
Low-memory and High-performance CNN Inference on
Distributed Systems at the Edge

Erqian Tang
LIACS, Leiden University
Leiden, the Netherlands
e.tang@liacs.leidenuniv.nl

Todor Stefanov
LIACS, Leiden University
Leiden, the Netherlands

t.p.stefanov@liacs.leidenuniv.nl

ABSTRACT
Nowadays, some applications need CNN inference on resource-
constrained edge devices that may have very limited memory and
computation capacity to fit a large CNN model. In such application
scenarios, to deploy a large CNN model and perform inference on
a single edge device is not feasible. A possible solution approach is
to deploy a large CNN model on a (fully) distributed system at the
edge and take advantage of all available edge devices to coopera-
tively perform the CNN inference. We have observed that existing
methodologies, utilizing different partitioning strategies to deploy
a CNN model and perform inference at the edge on a distributed
system, have several disadvantages. Therefore, in this paper, we
propose a novel partitioning strategy, called Vertical Partitioning
Strategy, together with a novel methodology needed to utilize our
partitioning strategy efficiently, for CNN model inference on a dis-
tributed system at the edge. We compare our experimental results
on the YOLOv2 CNN model with results obtained by the existing
three methodologies and show the advantages of our methodologies
in terms of memory requirement per edge device and overall system
performance. Moreover, our experimental results on other represen-
tative CNN models show that our novel methodology utilizing our
novel partitioning strategy is able to deliver CNN inference with
very reduced memory requirement per edge device and improved
overall system performance at the same time.

CCS CONCEPTS
• Computer systems organization → Embedded software; •
Computing methodologies → Machine learning.

KEYWORDS
Convolutional Neural Networks, Distributed System at the Edge,
Low-memory, High-performance, CSDF

ACM Reference Format:
Erqian Tang and Todor Stefanov. 2021. Low-memory and High-performance
CNN Inference on Distributed Systems at the Edge. In 2021 IEEE/ACM 14th
International Conference on Utility and Cloud Computing (UCC ’21) Compan-
ion (UCC ’21 Companion), December 6–9, 2021, Leicester, United Kingdom.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3492323.3495629

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UCC ’21 Companion, December 6–9, 2021, Leicester, United Kingdom
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9163-4/21/12. . . $15.00
https://doi.org/10.1145/3492323.3495629

1 INTRODUCTION
Convolutional Neural Networks (CNNs) have been intensively re-
searched and widely used to perform various tasks in areas such
as image recognition and natural language processing, due to their
ability to process data in large scale and with high classification
accuracy after training[3]. After a CNN model is trained, it can be
deployed on different kinds of hardware to perform CNN inference
on actual data within different applications. The CNN inference is
usually computation-intensive and some CNN models are huge, i.e.,
they require a lot of memory to perform the inference. Powerful
hardware like a server or a desktop usually has enough memory
to fit a CNN model. However, some applications need CNN in-
ference on resource-constrained edge devices that may have very
limited memory capacity to fit a CNN model. For example: (1) In
an Internet of Things (IoT) smart home application, edge devices
like a light controller, or a temperature conditioner need to de-
ploy and execute a natural language processing model in order to
recognize person’s input voices and generate output commands
accordingly; (2) In a military mobile robots application, some tiny
size robots like robotic ants and robotic insects need to invade
into secret places to detect objects and activities, utilizing image
recognition models. In such application scenarios, to deploy a CNN
model and perform inference on a single edge device is not possible
because the hardware platform has very limited resources in terms
of memory and computation capacity to fit the CNN model. One
approach to solve this issue is to perform CNN model compression
(e.g. pruning, quantization, or knowledge distillation) [6, 8, 15] but
such approach sacrifices the accuracy of the model to some extent.
Another approach is to deploy only part of the CNN model on the
edge device hardware platform and the rest of the CNN model on
the cloud or remote server/desktop, but such approach may have
data privacy issues like leakage of personal information or sensitive
military information. Also, sending data from the edge device to
the cloud or remote server/desktop and returning back results may
lead to unacceptable CNN inference latency because of the internet
communication and transmission distance. A third approach, which
solves the aforementioned issues of the other two approaches, is to
deploy the CNN model on a (fully) distributed system at the edge
and take advantage of all available edge devices to cooperatively
perform the CNN inference. The existing methodologies that use
this approach to deploy a CNN model and perform inference at the
edge on a distributed system can be divided in three main categories
depending on the CNN model partitioning strategy used:

(1) Methodologies with Data Partitioning Strategy: The main
features of the data partitioning strategy are shown in Row 3 of
Table 1. The strategy may partition the input data given to every
CNN layer (Li) whereas the weights of every CNN layer are not

https://doi.org/10.1145/3492323.3495629
https://doi.org/10.1145/3492323.3495629
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3492323.3495629&domain=pdf&date_stamp=2022-02-07

UCC ’21 Companion, December 6–9, 2021, Leicester, United Kingdom Erqian Tang and Todor Stefanov

(a) Data Partitioning Strategy (b) Sequencial Partitioning Strategy

(c) Horizental Partitioning Strategy (d) Vertical Partitioning Strategy

Figure 1: Fully distributed CNN model partitioning strategies

CNN model partitioning strategy items of a layer to partition layers to include per partition
input data weights all consecutive

Data Partitioning Strategy Yes No Yes Yes
Sequentially Partitioning Strategy No No No Yes
Horizontal Partitioning Strategy No Yes Yes Yes
Vertical Partitioning Strategy No No No No

Table 1: Features of CNN model partitioning strategies

partitioned. Each CNN model partition (Pi) includes all layers of
the CNN model, where the layers operate on only part of their
input data because the input data to a layer is partitioned. Different
CNN model partitions have dependencies because some parts of
the input data to layer Li of partition Pi may have to be shared
with layers from other partition. Figure 1(a) shows a CNN model
with ten layers (L1 − L10) that is partitioned into four partitions
(P1 − P4). The memory, required to deploy each partition, can be
significantly reduced because the memory needed for storing the
data that is exchanged between the layers of a partition can be
significantly reduced when the number of partitions is large. More-
over, the different partitions of the CNN model have very little data
dependencies, because only very small boundary parts of the input
data to a layer may have to be shared with other partitions. This
can help to exploit data-level parallelism among different partitions,
which in other words, helps to increase the system performance.
However, this strategy does not reduce the memory needed for stor-
ing the weights of all the layers of a partition. If a CNN model has
many layers and/or some layers require huge number of weights
to be stored, then this strategy may easily fail to fit a CNN model
partition in an edge device due to insufficient memory on the device.
An example of a methodology utilizing this partitioning strategy to
deploy a CNNmodel and perform inference on a distributed system
at the edge can be found in [16].

(2) Methodologies with Sequential Partitioning Strategy: The
main features of the sequential partitioning strategy are shown
in Row 4 of Table 1. This strategy partitions the layers of a CNN
model such that each partition (Pi) includes consecutive CNN lay-
ers. The input data, given to a CNN layer (Li) and its weights are

not partitioned. For example, Figure 1(b) shows a CNN model with
ten layers (L1 −L10) that is partitioned into four partitions (P1 −P4).
The memory, required to deploy each partition, can be significantly
reduced because both the memory needed for storing the data that
is exchanged between the layers of a partition and the memory
needed for storing the weights of the layers of a partition can be
significantly reduced when the number of partitions is large. More-
over, this strategy supports the execution of partitions in a pipeline
fashion, which may help to exploit both data-level and task-level
parallelism and to increase the system performance. However, this
strategy may not be able to evenly distribute the required memory
and the computation workload of a CNN model among different
partitions because each partition must include only consecutive
CNN layers. As a consequence, the unevenly distributed memory of
a CNNmodel may create partitions that require an edge device with
higher memory capacity, and the unevenly distributed workload
may lead to a lower system performance because the partition with
the heaviest workload will become the bottleneck. An example of a
methodology utilizing this partitioning strategy to deploy a CNN
model and supporting inference on a distributed system at the edge
can be found in [14].

(3) Methodologies with Horizontal Partitioning Strategy: The
main features of the horizontal partitioning strategy are shown
in Row 5 of Table 1. This strategy partitions the weights of every
CNN layer (Li) whereas the input data given to a CNN layer is not
partitioned. Each CNNmodel partition (Pi) includes all layers of the
CNNmodel, where the layers operatewith only part of their weights
because the weights of a layer are partitioned. Therefore, every
CNN layer (Li) is divided in several parts (LiPj) and distributed
onto several partitions. Different parts of the same CNN layer have
to communicate and synchronize with each other because all the
output data from part LiPj has to be concatenated with the output
data from the other parts of the same layer. For example, Figure 1(c)
shows a CNN model with ten layers (L1 − L10) that is partitioned
into four partitions (P1 − P4). The memory, required to deploy
each partition, can be significantly reduced because the memory
needed for storing the weights of each partition can be significantly

Low-memory and High-performance CNN Inference on Distributed Systems at the Edge UCC ’21 Companion, December 6–9, 2021, Leicester, United Kingdom

reduced when the number of partitions is large. However, this
strategy does not reduce the memory needed for storing the data
that is exchanged between the layers of a partition. If a CNN model
requires huge amount of data to be exchanged between layers, this
strategy may easily fail to fit the CNN model partitions on edge
devices. In addition, even though different partitions of the CNN
model may exploit task-level parallelism, the aforementioned data
communication and synchronization among the parts of a CNN
layer may prevent any increase of the system performance. An
example of a methodology utilizing this partitioning strategy to
deploy a CNNmodel and perform inference on a distributed system
at the edge can be found in [4, 10, 13].

In order to avoid the disadvantages of the aforementioned strate-
gies, in this paper, we propose a novel partitioning strategy, called
Vertical Partitioning Strategy, together with a novel methodology
needed to utilize our partitioning strategy efficiently. Our novel
partitioning strategy, introduced in Section 4.1, reduces both the
memory needed to store weights and the memory needed to ex-
change data between layers of a partition. At the same time, our
strategy enables even distribution of the required memory and
computation workload of a CNN model among different partitions.
In addition, our strategy helps to increase the overall system per-
formance because it supports the execution of the partitions in
a pipeline fashion which exploits both data-level and task-level
parallelism. Our novel methodology, which enables the utilization
of our partitioning strategy efficiently, consists of two main steps,
introduced in Section 4. In Step 1, an efficient partitioning of a CNN
model onto a fully distributed system of edge devices is obtained
using a genetic algorithm (GA) to evenly distribute the required
memory and computation workload of the CNN model onto the
edge devices. In Step 2, based on the efficient partitioning obtained
in Step 1, the CNN model is converted into a functionally equiva-
lent Cyclo-Static Dataflow (CSDF) application model [5]. Unlike the
CNNmodel, the CSDFmodel explicitly specifies task- and data-level
parallelism, available in a CNN, as well as it explicitly specifies the
tasks communication and synchronization mechanisms, suitable
for efficient execution of the CNN on a fully distributed system at
the edge. The experimental results, obtained by using our novel
partitioning strategy and methodology on real-world CNNs imple-
mented onto fully distributed systems that consist of 2 to 10 Nvidia
Jetson-TX2 MPSoCs embedded platforms, are compared with re-
sults obtained from three existing methodologies that utilize the
three aforementioned partitioning strategies illustrated in Figure
1(a), 1(b), and 1(c). This comparison shows that our proposed parti-
tioning strategy and methodology are able to deliver CNN inference
on a fully distributed system at the edge with: (1) a lower memory
requirement per edge device and much higher system performance,
compared with the methodology in [16] which utilizes the data
partitioning strategy; (2) a lower memory requirement per edge
device and higher system performance, compared with methodolo-
gies utilizing the sequential partitioning strategy, like in [14]; (3)
a similar memory requirement per edge device and much higher
system performance, compared with methodologies utilizing the
horizontal partitioning strategy, like in [13].

The remainder of the paper is organized as follows: Section 2
gives an overview of the related work. Section 3 introduces the
background material needed for understanding our methodology

proposed in this paper. Section 4 presents in detail our proposed
partitioning strategy and methodology. Section 5 provides the ex-
perimental results, and Section 6 ends the paper with conclusions.

2 RELATEDWORK
The authors in [16] propose a novelmethodology, calledDeepThings,
which utilizes only partly the data partitioning strategy introduced
in Section 1. More specifically, the CNN layers with huge input/out-
put data (e.g., early stage convolutional layers) are partitioned uti-
lizing the data partitioning strategy and distributed on resource-
constrained edge devices. The CNN layers with huge number of
weights (e.g., fully connected layers) are not partitioned and they
are deployed on one powerful gateway device. The experimental
results on the YOLOv2 CNN model show that this methodology is
able to: (1) reduce the memory needed per device by a maximum
of 68% on a system with 2 to 7 edge devices, compared to a system
with 1 device; (2) achieve overall CNN inference speedups of 1.3×
to 1.6× on 2 to 7 edge devices compared to 1 edge device. However,
this methodology will always require a powerful gateway device
to deploy part of the CNN (e.g. 43.2% for YOLOv2) because some
CNN partitions in this methodology are not evenly constructed in
terms of memory requirements and computation workload. More-
over, the part of the CNN which is deployed on the gateway device
becomes the bottleneck of the system because it is not partitioned
and it limits the system performance. In contrast, our methodol-
ogy supports even distribution of the CNN model in terms of both
memory and computation workload. So, our methodology does not
require a powerful gateway device to fit part of the CNN and the
distributed CNN model does not have a bottleneck which limits the
system performance. The experimental results on YOLOv2 show
that our methodology is able to: (1) reduce the memory needed per
device, by 48.2% to 74.3%, on 2 to 7 devices, compared to 1 device;
(2) achieve overall CNN inference speedups of 1.9× to 4.7× on 2 to
7 edge devices, compared with 1 edge device.

Compared with [16], the methodology in [13] supports even
distribution of a CNN model on resource-constrained edge devices
and does not require a powerful gateway device. This methodology
utilizes the horizontal partitioning strategy (introduced in Section
1) on the whole CNN. The experimental results on YOLOv2 show
a proportional memory reduction rate (66.7% to 85.8%) per edge
device with the increase of the number of the edge devices (3 to 7).
However, in this methodology, every CNN layer is divided in several
parts and distributed onto several partitions. Different parts of the
same CNN layer have to communicate and synchronize with each
other because all the output data from one part has to be concate-
nated with the output data from the other parts of the same layer
which limits the system performance. The experimental results on
YOLOv2 show that the system performance speedup is limited to
only 1.2× to 1.6× on 3 to 7 edge devices, compared to 1 edge device.
In contrast, in our methodology, different partitions have much less
dependencies between each other, so complex synchronization and
huge communication cost are avoided. As a result, our methodology
can achieve much better system performance speedup, e.g., 2.6× to
4.7× on 3 to 7 edge devices for YOLOv2 inference. Moreover, our
methodology can achieve a similar memory reduction rate (64.1%

UCC ’21 Companion, December 6–9, 2021, Leicester, United Kingdom Erqian Tang and Todor Stefanov

to 74.3%) per edge device with the increase of the number of the
edge devices (3 to 7), compared with [13].

3 BACKGROUND
In this section, we describe the Convolutional Neural Network
(CNN) model and the Cyclo-Static Dataflow (CSDF) model that
are essential for understanding our novel methodology, which effi-
ciently utilizes our novel vertical partitioning strategy.

W2
W4

W7

W9 W11

W15

[110,3,3,3] [110,3,3,3]

[208,3,3,220]

[25,3,3,208] [25,3,3,208]

[61,3,3,50]

W19

W
20

W21

[1,2196,70,1]

[1,70,146,1]

[1,146,10,1]

(a) CNN model

(part(partition 1)

(partition 2)

(partition 3)

(partition 4)

(partition 5)

c12

c23

c22

c32

c24

c45 c54

(b) CSDF model

Figure 2: CNN and CSDF computational models

3.1 CNN model
The CNN is a computational model [2], commonly represented
as a directed acyclic computational graph CNN (L, E) with a set
of nodes L, also called layers, and a set of edges E. An example
of a CNN model with |L|=23 layers and |E |=24 edges is shown in
Figure 2(a). The CNN model specifies the transformations over
the CNN input data, e.g., an image, required to obtain the CNN
output data, e.g., an image classification result. Every layer li ∈ L
specifies a part of these transformations. It has a layer input data
Xi , a layer output data Yi , and an operator opi , so that Yi = opi (Xi).
Convolutional layers and fully connected layers also have weights
Wi . The operator opi determines the main difference between the
CNN layer types. The most common layer types [3] are:

The CNN layers input data, output data, and weights are stored
in multidimensional arrays, called tensors [2]. In this paper, every
input data tensor Xi has the format X [HX ,WX ,CX]

i , where HX is
the input data tensor height,WX is the input data tensor width,
and CX is the number of input data channels. Similarly, every
output data tensor Yi has the format Y [HY ,WY ,CY]

i , where HY is
the output data tensor height,WY is the output data tensor width,
and CY is the number of output data channels. For convolutional
layers and fully connected layers, every weights tensor Wi has
the formatW [CY ,HF ,WF ,CX]

i , where CY is the number of output
data channels, HF is the filter height,WF is the filter width, CX
is the number of input data channels. For other types of layers,
W

[CY ,HF ,WF ,CX]

i =W
[0,0,0,0]
i because the other types of layers do

not need to use/store weights in order to perform a transformation
on their input data Xi .

An example of layer l2 is given in Figure 2(a). Layer l2 is a
convolutional layer. It applies operator conv with weights tensor
W

[110,3,3,3]
2 to its input data tensor X [32,32,3]

2 and produces output
data tensor Y [32,32,110]

2 . The input data tensor Xi comes to layer
li from other CNN layers, as specified by the CNN edges eji ∈ E.
Each CNN edge eji ∈ E, represents a data dependency between
layers lj and li , such that Yj ⊆ Xi . An example of a CNN edge is
edge e12, shown in Figure 2(a). Edge e12 specifies, that output data
of layer l1 is the input data of layer l2, i.e., Y

[32,32,3]
1 = X

[32,32,3]
2 .

A CNN can be partitioned and executed in many different ways
on a single MPSoC. However, the partitions are not explicitly speci-
fied in the CNN computational model. Therefore, the partitioning
to perform the CNN model functionality, and the exact communi-
cation and synchronization mechanisms between these different
partitions are internally determined by the Deep Learning (DL)
framework which is utilized, and can vary for different frameworks.
For example, the well-known DL frameworks [1, 9] represent the
functionality of every CNN layer li as multiple partitions, where
the total number of partitions depends on the layer mapping. The
framework [14] represents the functionality of the same layer li
as one partition or part of a partition. Therefore, the partitioning
strategy is not explicitly specified in the CNN model.

3.2 CSDF model
The CSDF model [5] is a well-known dataflow model of compu-
tation, widely used in the embedded systems community for ef-
ficient mapping of applications on embedded devices [7], includ-
ing distributed embedded system. An application, modeled as a
CSDF, is a cyclical graph G(A,C), which consists of a set of nodes
A, also called actors, communicating through a set of FIFO chan-
nels C . The actors A have cyclically changing firing rules, and
channels C have cyclically changing production and consumption
rates. An example of a CSDF model with |A|=5 actors and |C |=7
FIFO channels is shown in Figure 2(b). Every actor ai ∈ A in the
CSDF model performs an execution sequence Fi of length Pi , where
p ∈ [1, Pi] is called a phase of actor ai . At every phase p, actor ai
executes function fi (((p− 1)modPi)+ 1). An example of CSDF actor
a2 is given in Figure 2(b). Actor a2 performs execution sequence
F2 = {Subnet12 , Subnet

2
2 }, where Subnet

1
2 and Subnbet22 are func-

tions. Actor a2 has P2 = 2 phases. At phase p = 1 actor a2 performs

Low-memory and High-performance CNN Inference on Distributed Systems at the Edge UCC ’21 Companion, December 6–9, 2021, Leicester, United Kingdom

function f (1) = Subnet12 , and at phase p = 2 actor a2 performs
function f (2) = Subnet22 . Every FIFO channel ci j ∈ C in the CSDF
model represents data dependency and transfers data in tokens be-
tween actors ai and aj . ci j has a data production sequenceUi j and a
data consumption sequenceVi j .Ui j specifies the production of data
tokens into channel ci j by actor ai . Vi j specifies the consumption
of data tokens from channel ci j by actor aj . An example of a CSDF
communication channel c12 is given in Figure 2(b). Channel c12
transfers data between actors a1 and a2. It has production sequence
U12=[187200], specifying, that actor a1 produces 187200 tokens into
channel c12 at its single phase p = 1, and consumption sequence
V12=[187200, 0], specifying, that actor a2 consumes 187200 tokens
from channel c12 at phase p = 1 and 0 tokens at phase p = 2.

When a CSDF modeled application is executed, each actor in
the CSDF can be regarded as one partition, as shown in Figure 2(b).
Therefore, the CSDF explicitly specifies the partitions as well as the
communication (via the FIFO channels) and synchronization (via
the changing firing rules) between different partitions and between
different phases of the same partition.

4 OUR METHODOLOGY
In this section, we present our novel partitioning strategy, called
Vertical Partitioning Strategy, together with our novel methodology
needed to utilize our partitioning strategy efficiently, in order to
reduce the memory requirement per edge device and increase the
overall system performance when CNN inference is performed
on fully distributed system at the edge. In Section 4.1, our novel
vertical partitioning strategy is introduced and compared with
the three main partitioning strategies introduced in Section 1. In
Section 4.2 and Section 4.3 our novel methodology, shown in Figure
3, is explained. It consists of two main steps. In Step 1 (Section 4.2),
we utilize a Genetic Algorithm (GA) to find an efficient partitioning
of a CNN model, based on our vertical partitioning strategy. In
Step 2 (Section 4.3), we use the partitioning, obtained in Step 1, to
convert the CNN model into a CSDF model, representing the final
executable CNN inference application for a fully distributed system
at the edge.

4.1 Vertical Partitioning Strategy
In this subsection, we present in detail our novel partitioning strat-
egy, called Vertical Partitioning Strategy, to deploy a CNN model
and perform inference on a distributed system at the edge. The
main features of our vertical partitioning strategy are shown in
Row 6 of Table 1. Our strategy may partition the layers of a CNN
model such that each partition (Pi) includes non-consecutive CNN
layers. The input data given to a CNN layer (Li) and its weights
are not partitioned. For example, Figure 1(d) shows a CNN model
with ten layers (L1 − L10) that is partitioned into four partitions
(P1 − P4). The memory, required to deploy each partition, can be
significantly reduced because both the memory needed for storing
the data that is exchanged between the layers of a partition and
the memory needed for storing the weights of the layers of a parti-
tion can be significantly reduced when the number of partitions is
large. Moreover, our strategy supports the execution of partitions
in a pipeline fashion, which may help to exploit both data-level
and task-level parallelism and to increase the system performance.

GA-based partitioning

CNN-to-CSDF conversion

Number of edge devices
in a distributed system

CNN model

CNN model partitions

executable CNN inference model (CSDF)
 for distributed system

Figure 3: Our methodology

The advantage of our strategy over the Data Partitioning Strategy
(Figure 1(a)) is that our strategy gives a better chance to fit a CNN
model partition in an edge device, when the CNN model has many
layers and/or some layers require huge number of weights to be
stored because our strategy reduces both the memory needed to
store weights and the memory needed to exchange data between
layers of a partition. The advantage of our strategy over the Se-
quential Partitioning Strategy (Figure 1(b)) is that, our strategy
allows to evenly distribute the required memory and computation
workload of a CNN model among different partitions because each
partition may include non-consecutive CNN layers and has more
chances to include diverse layers. As a consequence, the evenly
distributed memory per partition may require edge devices with
lower memory capacity, and the evenly distributed workload may
lead to a higher overall system performance. The advantage of our
strategy over the Horizontal Partitioning Strategy (Figure 1(c)) is
that, our strategy has more chances to fit a CNN model partition
in an edge device, when the CNN model requires huge amount of
data to be exchanged between layers because our strategy reduces
both the memory needed to store weights and the memory needed
to exchange data between layers of a partition. In addition, our
strategy helps to increase the overall system performance because
it supports the execution of the partitions in a pipeline fashion.

4.2 GA-based Efficient Partitioning
In this subsection, we explain how we obtain an efficient parti-
tioning of a CNN model CNN (L, E) onto a fully distributed sys-
tem Devices = {device1,device2, ...,devicen }. In our methodology,
the CNN model layers L, are distributed onto n partitions, where
n = |Devices | is the number of edge devices, available in the dis-
tributed system, and each partition is deployed on one edge device.
We define a partitioning of CNN modelCNN (L, E) onto distributed
system Devices as a division of layers set L into n subsets. We
denote such partitioning as nL = {nL1, nL2, ..., nLn }, where each
partition nLi ∈

nL is a subset of layers, deployed on devicei , such
that ∩ni=1

nLi = ∅, and ∪ni=1
nLi = L. An example of partitioning

5L = {5L1, 5L2, 5L3, 5L4, 5L5} of the CNN modelCNN (L, E), shown
in Figure 2(a) and explained in Section 3.1, on fully distributed
system Devices = {device1,device2,device3,device4,device5}, is
given in Table 2. Every Column in Table 2 corresponds to a subset
5Li , i ∈ [1, 5]. For example, Column 1 in Table 2 corresponds to
subset 5L1 = {l1, l2, l3, l4, l5, l6, l7}. The layers within subset 5L1

UCC ’21 Companion, December 6–9, 2021, Leicester, United Kingdom Erqian Tang and Todor Stefanov

device1 device2 device3 device4 device5
l1, l2, l3, l4, l5, l6, l7 l8, l9, l10, l13 l11, l12 l14, l15, l16, l17, l18, l21, l22, l23 l19, l20

Table 2: Partitioning example

1
device

1
device

1
device

1
device

1
device

1
device

1
device

l1 l2 l3 l4 l5 l6 l7

2
device

l8

2
device

l9

2
device

l10

3
device

l11

3
device

l12

2
device

l13

4
device

l14

4
device

l15

4
device

l16

4
device

l17

4
device

l18

5
device

l19

5
device

l20

4
device

l21

4
device

l22

4
device

l23

Figure 4: Partitioning chromosome example

are deployed on device1. Column 2 in Table 2 describes subset
5L2 = {l8, l9, l10, l13}. Every layer li ∈ 5L2 is deployed on device2.

We consider that a partitioning nL is efficient, if it ensures that
the memory required by a CNN model is evenly distributed among
all edge devices. We note that obtaining such an efficient partition-
ing of a CNN model onto a fully distributed system at the edge is
a difficult and complex Design Space Exploration (DSE) problem.
In our methodology, to solve this problem, we propose to use a
Genetic Algorithm (GA) [12]: a well-known heuristic approach,
widely used for finding optimal solutions for complex DSE prob-
lems. We use a simple GA with standard two-parent crossover,
a single-gene mutation, and standard user-defined GA parame-
ters, such as initial offspring size, number of epochs, mutation and
crossover probabilities [12]. To utilize such a GA for searching of an
efficient partitioning nL, we have to specify two problem-specific
GA attributes, namely a chromosome and a fitness function [12]. A
chromosome is a representation of a GA solution (in our method-
ology a solution is a partitioning) as a set of parameters (genes),
joined into a string [12]. We represent partitioning nL, as a string of
length |L|, where every gene is an edge device devicei ∈ Devices .
An example of the chromosome, corresponding to partitioning 5L,
shown in Table 2, is given in Figure 4.

The fitness function is a special function, which evaluates the
quality of the solutions and guides the GA-based search. During
the search, the fitness function should be minimized or maximized.
In our methodology, we search for a partitioning, in which the
memory required by a CNN model is evenly distributed among all
edge devices, available in Devices , i.e., the difference in the mem-
ory requirements between every pair of edge devices (devicei ∈

Devices,devicej ∈ Devices, i , j) is minimized. Thus, we define a
specific fitness function ϕ to be minimized during the GA-based
search as:

ϕ =
∑

∀(devicei ,devicej)∈Devices2
|βdevicei − βdevicej | (1)

where βdevicei and βdevicej are the total memory requirement
for devicei and devicej , respectively. For every devicei ∈ Devices ,
βdevicei is computed as:

βdevicei = βwdevicei
+ βddevicei

(2)

where βwdevicei is the memory needed to store the weights ten-
sors of all layers, deployed on devicei ; βddevicei is the upper bound

of the memory needed to store the data tensors of all layers, de-
ployed ondevicei . Note that we use the upper bound of the memory
to search for the efficient partitioning because the actual memory
needed for the data tensors depends on the method of their imple-
mentation and the optimizations applied for memory reuse. The
memory βwdevicei

is computed as:

βwdevicei
=

∑
lk ∈nLi

(CYk × HFk ×WFk ×CXk) × β(token) (3)

where nLi is the set of all layers, deployed on devicei , CYk ×

HFk ×WFk ×CXk is the size of the weights tensor of layer lk ∈ nLi
in data tokens, β(token) is the memory needed to store one data
token. The memory βddevicei

is computed as:

βddevicei
=

∑
lk ∈nLi

(HXk ×WXk ×CXk +HYk ×WYk ×CYk)×β(token)

(4)
where nLi is the set of all layers, deployed on devicei ; HXk ×

WXk ×CXk is the size of the input data tensor of layer lk ∈ nLi in
data tokens, HYk ×WYk ×CYk is the size of the output data tensor
of layer lk ∈ nLi in data tokens, β(token) is the memory needed to
store one data token.

4.3 CNN to CSDF model conversion
In this subsection, we show how we convert a CNN model, intro-
duced in Section 3.1, into a final executable application, represented
as a CSDFmodel, introduced in Section 3.2, for distributed system at
the edge. We utilize the conversion algorithm proposed in [11]. As
inputs to this algorithm,we provide a CNNmodelCNN (L, E) and an
efficient partitioning nL, obtained by using the GA-based approach
in Section 4.2. The algorithm generates a CSDF model G(A,C),
which performs the functionality of the CNN model CNN (L, E),
efficiently deployed on a distributed system at the edge, as speci-
fied by partitioning nL. An example of the generated CSDF model
G(A,C) from the CNN model CNN (L, E), shown in Figure 2(a) and
explained in Section 3.1, with the partitioning 5L, shown in Table 2
and explained in Section 4.2, is given in Figure 2(b). Every partition
nLi ∈ nL of the CNN model is represented as an actor ai ∈ A in
the CSDF model. For example, as shown in Figure 2(b), the five par-
titions {5L1, 5L2, 5L3, 5L4, 5L5} of the CNN model are represented
as the five actors {a1,a2,a3,a4,a5} of the CSDF model. Every edge
esp ∈ E between two consecutive layers ls and lp of the CNN
model that belong to partitions nLi and nLj with corresponding

Low-memory and High-performance CNN Inference on Distributed Systems at the Edge UCC ’21 Companion, December 6–9, 2021, Leicester, United Kingdom

actors ai and aj , is represented as a communication FIFO channel
ci j ∈ C in the CSDF model. Every ci j ∈ C has a data production
sequenceUi j and a data consumption sequence Vi j , whereUi j and
Vi j are determined by the size of the output and input tensors asso-
ciated with edge esp . For example, edge e78 between layers l7 and l8,
shown in Figure 2(a), is represented as communication FIFO chan-
nel c12, shown in Figure 2(b). c12 has a data production sequence
U12 = [187200] and a data consumption sequence V12 = [187200, 0]
because the size of tensors Y7[30,30,208] and X8[30,30,208] associated
with edge e78 is 30 × 30 × 208 = 187200. Every actor ai ∈ A repre-
sents the functionality of all CNN layers that belong to the CNN
partition nLi ∈

nL which corresponds to ai . The execution of an ac-
tor ai can be performed in several phases. At every phase p ∈ [1, Pi]
actor ai executes function Subnet

p
i . Every Subnet

p
i represents the

functionality of consecutive layers n
L
p
i ⊆ nLi . For example, ac-

tor a4, shown in Figure 2(b), represents the functionality of all
CNN layers that belong to partition 5L4 which corresponds to a4.
It consists of Subnets4 = {Subnet14 , Subnet

2
4 }. The execution of

actor a4 is performed in two phases because a4 represents the func-
tionality of layers {l14, l15, l16, l17, l18, l21, l22, l23} ∈ 5L4 and these
layers cab be divided into two groups of consecutive layers, namely
5
L14 = {l14, l15, l16, l17, l18} and 5

L24 = {l21, l22, l23}. Therefore, at
phase p = 1 actor a4 executes function Subnet14 corresponding to
the sequence of layers 5

L14 and at phase p = 2 actor a4 executes
function Subnet24 corresponding to the sequence of layers 5

L24.
Between some actors, cyclic dependencies occur, that may lead

to deadlocks in the CSDF model. To avoid the deadlocks, the con-
version algorithm specifies the execution of some actors in more
phases, such that at every phase p ∈ [1, Pi], actor ai has no cyclic
dependencies. For the example, shown in Figure 2(b), a cyclic depen-
dency occurs between actors a2 and a3. If actor a2 would execute
layers l8 and l13 in one phase, according to the semantics of the
CSDF model [5], it would expect 187200 data tokens to be present
in channel c12 and 22500 data tokens to be present in channel c32,
before it can fire. However, data in channel c32, should be produced
by actor a3, which, before it can fire, expects actor a2 to produce
187200 data tokens in channel c23. Thus, such execution would
lead to a deadlock in the CNN inference. To avoid the deadlock,
the conversion algorithm specifies the execution of actor a2 in 2
phases which are connected by communication FIFO channel c22.
At phase p = 1, actor a2 executes only layer l8. It consumes data
only from channel c12, and produces data to channel c23, such that
actor a3 can fire. At phase p = 2, actor a2 consumes data only from
channel c32, and executes layers l9, l10 and l13. Thus, at every phase
p = [1, 2], actor a2 has no cyclic dependencies, and no deadlock
occurs in the CSDF model execution.

Each actor ai ∈ A in the CSDF model is mapped and executed
on one edge device devicei , and the function Subnet

p
i , executed

at each phase p ∈ [1, Pi] of actor ai , can be specified as a small
CNN and implemented by using an existing DL framework (e.g.,
TensorRT). Such implementation benefits from the optimization
methods for CNN inference provided by the existing DL framework
and exploits data-level parallelism available within the layers as
well. Each communication FIFO channel ci j ∈ C in the CSDF model
is implemented on the two edge devices devicei and devicej that

are connected via ci j , in order to evenly distribute the overall mem-
ory needed for ci j between edge devices devicei and devicej . The
communication FIFO channels explicitly specify and implement the
communication and synchronization between actors of the CSDF
model. Every FIFO channel ci j has at least space forUi j +Vi j data
tokens in order to ensure that the actors of the CSDF model can
be launched in a pipeline fashion and task-level parallelism is ex-
ploited. The memory needed to store one data token in the FIFO is
determined by the size (in Bytes) of one data element stored in the
tensors corresponding to ci j .

5 EXPERIMENTAL RESULTS
In this section, we present experimental results, obtained by using
our novel partitioning strategy and methodology, on real-world
CNNs from the ONNX models zoo library, implemented onto fully
distributed systems that consist of 2 to 10 Nvidia Jetson-TX2 MP-
SoCs embedded devices. The goal of the experiments is to demon-
strate that our novel proposed vertical partitioning strategy and
novel methodology are able to deliver CNN inference on a fully
distributed system at the edge with a lower memory requirement
per edge device and/or higher system performance, compared to
the existing methodologies that utilize the other three existing
partitioning strategies, introduced in Section 1 and Section 2.

We use three real-world CNNs, namely YOLOv2, Resnet50, and
Vgg16 from the ONNX models zoo library that take images as input
for CNN inference. These CNNs are utilized in different applications
and have diverse number of layers, diverse memory requirements,
and diverse performance. Such diversity leads to a diverse scale of
memory requirement per edge device and overall system perfor-
mance when these CNNs are implemented onto fully distributed
systems at the edge. YOLOv2 is used for object detection and image
segmentation. It has 26 layers, requires 336.2MB of memory and
can achieve a performance of 2.32 frames per second (f ps), if im-
plemented on one Nvidia Jetson-TX2 embedded device. Resnet50
and Vgg16 are used for image classification. Resnet50 has 125 lay-
ers, requires 298.1MB of memory and can achieve a performance
of 2.13 f ps , if implemented on one Nvidia Jetson-TX2 embedded
device. Vgg16 has 21 layers, requires 232.8MB of memory and can
achieve a performance of 0.81 f ps , if implemented on one Nvidia
Jetson-TX2 embedded device. So, these three CNN models are suffi-
ciently representative and good examples to apply our partitioning
strategy and methodology on and to demonstrate its merits. More-
over, we can compare our experimental results on YOLOv2 with
results obtained by the methodologies that utilize the other three
existing partitioning strategies, introduced in Section 1 and Section
2, because they also report experimental results on YOLOv2.

The three CNN models, mentioned above, are distributed ef-
ficiently using our partitioning strategy and methodology. The
memory requirement per edge device is computed by using Equa-
tion 2, introduced in Section 4.2. The GA of our methodology is
executed with initial population size =5000, number of generations
= 100, mutation probability = 5%. The overall system performance
is directly measured on the distributed system, when the CNN
models are converted to CSDF models (introduced in Section 4.3)
and the different partitions of the CSDF models are mapped and
executed on different Jetson-TX2 devices of the distributed system.

UCC ’21 Companion, December 6–9, 2021, Leicester, United Kingdom Erqian Tang and Todor Stefanov

Table 3: Experimental results

number of
edge devices

YOLOv2 Resnet50 Vgg16
memory
per device
saving rate

(%)

performance
speedup
(times)

memory
per device
saving rate

(%)

performance
speedup
(times)

memory
per device
saving rate

(%)

performance
speedup
(times)

2 48.2 1.9 48.1 1.9 47.7 1.9
3 64.1 2.6 63.8 2.7 63.5 2.4
4 68.6 3.1 70.8 3.4 70.2 3.1
5 71.9 3.9 75.3 3.8 70.2 3.1
6 74.3 4.7 79.0 3.9 70.2 3.1
7 74.3 4.7 80.1 4.9 70.2 3.1
8 74.3 4.7 82.1 6.6 70.2 3.1
9 74.3 4.7 84.3 7.5 70.2 3.1
10 74.3 4.7 84.9 7.9 70.2 3.1

The experimental results are shown in Table 3. Column 1 lists the
number of edge devices in a distributed system. Columns 2 shows
the saving rate in percentage (%) of the memory required per de-
vice, compared with the memory needed if the whole CNN model
is mapped and executed on 1 device, for the YOLOv2 implementa-
tion on a distributed system. Columns 3 shows the overall system
performance speedups, compared with a system containing only
1 device, for the YOLOv2 implementation on a distributed system.
Similarly, Columns 4-5 show the experimental results for Resnet50,
and Columns 6-7 show the experimental results for Vgg16. From
Table 3, we can see that, the saving rate of the memory required per
device and the overall system performance speedup do not increase
when the number of edge devices is more than 6 for YOLOv2, and
the number of edge devices is more than 4 for Vgg16. The reason is
that when one CNN partition consists of only one CNN layer with a
huge memory requirement, the saving rate of the memory required
per device and the overall system performance speedup will be
determined by this particular bottleneck CNN layer because our
partitioning strategy does not split individual CNN layers. However,
when a CNN model has many layers, for example Resnet50 in Table
3, then the saving rate of the memory required per device and the
overall system performance speedup have more potential to keep
increasing, with the increase of the number of edge devices in a
distributed system, because our methodology has more options to
split the CNN model into multiple partitions where a single layer
is not the bottleneck in the system.

From the experimental results for YOLOv2, we can conclude that
our proposed partitioning strategy and methodology are able to
deliver CNN inference on a fully distributed system at the edge
with lower memory requirement per edge device and/or higher
overall system performance, compared to the methodologies that
utilize the other three existing partitioning strategies, as explained
in detail and shown in Section 2. From the experimental results
for Resnet50 and Vgg16, we can conclude that our proposed par-
titioning strategy and methodology can be utilized efficiently on
other representative CNNs for inference on distributed systems
delivering CNN inference with very reduced memory requirement
per edge device and improved overall system performance at the
same time.

6 CONCLUSIONS
In this paper, we discuss the advantages and disadvantages of exist-
ing methodologies utilizing different partitioning strategies, namely

Data Partitioning Strategy, Sequential Partitioning Strategy, and
Horizontal Partitioning Strategy, for CNN model inference on fully
distributed system at the edge. In order to avoid the disadvantages
of the aforementioned strategies in terms of memory requirement
per device and overall system performance, we propose a novel
partitioning strategy, called Vertical Partitioning Strategy, which
reduces both the memory needed to store weights and the mem-
ory needed to exchange data between layers of a partition, and
also enables even distribution of the required memory and com-
putation workload of a CNN model among different partitions. At
the same time, our strategy helps to increase the overall system
performance because it supports the execution of the partitions
in a pipeline fashion which exploits both data-level and task-level
parallelism. Moreover, we propose a novel methodology needed
to utilize our partitioning strategy efficiently. The experimental
results for YOLOv2 show that our proposed partitioning strategy
and methodology are able to deliver CNN inference on a fully dis-
tributed system at the edge with lower memory requirement per
edge device and/or higher overall system performance, compared
to existing methodologies that utilize the aforementioned existing
partitioning strategies. The experimental results for Resnet50 and
Vgg16 show that our proposed partitioning strategy and method-
ology can be utilized efficiently on other representative CNNs for
inference on distributed systems delivering CNN inference with
very reduced memory requirement per edge device and improved
overall system performance at the same time.

REFERENCES
[1] M. Abadi, et al. 2016. Tensorflow: Large-scale machine learning on heterogeneous

distributed systems. (2016).
[2] M. Abadi, et al. 2017. A computational model for TensorFlow: an introduction. In

1st ACM SIGPLAN International Workshop on Machine Learning and Programming
Languages.

[3] M. Alom, et al. 2018. The history began from alexnet: A comprehensive survey
on deep learning approaches. arXiv preprint arXiv:1803.01164 (2018).

[4] et al. S. Bhattacharya. 2016. Sparsification and separation of deep learning layers
for constrained resource inference on wearables. In Proceedings of the 14th ACM
Conference on Embedded Network Sensor Systems CD-ROM.

[5] G. Bilsen, et al. 1996. Cycle-static dataflow. IEEE Transactions on signal processing
(1996).

[6] Y. Cheng, et al. 2017. A survey of model compression and acceleration for deep
neural networks. arXiv preprint arXiv:1710.09282 (2017).

[7] S. Ha, et al. 2017. Handbook of hardware/software codesign. Springer,.
[8] et al. S. Han. 2015. Deep compression: Compressing deep neural networks with

pruning, trained quantization and huffman coding. (2015).
[9] Y. Jia, et al. 2014. Caffe: Convolutional architecture for fast feature embedding.

In Proceedings of the 22nd ACM international conference on Multimedia.
[10] et al. J. Mao. 2017. Modnn: Local distributed mobile computing system for deep

neural network. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017. IEEE.

[11] Svetlana Minakova, Erqian Tang, and Todor Stefanov. 2020. Combining Task-
and Data-Level Parallelism for High-Throughput CNN Inference on Embedded
CPUs-GPUs MPSoCs. In International Conference on Embedded Computer Systems.
Springer.

[12] K. Sastry, et al. 2005. Genetic algorithms. In Search methodologies. Springer.
[13] R. Stahl, et al. 2019. Fully distributed deep learning inference on resource-

constrained edge devices. In International Conference on Embedded Computer
Systems.

[14] S. Wang, et al. 2019. High-throughput CNN inference on embedded ARM Big.
LITTLE multicore processors. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (2019).

[15] et al. S. Yao. 2017. Deepiot: Compressing deep neural network structures for
sensing systems with a compressor-critic framework. In Proceedings of the 15th
ACM Conference on Embedded Network Sensor Systems.

[16] Z. Zhao, et al. 2018. DeepThings: Distributed adaptive deep learning inference
on resource-constrained IoT edge clusters. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (2018).

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 CNN model
	3.2 CSDF model

	4 Our Methodology
	4.1 Vertical Partitioning Strategy
	4.2 GA-based Efficient Partitioning
	4.3 CNN to CSDF model conversion

	5 Experimental Results
	6 Conclusions
	References

