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ABSTRACT 1 INTRODUCTION

Applications that process streams of events generated by sensors
are important in a wide range of domains. It is now common to
distribute stream processing across edge devices and the cloud.
This exploits processing power near the sensors, reducing the load
on the cloud and often the required network bandwidth. In this
paper we focus on one challenge in distributed stream processing:
automatically adapting the partitioning of the processing between
the edge and the cloud without a loss of service. An example is
when the event arrival rate increases and the edge processor can
no longer meet performance requirements. Re-partitioning without
loss of service involves moving computations between the edge
and the cloud while events are still being processed. In this paper
we describe StrloT — a stream processing system that supports
automatic re-partitioning. It is based on a set of functional stream
operators, and the paper describes how the run-time system can
automatically adapt applications that use them. A key feature is
support for the fission and fusion of operators during adaptations.
Performance evaluation shows that StrloT can move parts of a
stream processing application between the cloud and edge with
only a low, temporary impact on performance.
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Applications that process streams of events generated by sensors
are becoming increasingly important in a wide range of domains. A
common application structure is to distribute the processing across
edge devices and the cloud. This has the advantage of exploiting
processing power near the sensors to reduce both the load on the
cloud, and the required network bandwidth between the edge and
the cloud. This approach does however raise issues for developers
as designing a distributed stream processing system that meets
performance and other non-functional requirements is complex.
In this paper we focus on one key challenge: adapting the parti-
tioning of the processing between the edge and the cloud at run-
time without loss of service. Figure 1a shows a very simple stream
processing system in which a stream of events generated by a sen-
sor S is first processed by operator F before being processed by
operator G. For example, F might filter out uninteresting events
generated by S, before G performs a computation on each of those
events. A developer might decide to deploy F at the edge (so reduc-
ing the bandwidth needed between the edge and the cloud) and G
on the cloud (to exploit its greater processing power). This is shown
in Figure 1b. To ensure that this configuration will succeed, the
developer could estimate the load on the edge device by combining
estimates of the rate at which S will generate messages, and the
processing power required to process each message. If processing
this rate of messages overloads the edge device then the system
will fail. In this case, the only solution is to run F on the cloud,
rather than at the edge (Figure 1c) providing the bandwidth of the
network between them is large enough to handle the extra traffic.
The developer should also consider whether both F and G could
both run on the edge device (Figure 1d). This would reduce the
cloud resources needed, and so could reduce the hosting costs
paid to the cloud provider. By exploring these various options,
the application developer could make the choice of the optimal
partitioning of the stream computation between the edge and the
cloud. However, while this may be the best partitioning for the
initial deployment of the application, what happens if some of the
underlying assumptions change? In particular, what if the rate of
events arriving at F for processing increases? This may be due to
the installation of more sensors, all sending data to F, or it could be
because the sensor is replaced with a newer model that can sample
at a higher frequency. In this case, the edge device may not have
the power to process all the events, and so F would have to be
re-deployed onto the cloud. The opposite scenario is where it is
discovered that a lower sampling rate is sufficient for the sensor,
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Figure 1: Partitioning Options

and so F now requires lower computational resources, enabling G
to also be run at the edge, so reducing cloud costs.

Moving operators between the edge and cloud is not straight-
forward. Taking the application down for a period of time to make
the change may not be possible (for example if it is a safety-critical
application), or may be at least undesirable. Any manual reconfigu-
ration also introduces the possibility of human error.

In this paper we describe an alternative: StrloT enables the auto-
matic adaptation of streaming applications, including automatically
re-partitioning processing between the edge and the cloud. In order
to achieve this, we designed a set of high-level functional stream
processing operators from which developers can build streaming
applications. These operators are defined and implemented in a
pure functional programming language, and so have simple, clear
semantics (especially in terms of state management) that we can
exploit when implementing a set of run-time adaptations.

A particular advantage of StrloT is that it supports partition fis-
sion (splitting the operators from one partition across more than
one partition) and fusion (combining the operators from multiple
partitions into one). This opens up more options of adaptation than
is possible with simple partition migration. As will be discussed,
fusion can also improve performance. Fusion and fission are en-
abled in StrloT because the partitions are automatically created by
transforming the original program provided by the programmer.

The rest of the paper is as follows. We define the operators in
Section 2 and then describe the run-time system that executes
distributed stream processing applications built from these appli-
cations (Section 3). Section 4 focuses on how StrloT implements
automatic, run-time adaptivity without loss of service. We then
describe a performance evaluation of two types of adaptivity involv-
ing fusion and fission between the edge and the cloud respectively.
This shows that this can be done with only a low, temporary impact
on performance. After a comparison with related systems we drawn
conclusions from the results, and point to future directions. The
StrloT system, and the example used in the evaluation, are available
as open source [21].

2 THE FUNCTIONAL STREAM PROCESSING
OPERATORS

We model a stream in Haskell (a pure functional language) as a

(possibly infinite) list of events:

data Event a =

Event { time :: Maybe Timestamp

, value :: Maybe a }
type Timestamp = UTCTime
type Stream a = [Event al]

Event has been designed to be as general as possible: it can hold
data of any type (e.g. integers, strings, tuples, lists, trees, graphs
and even functions - in the definition, “a” represents any type). An
Event can also optionally hold a timestamp (Maybe is a Haskell
datatype that can contain a value, or Nothing).

Based on analysis of the literature on stream processing and
Complex Event Processing [5], and by experimenting with the
implementation of a range of applications, we have selected and
implemented a library of operators an application developer can use
to create streaming applications in StrloT. An important criterion
for choosing these is that both an optimizer and the run-time system
that enables adaptivity can exploit knowledge of their semantics.

There are four key types of operations that any stream processing
system must perform:

e Filter: select only those events that match a set of criteria

e Map: transform all events into another type of event

e Window: break a stream of events into a stream of windows,
each containing zero or more events

e Combine: merge or combine events from different streams

A full description of all the operators provided by StrloT is avail-
able at [20]. We now briefly describe the three operators that we
will use in the examples of adaptivity later in the paper.

2.1 Filtering

The streamFilter function takes a stream as input, and outputs a
stream containing only those events that meet the provided criteria.
The type signature is:

streamFilter :: EventFilter a
-> Stream a
-> Stream a

type EventFilter a = a -> Bool

One advantage of StrloT is that the application programmer does
not need to know or understand the exact format of the events as
seen by the infrastructure. They only need to know the type of the
value field - in this case so that they can write a function of type
EventFilter to filter out all events whose value does not meet a
particular criterion.

For example, if a temperature sensor generates a stream of events

of type Int:
tempSensor :: Stream Int

an application programmer interested only in temperatures of
over 100 can easily write a program to filter out all other values:
over100 :: EventFilter Int
over100 temp = temp > 100



streamFilter over100 tempSensor

2.2 Mapping

The function streamMap is used to transform the values in a stream.
The programmer supplies a function of type EventMap which is ap-
plied to the value within each event in the input stream to generate
the output stream. The function streamMap has the signature:

streamMap :: EventMap a b
-> Stream a
-> Stream b

type EventMap a b = a -> b

If the programmer wants to extend the running example by
representing all temperatures by their value over 100, they can
code this as:

amountOver100@ :: EventMap Int Int
amountOver100 temp = temp - 100

streamMap amountOver100
$ streamFilter over100 tempSensor

(the $ symbol is used in Haskell to chain functions together.)

Note that the application programmer does not have to under-
stand the format of events, nor how map or filter are implemented.
Instead they can focus solely on how the value held within the
events is to be processed.

2.3 Windowing

Windowing provides a way to break a stream into a new stream
whose events contain a subset of events from the original. Other
operators (usually streamMap) can then be used to process the
events in each window. The basic windowing function in StrloT is:

streamWindow :: WindowMaker a
-> Stream a
-> Stream [a]

type WindowMaker a = Stream a -> [Stream al

WindowMaker is a function that generates a list of windows. A
pre-defined set of functions covering the common WindowMaker
cases is provided. However, application programmers are free to
define their own. An example of a pre-defined function is a sliding
window of fixed time length:

slidingTime:: NominalDiffTime -> WindowMaker a

The first argument is the length of the window in milliseconds.

3 THE STRIOT DISTRIBUTED RUN TIME
SYSTEM

The set of StrloT operators that are to be deployed to a single node
(a decision that can be made by the application programmer, or the
StrloT optimizer) is called a partition. The Haskell code for each
partition is automatically written out to individual source code
files which are then compiled into executable code by the GHC
Haskell compiler. We therefore benefit from the optimizations that
the compiler applies to the source code.

The compiled code for each partition is then automatically pack-
aged in its own Docker container ready for deployment on the
cloud or a field gateway/edge device such as a Raspberry Pi. The
deployment system automatically connects up the partitions so
that events generated as the output from one partition are sent as
input to the next.

Events are serialised prior to transmission, and then deserialised
and placed in a queue on arrival. Each node implements a multi-
threaded connection handler, to allow multiple upstream nodes to
connect to the downstream concurrently (e.g. when merging events
from different sources). Figure 2 shows the node level design.
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Figure 2: Node level design
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4 ADAPTIVITY

Our work focuses on systems in which the operators in a stream
processing system are distributed across a set of physical platforms
such as cloud servers or edge nodes. We illustrate our work using an
application taken from the Distributed Event Based Systems (DEBS)
Conference Grand Challenge in 2015[10]. Its structure is shown in
Figure 3. A stream of events, each representing one taxi journey
(including start/end locations and times, fare and tip paid) are sent
to a Map toJourney operator that performs pre-processing (e.g.
turning GPS locations into grid squares). The output is then filtered
(Filter inRange) to remove any journeys that are outside of the
area of interest. These events are then assigned into 30 second
sliding windows over which a top-k operation is performed to
determine the most profitable routes.
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Figure 3: Taxi Application Example

A range of adaptations is possible — we focus on two key ones in
this article. In both cases the operators moved include one with state
which complicates the adaptation. However, because StrloT is based
on a set of pure functional operators, their clear semantics makes
it possible to perform the adaptation efficiently and automatically,
without any human intervention.



4.1 Cloud to Edge Fusion

Figure 4 shows adaptation from an initial partitioning of the ex-
ample application across the edge and cloud. Initially, the data is
mapped and filtered at the edge (P2) before being sent to the cloud
for windowing and top-k calculation (P3). If the monetary cost of
running on the cloud becomes expensive, and there is sufficient
spare computational resources at the edge, StrloT adaptivity mecha-
nisms can move the windowing and top-k to the edge without loss
of service, or manual reconfiguration. This happens as follows.

Management messages are defined as a special kind of Event
containing a unique identifier for each stateful partition (e.g.
streamWindow) that must be shut down prior to migration to an-
other node. These messages are passed directly into the stream
operator functions, where they trigger the function to stop pro-
cessing and instead store any partial state contained within the
function. In this example, the management message is sent to P,
and enters the stream as any other Event. As P; is stateless (opera-
tors such as streamMap and streamFilter operate independently
on each Event), no state needs to be stored prior to migration, but
the management message causes each operator to stop taking any
further input. Once the management message arrives at Ps, it is
passed to the stateful streamWindow operator, triggering it to stop
processing further input, and to store its state - in this case a partial
window. After this, the management message passes through the
(stateless) streamFilter before being removed from the stream.
By injecting the management message into the stream and passing
it through the operators in order, we can ensure that both partitions
are shut down at the same point in the computation. A single Redis
[17] key/value store instance was used for all partitions as the ex-
ternal state store; the key is a unique identifier contained within the
management message, and the value is the encoded state. Partition
Ps — a new partition containing the combined operators from both
Py and P3 - is then started on the edge infrastructure and initialised
using the key to retrieve the state directly from Redis - in this case
the streamWindow function is initialised with the partial window.
The operators can then resume normal operation, processing the
stream of events that have temporarily queued.

A feature of StrloT is that the fusion of operators from one or
more partition into a new single partition is possible because the
partitions are created by transforming the original program pro-
vided by the programmer. The advantage of fusion (rather than
just migrating partition P, onto the same edge node as P3) is that
the Haskell compiler can generate efficient code for the fused par-
tition — here it removes the need to serialise and deserialise the
events passing from streamFilter to streamWindow, as would be
the case if they were in 2 separate partitions. As a result, when com-
pared directly to migrating the partition, fusion results in increased
throughput and lower latency.

4.2 Edge to Cloud Fission

The second example of adaptivity is the inverse of the first. Ini-
tially, all of the operators are running on the edge, but — perhaps
because the event arrival rate has increased, causing the edge to
run out of available processing power — the windowing and top-k
operators are moved to the cloud (Figure 5). Fission increases the
number of partitions by splitting a single partition into two. This
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Figure 4: Cloud to Edge Fusion

is possible in StrloT for the same reason that fusion is possible
— the two partitions can be created by transforming the original
program provided by the programmer. Fission occurs as follows. A
management message is received by P, causing the partition to be
shut down, with the state of the streamWindow operator stored in
the key/value store. Two new partitions, P4 and Ps, are then created
from the original program provided by the programmer. These new
partitions are deployed, with P4 on the edge infrastructure, and Ps
on the cloud infrastructure. Once the state of the streamWindow
has been restored, the partitions can resume event processing.
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Figure 5: Edge to Cloud Fission

5 EVALUATION

In order to evaluate adaptivity, we created a distributed testbed.
Cloud infrastructure from Microsoft Azure [15] was used to create
a Kubernetes [9] cluster, in which there is a single control-plane
node and three regular nodes. Standard D2s v3 virtual machines
(VMs) were used, each with two Intel Xeon Platinum 2.60GHz CPU
cores and 8GB memory. A single edge device, located out of the
cloud (connected by a domestic broadband connection), was also
provisioned as part of the Kubernetes cluster. An AAEON UP board
was used at the edge, representing a field gateway between sensors
and the cloud. This contained an Intel Atom x5-Z8350, providing
4 cores @ 1.92GHz and 4GB memory. By using Kubernetes node
restriction labels we could mark the edge device, and use Kubernetes
node affinity rules to ensure the scheduler deploys the required
applications to the correct nodes.



Evaluation used the taxi application discussed in Section 4. Every
experiment processed 25,000 events from the taxi data-set. These
were streamed from the starting node, and it took approximately
300s for all the events to stream through the system. After starting
the initial partition for the experiment, the system is given 30s
to settle into a steady-state. After this, a management message to
trigger the adaptation is injected into the system. There are then
150-210 seconds after the adaptation until the experiment ends.

5.1 Cloud to Edge Fusion Results
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Figure 6: Fusion to Edge Results

Figure 6 shows the effect of fusion from the cloud to the edge. The
red dashed vertical line represents the point at which the adaptivity
process to fuse P, and P3 begins. The new fused partition, Ps takes
over the P3 graph after adaptation in the figure because P; was
already running on the edge, and this enables us to more clearly
see the effects of adaptivity.

We can see P, stops when the adaptivity is triggered, and does
not produce any more data for the rest of the experiment, as ex-
pected. Looking at P3/Ps we can see that the new partition does
not start generating events for around 11 seconds. This is the time
to complete the new partition’s deployment at the edge, load state
from the key/value store, and then to process the partial window.

The new partition then follows expected patterns for input and
output. The input data rate reduces after an initial rise. Given that
the output throughput is limited by the ability for the edge device
to process the CPU-intensive top-k function, this suggests that
the internal queue filled to capacity, and so no more input could
be requested until some processing had completed (the output
event rate graph suggests this). Overall, the partition takes around
70 seconds to stabilize back to the pre-adaptation rate of event
processing. Whilst this is a considerable period of time to catch
back up, the data rate in this example has been deliberately set at a
high level to show a worst-case scenario for the edge device.

5.2 [Edge to Cloud Fission Results

The fission experiment is the inverse of the fusion experiment. We
start with three partitions, where Py corresponds to the already
fused partitions P, and P3 from the fusion experiment’s starting
topology. Upon adaptation, we split P, into two new partitions. In

this case, to see the behaviour more clearly within the figure, P4
takes over the name of Py and starts at the same event count that
P, finished at. P3 starts from zero as a brand new partition. The
effect of fission is shown in Figure 7.
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Figure 7: Fission to Cloud Results

Taking a closer look at P,, once adaptivity is triggered the input
message and output message count stops for around 8 seconds as
the old partition is taken offline and the new one is started. We
then see a spike in the input and output as the node catches up
with backed up messages. P3 starts at a similar time and follows
the behaviour of Py as expected. It is clear in this example that
the final topology stabilizes much faster than the previous fusion
to edge experiment — from the point that adaptivity is triggered,
approximately 30 seconds elapse before the system resumes normal
operation. We attribute this to the greater processing power of
the cloud node. This causes the new partition to start in less time,
resulting in a smaller backlog of messages, and it also means that
the backlog is processed more quickly.

6 RELATED WORK

There are many existing distributed real-time stream-processing
systems, including Apache Flink [1], Apache Storm [23], Apache
Heron [11], Apache Spark Streaming [24], Apache Samza [16], and
Google Cloud Dataflow [13]. These typically follow a similar ap-
proach to StrloT, in having high-level operators that perform stream
transformations on the data. The implementation differs from sys-
tem to system, usually to maximize some particular goal, such as
correctness, throughput, latency, or some alternate heuristic. How-
ever, none have followed the distributed, pure functional approach
explored by StrloT.

Several purely functional streaming libraries already exist (e.g.[7,
12, 19, 22]) that typically focus on data ingestion and manipulation
within a single machine, providing stream operators with similari-
ties to those within StrloT. However, StrloT differs by supporting
distributed stream-processing with a single definition of the overall
stream processing graph as a program that is distributed and de-
ployed across a set of nodes, and can then be automatically adapted
at run-time. This is how fission and fusion can be supported.

Michalak and Watson demonstrated[14] that there can be ad-
vantages in automatically placing computation onto edge nodes, as



well as the cloud. The key difference for StrloT is that it explores a
functional, rather than relational, model for expressing, optimising
and executing the computation. This results in many differences,
particularly in the way the user expresses the computation and the
design of the run-time system. We believe that the StrloT functional
approach offers a richer set of stream operations than are available
in a relation streaming system such as PATHZiot.

With the popularity of Apache Spark, there are several areas of
research focusing entirely on adapting the batch sizes of Apache
Spark Streaming jobs in real-time [3, 4]. Whilst these are promising
for workloads suited to batch processing, it is inevitable that extra
latency is introduced as a result of batching. StrloT differs in being
a stream processing system that does not rely on batching, and that
can distribute and adapt computations across distributed nodes.

There are also various investigations into the dynamic adaptation
of streaming systems [2, 6, 8, 18] with an emphasis on resource
utilization, through horizontal auto-scaling, as well as operator
migration. However, StrloT provides an additional set of real-time
adaptations in the form of operator fission and fusion.

7 CONCLUSIONS

This paper has described how the StrloTdistributed stream process-
ing system can enable efficient, dynamic adaptation at run-time
without a loss of service. It has focused on adaptations that move
computation between the cloud and the edge, combined with fission
and fusion. However, others are also provided by StrloT, including
those that automatically parallelize operators in the cloud, including
map and filter.
The main lessons from our work so far have been:

o the small set of purely functional operators we defined is
sufficiently expressive to implement a wide range of stream
processing applications

o a key advantage of StrloT is that it supports partition fission
and fusion. These are enabled because the partitions are
automatically created by transforming the original program
provided by the programmer

o the clear semantics of the set of purely functional operators
enables the run-time system to adapt computations at run-
time, without any knowledge of the specific application, and
so without placing an additional burden on the programmer

o the overheads of performing an adaptation are low, generat-
ing temporary processing delays of only a few seconds for
the two types of adaptations featured in the paper, both of
which involve migrating computational state

8 FURTHER WORK

Work on StrloT continues in a range of areas. There is continued
development to support adaptivity across all combinations of the
functional operators, enabling adaptation of complex topologies.
There is the development of an optimizer that uses rewrite rules
to generate alternative versions of a program, including different
partitionings across cloud and edge nodes. This again exploits the
advantage of having a small set of functional operators. A cost
model enables StrloT to automatically select the option that best
meets non-functional requirements, with performance as the first
focus. The cost model and a performance monitoring infrastructure

will then form the basis for the automatic triggering of adaptations,
such as those included in this paper, when the current deployment
fails to meet requirements.
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