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Automated Machine Learning with ensembling (or AutoML with ensembling) seeks to automatically build ensembles of Deep Neural
Networks (DNNs) to achieve qualitative predictions. Ensemble of DNNs are well known to avoid over-fitting but they are memory and
time consuming approaches. Therefore, an ideal AutoML would produce in one single run time different ensembles regarding accuracy
and inference speed. While previous works on AutoML focus to search for the best model to maximize its generalization ability, we
rather propose a new AutoML to build a larger library of accurate and diverse individual models to then construct ensembles. First,
our extensive benchmarks show asynchronous Hyperband is an efficient and robust way to build a large number of diverse models to
combine them. Then, a new ensemble selection method based on a multi-objective greedy algorithm is proposed to generate accurate
ensembles by controlling their computing cost. Finally, we propose a novel algorithm to optimize the inference of the DNNs ensemble
in a GPU cluster based on allocation optimization. The produced AutoML with ensemble method shows robust results on two datasets

using efficiently GPU clusters during both the training phase and the inference phase.
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Deep Neural networks (DNNs) are notoriously difficult to tune, train, and ensemble to achieve state-of-the-art results.
Automatic machine learning with ensembling or "AutoML+ensembling" tools provide a simple interface to train and
evaluate many ensembles of DNNs to achieve high accuracy by reducing overfitting.

Nowadays, multiple researchers and practitioners have well understood the benefit of ensembling DNNs. For example,
in cyber-attack detection [19], time series classification [43], medical image analysis [7], semi-supervision [50] and
unbalanced text classification [49]. Further, several winners and top performers on challenges routinely use ensembles
to improve accuracy. However, ensembles of DNNs suffer from three main limitations to be widely deployed in research
and industrial applications.

The first limitation is a lack of understanding about the best way to build base DNNs to construct an ensemble.
Ensembling is still not fully understood [29] [37] [4] but authors generally agree that a large number of models, high
diversity, and high individual performance are the three key components but we ignore in which proportion. That is

why automatic procedures assessing multiple possible ensembles have been proposed. AutoML with posthoc ensembles
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[14] works as follow: first, it automatically builds a library of hundreds of models, and then, it explores thousands of
ensembles among the huge number of possible ensembles (combinations) [6] [5] [53] based on their validation score.
However, it is still unclear how best to construct the best library of models to perform ensemble selection and only
experimental evidence seems able to drive the algorithmic choices of the workflow.

The second limitation is the lack of control of the computing cost of the produced ensemble. In the previous works,
authors apply ensembling [6] [14] of non-deep machine learning and propose that the number of models to put in
the ensemble as a threshold between accuracy and computing cost. In DNNs such as applied on image recognition,
the combined models are heterogeneous with orders of magnitude of resource requirement. That is why the number
of models as the constraint is not relevant to control the ensemble computational cost. Moreover, when generating
automatically multiple models it is known that [26] there is no clear correlation between accuracy and DNNs cost,
meaning that sometimes fast DNNs can be prioritized without significantly lowering the accuracy.

Finally, no inference server enables the deployment of heterogenous DNNs and fully leverages modern GPU clusters.
Current inference server allows to deploy deep neural networks [56] [40] [42], but the administrator of those servers
has to attach manually DNNs to GPUs and set the batch size. Ensemble of DNNs is much more complex because we
must deal with multiple DNNs sometimes co-localized into the same device and multiple devices. An ideal inference
server of DNNs ensemble would allow computing automatically the best localization and batch size settings at the
initialization phase.

It is time to address this missing piece in deep learning pipelines between AutoML, ensemble, and GPU clusters.
To summarize our contributions, we run extended benchmarks with seven algorithms to generate the best library of
models compared to 7 other algorithms and conclude that asynchronous Hyperband [34] suits this goal. After that
the library is generated, we propose a new simple algorithm named SMOBF (scalarized-multi objective with budget
greedy forward) to build an efficient ensemble based on their accuracy and a desired maximum computing cost. Third,
we propose a novel server design to deploy with high efficiency, high flexibility, and low overhead a heterogeneous
ensemble of DNNS.

This paper is as follows. In section I we go into further detail in the related fields: AutoML and AutoML+ensembling.
In section (III) the different steps of the workflow AutoML+ensembling are analyzed and introduced. In section (IV) we
introduce the inference server design for deployment. In section (V) we analyze our AutoML procedure then (VI) we

benchmark our inference server on 2 generated ensembles.

1 ANALYSIS OF THE AUTOML FIELD
1.1 AutoML

The empirical nature of research in Deep Learning leads scientists to try many model architecture settings, optimization
settings, and pre-processing settings to find the best-suited one for data. AutoML is made of 3 modules, the DNNs
search space (the “hyperparameter space”), the DNNs sampling strategy (or “hyperparameter optimization”), and the
evaluation phase consisting in returning the score associated with one hyperparameter value.

Any model previously trained with hyperparameter A sampled from hyperparameter space A is written Mj. The
hyperparameter optimization goal defined in equation 1 consists in finding the best hyperparamer A+ € A building a
model to reduce the error measured by E. The error is measured on the validation data x,,j;4 matching labels y,j;4-

Ax = arg min E(My (Xya1id)s Yoalid) (1
AeA
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In the literature, AutoML algorithms are typically compared based on their results in the evaluation phase. While
this may seem intuitive, this field is now facing multiple methodological questions [36] on the relevance of comparing
multiple workflows made of different stages and different initial conditions. And more, to fairly compare their robustness,
multiple datasets, and multiple random seeds must be reported which is a computing-intensive research area limiting
initiatives.

Our paper does not claim the superiority of our AutoML+ensembling method in all cases but it is rather the first step
toward AutoML+ensembling of DNNs aiming at a desired trade-off between the produced ensemble accuracy and its
cost for practical usage. Our work is applied on the computed vision task but can be generalized on other tasks where
qualitative prediction is required leveraging one or more clusters of GPUs.

No Free Lunch theorem [54] proves that no black-box hyperparameter optimization (HPO) can show superior
performance to random search in all cases. Nevertheless, methods searching between global exploration and local
exploitation have shown a stable performance on diverse applications. Early stopping [45] [33] has been also proposed
to stop the less promising trials to focus hardware on the most promising trials accelerating the overall optimization

process.

1.2 AutoML frameworks

Recently, AutoML methods sequentially updating the current DNN (neural network morphism) have been proposed
based on Bayesian optimization (Auto-Keras [25]), reinforcement learning (ENAS [44]) or differentiable architectures
(DARTS [39]). These methods require several hours on a single modern GPU and converge to a sub-optimal solution.

A more general approach consists in searching not only neural network architectures but optimization settings and
data processing too with fixed-length vector hyperparameters. Bayesian optimization, like Sequential Model-Based
Optimization (SMBO) with Gaussian model is known to perform well to optimize continuous hyper-parameters [47]
[22]. Tree-based models are more adapted to the discrete hyperparameters like Tree Parzen Estimator (TPE) [3] and
Sequential Model-based Algorithm Configuration (SMAC) [24]. Despite that SMBO are inherently sequential methods,
a parallel version have been proposed [47] based on successive populations of trials to explore the hyperparameter
space by leveraging multi-cores.

Evolutionary methods [46] [57] are naturally parallelizable algorithms running successive populations (called
“generation”) of trials in parallel. By running them on a large scale on GPU clusters for several days, authors discovered

those methods can converge very late and very high with a high robustness.

1.3 AutoML with ensembling

AutoML which not only selects the best model but combines them is valuable for domains that require the best
possible accuracy. Several benchmarks were performed and AutoML+ensembling is today considered as the big AutoML
challenge series winner on data points like AutoML challenges [18] and Kaggle challenges on image recognition.
Previous researches on non-deep machine learning ensembles shows that over-fitted machine learning algorithms
predictions can be averaged out to get more accurate results [48]. This phenomenon is mainly explained by the Law of
Large Numbers which claims that the average of the results obtained from many non-biased trials should be close to
the expected value. These results are especially interesting for deep learning models. They are the most affected models
to random effects (over-fitting) due to their huge number of parameters.

We observe two main trends in AutoML with ensembling. First, AutoML+Ad-hoc ensembling [52] [30] [16] [8] which

consists in searching directly ensembles. The hyperparameter space describes an ensemble of fixed size. At the end,
3
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Fig. 1. The proposed workflow runs 3 steps 1) The HPO algorithm generates a library of models. The trials are distributed on several
GPUs synchronized by a master process. We recommend asynchronous Hyperband based on experimental results. 2) We propose a
new multi-objective Ensemble Selection algorithm to search the most efficient ensemble honoring a budget given by the user (here
B=20). It is based on a parallel greedy algorithm evaluating hundreds of combinations per second on multi-core CPUs. 3) The returned
ensemble predicts by combining (averaging) DNNs predictions on new data. The deployment of the ensemble into a server is not
shown in the figure.

the HPO algorithm keeps the best ensemble and wastes all the others. It suffers from a lack of flexibility because the
number of models in an ensemble is fixed before build all DNNs. In other words, changing the number of DNNs in
the ensembles require a new AutoML runtime. Second, AutoML+Post-hoc ensembling [6] [53] [14] runs a standard
HPO algorithm providing a library of trained models, then constructs ensembles from the library based on a greedy
algorithm. This approach is flexible because we can produce several ensembles with different numbers of models with
the same library of DNNs.

2 PROPOSED WORKFLOW

In this section, we give an overview of the proposed workflow 1. Then, we will go into further details on the distributed
architecture that accelerates these three steps of our AutoML workflow: HPO to construct a library of models, Ensemble

Selection to construct ensembles based on their validation accuracy and computing cost, and ensemble deployment.

2.1 Detail of the workflow

Hyperparameter optimization (HPO). The choice of the HPO algorithm has several impacts in terms of the number
of produced models at a given time horizon, the accuracy of models, and their diversity. After several experiments, we
recommend Hyperband based on our experiments.

In this regard, Hyperband produces the biggest library of models among tested algorithms because most models
do not reach the maximum number of epochs. It is also a lock-free distributed algorithm until the termination of
the algorithm, spending most of its runtime to train models occupying all GPUs and storing them on the library.
Then, Hyperband produced also very diverse models due to the initial random sampling of hyper-parameters which is
desirable in terms of final accuracy. Finally, because more training iterations are given to the best models, Hyperband
performs explore-exploit in the time (not in the hyperparameter space) and we observe it builds a better distribution
of individual DNNs (regarding the top 10 % and top 25 %) compared to random search on all our runtimes. But we

4
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cannot expect that Hyperband outperforms or underperforms other exploratory-exploitative HPOs in all cases such as
Bayesian or genetic algorithms [54]. A large number of models, hyperparametric diversity, and efficiency are three
reasons explaining why Hyberband is robust to build a library of models but we still ignore in which proportion they
are important.
Ensemble selection. An ensemble selection algorithm finds the best combination possible honoring the budget
given by the user. We propose SMOBF greedy standing for "Scalarized Multi-Objective with Budget Forward greedy".
Forward greedy [6] starts with the empty ensemble and successively adds the best available model to improve the
ensemble target metric. The algorithm stops when no available model can improve accuracy or respect the budget.
We propose new equation 2 to inform the greedy algorithm to favor accurate and cheap DNNs before consuming the
overall budget. The current ensemble is a with its computing cost C, and its predictions y,. Penalty P, returns 0 when
the budget B is honored (C, < B) or an arbitrary large number when it is not to exclude a from the possible ensembles.
The weight w allows controlling the nature of the solution found by the greedy algorithm by placing greater or lesser
emphasis on the objectives. The greedy algorithm is run multiple times with different values w = 0.1, w = 0.01, and
w = 0.001. Scalarization is a convenient way to handle multi-objective problems by reducing them to a single objective

problem, so a simple mono-objective optimization can be performed.
scoreqg = (1 —w) *E(yg, y) +w=Cq+ P, (2)

Then, the best ensemble is picked according to its validation cross-entropy loss and respecting the given budget. To
improve the robustness of the method on new applications C_a is standardized and it is the rate between the sum of
computing cost of base models (time to predict 2000 images) and the budget B.

Ensemble selection algorithm computes the validation loss of candidate ensembles to evaluate how well a solution
will generalize on the test database. Since the data used for validating is taken away from training the individual models,
keeping the validating set small is important. Smaller validating sets are however easier to overfit. Contrary to common
AutoML on data points datasets, due to the cost of training and evaluating one model on images datasets, we do not
repeat the experience with K-fold cross-validation.

In the library of models, some models diverge or have such poor performance compared to other models that they are
unlikely to be useful to improve any ensemble building [5]. Eliminating these models from the library should not reduce
the performance and facilitates the ensemble selection task by decreasing the number of non-promising combinations.
Pruning works as follows: models are sorted by their performance on the validation metric and only the top X% of
them are used for ensemble selection. After pruning, the predictions on the validation set are cached before running
the ensemble selection algorithm. This allows handling only predictions vector and not models during the ensemble
selection process.

Ensemble combiner rule. We use the simple average as a combiner rule. More advanced methods exist such
as "ensemble selection with replacement” [6], weighted averaging, and stacking. Those methods are calibrated on a
validation set and thus prone to over-fitting.

Now that the workflow is developed, the final accuracy depends on two settings. The tuning effort of the library of

models and the budget given by the user to generate a new ensemble.

2.2 Distributed HPO with GPU clusters

To assess large numbers of hyperparameter trials in a reasonable amount of time, a distributed framework to use

one GPU cluster or several GPU clusters is required. Several trials are distributed with a middleware containing one
5
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scheduler and multiple workers, each worker being associated with heavy computing resources. Typically, the scheduler
sends a hyperparameter set to the available workers with the number of training epochs to perform. Then, it gathers
the scores of the trials from the workers and finally computes the next hyperparameters to send and so on.

This distributed framework suits the need of most optimization by leveraging GPUs and clusters. Each trial is run
independently without slowdown among themselves. Workers can connect or disconnect to the master at run time;
however, a disconnection interrupts the current trial. Many HPO algorithms benefit from this middleware such as
random search, Hyperband, paralle] SMBO, evolutionary algorithms, and also some greedy algorithms for discrete
optimization such as SMOBF.

Modern clusters have evolved into a hybrid machine that contains both CPUs and GPUs on each node. These
heterogeneous CPU-GPU clusters are particularly useful to accelerate the training loop of one trial. One trial is
implemented with two processes, the preprocessor which loads and preprocesses the data on multi-cores, while the
trainer trains the DNNs on the GPU. In case the entire training dataset fits into memory, the preprocessor does not

need to load multiple time the data, it is shared between preprocessors of the cluster to avoid copies and useless I/O.

2.3 Distributed Ensemble Selection

Ensemble selection is a greedy algorithm evaluating all neighbors of a current ensemble at each iteration. For each
ensemble g, the equation 2 is performed. This procedure takes one second on one CPU with 100 elements per prediction
(100 classes), 2000 validation data samples, and a relaxed budget.

In the case of semantic segmentation images, the class predictions are at pixel scale making this procedure much
more computing-intensive. A typical dataset for autonomous vehicle applications [10] contains 256x256 input images,
30 classes per pixel and 500 validation samples. Linear scaling indicates that the computing cost of this procedure would
take 1h20 (256x256x30x500 predictions elements compared to 100x2000 predictions elements in CIFAR100 taking 1
second). Because SMOBF is an optimization algorithm we may use a similar distributed framework (previous section)

to distribute neighbors evaluation on CPUs or GPUs to alleviate this computing cost.

2.4 Multi-GPU inference

After getting an ensemble of DNNs, we need to serve it efficiently on the available computing resources. We design an
efficient inference pipeline illustrated in figure 2. All DNNs into the ensemble predict asynchronously. We store the
input and the outputs into shared data to avoid slowing copies. The orchestrator asynchronously runs in one CPU-core
the cumulative averaging of all predictions to avoid slowing down the entire pipeline.

Algorithm 1 aims to return an available solution in terms of memory while algorithm 1 speeds up the allocation
settings found based on iterative updates.

Algorithm 1 balances the memory requirement between devices to fit into memory in only n steps, with n the number
of models in the ensemble. It is basically a variant of the worst-fit-decreasing algorithm to solve a bin packing problem
except we give a priority on the GPU because we make the assumption it is faster. If it is not possible, it allocates on the
CPU because more memory is present. We decided to not write it for space reasons and because it is similar to the
already known worst-fit-decreasing.

Algorithm 1 starts with a correct allocation and at each iteration, it assesses all neighborhood settings distant from 1
update. One update consists of either updating the batch of any DNN or changing its device. The algorithm is stopped
when no neighborhood improves the target metric or when the max number of iterations is reached. The number of

possible combinations is (M + B)" with M devices, B batch size values, and n DNNs in the ensemble. Algorithm 1 breaks
6
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Fig. 2. Toy example of allocation of 4 heterogenous DNNSs into 2 GPUs for inference. There are 5 processes, the orchestrator containing
and its 4 children A, B, C and D. The orchestrator receives data to predict and serve predictions as a service. Shared memory are

buffers in the RAM.

down this complexity into a succession of Mn + Bn combinations (or “neighbors”) to assess. We have no guarantee that
this greedy algorithm finds the optimal allocation and we cannot verify if it is obtained (except if we brute-force all
possibilities). However, we have the guarantee that in the worst-case scenario, a solution as good as the starting one is
returned (line 10).

We formulate an inference setting like a {B, G, C} set containing three lists. We use ordered structures because it
makes it easier to write the algorithm. B; is the batch size of the i’ h DNN. G j is the set of DNNs contained in the j th
GPU, in the same way, Cj. contains DNNs into the k’ h cpu. Again, a DNN is placed into one single device but a device
can contain multiple DNNs.

In algorithm 1 I are randomly generated images to benchmark and calibrate the inference server. The number of fake
images must be chosen high enough to smooth random effect and not too high to reduce the duration of the overall
algorithms. bench function instantiates the pipeline with the given allocation settings (first argument) on the fake
images (second argument) and returns the performance metrics (e.g. the number of predictions per second). The same
algorithm can generalize well to other performance metrics such as latency consisting in reducing the time between

one input data sample and its prediction.

3 EXPERIMENTS AND RESULTS

We experiment and discuss our workflow by varying the three steps of the AutoML workflow of deep neural networks

on CIFAR100 and the microfossils datasets. More details is given in appendix A.

3.1 The infrastructure

Experiments were done on IBM Power9 architecture, containing 2 sockets. In each socket, there are 18 cores of CPU with
a maximum frequency of 3.8Ghz and 256G of RAM. There are also 6 GPUs by node and are Nvidia Tesla V100-SXM2
with 16G of memory. Hyperparameter optimization framework Tune [38] was used. It runs above the Ray framework
[40], it schedules and spreads experiments to run on GPUs and store results into files. Deep Learning training loop and
data augmentation was coded with the framework Keras [17] with TensorFlow 1.14.0 [1] backend.

7
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Algorithm 1 Refine GPUs allocation to speed up

1: input: D the list of DNNs in the ensemble, PB possible batch size values, max_combi maximum number of assessed
combinations, G and C are preliminary GPU and CPU allocation, B preliminary batch sizes

2: output: G, C, B

3: start

4 I « fake_images() // generate fake data to calibrate the allocation
5. current_score « bench(D,B,G,C,I)

6: while trials < max_combi do

7. better_allocs « []

8:  better_scores « []

9: i_allocs « update_i_alloc(i,B,G,C)

10:  forall {B2,G2,C2} ini_allocs do

1 if {B,G,C} # {B2,G2,C2} then

12: score2 « bench(D,B2,G2,C2,I)

13: if score2 > current_score then
14: better_scores.append(score2)
15: better_allocs.append({B2, G2,C2})
16: end if

17: if trials > max_iter then

18: break

19: end if

20: end if

21: trials « trials + 1

22 end for

23:  if length(better_allocs) > 0 then

24: id=argmax(better_scores)

25: {B, G, C} = better_scores[idbest]

26: current_score=better_scores[idbest]
27:  end if

28: end while
29: return {B,G,C}

3.2 step 1-HPO

3.2.1 Comparison of hardware allocation. Our CNN framework based on ResNet can take between 15 seconds and
11min30 regarding the complexity of the neural architecture assessed (number of filters per convolution, number
of convolutional blocks, ...). Our benchmark 1 reveal that Random Search and Hyperband occupy more the GPUs
than algorithms based on a sequence of population algorithms (such as GA) which is explained by the fact that no
intermediate stopping of all GPUs is required. Those benchmarks also confirm that Hyperband terminates earlier than
Random Search because the less promising DNNs have been stopped before the maximum number of epochs is reached.
The scalability of HPO algorithms and saving useless computations are two important algorithmic characteristics to
explore a large number quantity of DNN.

At the end of any HPO algorithm, the last few DNNs free the GPUs but they take various amounts of time to terminate,
this explains why we do measure not a perfect usage of GPUs of Random Search and Hyperband. Hyperband emphasis

this phenomenon because the early stopping increases the variability of time took between DNNss.
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9 trials 100 epochs 30 trials 30 epochs
acc (%) duration speed up #epochs gpu (%) |acc (%) duration speed up #epochs gpu (%)
RS 6GPUs 67.08 + 3.85 10h13 6.2 900 85 64.90+-0.92 11h40 5.5 900 82
HB 6GPUs 5h438 4.4 710 49 1h40 5.2 388 62
HB 4nodes*6GPUs 62.58 £ 4.73 2h00 8.8 710 33 6294 +5.28 0h438 10.9 388 34
GA 6GPUs 61.85 + 2.55 14h29 2.8 900 27 65.33 + 2.33 10h01 4.1 900 57

Table 1. Limited scale benchmarks of some HPO algorithms. Hyperband was set up with a halving of 3 and the genetic number of
trials is divided into 3 successive generations. The columns from the left to the right are: The accuracy error which is not dependant
on the number of resources, the duration of the HPO process, the speed up measured compared to the single GPU version, the
#epochs is the number of train iteration performed, the mean percentage of occupied GPU during all the entire HPO process.

Data  Budget RS HB BOGP BOHB SMAC TPE GA

20 31.26 27.8 31.58 29.24 24.44 2997 2461
40 24.24  22.87 28.2 25.6 2297  26.01 2291
60 2227 2185 2691 23.53 22.65 2544 21.51
€100 80 22.69 21.73 26.2 22.58 2217 2425 21.07
120 21.63 2155 24.78 21.86 2217 23.03  21.95
160 20.11  21.11  24.24 21.64 21.87 2247 2191
240 20.7  20.46 23.76 21.2 21.87 2255 2191
320 20.64 20.42  23.76 21.1 21.87 2246 2191
125 1345 11.93 14.44 12.18 10.27 1391 10.33
250 10.98 9.82 10.93 11.71 9.63 10.66  9.71
Micro 375 10.84  9.32 9.93 10.5 9.45 10.49 9.5
500 10.23 8.91 9.93 9.84 9.27 9.06 9.28
750 9.7 8.87 9.21 9.28 9.18 9.3 9.18
1000 9.69 8.46 8.77 8.8 9.09 9.21 9.07

Table 2. Our workflow error (%) by comparing seven HPO algorithms was run on both datasets for 6 days on 6 GPUs. Each HPO
generates a library of models for a given dataset. The budget is expressed as "sum of DNNS times (seconds) to predict 2K images on 1
GPU"

3.22 HPO to produce ensembles. We compare in table 2 our presented workflow by varying the HPO algorithm
to generate a different library of models. Random Search (RS) [2], asynchronous Hyperband (HB) [34], Bayesian
Optimization with Gaussian Processes (BOGP) [22], BOHB, Sequential Model-based Algorithm Configuration (SMAC)
[24], Tree Parzen Estimator (TPE) [3], Genetic Algorithm (GA). To combine generated models, we benchmark them
with the SMOBF greedy ensemble selection algorithm. We benchmark three times each algorithm and we show the
median value of each computing. When the budget is relaxed we observe the standard deviation is generally lower than
0.1%. When the budget is lower the standard deviation is lower than 1.5%.

Not surprisingly, when the budget increases the ensemble selection can find better ensembles from any library. This
is explained by the fact that the number of available good combinations between them increases. In the table 2 some
algorithms converge and do not found better ensembles after high budgets such as the Bayesian method and genetics
ones. Different run time shows similar conclusion. On both datasets, the best ensemble is found with Hyperband. 79.44%
accurate on CIFAR100 and 91.54% accurate on microfossils. We do not show results of AutoML without ensembling
compared to AutoML+ensembling due to a lack of space, but AutoML+ensembling is Pareto dominant for all budgets

and all performed run times.
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3.2.3  Effect of tuning time. In AutoML we often want to see the evolution of performance over the tuning time, not
only the final performance after a time horizon. Therefore, we assess the workflow varying the budgets until it does
not affect the ensemble construction anymore and at different tuning time snapshots. Those figures are presented in
figure 3 4.

First, regarding the benefit of the tuning time, we observe two main trends. When the budget is very small (B=20)
models accuracy converges early to 18, 24, or 48 hours reaching the limit of the hyperparameter optimization with a
little (or without) ensembling. When the budget is bigger the exploding number of available combinations of ensembles
leads to the discovery of better ensembles. The post-hoc ensembling is a promising line of research that deserves more
attention and more understanding of how DNNs interact with each other.

Then, we observe that increasing the budget systematically leads to an increasing accuracy (colored lines are rarely
crossed) but this trend decline. For example, in the figure 3 we show that when Hyperband is finished, the benefit is
obvious from 1 to 2 models: +5 point of accuracy percentage, but the improvement is small from B=120 to B=320: +1

point of accuracy percentage.

3.3 step 2 - Ensemble Selection

3.3.1 Ensemble selection pruning. We try multiple pruning factors X such X% only the top X% are kept. It reduces the
size of the library of models and thus helps the ensemble selection algorithm. When the pruning factor is above 20% it
does not reduce accuracy and reduce the ensemble selection time, while the threshold under 15% reduces the target

metric in some experiments. For all experiments, the pruning factor is set to 20%.

3.3.2 Ensemble selection methods under budget. The literature [48] indicates the diversity is of high importance to
increase ensemble machine learning. The relationship between models diversity and the accuracy of their combination
is not fully understood [29] but the methods exploring automatically the ensemble space from a library of models and
returning the most promising ensemble have been proposed [6] [53] but as far we know we are the first to propose a

multi-objective with a budget to suit with a heterogeneous ensemble of DNNs.

3.3.3 SMOBF greedy compared to Forward greedy (baseline). The ensemble selection algorithm often used by most
advanced AutoML software [6] [14] is forward greedy with fixed number of models that we pick as baseline. We perform
three runtimes of the overall AutoML workflow and observe that SMOBF is Pareto dominant or equivalent to the

baseline each time.
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The figures 5, 6 compares those two algorithms in function of the cost (vertically) and the error rate (horizontally) of
produced ensembles with SMOBF greedy (blue) and the baseline (orange) on one runtime. On figures the mention "BX"

means a budget of X and "#Y" means an ensemble of size Y.
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Fig. 5. Ensembles generated from Hyperband algorithm on Fig. 6. Ensembles generated from Hyperband algorithm on
the CIFAR100 dataset the microfossils dataset

The gain of SMOBF is particularly obvious when the budget is small on both criteria, but it is reduced when the
budget is relaxed. Indeed, when we target the best ensemble at any cost or any size, the objective of the two algorithms
converges. On the opposite when the budget is small, SMOBF informs the greedy algorithm to go toward efficient

models before the budget is consumed.

3.3.4 Assessing ensemble combiners. During the ensemble selection process, we try three ways to best combine a
candidate ensemble: majority voting, averaging, and weighted averaging (or equivalently Ensemble Selection with
replacement). Results are not shown due to the lack of space but discussed.

On 6 ensembles of different sizes and different libraries of models, majority voting has shown to be inferior each time.
It appears that naively averaging predictions is a simpler method and performs as well as weighted averaging them. We
can explain this result by the fact that the validation information is already used during the ensemble construction, so

the weights tuned on this validation set are over-fitted.

3.4 step 3 - Ensemble allocation for serving

Table 3 shows the performance in terms of prediction performance of 2 DNNs ensembles. The first one was generated
with B=80 on CIFAR100 datasets it contains 7 DNNs. The second one with B=375 on the microfossils dataset containing
14 DNNSs.

In addition to those benchmarks, we analyzed how DNNs are allocated. We observe in both ensembles, that when
we increase the number of GPUs, the CPU is quickly not used anymore. Indeed, the CPU is only used for its greater
memory capacity. We observe also that bigger models are often put alone in one GPU but smaller ones are co-localized,
it is quite intuitive in terms of memory and GPU cores. Furthermore, when multiple models are in the same GPU, the
batch size is chosen smaller. We observe also a bigger batch size on the CPU than on the GPU. Moreover, the second
algorithm produces always a speed up but this speed is strongly dependent on the ensemble size and the available
resources (from factor 10 to a few %) confirming the usefulness of the second algorithm. The ensemble of 7 models
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#gpus 7 DNNs on CIFAR100 14 DNNs on microfossiles
(+1cpu) | algol algol+algo2 | algol algol+algo2

0 11 13 20 28

1 35 79 40 59

2 40 411 150 199

3 290 788 167 213

4 325 789 176 232

5 375 791 198 244

6 355 791 203 252

Table 3. We benchmark the predictions/seconds of an ensemble of 7 models and another of 14 models. The first one was generated
with B=80 and the second one B=375

shows that the increase of GPUs plateaus after 3 GPUs, in the second ensemble we do not see yet a plateau with 6 GPUs.
Those results teach us that to serve efficiently an ensemble of DNNs we do not need systematically as much as GPUs as
DNNE.

4 BASELINE COMPARISON

We report in figure 4 results of authors running until convergence multiple AutoML methods with diverse theoretical
backgrounds [31], [46], [57]. We run the Auto-Keras framework version 1.0.12 with one single GPU and default settings,
except the max_trials set to 10. We notice no improvement when max_trials is set to 20. We report our proposed
workflow results and some intermediate scores over time.

The comparison between AutoML methods is known to be difficult because authors explore different search spaces,
with different initial conditions, different data processing, and ensembles, however, we observe two main trends. The first
block of rows AutoML methods converging fast in several GPU hours which often explore the neural architecture space
sequentially on one GPU. The second block is evolution-based algorithms that converge later, their population-based
approach allows to easily leverage GPU clusters. Asynchronous Hyperband is still not widely used.

As evolutionary methods, our method can benefit from high computing power. In comparison, asynchronous
Hyperband does not require intermediate stopping of all GPUs which makes it more suitable to use GPU clusters
compared to a sequence of generations. Also, in the large-scale case where the number of available GPUs is superior to
the number of trials, Hyperband can run all trials at the same time, while genetics is limited by running all trials of the
current generation.

Furthermore, Hyperband has low settings requirements. It uses early stopping which reduces the sensibility to the
#trials/#epochs dilemma. Also, the exploration/exploitation of the hyperparameter space is balanced by stopping a
fraction of less promising trials, so only the halving factor is needed. Evolutionary methods require much more initial
settings such as the number of generations, the crossover operation, the mutation operation. They make this algorithm
sensitive to the initial choices and so the settings calibrated for an application cannot be suited for a new application.

We try our best to do a fair comparison by using the same dataset. However, different data processing, different
hardware, different initial settings can have an important impact on experimental results. We do not perform cutout
and yet it seems effective processing on CIFAR100. Finally, we recall that with the given time horizon of 36GPU/hours
visible in figure 5 and figure 6, Hyperband+SMOB greedy has not yet converged.

12



A Deep Neural Networks ensemble workflow from hyperparameter search to inference leveralgitg G81h20Rtkmsuary 12-14, 2022, Virtual Event, Japan

Method ‘ #GPU hours Cumh GPU name ‘ #DNNs ‘ Test(%)
RSPS [35] 1 2 2 GTX1080TI 1 52.31+5.77
DARTS-V1 [39] 1 3 3 GTX1080TI 1 15.03+0.00
DARTS-V2 1 10 10 GTX1080TI 1 15.03+0.00
GDAS [13] 1 9 9 GTX1080TI 1 71.34+0.34
SETN [12] 1 10 10 GTX1080TI 1 58.86+0.06
ENAS [44] 1 4 4 GTX1080TI 1 13.37+2.35
Auto-Keras [25] 1 2 2 Tesla V100 1 69.57+0.53
LSE [46] 250 264 66K ? ? 77.0
CNN-GA [57] 3 320 960 GTX1080TI 1 77.97
CNN-GA+cutout [57] 3 320 960 GTX1080TI 1 79.47
Ours with B=320 6 6 36 Tesla V100 4 72.39
Ours with B=320 6 24 144 Tesla V100 18 77.35
Ours with B=320 6 144 864 Tesla V100 34 79.44

Table 4. The comparison between AutoML algorithms in terms of the classification accuracy (%) and GPU hours on CIFAR100
benchmark dataset. The "?" mention means the information is missing in the paper. Column from left to right are: the name of
the method, the number of GPUs used, duration of the algorithm (hours), cumulated time, GPU name, number of models (1=no
ensembling) , mean test accuracy

5 FUTURE WORKS

To speed up the inference service of an ensemble, they are two ways, either running SMOBF with a lower budget to
build another light ensemble or running post-training network optimization on each DNN. Post-training optimization
is an active field of research, such as weights pruning [32] and weights quantization [20], [41]. All these methods may
have a low or no impact on the accuracy.

In those experiments, we use the Tensorflow inference engine (".pb" file format), which is both compatible with GPUs
and CPUs. Some inference engine frameworks perform post-training optimization and platform-specific optimizations
such as OpenVINO [15] for Intel CPUs and TensorRT [11] for Nvidia GPUs.

Those lines of research should again increase the effectiveness and popularize the automatic construction of a

heterogeneous ensemble of DNNs with a smart allocation strategy.

CONCLUSION

Due to the increasing number of new Deep Learning applications and datasets, Auto Machine Learning (AutoML)
methods are an important line of research. We propose an AutoML workflow capable to tune, train, ensembling, and
deploy DNNs automatically but that runs a heavy workload at each stage. We aim to fill the gap between Machine
Learning researches, the new GPU clusters, and the end-user application quality of service. To go toward this direction,
we formulate the problems by aiming at the accuracy, the inference speed, and the flexibility of the underlying
heterogeneous infrastructure.

First, we presented the experimental results demonstrating that asynchronous Hyperband is suitable for parallelism
and generates the best library of models to ensemble them. We then propose a new Ensemble Selection strategy that
allows controlling the final ensemble computing cost of heterogenous DNNs. When the budget is relaxed, our algorithm
offers high and robust accuracy compared to other AutoML workflows. Finally, we propose a solution to the complex
allocation problem of DNNs into GPUs to democratize heterogeneous ensembles even if the number of DNNs is larger
than the number of GPUs.
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The history of Machine Learning is correlated to the available computing power. Since the emergence of multi-core
processors in the 2000s allowed to stride from simple statistical models (e.g., decision tree) to machine learning based
on ensemble (e.g., Random Forest). Then, GPGPU allows to stride from non-deep machine learning using a few cores to
deep learning using hundreds of cores. GPU clusters are undoubtedly the dawn of a new era for future deep learning

methods such as AutoML with ensembling.

Acknowledgement. We would like to thank TotalEnergies SE and its subsidiaries for allowing us to share this material

and make available the needed resources.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael
Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden,
Martin Wicke, Yuan Yu, and Xiaogiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation (Savannah, GA, USA) (OSDI’'16). USENIX Association, USA, 265-283.

[2] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 13 (2012), 281-305. http://dblp.uni-
trier.de/db/journals/jmlr/jmlr13.html#BergstraB12

[3] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balazs Kégl. 2011. Algorithms for Hyper-Parameter Optimization. In Advances in Neural
Information Processing Systems 24, J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger (Eds.). Curran Associates, Inc.,
2546-2554. http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf

[4] Gavin Brown, Jeremy Wyatt, Rachel Harris, and Xin Yao. 2005. Diversity Creation Methods: A Survey And Categorisation. Information Fusion 6 (03
2005), 5-20. https://doi.org/10.1016/].inffus.2004.04.004

[5] Rich Caruana, Art Munson, and Alexandru Niculescu-Mizil. 2006. Getting the Most Out of Ensemble Selection. Proceedings - IEEE International
Conference on Data Mining, ICDM, 828-833. https://doi.org/10.1109/ICDM.2006.76

[6] Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. 2004. Ensemble Selection from Libraries of Models. In Proceedings of the
Twenty-First International Conference on Machine Learning (Banff, Alberta, Canada) (ICML '04). Association for Computing Machinery, New York,
NY, USA, 18. https://doi.org/10.1145/1015330.1015432

[7] Maria V. Sainz de Cea, David Gruen, and David Richmond. 2021. Pneumoperitoneum Detection In Chest X-Ray By A Deep Learning Ensemble With
Model Explainability. In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). 1637-1641. https://doi.org/10.1109/ISBI48211.2021.
9434122

[8] Boyuan Chen, Harvey Wu, Warren Mo, Ishanu Chattopadhyay, and Hod Lipson. 2018. Autostacker: A Compositional Evolutionary Learning System.
In Proceedings of the Genetic and Evolutionary Computation Conference (Kyoto, Japan) (GECCO ’18). Association for Computing Machinery, New
York, NY, USA, 402-409. https://doi.org/10.1145/3205455.3205586

[9] Francois Chollet. 2017. Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2017), 1800-1807.

[10] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt
Schiele. 2016. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[11] Pooya Davoodi, Chul Gwon, Guangda Lai, and Trevor Morris. 2019. “TensorRT inference With TensorFlow”. GPU Technology Conference.

[12] Xuanyi Dong and Yi Yang. 2019. One-Shot Neural Architecture Search via Self-Evaluated Template Network. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV).

Xuanyi Dong and Yi Yang. 2019. Searching for a Robust Neural Architecture in Four GPU Hours. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR).

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated

[13

[14

Machine Learning. In Advances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (Eds.).
Curran Associates, Inc., 2962-2970. http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf

[15] Yi Ge and Monique Jones. 2018. Inference With Intel. AI DevCon 2018.

[16] Hui Guan, Laxmikant Kishor Mokadam, Xipeng Shen, Seung-Hwan Lim, and Robert Patton. 2020. FLEET: Flexible Efficient Ensemble Training
for Heterogeneous Deep Neural Networks. In Proceedings of Machine Learning and Systems, 1. Dhillon, D. Papailiopoulos, and V. Sze (Eds.), Vol. 2.
247-261. https://proceedings.mlsys.org/paper/2020/file/ed3d2c21991e3bef5e069713af9fa6ca-Paper.pdf

[17] Antonio Gulli and Sujit Pal. 2017. Deep learning with Keras. Packt Publishing Ltd.

[18

Isabelle Guyon, Lisheng Sun-Hosoya, Marc Boullé, Hugo Jair Escalante, Sergio Escalera, Zhengying Liu, Damir Jajetic, Bisakha Ray, Mehreen
Saeed, Michéle Sebag, Alexander Statnikov, Wei-Wei Tu, and Evelyne Viegas. 2019. Analysis of the AutoML Challenge Series 2015-2018. Springer
International Publishing, Cham, 177-219. https://doi.org/10.1007/978-3-030-05318-5_10

14


http://dblp.uni-trier.de/db/journals/jmlr/jmlr13.html#BergstraB12
http://dblp.uni-trier.de/db/journals/jmlr/jmlr13.html#BergstraB12
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
https://doi.org/10.1016/j.inffus.2004.04.004
https://doi.org/10.1109/ICDM.2006.76
https://doi.org/10.1145/1015330.1015432
https://doi.org/10.1109/ISBI48211.2021.9434122
https://doi.org/10.1109/ISBI48211.2021.9434122
https://doi.org/10.1145/3205455.3205586
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
https://proceedings.mlsys.org/paper/2020/file/ed3d2c21991e3bef5e069713af9fa6ca-Paper.pdf
https://doi.org/10.1007/978-3-030-05318-5_10

A Deep Neural Networks ensemble workflow from hyperparameter search to inference leveralgitg G81h20Rtkmsuary 12-14, 2022, Virtual Event, Japan

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]

[30

[31

[32]

[33

[34

[35]

[36]

[37

[38
[39]

[40]

(41

[42]

Shahzeb Haider, Adnan Akhunzada, Iqgra Mustafa, Tanil Bharat Patel, Amanda Fernandez, Kim-Kwang Raymond Choo, and Javed Igbal. 2020.
A Deep CNN Ensemble Framework for Efficient DDoS Attack Detection in Software Defined Networks. IEEE Access 8 (2020), 53972-53983.
https://doi.org/10.1109/ACCESS.2020.2976908

Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and
Huffman Coding. In 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.).

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 770-778. https://doi.org/10.1109/CVPR.2016.90

Matthew Hoffman, Eric Brochu, and Nando de Freitas. 2011. Portfolio Allocation for Bayesian Optimization. In Proceedings of the Twenty-Seventh
Conference on Uncertainty in Artificial Intelligence (Barcelona, Spain) (UAI'11). AUAI Press, Arlington, Virginia, USA, 327-336.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. 2017. Densely Connected Convolutional Networks. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2261-2269. https://doi.org/10.1109/CVPR.2017.243

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential model-based optimization for general algorithm configuration. In
International conference on learning and intelligent optimization. Springer, 507-523.

Haifeng Jin, Qingquan Song, and Xia Hu. 2019. Auto-Keras: An Efficient Neural Architecture Search System. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (Anchorage, AK, USA) (KDD °19). Association for Computing Machinery, New
York, NY, USA, 1946-1956. https://doi.org/10.1145/3292500.3330648

Travis Johnston, Steven R. Young, David Hughes, Robert M. Patton, and Devin White. 2017. Optimizing Convolutional Neural Networks for Cloud
Detection. In Proceedings of the Machine Learning on HPC Environments (Denver, CO, USA) (MLHPC’17). Association for Computing Machinery, New
York, NY, USA, Article 4, 9 pages. https://doi.org/10.1145/3146347.3146352

Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. International Conference on Learning Representations (12 2014).
Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images. Technical Report.

Ludmila Kuncheva and Chris Whitaker. 2003. Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy.
Machine Learning 51 (05 2003), 181-207. https://doi.org/10.1023/A:1022859003006

Erin LeDell and Sebastien Poirier. 2020. H20 AutoML: Scalable Automatic Machine Learning. 7th ICML Workshop on Automated Machine Learning
(AutoML) (July 2020). https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf

Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You, Qixuan Yu, Yue Wang, Cong Hao, and Yingyan Lin. 2021.
{HW}-{NAS}-Bench: Hardware-Aware Neural Architecture Search Benchmark. In International Conference on Learning Representations. https:
//openreview.net/forum?id=_0kaDkv3dVf

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2017. Pruning Filters for Efficient ConvNets. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net. https:
//openreview.net/forum?id=rJqFGTslg

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. 2017. Hyperband: A Novel Bandit-Based Approach to
Hyperparameter Optimization. 18, 1 (1 2017), 6765-6816.

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan Ben-tzur, Moritz Hardt, Benjamin Recht, and Ameet Talwalkar. 2020. A
System for Massively Parallel Hyperparameter Tuning. In Proceedings of Machine Learning and Systems, I. Dhillon, D. Papailiopoulos, and V. Sze
(Eds.), Vol. 2. 230-246. https://proceedings.mlsys.org/paper/2020/file/f4b9ec30ad9f68£89b29639786cb62ef-Paper.pdf

Liam Li, Mikhail Khodak, Nina Balcan, and Ameet Talwalkar. 2021. Geometry-Aware Gradient Algorithms for Neural Architecture Search. In
International Conference on Learning Representations. https://openreview.net/forum?id=MuSYkd1hxRP

Liam Li and Ameet Talwalkar. 2020. Random Search and Reproducibility for Neural Architecture Search. In Proceedings of The 35th Uncertainty in
Artificial Intelligence Conference (Proceedings of Machine Learning Research, Vol. 115), Ryan P. Adams and Vibhav Gogate (Eds.). PMLR, 367-377.
http://proceedings.mlr.press/v115/1i20c.html

Yuansong Liao and John Moody. 1999. Constructing Heterogeneous Committees Using Input Feature Grouping: Application to Economic Forecasting.
(1999), 921-927.

Richard Liaw. 2019. A Guide to Modern Hyperparameters Turning Algorithms. In PyData Los Angeles.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2019. DARTS: Differentiable Architecture Search. In International Conference on Learning
Representations. https://openreview.net/forum?id=S1eYHoC5FX

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I
Jordan, and Ion Stoica. 2018. Ray: A Distributed Framework for Emerging AI Applications. In Proceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation (Carlsbad, CA, USA) (OSDI'18). USENIX Association, USA, 561-577.

Deniz Oktay, Johannes Ballé, Saurabh Singh, and Abhinav Shrivastava. 2020. Scalable Model Compression by Entropy Penalized Reparameterization.
In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. https://openreview.
net/forum?id=HkgxWOEYDS

Christopher Olston, Fangwei Li, Jeremiah Harmsen, Jordan Soyke, Kiril Gorovoy, Li Lao, Noah Fiedel, Sukriti Ramesh, and Vinu Rajashekhar. 2017.
TensorFlow-Serving: Flexible, High-Performance ML Serving. Workshop on ML Systems at NIPS 2017.

15


https://doi.org/10.1109/ACCESS.2020.2976908
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1145/3292500.3330648
https://doi.org/10.1145/3146347.3146352
https://doi.org/10.1023/A:1022859003006
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://openreview.net/forum?id=_0kaDkv3dVf
https://openreview.net/forum?id=_0kaDkv3dVf
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg
https://proceedings.mlsys.org/paper/2020/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://openreview.net/forum?id=MuSYkd1hxRP
http://proceedings.mlr.press/v115/li20c.html
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=HkgxW0EYDS
https://openreview.net/forum?id=HkgxW0EYDS

HPC Asia2022, January 12-14, 2022, Virtual Event, Japan Pochelu et al.

[43] Sudipta Pathak, Xingyu Cai, and Sanguthevar Rajasekaran. 2018. Ensemble Deep TimeNet: An Ensemble Learning Approach with Deep Neural
Networks for Time Series. In 2018 IEEE 8th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS). 1-1.
https://doi.org/10.1109/ICCABS.2018.8541985

[44] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Efficient Neural Architecture Search via Parameters Sharing. In Proceedings of
the 35th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.).
PMLR, 4095-4104. https://proceedings.mlr.press/v80/pham18a.html

[45] Lutz Prechelt. 1998. Early Stopping-But When?. In Neural Networks: Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS Workshop.
Springer-Verlag, Berlin, Heidelberg, 55-69.

[46] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V. Le, and Alexey Kurakin. 2017. Large-Scale
Evolution of Image Classifiers. In Proceedings of the 34th International Conference on Machine Learning - Volume 70 (Sydney, NSW, Australia)
(ICML’17). JMLR.org, 2902-2911.

[47] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical Bayesian Optimization of Machine Learning Algorithms. In Advances in Neural
Information Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.), Vol. 25. Curran Associates, Inc., 2951-2959.
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf

[48] Peter Sollich and Anders Krogh. 1995. Learning with ensembles: How overfitting can be useful. 8 (01 1995), 190-196.

[49] Gang Sun, Jianqiao Liu, Wei Mengxue, Wang Zhongxin, Zhao Jia, and Guan Xiaowen. 2020. An Ensemble Classification Algorithm for Imbalanced
Text Data Streams. In 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). 1073-1076. https://doi.org/10.
1109/ICAICA50127.2020.9182576

[50] Qingqiang Sun and Zhigiang Ge. 2021. Deep Learning for Industrial KPI Prediction: When Ensemble Learning Meets Semi-Supervised Data. IEEE
Transactions on Industrial Informatics 17, 1 (2021), 260-269. https://doi.org/10.1109/TIL.2020.2969709

[51] Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International
Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR,
6105-6114. https://proceedings.mlr.press/v97/tan19a.html

[52] Chris Thornton, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. 2012. Auto-WEKA: Combined Selection and Hyperparameter Optimization
of Classification Algorithms. KDD (08 2012). https://doi.org/10.1145/2487575.2487629

[53] Grigorios Tsoumakas, Ioannis Partalas, and I. Vlahavas. 2008. A Taxonomy and Short Review of Ensemble Selection. ECAI 2008, Workshop on
Supervised and Unsupervised Ensemble Methods and Their Applications (01 2008).

[54] D.H. Wolpert and W. G. Macready. 1997. No Free Lunch Theorems for Optimization. Trans. Evol. Comp 1, 1 (4 1997), 67-82. https://doi.org/10.1109/
4235.585893

[55] Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. 2017. Aggregated Residual Transformations for Deep Neural Networks. In
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 5987-5995. https://doi.org/10.1109/CVPR.2017.634

[56] Tianhao Xu. 2020. “Deep into Triton Inference Server: BERT Practical Deployment on NVIDIA GPU”. GPU Technology Conference.

[57] Sun Yanan, Xue Bing, Zhang Mengjie, Yen Gary G., and Lv Jiancheng. 2020. Automatically Designing CNN Architectures Using the Genetic

Algorithm for Image Classification. IEEE Transactions on Cybernetics 50, 9 (2020), 3840-3854. https://doi.org/10.1109/TCYB.2020.2983860

Sergey Zagoruyko and Nikos Komodakis. 2016. Wide Residual Networks. In Proceedings of the British Machine Vision Conference 2016 (BMVC 2016),

Richard C. Wilson, Edwin R. Hancock, and William A. P. Smith (Eds.). BMVA Press. http://www.bmva.org/bmvc/2016/papers/paper087/index.html

Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. 2016. Accelerating Very Deep Convolutional Networks for Classification and Detection.

IEEE Trans. Pattern Anal. Mach. Intell. 38, 10 (Oct. 2016), 1943-1955. https://doi.org/10.1109/TPAMI.2015.2502579

[58

[59


https://doi.org/10.1109/ICCABS.2018.8541985
https://proceedings.mlr.press/v80/pham18a.html
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://doi.org/10.1109/ICAICA50127.2020.9182576
https://doi.org/10.1109/ICAICA50127.2020.9182576
https://doi.org/10.1109/TII.2020.2969709
https://proceedings.mlr.press/v97/tan19a.html
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.1109/TCYB.2020.2983860
http://www.bmva.org/bmvc/2016/papers/paper087/index.html
https://doi.org/10.1109/TPAMI.2015.2502579

A Deep Neural Networks ensemble workflow from hyperparameter search to inference leveralgitg G81h20Rtkmsuary 12-14, 2022, Virtual Event, Japan

A EXPERIMENTAL DATA SET AND HYPERPARAMETER SETTINGS

This section describes machine learning experiments for reproducibility purposes.

A.1 The two datasets used

The CIFAR100 dataset. CIFAR100 [28] consists to 60,000 32x32 RGB images in 100 classes. For each class, there are
580 training images, 20 validation images and 100 testing images.

The Microfossils dataset. Microfossils are extremely useful in age dating, correlation, and paleo-environmental
reconstruction to refine our knowledge of geology. Microfossil species are identified and counted on large microscope
images and thanks to their frequencies we can compute the date of sedimentary rocks.

To do reliable statistics, a big number of objects needs to be identified. That is why we need deep learning to automate
this work. Today, thousands of fields of view (microscopy imagery) need to be shot for 1 rock sample. In each field of
view, there are hundreds of objects to identify. Among these objects, there are non-fossils (crystals, rock grains, etc...)
and others are fossils that we are looking for to study rocks.

Our dataset contains 91 classes of 224x224 RGB images (after homemade preprocessing). Microfossils are calcareous
objects took with polarized light microscopy. The classes are unbalanced, we have from 50 images to 2500 images by
class, with a total of 32K images in all the datasets. The train/validation/test split is as following: 72% 8% 20%. The F1

score was used and labeled as "accuracy’ on all benchmarks.

A.2 Hyperparameter configuration space

Table 5 shows all hyperparameters properties in this workflow. We use ResNet-based architectures due to their simplicity
to yield promising and robust models on many datasets. We explore different residual block versions: "V1", "V2" [21]
and "next" [55]. Regarding the optimization method, we use Adam optimizer [27] due to its well-known performance
and its lower learning rate tuning requirement.

The simplicity of the ResNet architecture makes this work easy to test by a scientist on its image dataset [58].
Exploring other convolutional block type like VGG [59], Xception [9], DenseNet [23] and EfficientNet [51] are potential
improvement which could increase the degree of liberty in DNNs construction and improve again the accuracy of
ensembles.

The CIFAR100 dataset contains 32x32 images while usually ResNet is adapted to be used on ImageNet (224x244
images). Those different resolutions need some adaptation. Therefore, on the CIFAR100 case, the first convolutional
network is replaced from the 7x7 kernel size with a stride of 2, to a 3x3 kernel size with a stride of 1. With equivalent
settings, our CNN framework produces nearly the same number of weights between the CIFAR100 and microfossils

dataset, but the time complexity is factor 11 different because of different signal resolutions flowing through the layers.
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Category Name Type Range
Learning rate Continuous  [0.001; 0.01]
Optimization Batch size Discrete [8; 48]
L2 regularization factor Continuous [0;0.1]
Convolution type Categorical ~ {v1,v2,next}
Activation function Categorical  {tanh,relu,elu}
NN Number of filters in the first convolutional layer Discrete [32; 128]
architecture Multiplier of filters in the 4 blocks Discrete [32; 128]
Number of convolutional block in the first stage Discrete [1;11]
Number of convolutional block in the second stage Discrete [1;11]
Number of convolutional block in the third stage Discrete [1;11]
Number of convolutional block in the fourth stage Discrete [1;11]
Max zoom Continuous [0; 0.6]
Data Max translation Continuous [0; 0.6]
augmentation Max shearing Continuous [0; 0.3]
Max channel shifting Continuous [0; 0.3]
Max rotation measured in degrees Discrete [0; 90]

Table 5. The hyperparameter space experimented based on the ResNet neural architecture framework
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