
Evaluating Serverless Architecture for
Big Data Enterprise Applications

Aimer Bhat
University of Illinois
aimerb2@illinois.edu

Heeki Park
University of Illinois
heekip2@illinois.edu

Madhumonti Roy
University of Illinois

roy29@illinois.edu

Abstract—Migration of enterprise applications to the cloud has
been driven by a myriad of benefits ranging from availability
of infinite computing resources to the elimination of upfront
CapEx cost. However, many users still face the burden of
complex framework knowledge requirement to efficiently deploy
applications in the cloud. In this paper, we investigate serverless
computing for performing large scale data processing with cloud-
native primitives. Serverless computing environment abstracts all
infrastructure handling, simplifying developers’ work who aspire
to deploy applications on the cloud. With dynamic input load on
the system, serverless architecture has promise to provide better
resource utilization and lower costs.

Index Terms—Function as a Service, Serverless computing,
Enterprise applications, load variations, AWS Lambda, Big data
processing, cloud computing, MapReduce

I. INTRODUCTION

The ecosystem has evolved from enterprise applications
developed with conductive data processing using custom-
built applications, data warehouse systems, to more recently
MapReduce frameworks. Google released its MapReduce pa-
per in 2004 [1], and Yahoo open sourced its Hadoop software
in 2008 [2], thus democratizing big data processing, enabling
both startups and large enterprises to take advantage of this
new paradigm. This became the foundation of an ecosystem
of projects that arose to satisfy the growing needs and re-
quirements of this field. While these frameworks do simplify
the life of a data engineer or data scientist, they brought with
them the complexity of managing the underlying infrastructure
and the learning curve to develop and deploy on these new
platforms. Because of this, companies like Hortonworks and
Cloudera emerged to help enterprises manage on-premise
installation of their growing Hadoop infrastructure. Likewise
in cloud, Eric et al [3] notes cloud computing relieved users
of physical infrastructure management but left them with a
proliferation of virtual resources to manage. Cloud providers
like Amazon Web Services (AWS) developed offerings like
the Amazon Elastic MapReduce (EMR) service, which would
allow customers to deploy packaged versions of Hadoop
software that are pre-tested and validated. However, even
with these offerings, an architect or developer who is new
to these platforms and this way of thinking, will face a
fairly steep learning curve to get started [4]. Bringing up
an enterprise-ready platform with custom integrations is non-
trivial and learning to express data processing pipelines in
these paradigms takes time to do so efficiently and effectively.

The cost model for serverless infrastructure is true pay-per-use,
since no costs are involved for the user unless the function
is invoked, as opposed to traditional cost models for other
cloud offerings, where Virtual Machines are typically billed
per-second of uptime regardless of their actual usage [5].

We explore serverless computing environments for per-
forming MapReduce processing. In this paper, we discuss
our experimentation, challenges faced and learnings based on
deploying a data processing workflow on AWS Serverless
infrastructure.

II. LITERATURE SURVEY

Traditional batch processing systems build upon predictabil-
ity at deployment time for resources needed for data pro-
cessing. Only small allocation adjustments are made to cope
up with unexpected events like system failures [6]. New
solutions like EMR have resource elasticity managed at the
virtual machine level, which improves upon the fixed cluster
deployments but still has room for improvement [7]. Serverless
computing platforms integrate support for scalability, availabil-
ity, load balancing, monitoring, migration and fault tolerance
capabilities directly as features of the framework. It provides
faster startup times, lower cost and individual task based
scaling [8]. Serverless helps enterprises to focus on application
rather than infrastructure [5]. In this paper, we explore usage
of serverless infrastructure for adaptive provisioning of batch
processing workload to optimize system utilization.

Since its introduction, serverless offerings from hyperscale
cloud service providers have grown from supporting light
use-cases, to supporting a wide variety of workloads [8] [9]
including large scale computations [10]. Serverless includes
Function as a Service (FaaS) offerings like AWS Lambda
and other services like Amazon S3 (large object storage),
Amazon DynamoDB (key-value storage), Amazon SQS (queu-
ing services), Amazon SNS (notification services), and more
[11]. This entire infrastructure is managed and operated by
AWS. Lynn reviews all these platforms and identifies AWS
Lambda as the de facto base platform for enterprise serverless
cloud computing [12]. Serverless architecture is evaluated as
a paradigm for big data processing workloads in [13] [4] [14]
[15] [16]. Sebastian shows how serverless deployment can
reduce TCO without compromising on system quality metrics
[14].

ar
X

iv
:2

11
0.

13
96

7v
1 

 [
cs

.D
C

] 
 2

6 
O

ct
 2

02
1



Based on the literature survey of related work in serverless
MapReduce, we identify notable work models. Lambda based
implementation of MapReduce is documented in an AWS
reference architecture blog post [17]. The document does not
detail the tradeoff of using serverless options as compared to
Apache Spark based workflow. We also reviewed open-source
platforms like PyWren [18], Ooso [19] and Corral [20] which
facilitate big data workflows on serverless architecture. As
compared to previous work, our paper focuses on evaluating
usage of serverless architecture for MapReduce with highly
varying user load behavior and specific targets for cost and
response time. There are works like [21] [22] which evaluate
serverless architecture as a platform for any application but
not focussed around data pipelines.

Lloyd notes that there is a lack of repeatable empirical re-
search on the design, development, and evaluation of enterprise
applications for serverless architecture [7]. Tradeoffs related to
cost and performance are hence unexplored in this space. As
noted by Sill in Cloud computing magazine article [23], due to
lack of insight into serverless architecture and design, adoption
of serverless computing in enterprise applications transitioning
to cloud is low.

We found considerable work around improving elasticity for
VM instances [24] [25]. They range from machine learning
techniques to support scaling of VMs to predicting future
demands for autoscaling. As part of this paper, we will
delve deeper into factors that impact elasticity in serverless
compute platforms. To get optimal cost, serverless scales with
concurrent executions and the operator does not need to worry
about provisioning or deprovisioning instances per se, as this
is fully managed by the cloud provider [26].

III. MAPREDUCE MODEL

In big data processing workflows, the data typically enters a
number of general phases: ingestion, cleansing, computation,
and aggregation [27]. The ingestion phase is where the raw
data is captured in some storage medium, typically some type
of distributed file system, e.g. HDFS, S3, or some streaming
system, e.g. Kafka, Kinesis. The cleansing phase is where
the raw data is massaged into some canonical form that
is useful for downstream computation and can sometimes
comprise multiple phases of cleansing and transformation. The
computation phase is where business logic is applied to the
canonical data and prepared for downstream aggregation. The
aggregation phase computes summary statistics on the data
from the computation phase.

We aim to investigate the use of native AWS services to
create a framework for ingesting raw data, performing pre-
processing of the raw data into a canonical form, emitting
the data as micro-batch messages, computing business logic
against those micro-batches, and summarizing the data result-
ing from the micro-batch computation. We believe serverless
style of computing will provide significant cost benefit to
enterprises who anticipate fixed compute processes but with
dynamic input sizes. Concretely, data flow jobs that have
significant variance in execution time and periodicity may

result in significantly under-utilized compute infrastructure.
Meanwhile, by leveraging cloud-native and serverless services
on AWS, we use only the compute resources that are necessary
for the workload with no expenses incurred on idle compute
infrastructure.

As a proof of concept, we aim to perform analysis on the
Bureau of Transportation Statistics data set [28], specifically
the Airline On-time statistics data set to determine the viability
of such a computing model. This data set we used has a total
of 240 CSV files, containing monthly data (including airline
codes, origin and destination, scheduled and actual arrival and
departure times for flights, etc.) reported by US certified air
carriers from 1988-2008. Our MapReduce model will entail
the ingestion of these CSV files into S3, the use of AWS
Lambda (FaaS) functions [29] for all compute processing, the
use of S3 and DynamoDB for all shuffle storage processing,
and the use of DynamoDB for storing summary outputs.

As we build out this model, we aim to analyze the perfor-
mance characteristics of the solution. We also aim to document
cases where this solution makes sense and where it does not.
We also aim to outline the limitations of the solution and
additional work required to make this a solution that can be
more broadly adopted.

IV. PROTOTYPE ARCHITECTURE

The current implementation includes three core phases
(ingestion, map, reduce) and leverages the following AWS ser-
vices: AWS Lambda, Amazon SQS, Amazon DynamoDB, and
Amazon S3. Our implementation follows the same paradigm
in the MapReduce framework by having a scale-out map
phase and an aggregation reduce phase with an intermediate
shuffle phase. The intermediate shuffle phase is important as
we want to ensure that all map operations are completed prior
to beginning the reduce operations. In our implementation,
we execute a query against the data set for identifying the top
10 airlines by on-time arrival performance. A reference SQL
query to get this result via Spark is shown below:

SELECT UniqueCarrier, sum(ArrDelay)/count(*)
as OnTimePerformance

FROM df
GROUP BY UniqueCarrier
ORDER BY 2 ASC

Our goal is to implement a similar query via Serverless
MapReduce framework. The prototype architecture is depicted
in Figure 1.

1) Ingestion: The goal of the ingestion phase is to shard the
input data, akin to sharded data in HDFS, slicing up the source
data into smaller micro-batches for downstream processing in
the map phase. The workflow begins with uploading CSV
files into an S3 bucket, which emits a PutObject event, which
then triggers the invocation of an AWS Lambda function. The
ingest function receives as input the metadata about the object,
which includes the bucket and object key. The function then
effectively downloads that object and processes the body of
that CSV file, which entails the creation of micro-batches of
configurable size (default=100). Each of those micro-batches



Fig. 1: Architecture Diagram

are then emitted to an SQS queue for downstream ordered
processing. Each time a message is emitted to the queue, an
atomic counter is incremented in DynamoDB to keep track of
the number of records that have been ingested.

2) Map: The goal of the map phase is to take the sharded
data and to perform the necessary business logic in prepa-
ration for downstream aggregation or summarization. Here
the workflow continues with a function invocation, triggered
by the enqueued messages from the ingestion phase. The
function receives as input the micro-batch data, which we
filter based on a query parameter criteria. The data that passes
the filter criteria is then stored in an S3 bucket as a JSON
object or stored in DynamoDB as an item. When processing
on the microbatch is completed, a second atomic counter is
incremented in DynamoDB to keep track of the number of
map tasks that have been successfully processed.

3) Shuffle: The goal of the shuffle phase is to ensure that
all ingested micro-batches have been successfully processed in
the map phase. Concretely, each job will have an associated
execution id, ingested count, and mapped count, as below:
{"id": {
"S": "a3c9e821-8260-4950-806d-65f7d2e8e989"
},
"ingested": {
"N": "12"

},
"mapped": {
"N": "12"

}
}

A gate is introduced in front of the reduce phase, which
checks for equivalence of the ingested count and the mapped
count. If those values are equal, the gate allows execution to
proceed to the reduce phase. If those values are not equal, the
gate will sleep for 1 second and perform the check again.

4) Reduce: The goal of the reduce phase is to perform
the necessary aggregation computation. Here the workflow
continues with a function invocation, that then reads the shuffle
data that was outputted from the map phase. In our example,
we perform an S3 bucket scan along a prefix that matches our
execution id to read the filtered data or a DynamoDB query
on a local secondary index with the execution id as the hash
key and the airline id as the sort key and then perform the
summary statistics .

V. EXPERIMENTATION SETUP

A. Metrics overview
We use several Key Performance Indicators (KPIs) in order

to identify best serverless instance configuration and end-to-
end MapReduce execution optimizations:

• Invocation requests - Number of incoming requests to
execute a Lambda function

• Invocation duration - Execution duration of a given
invocation request

• Concurrency - Invocation requests * Invocation duration
Note that concurrency is the number of requests that your
function is serving at any given time [37]



TABLE I: Execution time

Function Total Count Init Count Avg Init (ms) Avg Duration (ms) % Init
ingest 78 35 853 59110 44.87
map 560 34 811 2719 6.07

reduce1 314 125 823 20606 39.81
reduce2 21 11 860 61 52.38

TABLE II: Configuration parameters

Scenario ShuffleSystem Files Threads IngestMemMB MapMemMB Reduce1MemMB Reduce2MemMB
1 S3 1 1 2048 128 10240 128
2 S3 1 2 2048 128 10240 128
3 S3 1 3 3072 128 10240 128
4 S3 1 3 3072 1024 10240 128
5 S3 12 3 3072 1024 10240 128
6 DynamoDB 12 3 3072 1024 10240 128

• Initialization duration - When the Lambda service allo-
cates an instance of the function, it loads the function
runtime and executes the initialization code, which hap-
pens once per new instance of a function [38]

B. Configuration overview

Some data points sampled from executions of the overall
flow are shown in Table I. This execution data was also used
to initialize the memory size of the Lambda functions.

Configuration parameters of a number of tuned performance
tests run against theMapReduce system are listed in Table II.

Fig. 2: Overall architecture

VI. ARCHITECTURE OVERVIEW

The implementation for the performance data gathering
phase focused on a single query based on the airline data,
e.g. top 10 airlines by on-time arrival performance. The
implementation was conducted and measured in three distinct
phases: ingest, map, reduce, as shown in Fig. 1.

Fig.2 is a visualization of the overall flow, which is im-
plemented as an AWS Step Function standard workflow. For
every job execution, we generate an execution id, which is
passed along each phase of the execution, so that we can
track the activity through each discrete component, similar to
a correlation or trace id in distribution application monitoring.
Note that the Map function specifically is not present in the
Step Function workflow as it triggers directly off of the SQS
queue, rather than being orchestrated by the Step Function
workflow. This is the reason we have a reduce gate with
counters at the ingest and map phase, to ensure that all map
work is completed prior to proceeding to the reduce phase.

A. Ingest

For the ingest phase, all 240 raw data files (34,870MB) were
uploaded to an S3 bucket. In a production scenario, an S3 event
trigger can be configured to invoke the ingest function upon
an s3:ObjectCreated event [36]. However, for the purposes of
performance tests, an AWS Step Function standard workflow
was configured to invoke the ingest function in parallel with
each ingest Lambda function processing one of the raw data
files.

A Python script was written to create an event payload by
listing the contents of the S3 bucket prefix, which was sub-
sequently used to asynchronously execute the Step Functions
workflow. This workflow iterates through the list of raw files
that need to be processed. Each of those files is passed as
an input parameter to the ingest Lambda function, which then
processes the elements of that raw file.

The average file size was 145.2MB as shown in Fig.3 and
the average processing time for the ingest function configured
with 2GB of memory was 88.4 seconds.



TABLE III: Lambda usage

Processed LambdaMemMB DurationMs MaxMemUsedMB InitDurMs CapMB TotalMB
436950 1024 121133.14 415 500.28 135.0045462 34869.82844
436950 2048 88402.71 415 489.43 135.0045462 34869.82844
436950 4096 90243.8 415 518.14 135.0045462 34869.82844

Fig. 3: Input file size

Optimal Lambda function: We performed testing of the
ingest function at 1GB, 2GB, and 3GB to determine the
optimum memory when trading off cost v/s performance.
Lambda allocates CPU and other resources proportional to
memory configuration. We estimate that at the CPU levels
specified above, we had approximately 2, 2, and 3 vCPU
available for processing, and thus configured parallel processes
for the ingest function accordingly. CPU ceilings may be
slightly different, according to some public research [41].

Results shown in Table III were gathered by multiple
invocations of the function. The 2GB lambda function gives
us a significant speed up which helps keep the cost same as
1GB lambda function. Usage of the power tuning tool also
provided us with a similar workpoint.

When attempting to parallelize processing of the raw data,
our initial implementation used the asyncio libraries, which
were subjected to a single thread due to the global interpreter
lock limitation within Python. We then switched to using the
concurrent.futures.Executor library, which allowed us to run
multiple processes in parallel. We configured the executor
workers to match the number of anticipated vCPU, e.g. 1GB
memory with 2 vCPU with 1 worker, 2GB memory with 2
vCPU with 2 workers, 3GB memory with 3 vCPU with 3
workers. By doing this, we saw execution time for the ingest
function, which was processing one 135MB file average 92.2
seconds, 63.1 seconds, and 54.0 seconds respectively. We
observed that we were experiencing diminishing returns on
increasing the parallelism on the ingest function and thus left
it at 3GB. At this point, we observed that the map function
was beginning to bottleneck the overall flow, which we will
cover in the next section.

The ingestion of 1, 12 and 60 file(s) resulted in 436,950,

5,202,096 and 25,683,271 records being processed through
this pipeline respectively.

B. Map

For the map phase, we observed that writing individual
S3 objects for each row in the CSV files introduced too
much overhead for the read/write process. Instead, each micro-
batch of records was grouped by partition key and written per
microbatch. For example, if a microbatch had 100 total rows
with 30 rows attributed to A, 30 rows attributed to B, 30 rows
attributed to C, and 10 rows attributed to D, then four outputs
result from a single map invocation, i.e. one for each partition
key A, B, C, D. This reduced the overall latency associated
with having to write that many objects or items and then later
having to read them in the reduce phase. For example, a single
135MB CSV file had roughly 460k rows averaging 300 bytes
per object. The 100x reduction reduced the object payload
down to 4600 objects.

In our implementation, we used hexagonal architecture [40]
when implementing the shuffle storage for the map and reduce
functions. We did this by implementing an adapter and port
pattern for S3 and DynamoDB, and then used configuration
parameters via environment variables to determine which
shuffle storage would be used. This allowed us to switch
the underlying implementation from S3 to DynamoDB fairly
easily when conducting performance tests.

One key consideration when analyzing the map function is
that the map function begins executing almost as soon as the
ingest function emits messages into SQS. So the key question
becomes whether the map function keeps up with the rate of
ingest, or if it falls behind over time. Each map invocation
handles 100 records, performs some sorting, and then outputs
the shuffled data to S3 or DynamoDB. It also tracks the
number of records processed in a DynamoDB counter for the
reduce gate later.

Fig.4 are visualizations of the results of the four different
tests conducted in S3.

After completing tests with S3 as shuffle storage, we
switched the shuffle storage to leverage an on-demand Dy-
namoDB table. When ingesting 12 raw data files into Dy-
namoDB, we observed that of the 5,202,096 records, we lost
312,507 records (6.0%) due to throttling from DynamoDB and
messages subsequently being sent to the configured dead letter
queue. We recognize that we can provision read/write capacity
units to the DynamoDB table to handle the load, but we will
leave that as next steps for this research, to determine the
appropriate capacity and the cost implications for needing that
type of burst in the table.



(a) 1 thread for ingest, 2048/128/10240/128MB lambda memory (b) 2 threads for ingest, 2048/128/10240/128MB lambda memory

(c) 3 threads for ingest, 3072/128/10240/128MB lambda memory (d) 3 threads for ingest, 3072/1024/10240/128MB lambda memory

Fig. 4: S3 shuffle storage performance with 1 input file

Because the average duration of the map requests was lower
compared to the ingest function, we also observed that the
map functions had less frequent cold starts (13.5% compared
to ingest). However, as a percentage of overall duration, we
observed that for the functions that did experience cold start,
the impact of initialization was far higher (<1.5% for ingest,
~30% for map).

C. Reduce Gate

For the reduce phase, we implemented a counter gate before
beginning the reduce phase.

{
"id": "c3f72186-2466-4daa-ae81-beb3f80a305e",
"ingested": 1299481,
"mapped": 1299481
}

The reduce gate is important to ensure that all map execu-
tions are completed prior to beginning the reduce aggregations
and ranking. As stated in the architecture overview (Section
VI), the reduce gate will check to ensure that for execution id
of this job the ingested counter and mapped counter are equal.
We recognize that there could potentially be a race condition
such that the ingest count could equal the mapped count before
the map phase is truly completed. To handle this, the ingest
phase does not write its values until after it has completed,
while the map phase writes values as it performs its micro-
batch processing.

We also observed in rare failure conditions with S3 and
in throttling scenarios with DynamoDB that the ingest and
mapped counters were never equivalent and required a manual
override to allow the gate to pass.

In future research, we would like to consider implementing
proper dead letter queue processing for situations that the map
function happens to initially fail.

D. Reduce Aggregation

The first part of the reduce phase was the reduction per
airline code. This entails a function invocation reading all
the mapped outputs associated with each airline code. With
S3, the reduce1 function would read all of the objects in
a prefix associated with one airline with a prefix in the
form of [execution id]/[airline code]/[instance id].json, e.g.
07b8c1d8-4e89-4969-83f3-72df580132f9/AA/01a63ff8-88e0-
4ab9-aa0b-1451c5cb6f0e.json.

With DynamoDB, the reduce1 function would read all of the
objects from a DynamoDB associated with the same structure.
To accomplish this, we needed to create a DynamoDB table
with execution id as the hash key, instance id as the sort key,
and then leverage a local secondary index with the execution
id as the hash key and now the airline key as the sort key.
This allowed us to perform queries against the execution
id and airline key while also maintaining individual records
for each instance id. We considered creating composite keys,
e.g. [execution id]/[airline code], but this created additional
complexity in the query logic.

We observed that as the input files scaled up, there was a
decent amount of variability, e.g. in the case of 60 input data
files, AA had 36,434 mapped outputs, HP had 10,178 mapped
outputs, and PS had only 422 mapped outputs. Because of
this, we observed significant variance in the execution of this
function, e.g. the faster ones took 14-25 seconds, while in



TABLE IV: Performance data of S3 as shuffle storage: Overall execution time

Scenario Ingest (s) ReducePrep (s) ReduceGate (s) ReduceAggregate (s) ReduceRank (s) Overhead (s) Total (s)
1 92.19 0.84 1.13 14.13 0.98 0.37 109.64
2 63.10 0.82 1.71 13.27 0.89 0.47 80.25
3 54.01 0.08 20.50 12.60 0.08 0.49 87.77
4 55.40 0.40 11.20 13.27 0.49 0.39 81.15
5 58.57 0.50 62.02 162.68 0.51 0.40 284.70

TABLE V: Performance data of S3 as shuffle storage: Percentage of overall execution time per stage

Scenario Ingest (%) ReducePrep (%) ReduceGate (%) ReduceAggregate (%) ReduceRank (%) Overhead (%)
1 84.1 0.8 1.0 12.9 0.9 0.1
2 78.7 1.0 2.1 16.6 1.1 0.6
3 63.5 0.1 21.0 14.8 0.1 0.6
4 70.0 0.5 11.6 16.7 0.6 0.5
5 20.6 0.2 21.8 57.1 0.2 0.1

some cases, a small handful of functions actually timed out
with the 15 minute timeout.

E. Reduce Ranking

The second part of the reduce phase is to sort the first
reduction aggregations and to list out the top 10 airlines by on-
time arrival performance. This function executes fairly quickly,
as it simply iterates over an array and sorts the results. We
observed this function averaged 61 milliseconds.

F. End-to-End

Starting with S3 as shuffle storage, we tested a number of
performance configurations and tweaked the memory setting
of each Lambda function and the amount of parallel processing
to incrementally improve performance.

We created a number of configuration scenarios as origi-
nally outlined at the beginning of the document in Table II.
Performance data for S3 as shuffle storage is outlined in Table
IV. The performance for DynamoDB is not included in this
analysis due to significant throttling.

Of particular interest was that as more data was pushed into
the system, the ingest phase became less of a bottleneck, as
map started experiencing additional pressure. Even more, the
reduce1 function (ReduceAggregate) in some cases needed to
read a significant amount of mapped data. As a result, this
phase began to take a larger percentage of the overall job
execution as shown in Table V.

VII. CONCLUSION

Having implemented a prototype of a serverless map/reduce
process that includes an ingest, map, and reduce phase, our
observation is that the compute portion using AWS Lambda
was able to scale up seamlessly and quickly, which is excellent
for variable workloads and unpredictable execution times. This
helps reduce the overhead of operating a long-lived cluster
and eliminates the cost of idle infrastructure. However, our
observation is also that the overhead of converting large data
files into a message-oriented data flow and writing data back
and forth between S3 or DynamoDB was substantial. The latter
issue is a well-known issue in the Hadoop framework, hence

the emergence of Spark processing in memory. The former
issue is a new issue introduced by this serverless map/reduce
framework which adopts an event-driven architecture for data
processing. Because of this, we recognize that with the current
implementation, large scale, long-running batch processing
workloads would not likely be suitable on this from a cost and
end-to-end completion time perspective. Enhancements will be
required on the ingestion side and in the shuffle mechanisms
to enable larger scale data processing workloads with this new
serverless map/reduce framework.

VIII. FUTURE WORK

To improve overall performance, one potential opportu-
nity would be to implement a third storage adapter for a
caching layer. Concretely, we could perhaps use something
like Elasticache Redis to load all of the data and perform all
read/write operations across Lambda function invocations via
this caching layer. This would more closely emulate the move
from Hadoop using HDFS for shuffle storage to Spark doing
all shuffling in memory.

For the ingest phase, we will need to further investigate
methods of better parallelizing the workload, perhaps switch-
ing language runtimes from Python to a compiled language
that would have better multi-threading support. We could also
investigate switching from using SQS to a different streaming
mechanism like Kinesis or Kafka. This could potentially allow
for better Lambda consumer scaling, as SQS is limited on
scaling up Lambda concurrency, e.g. 60 concurrency per
minute if the queues are full.

For the reduce aggregation phase, we would need to
determine a better way to handle the potential imbalance
of processing the airline codes, which might include some
scenarios that require far more processing than what a single
Lambda function invocation can handle. If the aforementioned
caching solution does not significantly improve performance
for this aggregation phase, we can perhaps consider splitting
the workload across multiple invocations, using Step Functions
again to orchestrate the workflow.



REFERENCES

[1] Dean Jeffrey, Ghemawat Sanjay “Mapreduce: simplified data processing
on large clusters,” Commun. ACM, 51 (1) (2008), pp. 107-113.

[2] K. Shvachko, H. Kuang, S. Radia and R. Chansler, “The Hadoop
Distributed File System,” 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), 2010, pp. 1-10, doi:
10.1109/MSST.2010.5496972.

[3] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Car-
reira, Karl Krauth, Neeraja Yadwadkar, Joseph Gonzalez, Raluca
Ada Popa, Ion Stoica, and David A. Patterson, “Cloud program-
ming simplified: A berkeley view on serverless computing.” Tech-
nical Report UCB/EECS-2019-3, EECS Department, University of
California, Berkeley, Feb 2019. URL: http://www2.eecs.berkeley.edu/
Pubs/TechRpts/2019/EECS-2019-3.html

[4] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-
jamin Recht. 2017. “Occupy the Cloud: Distributed Computing for the
99%.” In Proceedings of the 2017 Symposium on Cloud Computing
(SoCC’17). ACM, New York, NY, USA, 445–451

[5] M. M. Rahman and M. Hasibul Hasan, “Serverless Architecture for Big
Data Analytics,” 2019 Global Conference for Advancement in Technol-
ogy (GCAT), 2019, pp. 1-5, doi: 10.1109/GCAT47503.2019.8978443.

[6] L. Mai, E. Kalyvianaki, and P. Costa, “Exploiting time-malleability in
cloud-based batch processing systems, ” in Proc. Int’l Workshop on
Large-Scale Distributed Systems and Middleware (LADIS), Farmington,
PA, USA, Nov. 2013.

[7] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly and S. Pallickara,
“Serverless Computing: An Investigation of Factors Influencing Mi-
croservice Performance,” 2018 IEEE International Conference on Cloud
Engineering (IC2E), 2018, pp. 159-169, doi: 10.1109/IC2E.2018.00039.

[8] UCC’19: Proceedings of the 12th IEEE/ACM International Conference
on Utility and Cloud Computing, “An Evaluation of FaaS Platforms as
a Foundation for Serverless Big Data Processing”

[9] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram
Venkataraman, Ion Stoica, Benjamin Recht, and Jonathan Ragan-Kelley.
“numpywren: serverless linear algebra,” 2018. arXiv:1810.09679. 53

[10] Vipul Gupta, Swanand Kadhe, Thomas Courtade, Michael W. Mahoney,
and Kannan Ramchandran. “Oversketched newton: Fast convex opti-
mization for serverless systems,” 2019. arXiv:1903.08857. 20

[11] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-
Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu.
“Serverless computing: One step forward, two steps back.” arXiv
preprint arXiv:1812.03651, 2018. 21

[12] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha, “A Preliminary Re-
view of Enterprise Serverless Cloud Computing (Function-as-aService)
Platforms,” Proc. Int. Conf. Cloud Comput. Technol. Sci. CloudCom,
vol. 2017–Decem, pp. 162–169, 2017.

[13] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran
Venkataramani, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2016. “Serverless Computation with OpenLambda.” In 8th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud’16).
USENIX Association, Denver, CO, 14–19

[14] Sebastian Werner, Jörn Kuhlenkamp, Markus Klems, Johannes Müller,
and Stefan Tai. 2018. “Serverless Big Data Processing Using Matrix
Multiplication as Example.” In Proceedings of the IEEE International
Conference on Big Data (Big Data’18). IEEE, Seattle, WA, USA,
358–365.

[15] Serverless Data Pipelines - Imperial College London Hang Li Li
[16] “A framework and a performance assessment for serverless MapReduce

on AWS Lambda,” V. Giménez-Alventosa, Germán Moltó, Miguel
Caballer

[17] AWS blogpost - https://aws.amazon.com/blogs/compute/ad-hoc-big-
data-processing-made-simple-with-serverless-mapreduce/

[18] PyWren, https://github.com/pywren/pywren, Accessed: 2018-10-1
[19] Ooso, https://github.com/d2si-oss/ooso, Accessed: 2018-10-1
[20] Introducing Corral: A Serverless MapReduce Framework (link) (Corral,

https://github.com/bcongdon/corral)
[21] “Performance evaluation of heterogeneous cloud functions Kamil

Figiela, Adam Gajek, Adam Zima, Beata Obrok, Maciej Malawski First
published: 24 August 2018 https://doi.org/10.1002

[22] H. Lee, K. Satyam and G. Fox, “Evaluation of Production Server-
less Computing Environments,” 2018 IEEE 11th International Con-

ference on Cloud Computing (CLOUD), 2018, pp. 442-450, doi:
10.1109/CLOUD.2018.00062.

[23] Sill A. “The design and architecture of microservices.” IEEE Cloud
Computing. 2016 Sep;3(5):76-80.

[24] Nikravesh A., Ajila S., Lung C., “Towards an autonomic autoscaling
prediction system for cloud resource provisioning.” In Proceedings of
the 10th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, May 2015, pp. 35-45

[25] Qu C., Calheiros R., Buyya R., “A reliable and cost-efficient autoscaling
system for web applications using heterogeneous spot instances.” Journal
of Network and Computer Applications. 2016 Apr 30;65:167-80.

[26] McGrath G., Brenner P., Serverless Computing: Design, Implementation,
and Performance. In IEEE 37th International Conference on Distributed
Computing Systems Workshops (ICDCSW 2017), June 2017, pp. 405-
410.

[27] Ahuja and Moore, 2013 S.P. Ahuja, B. Moore “State of big data analysis
in the cloud,” Network and Communication Technologies, 2 (1) (2013),
p. 62

[28] Bureau of Transportation Statistics dataset -
https://www.transtats.bts.gov/DataIndex.asp

[29] Amazon Web Services. Aws lambda - serverless compute, 2018. URL:
https://aws.amazon.com/lambda/

[30] Lambda quotas. https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-
limits.html

[31] AWS Lambda function scaling
https://docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html

[32] Using AWS Lambda with Amazon SQS
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html

[33] What does Lambda’s big memory increase enable?
https://www.fourtheorem.com/blog/lambda-10gb

[34] AWS Lambda Supports Parallelization Factor for Kinesis and Dy-
namoDB Event Sources

[35] AWS Pricing Calculator
[36] https://docs.aws.amazon.com/AmazonS3/latest/userguide/NotificationHowTo.html
[37] https://docs.aws.amazon.com/lambda/latest/dg/configuration-

concurrency.html
[38] https://docs.aws.amazon.com/lambda/latest/dg/runtimes-context.html
[39] https://aws.amazon.com/blogs/compute/using-aws-lambda-for-

streaming-analytics/
[40] https://en.wikipedia.org/wiki/Hexagonal architecture (software)
[41] https://www.sentiatechblog.com/aws-re-invent-2020-day-3-optimizing-

lambda-cost-with-multi-threading

http://www2.eecs.berkeley.edu/
http://arxiv.org/abs/1810.09679
http://arxiv.org/abs/1903.08857
http://arxiv.org/abs/1812.03651

	I Introduction
	II Literature Survey
	III MapReduce Model
	IV Prototype Architecture
	IV-1 Ingestion
	IV-2 Map
	IV-3 Shuffle
	IV-4 Reduce


	V Experimentation Setup
	V-A Metrics overview
	V-B Configuration overview

	VI Architecture overview
	VI-A Ingest
	VI-B Map
	VI-C Reduce Gate
	VI-D Reduce Aggregation
	VI-E Reduce Ranking
	VI-F End-to-End

	VII Conclusion
	VIII Future Work
	References

