, and what
the impact on client resources is.

Data Availability is the percentage of time the closest node contains
the desired data. Data may not be available when the application starts
up, or when the client moves and data is not yet replicated to the new
closest node.

An additional metric measures Excess Data storage usage, i.e., the
time data are stored at a node where the data is not needed relative to the

1https://github.com/pfandzelter/prp-simulation
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time the application is used. This metric also penalizes replicating data
too early or deleting them too late. Additionally, moving data to wrong
nodes is measured by this metric as well, all non-used data is taken into
account for this metric. This metric can range from 0%, the optimum,
to infinity. Excess data of 100% could mean that the client data were
replicated to one wrong node the same amount of time the application
was active. It could also mean that the data were stored on two wrong
nodes 50% of the time the application was active.

Memory Usage is the amount of memory used by the algorithm at
the end of the simulation run. When we assume that the algorithm uses
historic data, the amount of data increases over time. This metric only
tracks the memory usage at the end of the simulation for each client and an
average over all clients, and therefore effectively describes the maximum
memory usage in the scenario. The metric covers all data and other assets
the algorithm uses for learning and predictions.

5.4 Results: Baseline

We first consider the baseline algorithm of reactively storing the client
data at the closest node while the application is active. Our evaluation
for this algorithm shows data availability of 61.43%, although that number
decreases with a higher node density, e.g., to 46.40% with a denser 30×30
node grid. With more nodes, more node changes occur, and therefore the
data availability decreases when the data is not present after node changes.
This algorithm, however, has the advantage that it never produces any
excess data and requires no memory as no information on past movement
patterns of the client is required.

5.5 Results: Multi and Variable Order Markov
Models (MOMM and VOMM)

We first evaluate Multi Order Markov Model (MOMM) and Variable Or-
der Markov Model (VOMM) for next node prediction, each with a (max-
imum) k of one to five and without the extensions described in 3.3. We
find that for larger history sizes, both availability (67.78% to 62.27%)and
excess data (57.36% to 1.78%) of the MOMM decrease. This shows that
the MOMM does not make more wrong predictions with a higher history
size, but fewer predictions. This is plausible, as the MOMM needs to have
seen this exact history with length n before to make a prediction, which
is less likely for larger n. The VOMM is stable on both the availability
at 69.0% and excess data at 54.8% with a history size greater or equal to
2. This shows that the model does not directly profit from history sizes
larger than 2, a similar result has also been produced by [13]. We also
note that the memory usage of all algorithms is small. The largest of
these models is the VOMM with a history length of 5, this model has a
size of 23kB per client on average, while the largest model of a client has
a size of 2.2MB.
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Figure 1: VOMM with different extensions

5.6 Results: End-of-Trip, Dynamic topN, and Du-
ration Extensions

Next, we evaluate the EoT extension that predicts whether the trip ends
or not and the dynamic topN extension2 that loads the client data to a
dynamic number of nodes. We evaluate these based on the VOMM with a
history size of 2, as this showed the best results on the availability metric.

Figure 1 shows a scatter plot of the results of running this algorithm
with different configurations of the dynamic/fix topN extension and the
EoT extension. The results of the different algorithms are presented in
the two dimensions availability and excess data. The line is the Pareto
front, any algorithms above this line are thus dominated by algorithms
on the line, i.e., there is an algorithm with higher availability that also
produces lower excess data.

The labels show the dynamic/fix topN and whether the EoT exten-
sion is enabled. We see, e.g., three algorithms produce roughly 60% excess
data. However, the algorithm using a dynamic topN of 90% with the EoT
extension enabled has a higher availability metric, therefore it dominates
the other two algorithms. Generally, it can be seen that algorithms us-
ing a dynamic topN typically outperform algorithms with a fixed topN.
Additionally, the algorithms with the EoT extension outperform the al-
gorithms without. Therefore, typically the EoT extension is desirable,
and the dynamic topN extension can be used to weigh between the costs
of having excess data and the cost of not storing the data at the closest
node, thus, reducing availability.

2In the experiment, we do not use the geo-clustering option discussed for the dynamic topN
extension.
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Preload Buffer Availability Excess Data

10 seconds 68.36 % 36.58 %
1 minute 68.93 % 39.34 %
5 minutes 69.83 % 46.74 %
10 minutes 70.12 % 50.93 %
24 hours 70.28 % 54.82 %

Table 1: Preload Buffer Extension Evaluation

A further interesting result arises when reevaluating whether a history
size larger than 2 can enable better results in our simulations on the
VOMM. When using the dynamic topN extension with a certainty of 90%
and the EoT extension, the history size does matter. Figure 2 shows
these results. While the availability metric slightly worsens with higher
history sizes, the excess data metric improves significantly. This behavior
can be explained by the fact that higher history sizes return the same
best prediction, but with more accurate probabilities. This leads to the
dynamic topN extension replicating, on average, the data to fewer nodes,
thus reducing excess data.

The third extension we developed manages when to move data to
the predicted next nodes. In addition to the predicted next nodes and
the corresponding probabilities, our Markov model implementations also
return the expected stay duration at the current node before moving on
to the next node. With different preload buffer durations, the data can be
replicated earlier or later to the predicted next nodes. A preload buffer of
0 seconds would replicate the data so that the data arrives at the predicted
next node exactly at the end of the predicted stay duration.
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Figure 3: Tuning each parameter in the FOMM evaluation on a 100 node topol-
ogy. The arrays of numbers show the different splits, e.g., [1,2,7] means that
this model uses the sub-models for one group per day of week (split of 7), week-
day vs. weekend (split of 2), and a sub-model where all days of the week are in
one group. We observe no significant changes to availability when we add more
parameters, yet see that excess data decreases.

Table 1 shows the results of running a VOMM with different preload
buffers. A preload buffer of 24 hours means that the data is replicated 24
hours before the predicted arrival time. However, as all stay durations are
significantly shorter than this duration of 24 hours, this means that data
are replicated immediately after prediction to the predicted next node.
As expected, the availability decreases slightly with lower preload buffer
durations, but excess data decreased significantly. Therefore, this exten-
sion also provides a tool to balance the cost of excess data and the cost of
reduced availability. We also find the VOMM to be stable when adding
more nodes to the network, i.e., increasing node density and handoff fre-
quency.

5.7 Results: Fusion Multi Order Markov Model
(FOMM)

The FOMM has three main parameters: the maximum history size, the
day of week options, and the time of day options. Figure 3 shows the
results of each parameter combination on a 100 node topology. It can be
seen that more information for each model does not improve the avail-
ability metric but in all cases decreases excess data. However, this can
allow for a higher dynamic topN configuration while remaining stable on
excess data, therefore it can also lead to better results on the availability
metric. Overall, incorporating more information into the model has sim-
ilar effects on both VOMM and FOMM. Compared to the VOMM, the
FOMM achieves similar availability but achieves these results with less
excess data. However, as FOMM uses more information, it also needs to
store this information, thus, increasing the memory usage of this algo-
rithm. A FOMM with a history size of 5 and all day of week and time
of day options enabled on average uses 1.5 MB of memory per client (the
maximum memory usage is 21 MB).
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# Nodes Availability Baseline Availability FOMM Excess Data FOMM

81 66.93 % 74.09 % 51.57 %
256 61.77 % 71.29 % 50.04 %
625 55.67 % 67.51 % 50.33 %

Table 2: Evaluation of FOMM on Complex Network
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Figure 4: Pause Duration Distribution in the GeoLife Dataset

5.8 Results: FOMM on Complex Network

So far, we have evaluated our algorithms with fixed 5 minute load delay,
without taking network effects into account. We will now show how our
baseline and FOMM algorithms perform on a more complex and realistic
network setup. In this setup, we consider a fog topology comprising a
cloud node that stores all data at all times and a 9×9, 16×16, or 25×25
grid of edge nodes. The cloud and edge nodes are connected via links
and routers. Edge nodes are connected to their neighbors via routers
via a 40Mbit/s link, these routers are connected to the cloud node via
a 800Mbit/s link. For simplicity, these data rates represent the effective
data transfer rate between nodes rather than raw link throughput. In our
simulation, we assume that each set of client data items has a size of 1GB.

The results of this simulation are shown in Table 2. It can be seen,
that the FOMM can improve the availability compared to the baseline
by about 10 percentage points with ca. 50% excess data, similar to the
results in our previous experiments. This shows that our algorithms also
work on a more realistic network setup.
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Node specific Max Duration Availability Excess Data

false 10 minutes 70.38 % 38.41 %
false 30 minutes 71.05 % 48.85 %
false 60 minutes 71.08 % 51.39 %
true 10 minutes 69.80 % 37.45 %
true 30 minutes 70.68 % 58.66 %
true 60 minutes 70.85 % 75.06 %

Baseline 61.43 % 0.00 %

Table 3: Performance of Short Pauses Algorithm

5.9 Results: Startup Prediction

As discussed in Section 4.1, in some scenarios short pauses exist, where
the startup occurs shortly after application shutdown at the same node.
Figure 4 illustrates the distribution of the pause durations in the GeoLife
dataset, showing that most pauses are on the order of only a few minutes,
with a median pause duration of 595 seconds.

Table 3 shows the results of running the short pauses algorithm on
the simple network with 100 nodes and a 5-minute load duration. Sur-
prisingly, the algorithm using node specific information to compute me-
dian pause durations did not perform better than using only user-specific
data. In some cases, e.g., with a maximum duration of 60 minutes, it
even performed significantly worse. We surmise that too little data on
each user/node combination leads to inaccurate predictions of the pause
duration.

We use the PLMM to predict the pause duration and only keep data
at the closest node after shutdown if the predicted pause duration is be-
low some time threshold, which we set at 25 minutes. This yields an
improvement over the short pause approach with availability at 71.37%
while 45.68% excess data is similar or less.

However, we also ran the short pauses algorithm on the GeoLife data
with a fixed duration of 10 minutes, without any prediction or learning
of typical short pauses durations, achieving 71.98% on the availability
metric while leading to excess data of 46.10%, therefore outperforming
most models that we benchmarked above. That such a simple algorithm
without any learning can outperform these algorithms that use machine
learning, shows that many open questions exist on how to predict the next
startup time or the stay duration. We note that during our research, even
a clustering algorithm to detect patterns in startup times did not lead to
improvements in availability.

5.10 Results: Combination

We now combine the best algorithms for the two problems of next node
prediction and startup prediction, namely FOMM and the short pause
algorithm with a fixed length of 10 minutes, with Table 4 showing the
results on both simple and complex networks. In all simulation runs, we
were able to improve the availability of the data the baseline by around

13



Algorithm Availability Excess Data

Baseline 61.43 % 0.00 %
FOMM 69.24 % 34.31 %
Short Pause
(fixed, 10 min.)

71.98 % 46.10 %

Combination 79.85 % 81.38 %

(a) Simple Network 100 Nodes

Algorithm Availability Excess Data

Baseline 51.14 % 0.00 %
FOMM 62.86 % 40.19 %
Short Pause
(fixed, 10 min.)

60.80 % 44.15 %

Combination 72.66 % 86.71 %

(b) Simple Network 400 Nodes
Algorithm Availability Excess Data

Baseline 66.93 % 0.00 %
FOMM 73.48 % 41.31 %
Short Pause
(fixed, 10 min.)

75.74 % 46.97 %

Combination 82.47 % 89.11 %

(c) Complex Network 81 Nodes

Algorithm Availability Excess Data

Baseline 55.67 % 0.00 %
FOMM 67.14 % 45.04 %
Short Pause
(fixed, 10 min.)

63.54 % 45.17 %

Combination 75.22 % 92.43 %

(d) Complex Network 625 Nodes

Table 4: Performance of Combinations of Algorithms in Different Network
Topologies

16 to 21 percentage points, a significant difference. This shows that our
algorithms can improve data availability significantly, regardless of net-
work type. However, in all scenarios, excess data was generated, albeit
significantly less than what would be generated by global replication. For
comparison, the excess data of such global replication on the simple net-
work with 100 nodes would be 396,535.77%.

Figure 5 shows data availability for a randomly selected user on the
simple network with 100 nodes over time. As users enter the simulation
at different times, we focus on only a single user to make the effects of the
client-side model visible. The FOMM algorithm for next node prediction
as well as the short pause algorithm for startup prediction show better
results than the baseline algorithms from very early on. After an initial
startup phase where the algorithms produce the same availability as the
baseline, the algorithms consistently yield improvements.

6 Related Work

Predicting future locations for users has been the subject of several re-
search publications using different algorithms and in the context of dif-
ferent domains. [22, 28]. For example, Gomes et al. [14] use next place
prediction to improve SMS advertisements to mobile phone users.

In the context of fog computing, Yap and Chong [32] used next place
prediction to improve the Quality-of-Service of a WiFi network by pre-
dicting the best access point for a device, taking into account possible
future movement of this device. Gossa et al. [15] assume a scenario with
a grid of nodes over the city of Vienna, Austria. In their scenario, the
moving clients are taxis that need to access some data located on the
nodes with as little latency as possible. They compare a self-developed
model called FReDi with a Markov Model. In contrast to our paper, their
application assumes that all clients require the same data while we focus
on client-specific data sets. Furthermore, in their evaluation, the authors
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Figure 5: Availability over Time

assume not that clients always require that data on their closest node, but
rather use the distance between client and data as a metric.

Replica placement in fog has been discussed both for data [16], and
for services [12, 7, 5]. In a survey by Salaht et al. [27] that presents an
overview of service placement algorithms in fog computing, the authors
note that most current service placement techniques are reactive, i.e., they
do not anticipate client movement as we do in this work. Araújo et al. [2]
propose proactive content migration using Markov models and Multiple
Attribute Decision Making to migrate VMs in the fog for moving clients.
While the approach is similar, the conditions are slightly different, as more
parameters need to be taken into account, but only one future location
may be chosen while data can be replicated to more than one location.
Nevertheless, our approach may also be used to support such service mi-
gration by replicating data along with multiple instances of stateless edge
services [25].

7 Discussion

In our simulation, we have shown that our proposed algorithms and mod-
els for next node prediction and startup prediction can provide QoS im-
provements for moving clients in a distributed fog data management sys-
tem. In this section, we discuss possible limitations of our approach and
evaluation and derive avenues for future work.

Alternative Models for Next Node Prediction In addition to
our approach to next node prediction using Markov models, other types of
machine learning algorithms exist that could be applied to this problem as
well. Nevertheless, we note that Markov models have two main advantages
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in our application. First, the notion of states can be mapped directly to
nodes in the fog topology, likewise transitions can be mapped to movement
between such nodes. Second, the simplicity of Markov models, even of
the more complex FOMM, is a better fit for applications that run on
constrained client devices.

An alternative in many use cases are physical constraints: users do
not teleport and pushing data towards the next higher intermediary node
when the prediction is not sufficiently certain will usually yield a data
replica that is 2 hops away (instead of the desired 1 hop) – this is signif-
icantly better than the baseline approach and may even suffice for many
scenarios. Finally, apps such as a maps app used for navigation could pro-
vide hints to the prediction module, thus, boosting prediction accuracy.

Alternative Algorithms for Startup Prediction For the prob-
lem of startup prediction, we presented algorithms that try to gap short
pauses by storing the data at the last closest node to improve availabil-
ity. However, these algorithms only improve the availability of data for
short pauses, which are frequent in the GeoLife dataset, yet do not yield
improvements for longer pauses. Clustering of startup times to predict
typical patterns, e.g., going to work every morning on weekdays, can im-
prove the availability after such long pauses, yet our attempts to solve this
problem were not successful, mainly because the detected patterns of the
users were too unspecific. This led to a significant increase in excess data
while only slightly improving availability. Our models also assumed that
no information is available when an application is not running, while in
practice, cross-app location data sharing can solve many of the problems
as, e.g., a user might be reading emails at home and at work while using
a podcast app in between.

Lack of Realistic Fog Environment While the GeoLife dataset
used in our simulation is realistic as it uses real-world data of many users,
we needed to synthetically generate fog nodes in the city of Beijing using
a grid pattern for the node setup as no real fog network exists yet. We
are still missing detailed and realistic usage scenarios for fog setups with
moving clients. There are, however, other interesting datasets that could
be used for evaluating algorithms for these problems, such as the Shang-
hai Telecom dataset [21, 31, 17, 30], or [23]. Given the extensibility of
our simulation framework, it is possible to use these datasets for network
topologies and location data for evaluation. However, from a theoreti-
cal perspective, we made the need for algorithms for predictive replica
placement clear.

8 Conclusion & Future Work

In this paper, we presented the problem of predictive replica placement
in a fog data management system with moving clients. To solve this
problem, we split the problem into the two sub-problems of next node
prediction and startup prediction. We adapted and developed Markov
model machine learning algorithms that increase the availability of data
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while minimizing excess data. In simulation, our algorithms improved the
availability of data at the closest node from 55.67% to 75.22% compared to
reactive data placement approaches. While these algorithms incur excess
data over the baseline algorithm, they are still significantly more efficient
than global full replication.

Markov chains have simplicity and low footprints as an advantage, but
have limited capabilities. In future work, we plan to implement and eval-
uate our algorithms in a realistic fog environment and hope to compare
other machine learning algorithms or neural network-based deep learning
approaches, e.g., taking latency or signal strength into account, allowing
for a more detailed analysis of client trajectories. Furthermore, in our
work we consider all client data as an atomic unit, yet semantically split-
ting that data to allow partial replication could further improve algorithm
efficiency.
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