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ABSTRACT
Modern latency-sensitive applications such as real-timemulti-camera
video analytics require networked computing to meet the time con-
straints. We present Jupiter, an open-source networked computing
system that inputs a Directed Acyclic Graph (DAG)-based com-
putational task graph to efficiently distribute the tasks among a
set of networked compute nodes and orchestrates the execution
thereafter. This Kubernetes container-orchestration-based system
includes a range of profilers: network profilers, resource profil-
ers, and execution time profilers; to support both centralized and
decentralized scheduling algorithms. While centralized schedul-
ing algorithms with global knowledge have been popular among
the grid/cloud computing community, we argue that a distributed
scheduling approach is better suited for networked computing due
to lower communication and computation overhead in the face of
network dynamics. We propose a new class of distributed sched-
uling algorithms called WAVE and show that despite using more
localized knowledge, the WAVE algorithm can match the perfor-
mance of a well-known centralized scheduling algorithm called
Heterogeneous Earliest Finish Time (HEFT). To this, we present a
set of real-world experiments on two separate testbeds: (1) a world-
wide network of 90 cloud computers across eight cities and (2) a
cluster of 30 Raspberry pi nodes.

CCS CONCEPTS
• Software and its engineering → Virtual machines; • Comput-
ing methodologies → Self-organization; • Computer systems
organization → Cloud computing.
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1 INTRODUCTION
With the miniaturization of hardware in the era of Internet of
Things (IoT), the presence of economical low-compute-power edge
devices such as cell phones, car dashboard, and drones have become
ubiquitous near end users. This has opened up the domain of edge or
fog computing [1] that focuses on exploiting all the devices near end
users to comply with the skyrocketing demand for computationally
intensive applications such as image processing and voice recogni-
tion towards autonomy and personalized assistance. Interestingly, a
significant subset of these cutting-edge time-constrained, compute-
intensive distributed applications rely on an orderly processing
of the streaming data generated from a set of devices that maybe
geographically dispersed. This brings us to the newly emerging
field of Networked Computing or Dispersed Computing that focuses
on a joint optimization of computation and communication costs to
distribute the execution of a Directed Acyclic Graph (DAG) based
task graph among a network of compute nodes that may be geo-
graphically distributed. Networked Computing can be thought of
as a mixed architecture between Edge Computing and Cloud Com-
puting where the network of compute nodes might contain either
or both edge processors and cloud-based processors. This new field
of Networked computing calls for a distributed system that can
optimally leverage the available compute resources in a network of
compute nodes while accounting for any network delays that may
impact the timely processing of data.

In this paper, we present Jupiter, an open-source system for net-
worked computing that contains the necessary tools to efficiently
map the tasks from a task-DAG into a set of geographically dis-
tributed networked compute processors (NCPs) with the main focus
on ‘Makespan’ minimization. We define the ‘Makespan’ of the DAG
as the time required to generate an output via executing the entire
task DAG on one set of input files or input chuck of data. Jupiter
also administers the actual processing of the tasks along with ef-
ficient data transfer between them. Jupiter relies on the reputed
open-source container-orchestrator tool from Google called Ku-
bernetes [2] for implementation of the three main components:
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Figure 1: Illustration of the DAG based Networked Computing prob-
lem. The black lines denote communication links, the red lines de-
note the mapping, and the blue lines denote data flows in the DAG.

(1) Profilers that gather statistics about the network condition, re-
source availability in the NCPs, and execution time of the tasks on
the NCPs, (2) Task Mapper that leverages the information available
from three different types of profiler modules to optimally schedule
or map the tasks into the NCP nodes to minimize the Makespan
of the DAG, and (3) CIRCE that boots-up the tasks according to
the task mapping and administers the task executions and data
transfers. For task to NCP mapping, Jupiter has plug-n-play type
provisions for both centralized and decentralized mapping or sched-
uling algorithms. While centralized mappers such as the Heteroge-
neous Earliest Finish Time (HEFT) [3] are proved to be promising
and efficient for cloud/grid computing, we argue that a distributed
scheduler with comparable performance is more appropriate for
networked computing systems. To this end, we propose the WAVE
framework that is a novel class of decentralized task mapping algo-
rithms which we demonstrate to have similar empirical statistics
as the HEFT algorithm.

To test the performance of the Jupiter system for varying network
and resource conditions, we perform a wide range of experiments
on two fairly large testbeds: (1) a 90 node testbed based on the Dig-
italOcean cloud platform where we handpicked the servers from
a set of 8 geographically distributed cluster locations, and (2) a 30
node in-house Raspberry Pi3 (RPI3) cluster connected via a Cisco
switch to control the network characteristics. For the experiments,
we have also implemented a sample networked computing applica-
tion called the Distributed Network Anomaly Detection (DNAD)
which is focused on real-time defence against Distributed Denial
of Service (DDoS) attacks in a network. Our experiments show
that for highly resource-constrained devices, such as the Raspberry
Pi3, the original HEFT performs quite poorly. This led us to design
a modified version of HEFT that has better performance in such
resource-constrained devices.

In summary, our contributions in this paper can be listed as
follows: (1) We propose a novel open-source networked computing
system called the Jupiter that supports proper profiling of the re-
sources, efficient centralized/decentralized task-to-compute node
mapping for an application-DAG, and administered execution of the
application-DAG. (2) We propose a new class of distributed local-
information-based scheduling/mapping algorithms called WAVE
that has similar performance to a well-known centralized, globally
informed heuristic called the HEFT. (3) Based on a range of experi-
ments, we discover some shortcomings of the HEFT like algorithms

Figure 2: The DAG for the DNAD Application

on the Jupiter system and, thereafter, propose some constructive
modifications.

2 PROBLEM DESCRIPTION
First of all, let us assume that we have a network of N heteroge-
neous networked compute processors (NCPs) that are geographi-
cally distributed across the world. Therefore, the end-to-end latency
between these NCPs are statistically different as well as dynamic.
Let’s say, we are interested in deploying an application-DAG that
consists of T tasks where the input sources are distributed across
the world. Now, the goal is to properly map the tasks from the appli-
cation DAG to the NCPs such that the Makespan of the application-
DAG is minimized. The Makespan in this context would depend
on both the compute powers of the NCPs chosen as well as the
delays on the network paths between the NCPs. For an illustration,
refer to Fig. 1 where the application DAG consists of 6 tasks with
two geographically separated input sources. Now, the goal is to
optimally map the tasks on the geographically distributed NCPs
such that the output can be made available the fastest.

2.1 The DNAD Application
We present a sample application for Networked Computing called
the Distributed Networked Anomaly Detector (DNAD). The main
goal of this application is to use a network of computation capable
routers to detect Distributed Denial of Service (DDoS) attacks in
real-time. In DNAD, we envision a set of border routers to perform
local processing of the incoming traffic statistics by hashing them
based on IP addresses and splitting them into multiple independent
data streams. Each of these data streams is sent to other networked
routers to generate aggregate statistics and run through multiple
types of anomaly detectors. A fusion task aggregates the anom-
aly scores of each data stream to output a unified list of anomalous
IP addresses. The global fusion task combines the outputs of the
multiple fusion tasks to output the final inference about the ob-
served traffic. The task DAG for the DNAD is presented in Fig. 2.

3 THE JUPITER ARCHITECTURE
Jupiter is a networked computing system to automate the mapping
of application DAG to an arbitrary network under both centralized
and decentralized settings. The Jupiter system consists of three



Figure 3: The Jupiter Architecture

main modules: Profiler, Task Mapper, and the CIRCE dispatcher. The
inputs to the Jupiter consist of the Directed Acyclic Task Graph
(DAG) information, the task files, and the information (such as IP
or node name) about available compute nodes. The profiler mod-
ule of the Jupiter consists of three different types of profilers: (1)
Network Profiler that maintains statistics about the bandwidth and
end-to-end delay between the available NCPs, (2) Resource Profiler
that profiles the resource availability of each NCP in terms of CPU
and Memory availability, and (3) Execution profiler that profiles
the execution time of each task of the DAG in each of the available
NCPs. The information from the profilers and the input files are fed
to the task mapper module which outputs a mapping of the DAG
tasks into the available NCPs based on the mapping algorithm used.
Next, the generated task-to-NCP-mapping is used by the CIRCE
dispatcher to dispatch the tasks on respective NCPs, monitor the
input-output of each task to administer the respective task exe-
cution, and transfer the data/files between consecutive tasks of
the DAG. In the current Jupiter system, we have provision for two
different classes of task mappers: (1) Centralized HEFT and (2) De-
centralized WAVE. A Jupiter configuration file is used for choosing
between these different options of task mappers as well as setting
a range of parameters to customize for application-specific require-
ments. In the Jupiter architecture, we assume that there exists at
least one NCP in the network that can act as an administrative
node to the network which we refer to as the “Home NCP". The
Home NCP can be any randomly selected NCP of the network if
no such distinct administrative NCP exists. In Fig. 3, we illustrate
the architecture of the proposed Jupiter system along with the data
flow between different modules.

3.1 Profilers
To provide support for a broad range ofmapping algorithms, Jupiter’s
profiler module consists of three different types of profilers: Net-
work, Resource, and Execution Profiler. A key architectural com-
ponent of all three types of profilers is that there exists one Home
profiler which runs on the Home NCP, while rest of the NCPs run a
copy of the Worker Profiler. This is illustrated in Fig. 4. The Home
profiler acts as a master to initiate and orchestrate the profiling pro-
cess while keeping track of available NCP information. The Worker
profilers perform the actual profiling job on each NCP which we
discuss in the following.

Figure 4: Illustration of the Jupiter deployed system. There exists a
HomeNCP that runs all theHomeProfilers, theHomeTaskMapper,
and Home CIRCE. The Home CIRCE is used purely for experimen-
tal purpose. Similarly, all the other NCPs in the networks run the
Worker parts of the Profilers, WAVE (if used), and CIRCE.

3.1.1 Network Profiler. A major component in the Makespan of a
DAG-based application is the file transfer latency between consec-
utive tasks in the task graph. Thus, the end-to-end delay between
two NCP nodes is an important parameter for task mapping. The
network profiler in the Jupiter system provides that information
by having a network profiling job run on each node, which we
also refer to as the Worker Network Profiler, and periodically prob-
ing the network. To this end, each Worker profiler periodically
sends a randomly generated file with known file size to each of
the other compute nodes via the well-known file transfer protocol
called Secure Copy (SCP). The file transfer times are recorded and
curve-fit using a quadratic regression with respect to the file-size
(f ) as: l = p +q · f + r · f 2 where p,q, r are empirically determined
constants. We opted for a quadratic fit as it is the empirical best fit
towards approximate file transfer time for varying fil- sizes.

3.1.2 Resource Profiler. The resource profiler provides two types
of information to the task mappers: CPU availability and storage
availability. Each of theWorker Resource Profiler runs a Flask server
to listen for resource profiling requests and replies with the current
CPU and storage usage upon receiving a request. Moreover, each
worker profiler periodically sends resource profiling request to
every other NCP in the network and stores the collected statistics
in a local database.

3.1.3 Execution Profiler. For optimal allocation of tasks, the task
mappers such as HEFT might need information about the execution
times of the individual tasks for each of the NCPs. HEFT like task
mappers do not use the raw CPU usage statistics available from
the Resource Profilers. To support such requirements, we have the
third and final type of profiler: the Execution Profiler. However,
the complete execution time information is available only after the
tasks are executed on each of the available NCPs. To make this
information available even before the tasks are actually mapped,
the Worker Execution Profiler on each NCP runs the entire DAG
with some sample input files and sends the statistics to the Home
Execution Profiler. Moreover, the Home Execution Profiler also
collects information about runtime statistics once the tasks are
mapped and executed via CIRCE.



3.2 Task Mapper
The taskmappermodule of the Jupiter is themost importantmodule
of the Jupiter system. As the name suggests, the main function of
this module is to optimally map individual tasks of a task-DAG into
a set of available compute nodes (NCPs) such that the Makespan
of the task DAG is minimized. To this end, there are two classes of
approach that can be opted for: centralized and decentralized. In the
centralized approach, a central node gathers the global information
of the network of compute nodes from the profilers and leverages
this information for optimal placement of tasks. On the other hand,
a distributed approach leverages the local profiling information
in each of the compute nodes for task placements. In the current
version of the Jupiter, we have made available two different classes
of task mappers: centralized HEFT and decentralized WAVE.

3.2.1 HEFT. Heterogeneous Earliest Finish Time (HEFT) ([3, 4]) is
a well-known heuristic in grid/cloud computing for mapping a di-
rected acyclic task graph into a network of heterogeneous compute
nodes that also accounts for the communication times between
the nodes. HEFT operates in a sequence of two phases: ranking
and prioritization, and processor selection. In the first phase, i.e.,
ranking or prioritization phase, HEFT defines a priority of each task
ti as follows:

ranku (ti ) = ωi + max
tj ∈succ(ti )

(ci .j + ranku (tj )) (1)

where the subscript “u" refers to “upwards rank" which is defined as
the expected distance of the task from the end of the computation,
ti refers to task i , ωi is the average computation cost of the task i
among all the compute nodes, ci, j refers to the average communi-
cation cost of the data communicated between task ti and tj for all
pairs of compute nodes, and succ(ti ) refers to the set of dependent
tasks in the DAG. For example, the set of dependent tasks for task
C in Fig. 5a, succ(C), is {D, E}.

In the second phase i.e., the processor selection phase, HEFT as-
signs the tasks to the NCPs based on the ranks calculated in the
ranking or prioritization phase. In each iteration of the task assign-
ment, HEFT picks the task which has the highest priority and has
all the dependent tasks already mapped. Next, HEFT schedules
the task on an NCP that will minimize the earliest finish time of
that task. This process continues until all the tasks are mapped.
Finally, HEFT outputs the overall task to NCP mapping along with
a timeline to follow for the executions.

3.2.2 WAVE. While centralized task mappers are appropriate for
cloud computing like scenarios with a network of geographically
neighboring compute nodes, a distributed task mapper is more
appropriate for Networked Computing due to lower communication
and computation overhead as well as fast reaction time. To this end,
we propose a new class of decentralized task mapper algorithm
called the WAVE. Before detailing WAVE, let us define the notion
of “task controller” which is an NCP that is in charge of mapping
a particular set of tasks from the DAG. In the WAVE architecture,
there exists a coordinator or home WAVE node (which runs on the
Home NCP as illustrated in Fig 4) that initiates the whole process,
while rest of the nodes, which we refer to as the worker WAVE
nodes, perform the actual mapping in a distributed fashion. The
WAVE algorithm works in two phases as follows.

TaskController Selection: In this phase, theWAVE home node
chooses a unique “task controller” for each task of the DAG. For the
first level of tasks (e.g., task A and B for the task DAG presented in
Fig. 5a), the home node itself acts as the task controller. For the rest
of the tasks, the home node chooses the task controller as follows.

• Iterate over the tasks from the DAG in their topological
orders. For the sample DAG presented in Fig. 5a, one topo-
logical order would be {A, B, C, D, E, F}.

• For each non-input task, check if any of its parent tasks
(Tasks A and B are the parent tasks to task C in Fig. 5a) are
already controllers.

• If one of the parents is already a task controller, then appoint
that parent as the controller for this task.

• If no parent is already a task controller or multiple parents
are task controllers, then choose the parent task with the
smaller topological index as the parent.

Note that, so far we refer to tasks as task controllers instead of NCPs
because at this stage of WAVE the tasks are not mapped/bound
to any particular NCP. In the next step of WAVE, we explain how
we map the tasks to the NCPs and consequently map the task
controllers to the NCPs. For illustration purpose, let us assume that
the task controller selection output for Fig. 5a is MT = {Home →
{A,B},A → C,C → {D,E},D → F } (as shown in Fig. 5b). Here
A → C implies that task A is the task controller for task C .

(a) (b)

Figure 5: (a) A Sample TaskDAG (b)WAVE Illustration for TaskDAG
presented in Fig. 5a. The square boxes represent the task controllers.

Task Mapping: In this phase, the WAVE algorithm maps the
tasks into appropriate NCPs. The Home node kick-starts this pro-
cess by determining the NCPs for each of the input tasks in the
DAG, according to the geographical location of the data source.
E.g., for the DAG presented in Fig. 5a, the WAVE home will place
task A and task B on two NCPs that are near data source 1 and
2, respectively, as presented in Fig. 5b. Note that we assume the
data source locations to be known. Once the process completes,
the WAVE home broadcasts this mapping to the respective NCPs.
Next, the NCPs of the already-mapped tasks will perform similar
mapping for the tasks they are in charge of. For example, the NCP
of task A will decide where to run task C which thereafter decides
where to run tasks D and E. This process continues until all the
tasks are mapped. Every time a new task mapping is complete, the



home node is informed by the respective task controller. Once the
whole process is complete, the WAVE Home returns the mapping
information to the next component of Jupiter: the CIRCE dispatcher.
This process is illustrated in Figure 5b.

Now, a task controller chooses the optimal NCPs for the tasks
by following two different logic as follows.

Random WAVE: This is the simplest version of WAVE where the
task controllers randomly select a NCP from the list of available
NCPs. The task controller does not incorporate the communication
and computation costs in the mapping logic which makes the map-
ping completely non-optimized. This is used as a baseline algorithm
and proof of the concept for WAVE.

Greedy WAVE: The greedy WAVE is a complex version of WAVE
that incorporates the profiling information for mapping tasks to the
NCPs. In the greedy WAVE, each of the task controllers connects to
the local profilers to get network and resource statistics (it does not
use execution profilers). Next, each task controller NCP, say NCP i ,
follows a sequence of operation to map the tasks controlled by it.

• Based on the end-to-end latency statistics from the network
profiler, find the minimum delay dimin = minj di, j∀j ,
i and i, j ∈ 1, 2, · · · ,N where N is the number of NCPs.

• Use the calculated dimin to filter a feasible neighboring com-
pute node set, Sid = {j : di, j < dth } where dth = k · dimin is
the threshold latency. We have empirically chosen an value
of k = 15 for our experiments due to a very wide distribution
of network delay.

• Use the resource information i.e., the CPU usage, pj , and the
memory usagemj of each neighbor j to rank the neighbors
in Sid as follows:

rank(i, j) = ωd · di, j + ωp · pj + ωm ·mj ∀j ∈ Sid (2)

whereωd ,ωp ,ωm are three weighing constants to determine
the rank. We empirically choose a value of ωd = ωp = ωm =
1/3 for the experiments presented in this paper.

• Use the rank information to map the tasks. If the task con-
troller is responsible for n tasks and n ≤ |Sid |, it maps the
tasks to n top ranked neighbors based on the ordering of the
tasks on the DAG. Otherwise, first map the top |Sid | tasks
on the |Sid | neighboring NCPs (one-to-one) according to the
rank and task ordering. This is followed by repeating the
same process for rest of the tasks.

3.3 The CIRCE Dispatcher
The CIRCE dispatcher is the third and the final module of the
Jupiter system. The CIRCE dispatcher is the part of Jupiter that
inputs the task-to-NCP mapping and dispatches the tasks on the
respective nodes. CIRCE wraps the task codes to support an input-
output queuing system. CIRCE creates an input folder/queue and
an output folder/queue for each task and takes care of transferring
the output of a task to the input the next task in the DAG using
the well-known SCP tool. Every time a new data file arrives at
the input folder, CIRCE starts the execution of the respective task.
Sometimes, a task might require the output of more than one parent
task as its input. In such cases, CIRCE also takes care of waiting
for all the inputs to arrive before starting the execution. At the
completion of execution, CIRCE starts the file transfer process to

the next task. If there are multiple child tasks, CIRCE transfers a
copy of the output to the input of each of the child tasks. CIRCE
uses a sequence number for the ordering of the input data.

4 IMPLEMENTATION DETAILS
Jupiter is implemented on top of a well-known open-source cloud-
based-container-orchestrator fromGoogle called the Kubernetes ([2,
5]). Before explaining the implementation, let us briefly introduce
some key concepts such as Container, Docker, and the Kubernetes
architecture.

4.1 Containers, Docker, and Kubernetes
Containers are the most cutting-edge convention for processor
virtualization that provides isolations similar to traditional virtual
machines (VM) but with much less computing power requirements.
A container image is a lightweight standalone executable that in-
cludes all the requires modules, libraries, codes, and tools to run
it. A container directly runs on the host OS and is considered as a
single process by the host OS. All the processes inside a container
are viewed as a sub-process of the main process. Because of this
low computation requirement, one can run hundreds of containers
on a physical machine. The concept of a container has been around
for a while but was not popular until the advent of a specific type
of containers called the Dockers [6] in mid-2014. Among the hand-
ful of available container orchestration tools, Google Kubernetes,
Apache Mesos, and Docker Swarm are the most promising ones.
Out of these options, we opted for Kubernetes due to its popularity
as well as its unique features such as a support of Raspberry Pi3
devices. A detailed overview of Kuberenetes can be found in the
official website https://kubernetes.io/.

4.2 Jupiter on Kubernetes
We implemented each component of the Jupiter in Dockers to sup-
port parallelism, have isolation between different Jupiter modules,
support scalable and easy administrations, and support multiple
simultaneous DAGs. Moreover, by using containers, every module
of Jupiter is uniquely addressable (via unique IP and port numbers)
which helps in a uniform system implementation. Another reason
behind the Dockerization of Jupiter is to make it compatible with
the Kubernetes system. Next, we briefly detail different types of
Dockers used in the Jupiter system.

Network and Resource Profiler Dockers: For compactness,
we put the network and resource profiler inside one Docker instead
of separate ones. We combine network home profiler and resource
home profiler into a combined Docker which runs on the Home
NCP. Similarly, we combine theworker network profiler andworker
resource profiler into a single Docker which runs on each NCP of
the network except the Home NCP.

Execution Profiler Dockers: Due to different functionality
than the network and resource profilers, we have kept the execution
profilers in a separate Docker. Again, we create two different types
of execution profiler Docker to correspond to the home execution
profiler (runs on the Home NCP) and the worker execution profiler
(runs on all NCPs expect the Home NCP), respectively.

HEFT Profiler Docker: Because HEFT is a centralized profiler,
there is only one Docker needed for HEFT which can run on any
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NCP of the network. However, for consistency, we choose to run it
on the Home NCP.

WAVE Dockers: For both WAVE Greedy and WAVE Random,
we have the notion of home and worker. Therefore, we need two
separate Dockers for “WAVE-home” and “WAVE-worker” that runs
on the Home NCP and the rest of the NCPs, respectively.

CIRCE Dockers: The experimental implementation of CIRCE
has the notion of home and worker as well. Here, CIRCE home is
used mainly to emulate a data source as well as to collect different
statistics whereas a CIRCE worker Docker follows the description
presented in Section 3.3. Therefore, we have two Dockers for CIRCE
as well: “CIRCE-home” and “CIRCE-worker”. The CIRCE worker
Docker contains all the task files but can run only one task of the
DAG at a time. Thus, the number of CIRCE worker Dockers on the
network equals the number of tasks in the task-DAG. If an NCP has
multiple tasks allocated to it, it will run multiple CIRCE Dockers.

5 EXPERIMENTAL RESULTS AND ANALYSIS
We analyze the performance of the Jupiter system via a range of
experiments with the DNAD application. For these experiments,
we use two different clusters with Kubernetes. The first cluster
consists of 90 Virtual machines, also referred to as Droplets, from
a cloud provider called the Digital Ocean. Out of the 90 VMs, 13
VMs have 2GB RAM while the rest have 3GB RAM. Each of these
VMs has 20 GB of disk space available. We handpicked the set of
VMs from 8 available geographic locations across the world. The
geographic distribution of nodes is presented in Fig. 6a. We use an
8GB VM as the Kubernetes master node for this cluster and for the
Home NCP, we randomly pick one from the 90 VMs.

The second testbed consists of 30 in-house Raspberry Pi3 nodes
with 1GB RAM and 64GB SD cards, as illustrated in Figure 6b. They
are connected via a Cisco switch to control the network conditions
and topology. For the Kubernetes cluster implementation, we have
opted for a mixed architecture where an AMD64 Virtual Machine
with 8GB RAM and 10GB disk space acts as the Kubernetes master
while all the actual compute nodes are ARM32 real processors on
the Raspberry Pis. Again, the Home node is chosen at random from
the 30 RPIs.

(a) (b)

Figure 6: (a) Geographical Distribution of theDigital OceanVMs and
(b) the RPI Cluster

In both testbeds, we ran the Jupiter system with all three types
of task mappers i.e., HEFT, WAVE Random, and WAVE Greedy. For
each configuration of Jupiter, we ran the whole Jupiter system 25

times. In each run, once the CIRCE deployment is complete, we feed
a sequence of 10 pre-loaded files with file sizes in the range of 10KB
to 300KB and record different statistics such as the Makespan of the
task DAG and the execution times of individual tasks. Note that,
we refer to HEFT as original HEFT in this section as we propose
some modification to the HEFT based on the experiment results to
improve its performance.

5.1 DAG Makespan Analysis
In the first set of experiments, we compare the Makespan statistics
of the DNAD application for different task mapping algorithms. In
Fig. 7a, we present the Makespan statistics for the RPI cluster for 10
sequential inputs files which shows that among the original HEFT,
WAVE Greedy, and WAVE Random algorithm, the performance of
theWAVEGreedy is the best, followed by the performance ofWAVE
random andHEFT.While the bad performance of theWAVE random
is precedented due to the random nature of the mapping algorithm,
the bad performance of the original HEFT was not warranted since
HEFT is a well-respected heuristic for DAG based task graph in
cloud/grid computing. Upon further investigations, we find that
this bad performance of HEFT is rooted at the processing power and
stability limitations of the RPIs. We find that resource-constrained
devices like RPI3 are very unstable and failure prone if we run
too many CIRCE containers (more than 3-4 CIRCE containers)
alongside with the other required components (i.e, the profilers
and task mappers) of the Jupiter. The original HEFT works under
the assumption that the task executions will follow the timeline
suggested by the algorithm. However, to support the continuous
execution of incoming files and parallel processing in the NCPs,
Jupiter keeps a separate CIRCE docker running for each of the
tasks. When HEFT tries to optimize the Makespan by reducing
communication overhead and putting many tasks on the same
NCP, it ends up overloading the RPIs. While the Jupiter system
can recover from failures, multiple failures of the overloaded RPIs
actually ends up adding more delay in the execution of the tasks
as well as the communication between tasks due to temporary
disruptions of the data flow. To circumvent this issue, we propose a
minormodification to the original HEFTwhere HEFT is restricted to
allocate no more than cm containers per NCP where the number cm
is dependent upon the processing power of the node.We empirically
choose a value of cm = 2 for the RPI3 cluster. We will refer to this
version of HEFT as the modified HEFT. The performance analysis of
the modified HEFT (presented in Fig. 7a) shows that, by this slight
modification, the performance of HEFT is improved and becomes
comparable to the WAVE Greedy.

We perform a similar set of experiments on the Digital Ocean
cluster and present the results in Fig. 7b. Figure 7b shows that the
performance of HEFT Original and the WAVE Greedy are compa-
rable while the performance of the WAVE Random is the worst
followed by the modified HEFT. Again the bad performance of
WAVE Random is due to random selection of the NCPs without
really accounting for any communication and processing overheads.
The reason behind modified HEFT not performing well is that a
stable cloud system cluster like the Digital Ocean with higher com-
puting power can accommodate more than 2 CIRCE dockers per
NCP. By putting the restriction on HEFT, we are forcing HEFT to



choose a different NCP which thereby adds networking delay in
the Makespan calculation. To verify this, we perform another set of
experiments on the Digital Ocean cluster with modified HEFT and
cm = 4. The results presented in Fig. 7b shows that with cm = 4 the
performance of modified HEFT is similar to original HEFT. This
suggests that the modified HEFT have similar or better performance
than the original HEFT provided that cm properly account for the
processor limitations.

In summary, modified HEFT with a properly selected value of
cm and WAVE Greedy have the best performance among all four
choices of mappers (Original HEFT, Modified HEFT, WAVE Greedy,
and WAVE Random) in Jupiter. The results also substantiate that a
distributed algorithm which relies only on local information can
have similar performance as a centralized globally-informed algo-
rithm.
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Figure 7: Makespan Statistics of the DNAD Task-DAG for 10 Differ-
ent Files in (a) the RPI Cluster and (b) the Digital Ocean Cluster.

5.2 Runtime Analysis of the Task Mapping
Algorithms

Weperform another set of experiments to analyze the runtime of the
modified HEFT, Greedy WAVE, and the Random WAVE algorithms.
For these experiments, we do not consider the original HEFT as the
runtime of original HEFT is similar to the runtime of the modified
HEFT. The runtime statistics are presented on Table 1. Table 1 shows
that for the 30 node RPI cluster, the runtime of HEFT is the lowest
and the runtime of WAVE Random and WAVE Greedy are similar.
Ideally, the HEFT algorithm runtime should be larger than WAVE
as HEFT requires all the profiler data to be gathered at a central
point which takes a considerable amount of time whereas WAVE
relies only on local information. Moreover, the amount of data to be

processed in HEFT is larger than the amount of data to processed by
each of the NCPs inWAVE. As a reason behind this counter-intuitive
result, we hypothesize that for a cluster of that size (30 nodes) the
communication time overhead for sequential task assignments via
task controllers over the network (as in WAVE) is much larger than
the time required to gather all the statistics in a central location
(as in HEFT). To verify this hypothesis, we run a similar set of
experiments on the Digital Ocean Cluster with 30 nodes, 60 nodes,
and 90 nodes. The results presented in Table 1 shows that as the
number of nodes increases, the runtime of HEFT gradually becomes
comparable (for 60 nodes) and even worse than Greedy WAVE (for
90 nodes). This suggests that with increasing network size, the time
required to gather all the statistics at a central location increases
and eventually surpasses the communication time overhead for
sequential task assignments in WAVE.

Another interesting observation is that WAVE Random runtime
is actually slightly larger than theWAVEGreedywhereas intuitively
the runtime of WAVE random should be smaller. Upon further in-
vestigation, we discovered that this inconsistency between the ex-
pected result and the observed result is due to the communication
delay difference between the task controllers. By randomly assign-
ing the NCPs, the end-to-end delay in communication between
the task controllers, which is required for the mapping purpose,
becomes larger compared to the same for WAVE Greedy. We also
discover that this delay is the largest component of the runtime of
WAVE. For illustration, in the 90 node cluster, the time required
to retrieve the network data is ≈ 0.05s and the resource data is
≈ 10s whereas the runtime of the WAVE Greedy is around 100s .
This suggests that there is still a lot of room for improvement in
the WAVE algorithm.

Lastly, it is evident from Table 1 that the runtime of the WAVE
algorithm remains almost same regardless of the cluster size as it
mainly depends on the number of tasks in the DAG rather than the
actual number of NCPs. On the other hand, the performance of the
HEFT algorithm varies proportional to the number of NCPs in the
network. This makes WAVE much more scalable than HEFT for a
distributed networked computing system.

Table 1: Runtime Statistics of the Mapping Algorithms in Seconds
for Raspberry Pi 3 (RPI) cluster and Digital Ocean (DO) Cluster

Cluster Details Modified HEFT Random WAVE Greedy WAVE
Mean STD Mean STD Mean STD

RPI Cluster (30 NCPs) 102.48 69.27 156.37 78.74 154.94 73.80
DO Cluster (30 NCPs) 55.73 25.73 90.48 1.48 89.94 0.92
DO Cluster (60 NCPs) 89.39 32.32 111.06 64.62 92.40 8.12
DO Cluster (90 NCPs) 136.36 45.52 101.35 11.45 97.44 2.52

6 RELATEDWORKS
The wide range of related works mainly lies within the rich litera-
ture of cloud computing, edge computing, and grid computing.

The well-known field of cloud computing deals with virtualiza-
tion technology that enables data centers to provide a range of
services such as computing service and storage service to the users
on pay-per-use basis [7]. The typical cloud computing architecture
with hundreds of powerful co-located servers requires all the data



to be first collected at the cloud before the actual computation can
be performed [8]. In contrast, the Jupiter system enables geograph-
ical proximity based mapping of the tasks without requiring the
data to be collected at a central point.

There also exists some challenges of cloud computing such as the
data pre-processing from heterogeneous unstructured data sources,
intermittent connectivity of the data sources, and low latency re-
quirement [9] that can be solved both by edge computing tools [10]
and networked computing tools (e.g., Jupiter). However, edge com-
puting architectures has its own set of limitations such as limited
geographical span and limited amount of resources [11]. In contrast,
our proposed Jupiter system considers a geographically dispersed
set of heterogeneous compute nodes (they can be both cloud nodes
or edge nodes) and distributes the tasks among them while mini-
mizing the Makespan, if the application is represented as a DAG.

In the grid computing domain [12], there also exists some frame-
works for mapping tasks on geographically distributed clusters
such as Pegasus [13] and Falcon [14]. However, they assume a
static and relatively well characterized network with simple appli-
cations for centralized task mapping. In comparison, the Jupiter
framework along with the WAVE scheduling algorithm is designed
to support complete geographical separation along with decen-
tralized task mapping for any complex DAG based applications.
Moreover, Jupiter can be easily modified into a cloud computing,
edge computing, or even a grid computing system, if required.

In the context of cloud computing, there exists a range of sched-
uling algorithms that schedules tasks from a DAG into multiple
cores of a single or multiple co-located processors ([15, 16]) without
accounting any communication costs. On the other hand, there ex-
ist some centralized schedulers for DAG-based applications that do
account for the communication overhead between multiple proces-
sors such as the Heterogeneous Earliest Finish Time (HEFT) [3], the
Longest Dynamic Critical Path (LDCP) algorithm [17], the Dynamic
Level Scheduling (DLS) [18], and the Critical Path On a Cluster
(CPOC) algorithm [3]. Nonetheless, these algorithms are mainly
aimed at geographically co-located processors with considerably
low and static delay statistics. Our proposed WAVE algorithm, on
the other hand, is designed mainly for a sparse and dynamic net-
work of compute nodes.

While, there also exists some state-of-the-art algorithms for
distributed scheduling ([19–21]), to our knowledge, only a few
of them are directly applicable to DAG based task scheduling on
a networked computing cluster. Nonetheless, the Jupiter system
can support a suitably enhanced version of any of these scheduling
algorithms, if needed.

7 CONCLUSION
In this paper, we proposed a new distributed system for Networked
Computing called the Jupiter that can efficiently distribute and de-
ploy tasks from a DAG based task graph with the goal of Makespan
minimization. We also proposed a new class of distributed task-
mapping or scheduling algorithms called the WAVE that leverages
local information of the NCPs for distributed mapping of the tasks.
Through a wide range of real-world experiments on a 90-node (dis-
tributed across 8 cities in 7 countries) Cloud-based cluster and a
30-node edge computing cluster, we show that WAVE can perform

similar or even better than a globally informed centralized task-
mapping algorithm called the HEFT. However, while WAVE shows
promising attributes in terms of Makespan performance and scala-
bility, it lacks any optimality guarantee and there is still a lot of room
for improvements. Therefore, in our future works, we would like
to explore for an optimal settings of WAVE. We would also like to
explore more centralized and decentralized mapping algorithms to
find a better and more generic trade-off between centralized and de-
centralized algorithms for Networked Computing. Lastly, we would
like to introduce the concept of mapping-algorithm-independent
load balancing in Jupiter to support dynamics in incoming data
traffic without having to re-run the task Mapping algorithm.
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