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ABSTRACT
Powered by advances in deep learning (DL) techniques, machine

learning and artificial intelligence have achieved astonishing suc-

cesses. However, the rapidly growing needs for DL also led to

communication- and resource-intensive distributed training jobs

for large-scale DL training, which are typically deployed over GPU

clusters. To sustain the ever-increasing demand for DL training,

the so-called “ring-all-reduce” (RAR) technologies have recently

emerged as a favorable computing architecture to efficiently process

network communication and computation load in GPU clusters.

The most salient feature of RAR is that it removes the need for

dedicated parameter servers, thus alleviating the potential com-

munication bottleneck. However, when multiple RAR-based DL

training jobs are deployed over GPU clusters, communication bot-

tlenecks could still occur due to contentions between DL training

jobs. So far, there remains a lack of theoretical understanding on

how to design contention-aware resource scheduling algorithms

for RAR-based DL training jobs, which motivates us to fill this gap

in this work. Our main contributions are three-fold: i) We develop

a new analytical model that characterizes both communication

overhead related to the worker distribution of the job and commu-

nication contention related to the co-location of different jobs; ii)

Based on the proposed analytical model, we formulate the problem

as a non-convex integer program to minimize the makespan of all

RAR-based DL training jobs. To address the unique structure in this

problem that is not amenable for optimization algorithm design,

we reformulate the problem into an integer linear program that

enables provable approximation algorithm design called SJF-BCO

(Smallest Job First with Balanced Contention and Overhead); and iii)

We conduct extensive experiments to show the superiority of SJF-

BCO over existing schedulers. Collectively, our results contribute

to the state-of-the-art of distributed GPU system optimization and

algorithm design.

CCS CONCEPTS
•Computingmethodologies→Distributed algorithms; •Net-
works→ Network performance analysis.
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1 INTRODUCTION
Background and Motivation: In recent years, the rise of deep

learning has driven an ever-increasing need for large-scale dis-

tributed training in GPU clusters, which leverages massive par-

allelism to speed up the training processes. This has been evi-

denced by the popularity of several prevailing distributed deep

learning (DDL) frameworks (e.g., TensorFlow [1] and PyTorch [12]).

In these DDL frameworks, the traditional and most widely adopted

computing-networking structure is based on the sever-worker (SW)

architecture, where DDL training jobs are decomposed into and

executed in parallel by a set of workers under the coordination of a

parameter server. However, as the number of workers increases, the

SW architecture suffers from serious scalability limitations since

the server acts as a communication bottleneck and a single-point-of-

failure. To address the scalability limitations of the SW architecture,

the ring-all-reduce (RAR) [13] architecture has attracted increasing

attention in recent years. The key idea of RAR is that, by forming

a ring and working collaboratively, the workers can update the

learning model parameters without needing any parameter server,

thus removing the communication bottleneck and alleviating the

single point of failure. Moreover, it can be shown that the RAR

architecture enjoys the highly desirable “bandwidth optimality” in

the sense that, as the number of workers increases, the amount of in-

formation exchanged in the network is asymptotically independent
of the number of workers (see Section 3 for details).

However, despite all these salient features, the performance of

deploying RAR-based training jobs in multi-tenant GPU clusters

remains far from being satisfactory in practice [19]. The fundamen-

tal reason is that the bandwidth optimality of RAR architecture

only happens when there is only a single training job in the sys-

tem (i.e., a contention-free environment). In a multi-tenant GPU

cluster, however, such an ideal contention-free condition is rarely

satisfied. As a result, significant communication bottleneck links

could occur when deploying RAR-based training jobs in the system.

For example, researchers in [19] have found that on a cluster of

four-GPU servers connected by 10 Gbps Ethernet, when only one
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RAR training job is executed with four GPUs in the cluster, the job

completion time is 295 seconds. In comparison, when four jobs of

the same type are executed simultaneously with each job still using

four GPUs but scheduled across GPU servers, each job’s completion

time dramatically increases to 675 seconds due to the extensive

communication contention. These empirical performance results

of RAR indicate that developing efficient and effective scheduling

for RAR-based DDL training jobs is well warranted to mitigate

contention-induced communication bottlenecks. However, in the

literature so far, there remains a lack of theoretical understanding

on how to design contention-aware resource scheduling algorithms

for RAR-based DDL training jobs. In light of the rapidly growing

importance of RAR-based DDL deployment, our goal in this paper is

to fill this gap and develop contention-aware scheduling algorithms

for RAR-based training jobs in multi-tenant GPU clusters.

Technical Challenges:We note, however, that due to a number

of technical difficulties, developing contention-aware scheduling

algorithms for RAR-based DDL jobs in multi-tenant GPU clusters

is highly challenging. First and foremost, just as any network opti-

mization problems that deal with contentions and interferences, the

completion time of an RAR-based training job depends not only on

its resource allocation decisions (i.e., the number of ring-forming

workers and their locality), but also on the number of concurrent
RAR-based DDL jobs that (partially or completely) share the com-

munication links of this job. The complex communication coupling

between concurrent RAR-based training jobs renders it intractable
to compute the per-iteration execution time of an RAR-based DDL

job in closed-form. Second, there exists a fundamental trade-off in

terms of job locality. On one hand, co-locating all workers of an

RAR-based DDL job on the same server enjoys a faster intra-server

communication speed, but could lead to resource fragmentation.

On the other hand, spreading the ring of an RAR job over multiple

servers could also result in more contentions of communication

links and overhead in establishing connections between servers.

Last but not least, due to the resource constraints of each server

and the iterative nature of DDL training workload, the resource

allocation decision for each RAR-based training job is subject to a

mix of packing and covering types of constraints, both of which

are known to be NP-hard.

Our Contributions: In this paper, we overcome the above chal-

lenges and design a suite of scheduling algorithmic techniques for

efficient RAR-based DDL training in multi-tenant GPU clusters

with theoretical makespan performance guarantees. The key idea

of our algorithmic design is to transfer the structural complexity

of the intractable per-iteration running evaluation in the original

scheduling problem to the dimensional complexity of an equivalent

reformulated problem, which has a much cleaner integer linear

program structure to work with. Our main results and technical

contributions are summarized as follows:

• We first propose a new analytical framework for RAR-based

DDL training resource allocation and scheduling that character-

izes both communication contention and overhead under the

RAR architecture in a multi-tenant GPU cluster. This analytical

modeling serves as the foundation to enable us to formulate the

scheduling optimization framework to minimize the makespan

of all RAR-based training jobs.

• As mentioned earlier, due to the complex resource contentions

and couplings between RAR-based DDL jobs, it is intractable

to determine the closed-form expression for the per-iteration

execution time for each DDL job. To address this challenge,

we further reformulate the original problem into an equivalent

integer problem, which has a cleaner problem structure. Do-

ing so allows us to convert the structural complexity of the

original problem to the exponential dimensionality complex-

ity in the reformulated problem, which is more amenable for

low-complexity search-based optimization algorithm design.

• Based on the above problem reformulation, we propose an ef-

ficient scheduling algorithm called SJF-BCO (smallest job first

with balanced contention and overhead) with theoretical ap-

proximation ratio guarantee. We conduct extensive experiments

to verify the performance of our proposed SJF-BCO algorithm

and compare with existing scheduling policies to show the su-

periority of SJF-BCO over these baselines.

Collectively, our results contribute to a comprehensive and fun-

damental understanding of RAR-based DDL resource scheduling

optimization. The roadmap of the rest of the paper is as follows.

In Section 2, we review the related literature. Section 3 present

preliminaries to familiar readers with the necessary background.

Section 4 introduces the system model and problem formulation.

Section 5 demonstrates our algorithms and Section 6 provides their

performance analysis. Section 7 presents numerical results and

Section 8 concludes this paper.

2 RELATEDWORK
As mentioned in Section 1, DDL training job scheduling algorithms

have received growing interest recently. Research in this area aims

to schedule DDL jobs and manage computing resources efficiently

in multi-tenant GPU computing clusters. Early attempts in this field

were mostly heuristic approaches based on empirical observations

and models to conduct the resource scheduling (e.g., [3, 7, 10, 11]).

For example, Gandiva [20] considered GPU time-slicing and job

scheduling by predicting DDL training jobs characteristics. Opti-

mus [14] leveraged performance models through online-fitting to

guide the job scheduling aiming to minimize training completion

time. Rather than using prediction models, another line of research

is to take advantage of the model-less data-riven learning methods

for DDL job scheduling (e.g., [2, 8, 18]). For instance, Harmony [2], a

deep-reinforcement-learning-based scheduler considered minimiz-

ing the job completion time. Hu. et al. [8] designed a new scheduling

framework called Spear to minimize the makespan of jobs by lever-

aging the deep reinforcement learning techniques. However, these

works do not provide theoretical performance guarantee. Also, none

of these works considered RAR-based DDL job scheduling.

The most related work to this paper is GADGET [23], which

characterized RAR-based DDL job scheduling based on the assump-

tion that the bandwidth of each job is reserved. As a result, there

is no need to consider communication contention in [23]. We note

that a limitation of the reserved bandwidth assumption is that it

could lead to resource under-utilization. In contrast, this paper

considers communication contention to avoid this limitation. This,

however, renders the scheduling problem far more challenging.

Lastly, Wang et al. [19] also considered contention under various
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Figure 1: A three-worker illustrative example of the ring-all-
reduce (RAR) process.

all-reduce architectures, including RAR. However, they also relied

on a system-dependent online-fittingmodel to predict the execution

time and did not explicitly formulate any scheduling optimization

problem. Their solution was based on heuristics without theoreti-

cal performance guarantee. In contrast, we develop an analytical

model to facilitate the job scheduling as a rigorous optimization

problem, which in turn entails approximation algorithm design

with theoretical performance guarantee.

3 RING-ALL-REDUCE (RAR)-BASED
DISTRIBUTED LEARNING: A PRIMER

In this section, we provide a quick overview on the RAR-based dis-

tributed learning to familiarize readers with necessary background

and fix the terminologies that are useful in the rest of the paper.

1) SGD-Based Distributed Learning: The training of many

ML problems is typically in the form of an empirical risk mini-

mization (ERM) problem: minw∈Rd L̄(w) ≜
1

P
∑P
i=1

L(w, δi ), where
w contains the model parameters to be learned, L(w, δi ) is a loss
function, and P is the total number of samples. Due to the high-

dimensionality and the large dataset size of many ERM problems

(e.g., in deep learning), the stochastic gradient descent (SGD)method

has become the most widely adopted method. The SGD method

can be written as the following iterative process: wk+1
= wk −

(ηk/Q)
∑
i ∈Qk g

i
k , where ηk denotes the learning rate in the k-th

iteration, Qk represents the mini-batch in the k-th iteration with

|Qk | = Q , and gik is a stochastic gradient based on a random sample

δi ∈ Qk . The finite-sum and mini-batch structure of SGD naturally

lends itself to a distributed implementation in a Q-worker DDL sys-

tem coordinated by a parameter server as follows: First, the dataset

is partitioned by Q workers. In each iteration k , each worker re-

trieves the current model parameters from the server and randomly

draws a sample from its local dataset, and then computes a sto-

chastic gradient (e.g., using the backpropagation method). Then, all

workers send their gradients to the server to be aggregated.

2) The Ring-All-Reduce (RAR) Architecture: It can be seen

from the above discussions that SGD-based distributed learning

naturally implies a server-worker (SW) architecture. However, as

mentioned in Section 1, the SW architecture suffers from scalability

limitations as the number of workers increases. This is because

all workers need to communicate with the server, which creates

a bottleneck. Specifically, a w-worker SW system that solves a d-
dimensional ERM problem requires 2wd amount of data exchange

per iteration (each worker sends and receives a d-dimensional vec-

tors per iteration), which scales linearly with respect tow .

To address this scalability limitation, the RAR [13] has been

proposed to remove the server. Under RAR, the workers form a ring

to exchange and aggregate data collaboratively. For a w-worker

RAR system, each worker splits its stochastic gradient intow sub-

vectors (see Fig. 1 for an example with w = 3). Each iteration of

RAR has 2(w − 1) steps that can be divided into two phases. In the

first phase (steps 1, . . . ,w−1), workers perform gradients reduction

(i.e., summation), where each worker receives a gradient subvector

from its upstream worker and sends its local reduction result to

its downstream worker (Share-Reduce phase). In the second phase

(stepsw, . . . , 2w−2), eachworker circulates its resultant sub-vectors

following the same token to obtain its final resultant gradients

vector (Share-Only phase). Since each worker sends
d
w amount of

data for 2(w−1) times, the total amount of data any worker receives

is
2d (w−1)

w , which is asymptotically independent ofw asw increases

(also referred to as being bandwidth-optimal in the literature).

4 SYSTEM MODEL AND PROBLEM
FORMULATION

In this section, we first introduce our system model in Section 4.1

and then present the problem formulation for RAR-based DDL

scheduling optimization in multi-tenant GPU clusters in Section 4.2.

4.1 System Model
1) Scheduling Model: Consider a multi-tenant GPU cluster that

contains a set of servers S. Each server is equipped with a set of

homogeneous (i.e., of equal computation speed) and synchronized

GPUs. The servers inS are connected by a network and the network

topology can be modeled as a connected graph. In the beginning

of a scheduling horizon T of length |T | = T time-slots, there is a

set of RAR-based DDL jobs J waiting to be scheduled for training

over T . Each job j ∈ J is associated with a number of GPUs G j
and a total number of training iterations Fj from its users, both of

which are requested by its users.
1

1
In practice, to prevent spending excessively long time waiting for the training process

of a DDL job to converge, a maximum number of training iterations is usually given.
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Two concurrent jobs

Job 1 Job 2 Job 1 Job 2
(a) Without communication contention (b) With communication contention

Server 1 Server 2 Server 1 Server 2
No concurrent jobs

Figure 2: An example of worker placement.

In this paper, we consider the “gang-scheduling” discipline that

is widely adopted in practical large-scale GPU clusters [7, 10, 19].

Under gang scheduling, all workers (i.e., GPUs) of an RAR-based

DDL job should be allocated simultaneously.Moreover, once a job

is scheduled to start, all GPUs allocated for this job will run to the

job’s completion and no preemption/migration is allowed.
2
Upon

the job’s completion, the occupied resource will also be released

simultaneously. Each GPU can only be occupied by one worker

of some job at any given time. As shown in Fig. 2, the workers

of a job can be allocated within a single server or across multiple

servers, as long as there exists a path in the underlying network

that connects these workers and forms a ring topology to perform

the RAR process. Note that Fig. 2(a) allocates the workers in the

same server for each job, thus having no communication overhead.

On the contrary, Fig. 2(b) allocates workers across different servers

for each job, which introduces communication contention when

the two jobs happen to perform RAR communication concurrently.

In this system, the control decisions of the scheduler are: i) de-

termine a feasible scheduling for all jobs in J subject to network

resource capacity; and ii) determine each job’s starting time. Specif-

ically, consider an RAR-based DDL job j scheduled withw j workers

and its gradient size ismj . Let yjs [t] ∈ Z
+
denote the number of

GPUs scheduled for job j on server s in time-slot t ∈ T . Then, a
scheduling decision in time-slot t can be fully defined by the vector

y[t] ≜ [yjs [t],∀j, s]. Let aj = arg mint {yjs [t] > 0,∀s} be the start-
ing time of job j (to be determined) by the scheduling and let Tj be
the resultant completion time of job j. Let J[t] ≜ {j |t ∈ [aj ,Tj ]}
represent the set of active jobs (jobs being executed) in time slot t .
Clearly, to satisfy theG j number of GPUs requested for job j during
its training time, we have:∑

s ∈S

yjs [t] = G j , ∀j ∈ J[t], t ∈ T . (1)

Also, scheduling decisions y[t], ∀t are subject to GPU resource

constraints. LetOs represent the GPU capacity of server s . To ensure
that the allocated GPUs do not exceed each server’s limit, we have:∑

j ∈J[t ]

yjs [t] ≤ Os , ∀s ∈ S, t ∈ T . (2)

Also, under the non-preemptive gang scheduling, we have:

yjs [t] = yjs [t − 1], ∀s ∈ S, j ∈ J[t],aj < t ≤ Tj . (3)

Finally, to ensure that no workers should be allocated for non-active

jobs and positive integer number of workers should be assigned to

2
Besides the overhead and complication added for both software and hardware, it

has been shown that frequent job preemption and migration may lead to significant

performance degradation [7].

active jobs, we have:

yjs [t] = 0, ∀s ∈ S, j < J[t], t ∈ T , (4)

yjs [t] ∈ Z
++, ∀s ∈ S, j ∈ J[t], t ∈ T . (5)

2) Communication Contention Modeling: With the above

scheduling model, we are now in a position to present our com-

munication contention model. We assume that no communication

contention will be introduced if at most one server is used for the

job. For example, in Fig. 2(a), jobs 1 and 2 both use intra-server com-

munication and does not incur any communication contention. By

contrast, in Fig. 2(b), jobs 1 and 2 induce communication contention

since they both compete for inter-server link bandwidth between

servers 1 and 2. We let pj [t] denote the largest number of concur-

rently running jobs that share an inter-server communication link

with job j in time slot t , which can be computed as:

pj [t] = max

s ∈S

{
1{0 < yjs [t] < G j }

∑
j′∈J[t ]

1{0<yj′s [t] < G j′}

}
,

∀j ∈ J[t], t ∈ T . (6)

In (6), the first term 1{0 < yjs [t] < G j } indicates that only active

jobs using inter-server communication on server s will be consid-
ered. The second term

∑
j′∈J[t ] 1{0 < yj′s [t] < G j′} represents

the number of different jobs that compete for inter-server com-

munication on server s . Since job j may not be transmitting at all

times (due to switching between communication and computation

modes), we let kj [t] be the actual largest number of contending jobs
on average with job j in time-slot t , which can be assumed to be

statistically linearly proportional to pj [t], i.e.,

kj [t] = ξ1pj [t], ∀j ∈ J[t], t ∈ T , (7)

where ξ1 ∈ (0, 1] is a positive constant.

3) RAR-Based DDL Training Completion Time Modeling:
To evaluate the job completion time Tj of job j, we need to first

characterize the RAR training speed. Note that the per-iteration

RAR operation time of each DDL job can be decomposed into three

parts: i) information exchange time, ii) computation time, and iii)

communication overhead. Next, we will model the operation time

of each part individually.

2-1) Information Exchange Time: We use B {ωj ,1,ωj ,2 }(y[t]) to
denote the bandwidth between two successive workers ωj ,1 and

ωj ,2 in job j’s ring in time-slot t under a scheduling decision y[t],
whereωj ,2 is the downstream worker ofωj ,1. Note that, unlike [23],

we do not reserve bandwidth for each job in this paper, and this

bandwidth is determined by communication contention with other

jobs under the scheduling decisions y[t] (see Fig. 2(b)). We let

Bj (y[t]) ≜ min(ωj ,1,ωj ,2)∈Lj B
{ωj ,1,ωj ,2 }(y[t]) represent the band-

width of the bottleneck link of job j under scheduling decision y[t],
where Lj is the set of all links of job j. Recall from Section 3 that

the amount of information exchanged in each time-slot can be com-

puted as

2mj
w j
(w j−1). Thus, the number of time-slots for information

exchange can be computed as

2mj
w j
(w j − 1)/Bj (y[t]).

Clearly, the bottleneck link of job j occurs in those links that

are shared by the largest number of other concurrently running

jobs. We let be and bi be the link bandwidth between and within

servers, respectively, where bi ≫ be in practice [16, 24]. Recall
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that kj [t] denotes the actual largest number of contending jobs on

average with job j in time-slot t . Ideally, each job on this bottleneck

link has an equal share of bandwidth be/kj [t] under communica-

tion contention. In practice, however, the bandwidth performance

often degrades when multiple jobs compete for a link, which re-

sults in each job having less than be/kj [t] share of bandwidth if

kj [t] ≥ 2 [19]. To model this effect, we use a function f (α ,kj [t]) to
represent the “bandwidth sharing degradation factor” under com-

munication contention, where α ∈ Rd captures all parameters

that could lead to degradation. We assume that f (α ,kj [t]) satis-
fies the following properties: i) f (α , 1) = 1 and ii) f (α ,kj [t]) is
an increasing function of kj [t]. For example, if f (α ,kj [t]) is a lin-
ear function kj [t] + α(kj [t] − 1), then Bj (y[t]) = be/f (α ,kj [t]) =
be/(kj [t] + α(kj [t] − 1)).

Recall that in the special case where all workers of a job j are co-
located within a single server, there is no contention. Further, intra-

server communication is typically enabled by fast interconnect

techniques (e.g., NVLink [4]). Hence, we have Bj (y[t]) = bi .
2-2) Computation Time: To characterize the computation time in

the RAR operation, we use C to denote the computational speed

of a GPU unit (defined as the amount of data processed in each

time-slot). Since there are

mj
w j
(w j − 1) amount of data for reduction

in each RAR operation, the number of time-slots to complete all

reductions can be computed as

mj
w j
(w j − 1)/C . In addition to the

all-reduce operation time, the computation time also includes the

forward pass (FP) time and the backward pass (BP) time to compute

a stochastic gradient. We let ∆
f
j (∆bj ) denote the duration of one FP

(BP) of job j . Note that the FP time is proportional to the mini-batch

sizeMj , which can be calculated as ∆
f
j Mj (the size of a mini-batch

multiplied by the FP processing time of one sample). Meanwhile, the

BP time ∆bj is usually not relevant to the mini-batch sizeMj and is

typically fixed. Thus, the total number of time-slots for per-iteration

computation can be computed as

mj
w j
(w j − 1)/C + ∆

f
j Mj + ∆

b
j .

2-3) Communication Overhead: In practice, it has been observed

that typically, the more servers an RAR-based DDL job uses to

perform the training, the larger the latency due to communication

overhead (e.g., ACK time for message transmission, negotiation

time among all workers before conducting all-reduce [15]) can

be [19]. In this paper, we use γj (yj [t]) to denote the latency of job j
caused by communication overhead in time-slot t . We assume that

the latency is linear proportional to the number of servers in use,

i.e., γj (yj [t]) = ξ2

∑
s 1{yjs [t] > 0}, where yj [t] = [yjs [t] > 0,∀s]

and ξ2 ∈ (0, 1] is a positive constant.

Lastly, putting 2-1) – 2-3) together, we can compute the RAR

operation time of job j under scheduling decision y[t] as follows:

τj [t]=

mj
w j
· 2(w j−1)

Bj (y[t])
+

mj
w j
· (w j−1)

C
+γj (yj [t])+∆

f
j Mj + ∆

b
j . (8)

Hence, the RAR training speed ϕ j [t] (i.e., the number of mini-batch

iterations completed by job j) in time-slot t can be computed as

ϕ j [t] ≜ ⌊(τj [t])
−1⌋. Recall that Fj is the requested number of it-

erations for training job j. Thus, job j’s completion time can be

calculated as:

Tj = aj + arg min

t

{∑
t ∈T

ϕ j [t] ≥ Fj
}
, ∀j ∈ J[t]. (9)

Table 1: Notation.

T/G j Scheduling time horizon/# of GPUs requested by job j

S/N Set of servers/GPUs in the cluster

J[t ] The set of active jobs in time-slot t

kj [t ]
Actual largest number of contending jobs on average with

job j in time-slot t
τj [t ] Per-iteration training time of job j in time-slot t

yjs [t ] # of GPUs scheduled on server s for job j in time-slot t
Os GPU capacity of server s

aj /Tj Starting/completion time slot of job j
Y The set of feasible scheduling schemes over T

ykj A schedule of job j indexed with k
ρ(ykj ) Actual execution time of job j when schedule ykj is used

ρ̂(ykj ) Estimated execution time of job j when schedule ykj is used

G(ykj ) Set of GPUs allocated for job j when schedule ykj is used

xkj Indicate whether job j follows schedule ykj or not

W k
jд Execution time added to GPU д by job j if job j follows ykj

U д
s The accumulative execution time of worker д on server s

4.2 Problem Statement
In this paper, our goal is to determine the scheduling decisions

y[t] to minimize the makespan (i.e., maxj Tj ), which is one of the

most useful metrics to measure the efficiency of multi-tenant GPU

clusters [5, 6]. Putting all modeling constraints and the objective

together, the RAR-based DDL job scheduling problem (RAR-DDLS)

can be formulated as the following optimization problem:

RAR-DDLS: min

yjs [t ],∀j ,s ,t
max

j ∈J
Tj

subject to Constraints (1) − (9).

We note that Problem RAR-DDLS is an integer non-convex pro-

gram with packing and covering constraints, which is NP-Hard.

In addition, the non-convex constraint in (6) involves indicator

functions and the max operator, which cannot be written in a

closed-from expression and hence is not amenable to conventional

optimization techniques. Due to these challenges, we will pursue

an approximation algorithmic approach in Section 5 that offers

provable approximation ratio guarantee. To conclude this section,

we summarize the key notations in this paper in Table 1.

5 SOLUTION APPROACH
As mentioned in Section 4, a key challenge to solve Problem RAR-

DDLS is that, due to the mixed covering- and packing-type con-

straints, the number of job scheduling combinations grows ex-

ponentially as the number of servers/jobs increases. Thus, it is

computationally prohibitive to enumerate all possible combina-

tions before the scheduler decides when to start and which GPU(s)

should be allocated to achieve the optimal scheduling. Exacerbating

the problem is the fact that communication contention renders a

mixed-integer bilinear structure in (6), making it intractable to ex-

press pj [t] in closed-form. Due to these challenges, it is difficult to

directly solve Problem RAR-DDLS based on its original formulation.

To overcome this challenge, we propose the following “indirect”

approach to solve Problem RAR-DDLS.
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 estimate makespan

No

 A ‘‘good enough’’

      schedule ?

Search for a

schedule 

Evaluate                to Return

Yes yy
τj [t], ∀t

Figure 3: Basic idea for solving Problem RAR-DDLS.

1) Basic Idea: First, we note that, although not in closed-form

expressions, the per-iteration time τj [t] for each job can be com-

puted in polynomial time according to (6)-(8) once a schedule (i.e.,

y[t] = {yjs [t],∀j, s}) is given. Specifically, we note that the per-

iteration time τj [t] is determined by Bj (y[t]) and γj (yj [t]). More-

over, f (α ,kj [t]) increases as kj [t] gets larger, and γj (yj [t]) in-
creases as

∑
s 1{yjs [t] > 0} grows. Thus, the range of τj [t] can be

estimated. The largest number of kj [t] is maxs Os , i.e., the worst

case would be each job places one of its workers into the server

with the biggest capacity and they all compete for the bandwidth.

Thus, we can have Bj (y[t]) ∈ [be/f (α ,maxs Os ),b
i ]. In addition,

we have

∑
s 1{yjs [t] > 0} ∈ [1,G j ]. Then by plugging Bj (y[t]) and∑

s 1{yjs [t] > 0} with their lower and upper bounds in Eqn. (8),

respectively, we can attain the lower and upper bounds.

The above insight suggests that we can solve Problem RAR-

DDLS via the following search-based approach to circumvent the

structural difficulty in (6)-(8) . We can first search for a schedule y,
then τj [t],∀t can be efficiently evaluated to estimate the makespan.

Then, we repeat the process until we find a “good enough” schedule.

Therefore, we can have the algorithmic framework as shown in

Fig. 3 to obtain an approximate makespan if the search space is

given. Clearly, the search space of y remains huge and difficult to

sample. Nonetheless, in what follows, we show that Problem RAR-

DDLS can be reformulated to facilitate this search-based approach.

2) Problem Reformulation: In order to enable the search of a

schedule, we first reformulate Problem RAR-DDLS by introducing

following notations. We letN = {1, . . . ,N } be the set of all GPUs in

the cluster. LetY = {y1, . . . , y |Y |} be the set of feasible scheduling
schemes for the jobs to be scheduled, where yk = {yk

1
, . . . , ykJ }

and ykj = {y
k
js [t],∀s ∈ S, t ∈ T } ∈ Z

S×T
+ . Note that, with a

slight abuse of notation, we use ykjs [t] here as a constant (not a

variable) to denote the number of workers allocated for job j on

server s in time-slot t if schedule yk is used. We also use ρ j (yk )
to denote the execution time of job j if schedule yk is used. Also,

we denote the starting time of job j under schedule yk as aj (yk ) ≜
arg min{t |ykjs [t] > 0, ∃s}. Let xkj ∈ {0, 1} be the binary variable to

indicate whether job j follows schedule yk (xkj = 1) or not (xkj = 0).

Then Problem RAR-DDLS can be reformulated as the following

integer linear program (ILP):

min

xkj ,∀j ,k
max

j
xkj

(
aj (yk ) + ρ j (yk )

)
(10)

subject to.

∑
k ∈{1, ..., |Y | }

xkj = 1, ∀j ∈ J , (11)

xkj = xkj′, ∀j, j
′ ∈ J ,k ∈ {1, . . . , |Y|}, (12)

xkj ∈ {0, 1}, ∀j ∈ J ,k ∈ {1, . . . , |Y|}. (13)

Constraint (11) ensures that exactly one schedule is chosen. Con-

straint (12) ensures that all jobs use the same schedule yk . We note

that, although Problem (10) has a simpler structure compared to

Problem RAR-DDLS, it hides the complexity in the dimensionality

of the exponential search space Y, which is intractable to explore.

However, based on this reformulated problem, we will show next

that it is possible for one to identify a “good enough” schedule such

that the makespan can be upper bounded.

Unfortunately, Problem (10) remains an NP-hard problem. We

state this formally in Theorem 1, which can be proved based on the

reduction to the vertex coloring problem (VCP).

Theorem 1. Let nд = maxj G j . Solving Problem (10) to within

an O(
lognд

2

√
log lognд

)-approximate ratio is NP-hard even when the exact

processing time of each job is available.

Due to space limitation, we relegate the proof to our online

technical report [21]. The hardness result in Theorem 1 suggests

that solving Problem (10) necessitates the design of approximation

algorithms, which is our goal in algorithm development next.

3) Identify a Scheduling with Bounded Makespan: We let

Gj (yk ) be the set of GPUs allocated for job j when schedule yk is

used. We useW k
jд = xkj ρ j (y

k ) to denote the execution time added

to GPU д by job j if job j follows schedule yk . Since each job j only
chooses one schedule, the total execution time of GPU д can be

computed asWд =
∑
j
∑
kW

k
jд . However, due to communication

contention, the exact processing time ρ j (yk ) is hard to evaluate in

computingW k
jд . Fortunately, the estimated processing time ρ̂ j (yk )

can be bounded as ρ̂ j (yk ) ∈ [lρ j (yk ),uρ j (yk )] for some l ≤ 1 and

u ≥ 1, since τj [t] is bounded. Here, we use

ρ̂ j (yk )
u ≤ ρ j (yk ) to

replace ρ j (yk ) when computingW k
jд . Consider a search algorithm

π that solves the following ILP to choose one schedule from Y:

min −1 (14)

subject to. Ŵ k
jд = xkj

ρ̂ j (yk )
u
,∀j ∈J ,k ∈ {1, . . . , |Y|},д∈N, (15)∑

j ∈J

∑
k ∈{1, ..., |Y | }

Ŵ k
jд ≤ θu , ∀д ∈ N, (16)

Constraints (11) − (13).

Note that Problem (14) has no objective function to be optimized

sincewe are only interested inwhether a feasible solution no greater

than a givenmaximum execution time limitθu exists (θu depends on

parameter u). Constraints (15)–(16) ensure that no GPU’s execution
time would exceed θu . LetW

π
max
= maxд∈NWд be the maximum

execution time of all GPUs returned by algorithm π . Due to the

use of estimated

ρ̂ j (yk )
u , the solution of π finds a lower bound of

W π
max

, which is also a lower bound of the makespan under π (due

to potential idling resulted from synchronization barrier).

Note that for any feasible scheduling with the upper bound θu for

Problem (14), we can find a corresponding feasible solution for Prob-

lem (10) by setting xkj = 1 if job j follows schedule yk ; otherwise,

set xkj = 0. Thus, the challenge of solving Problem (10) becomes

finding a tightest execution time limit θu for Problem (14), which

is relatively easy since there is no need to explore the exponential

search space of schedules Y.
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It is insightful to understand the choice of θu in Problem (14).

On one hand, if θu is too small, Problem (14) could be infeasible,

and no scheduling for Problem (10) can be found. On the other

hand, when θu is too large, then all schedulings can be considered,

and the gap between the optimal maximum execution time and the

optimal makespan can be large, thus no meaningful lower bound of

W π
max

can be found. Fortunately, since determining an appropriate

θu is a univariate search, we can simply use the bisection method

to efficiently find the minimum θu feasible to Problem (14).

4) Algorithm Description: We next present our scheduling

algorithm based on bisection to search θu and the smallest job first

strategy to solve Problem (14) for a given θu . Note that if a job’s
ring of workers is scheduled over a large number of servers, it may

potentially worsen communication contention with concurrent

jobs and its communication overhead could be large. Therefore,

to control the number of active servers, we use a threshold pa-

rameter κ ∈ [1,nд] to control the number of maximum servers

for scheduling jobs. We summarize our scheduling approach in

Algorithm 1. The intuition behind Algorithm 1 is that: 1) When the

job is small (i.e., G j ≤ κ), we prefer to pack the job into servers

whose GPUs are already occupied by some other jobs rather than

opening new server(s) to host its workers. Since the job is small, the

induced contention is mild by using the shared servers. Further, by

packing its workers to these servers, we can avoid fragmentation

introduced by a small job and save space for larger jobs that will be

scheduled next. 2) IfG j > κ, we prefer to allocate the job’s workers
to new server(s). This is because shared servers may only have

limited available GPU(s), and in order to gang-schedule a large job,

a large number of shared servers may be used, which leads to a

high communication overhead.

In Algorithm 1,U
д
s denotes the accumulative execution time of

worker д on server s . We first sort jobs in non-decreasing order of

their sizes G j in Line 3. We search θu using the bisection method

in the range [1,T ], and use the pair (θu ,κ) to perform scheduling

(Lines 5-7). We then iterate through each job (Line 9). If its size is

not greater than the threshold κ (Line 10), Algorithm 2 will be used

to do the scheduling (Line 11); otherwise, Algorithm 3 will be called

(Line 13). If no feasible scheduling of job j is returned, then we quit

the current loop and update κ (Line 14); otherwise, we will update

the scheduling and makespan given the current (θu ,κ) (Line 16).
Upon finishing scheduling all jobs, we will update the schedule and

makespan for the given θu if it has a smaller makespan (Lines 17-

18). After exhausting all values of κ for a given θu , we will update
the global makespan and the schedule if the current input θu has

a better performance (Lines 19-20). Also, it indicates that we can

further decrease the value of θu to find a potentially better schedule.

Thus, we search for the left half space by moving the right pointer

(Line 21); otherwise, we should increase the value of θu by moving

the left pointer (Line 23). By scheduling workers as described in

Algorithm 1, no worker’s execution time will exceed the given limit

θu . We denote the tightest execution time limit returned as
˜θu .

Algorithm 2 is based on the idea of “fragment-aware first fit pack-

ing,” where we first add all available GPUs whoseU
д
s + ρ̂ j (yk )/u ≤

θu (Line 2). If there are enough available GPUs to schedule for

job j’s workers (Line 3), we choose top-G j GPUs with least execu-

tion time first (Line 4). We then evaluate the completion time of

Algorithm 1: Smallest Job First with Balanced Contention

and Overhead (SJF-BCO).

1 Input: J ,U
д
s , ρ̂ j (yk ), u, λj ;

2 Initialization: LetU д
s ← 0,∀д, s;

3 Sort jobs by G j in non-decreasing order, and denote as J s
;

4 m ← T , y← ∅, le f t ← 1, riдht ← T ;

5 while le f t <= riдht do
6 θu ← (le f t + riдht)/2,mθ ← T , yθ ← ∅;
7 for κ = 1, 2, . . . ,maxj G j do
8 ykθ ← ∅, m

k
θ ← −1;

9 for j = 1, 2, . . . , |J s | do
10 if G j ≤ κ then
11 Return yj , Tj using Algorithm 2;

12 else
13 Return yj , Tj using Algorithm 3;

14 if yj == ∅ then
15 break;

16 ykθ ← ykθ ∪ {yj },m
k
θ ← max{mk

θ ,Tj };

17 if mk
θ < mθ then

18 mθ ←mk
θ , yθ ← ykθ ;

19 if mθ < m then
20 m ←mθ , y← yθ ;
21 riдht ← θu − 1;

22 else
23 le f t ← θu + 1;

24 return m, y;

Algorithm 2: Fragment-Aware First Fit Packing (FA-FFP).

1 Input: A given job j, S,U
д
s , ρ̂ j (yk ), u, θu ;

2 G
θu
idle ← available GPUs with execution time not exceed θu ;

3 if |Gθuidle | ≥ G j then
4 Pick top-G j workers with least U

д
s from G

θu
idle as yj ;

5 Tj ← arg maxt {yjs [t] > 0|yjs [t] ∈ yj ,∀s, t};
6 U

д
s ← U

д
s + ρ̂ j (yk )/u,∀(д, s) ∈ yj ;

7 return yj ,Tj ;
8 if there exists running jobs then
9 Waiting for some job to exit and then goes to Line 2;

10 return ∅,T ;

job j (Line 5) and update the corresponding GPUs’ execution time

(Line 6); otherwise, we wait for some job to finish (Lines 8-9).

Algorithm 3 is based on the idea of “least busy server-GPU

first,” where we sort the servers by its GPU’s average accumulative

execution time (Line 2) and add the available GPUs whose execution

time does not exceed θu in a non-decreasing order (Lines 4-5). Here,

we introduce λj ≥ 1 as a tuning parameter. The smaller the λj is,
the fewer number of servers can be used. If enough idle workers can

be found, we schedule the job, evaluate its completion time, update

the execution time of the chosen GPUs, and return the schedule

(Lines 6-10); otherwise, we wait for some job to finish (Lines 11-12).
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Algorithm 3: Least Busy Server-GPU First (LBSGF).

1 Input: A given job j,U
д
s , ρ̂ j (yk ), u, λj ;

2 Sort the server set S by

∑
д U

д
s /Os in non-decreasing order,

and choose the topm-servers s.t.

∑m
s=1

Os ≥ λjG j , and

denote the selected server set as Sselected ;

3 G
θu
idle ← ∅;

4 for s ∈ Sselected do
5 Sort GPUs whoseU

д
s + ρ̂ j (yk )/u ≤ θu by execution time

in non-decreasing order, then append them to G
θu
idle ;

6 if |Gθuidle | ≥ G j then
7 Pick top-G j workers with least U

д
s as yj ;

8 Tj ← arg maxt {yjs [t] > 0|yjs [t] ∈ yj ,∀s, t};
9 U

д
s ← U

д
s + ρ̂ j (yk )/u,∀(д, s) ∈ yj ;

10 return yj ,Tj ;
11 if there are running jobs then
12 Waiting for some job to exit and then goes to Line 2;

13 return ∅,T ;

If there is no running job left, then return schedule ∅ and timespan

T (as makespan) to indicate the scheduling is infeasible (Line 13).

6 PERFORMANCE ANALYSIS
In this section, we analyze the theoretical performance of SJF-BCO.

Specifically, we will establish the approximation ratio guarantee of

our proposed SJF-BCO algorithm as follows:

1) We first show in Lemma 2 that the maximum execution time

(i.e., Ŵ
Alg1

max
) returned by our algorithm is equal to

˜θu .

2) We then prove that the makespan is O(Ŵ
Alg1

max
) in Lemma 3.

3) We further show that the gap between
˜θu and the tightest exe-

cution time limit θ∗u returned by some offline optimal algorithm

in the right-hand-side (RHS) of (16) is bounded in Lemma 4.

Finally, we arrive at the approximation ratio result stated in Thm. 5.

Lemma 2 (MaximumExecutionTimeUpperbound). Algorithm 1
produces a schedule with the maximum execution time Ŵ Alg1

max
= ˜θu .

Proof. Note that in Algorithm 1, we can obtain a schedule such

that the execution time of every worker will not exceed
˜θu . Note

that
˜θu is the tightest value found by Alg. 1 since we will keep

decreasing its value in the RHS of (16) until it becomes equal to

Ŵ
Alg1

max
in the LHS of (16). It then follows that:

Ŵ
Alg1

max
= max

д∈N

∑
j ∈J

∑
k ∈{1, ..., |Y | }

xkj
ρ̂ j (yk )

u
= ˜θu ,

and the proof is complete. □

Lemma 3 (Makespan Upperbound). Algorithm 1 achieves a
makespan at most nдŴ

Alg1

max
, where nд is defined as in Theorem 1.

Proof. To bound the makespan, we need to attain upper bounds

of the total busy and idle time for each worker. Recall that due to

the synchronous gang scheduling for training, the worker may wait

for other workers to finish executing other jobs before it could start

processing the current job, which may result in idling. First, we can

have the total busy time T
busy

д ≤ Ŵ
Alg1

max

Lem. 2

= ˜θu . Next, we work

on bounding the total idle time T idle

д .

For any worker д ∈ N , we use дj to denote the last job j on д.

Suppose job j follows schedule yk . At any time slot t before worker
д processes job j, there are two cases: i) worker д is occupied by

other jobs (i.e., д is busy); ii) worker д is idle, but at least one worker

д′ ∈ Gj (yk ) is busy with executing other jobs. Since we consider

the gang-scheduling discipline, the job cannot be delayed if there is

a sufficient number of GPUs available as requested. Thus we have:

T idle

д
(a)
≤

∑
д′∈Gj (yk ) |д′,д

T
busy

д′ ≤
∑

д′∈Gj (yk ) |д′,д

Ŵ
Alg1

max

(b)
≤ (G j−1)Ŵ

Alg1

max
,

where (a) follows from the fact that in any time slot t that worker
д is idle (case ii), we must be able to find at least one busy worker

д′ ∈ Gj (yk ). To calculate the idle time of worker д, we can calculate

the busy time of worker(s) д′ ∈ Gj (yk ) instead, and the limit of

each worker’s busy time is Ŵ
Alg1

max
. Also, (b) follows from the fact

that at most G j − 1 number of GPUs (except worker д) are busy.

Then, we can upper bound the makespan T total
as:

T total = max

д∈N
(T

busy

д +T idle

д ) ≤ max

j ∈J

(
Ŵ

Alg1

max
+ (G j − 1)Ŵ

Alg1

max

)
= max

j ∈J
G jŴ

Alg1

max
= nдŴ

Alg1

max
,

and the proof is complete. □

Next, we characterize the gap between the maximum execution

time limit
˜θu and the optimal execution time θ∗u in the RHS of (16).

Lemma 4. The maximum execution time ˜θu returned by Algo-

rithm 1 satisfies ˜θu ≤ φ u
l · θ

∗
u , where φ = maxj

ρ j (yk1 )

ρ j (yk2 )
,∀k1,k2.

Proof. Let k∗ and ˜k be the schedule indices chosen by solving

Problem (14) optimally and Algorithm 1, respectively. Let G(yk ) be
the set of selected GPUs if schedule yk is used. We have

˜θu
Lem. 2

= max

д∈G(y ˜k )

∑
j ∈J

ρ̂ j (y
˜k )

u

(a)
≤ max

д∈G(y ˜k )

∑
j ∈J

φ u
l ρ̂ j (y

k∗ )

u

(b)
≤ max

д∈G(yk∗ )

∑
j ∈J

φ u
l ρ̂ j (y

k∗ )

u

Eq. (16)
≤ φ

u

l
θ∗u .

To see why (a) holds, recall that for any schedule yk , we have

ρ̂ j (yk ) ∈ [lρ j (yk ),uρ j (yk )]. Then, for any two different schedules

yk1
and yk2

, we can calculate the worst-case ratio as

ρ̂ j (yk1 )

ρ̂ j (yk2 )
≤

uρ j (yk1 )

lρ j (yk2 )
≤ φ u

l . The inequality in (b) can be established as fol-

lows. First, note that
˜k is chosen using the least execution time

first scheduling strategy in Algorithm 2 (Line 4). Then, we have

maxд∈G(y ˜k )

∑
j ∈J

ρ̂ j (y
˜k )

u ≤ maxд∈G(yk )
∑
j ∈J

ρ̂ j (yk )
u , ∀k , which

can be proved by contradiction as follows. Suppose there exists

д ∈ G(yk ) \ G(y ˜k ) such that

∑
j ∈J

ρ̂ j (yk )
u ≤

∑
j ∈J

ρ̂ j (y
˜k )

u , ∀д′ ∈

G(y ˜k ). However, we know that
˜k chooses the GPUs with the least
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execution time first, i.e., д should be in G(y ˜k ), which contradicts

our assumption. This completes the proof. □

Finally, we have the following approximation ratio:

Theorem 5 (ApproximationRatio). Alg. 1 isnдφ u
l -approximate.

Proof. We use T ∗ to denote the optimal makespan that pro-

duced by some offline optimal algorithm. It then follows that

T total
Lem.3
≤ nдŴ

Alg1

max

Lem.2
= nд ˜θu

Lem.4
≤ nдφ

u

l
θ∗u
(a)
≤ nдφ

u

l
T ∗,

where (a) is due to Problem (14) estimates the processing time as

ρ̂ j (yk )
u without considering potential idling (caused by synchroniza-

tion barrier), which implies θ∗u ≤T
∗
. This completes the proof. □

Remark 1. Note that the result in Theorem 5 does not depend

explicitly on the parameterκ in SJF-BCO. This is because Theorem 5

is only a worst-case upper bound that depends on
˜θu , which in turn

depends on κ. Hence, κ is implicitly captured in Theorem 5.

Theorem 6 (Polynomial Running Time). Time complexity of
SJF-BCO isO(nд |J |N logN logT ), where nд is defined as in Thm. 1.

Proof. The sorting operation plays a dominant role in the total

running time in Algorithm 1. For each job j, if G j ≤ κ, we need
to sort all GPUs in the cluster, which takes O(N logN ) time in

order to choose top-G j workers with least execution time first

in Algorithm 2 (Line 4). Otherwise, we only need to sort servers,

which takes O(S log S) time in order to choose top-m servers as in

Algorithm 3 (Line 2). Thus, it takes O(N logN ) time to schedule

each job since N > S . Then, for all the jobs to be scheduled given

(θu ,κ), it has O(|J |N logN ) time complexity. Recall that we use

bisection to search θu , where each iteration contains an inner loop

indexed by κ ∈ [1,nд]. This implies a total of nд logT trials. Thus,

the overall time complexity is O(nд |J |N logN logT ). □

7 NUMERICAL RESULTS
In this section, we conduct simulation studies to evaluate the per-

formance of our proposed SJF-BCO algorithm.

1) Experiment Settings: Similar to the setting in [19], the work-

load is generated based on the Microsoft job trace [9]. We generate

160 DDL jobs by scaling down the original job trace [9] following

the job-type distribution, where there are 80 single-GPU jobs, 14

2-GPU jobs, 26 4-GPU jobs, 30 8-GPU jobs, 8 16-GPU jobs, and 2

32-GPU jobs. We set Fj ∈ [1000, 6000]. The extra time cost brought

by communication contention and overhead is within 15% of the

total actual execution time. We let ξ1 = ξ2 (cf. Sec. 4.1) to make

communication contention and overhead cost comparable. We set

τj [t] ∈ [0.01, 0.05] [22], and λj = 1,∀j. We set the estimated execu-

tion time ρ̂(yk ) ∈ [50, 300] (evaluated from the product of τj [t] and
Fj ). The GPU cluster has 20 servers. The number of GPUs on each

server is chosen from {4, 8, 16, 32} uniformly at random.

2) Baselines for Comparison:We compare our algorithmwith

three representative job scheduling algorithms: First-Fit (FF) [17],

List-Scheduling (LS) [17], and Random (RAND) [19]. Here, we define

θ
f
u as the maximum execution time limit returned by the scheduling

policy f . Given a job j , FF picks the firstG j available GPUs such that

their accumulative execution time does not exceed the limit θ F Fu ,

from server to server. This policy tends to pack different jobs into

the fewest number of servers to avoid fragmentation introduced by

small jobs, which can save space for large jobs to be scheduled next.

LS selects top-G j GPUs with least execution time first, so that the

accumulative execution time does not exceed the limit θLSu . Note

that this policy may introduce high communication overhead since

it may choose GPUs from a large number of servers. Further, LS tries

to balance the execution time between GPUs by always selecting

the one with the least execution time. RAND randomly chooses

servers and GPUs to schedule jobs. In this policy, we allocate GPUs

to a job as long as it does not exceed T , i.e., we set θRAND
u = T , to

avoid the long running time in order to find a feasible schedule.

3) Experiment Results: First, we compare the makespan per-

formance achieved by our SJF-BCO algorithm with those of the

baseline policies. We set T = 1200. As shown in Fig. 4, SJF-BCO

outperforms other scheduling policies both in terms of makespan

and average job completion times, implying that SJF-BCO is also

superior in terms of total job completion time. Note that SJF-BCO

tends to open new server(s) for large jobs to avoid the large com-

munication overhead and use shared servers for small jobs to avoid

the fragmentation, thus achieving better average completion time

and makespan than FF and RAND. Note that SJF-BCO has more

prominent advantages over these baselines when the cluster has

limited GPU resources.

Then, we examine the impact of κ on the makespan in our pro-

posed SJF-BCO algorithm. We set T = 1200, and select κ from 1 to

32. As indicated in Fig. 5, as the value of κ increases, the makespan

first drops and then increases and then drops again. Recall that in

Algorithm 1, FA-FFP is used when the number of requested GPUs

G j ≤ κ; otherwise LBSGF is used. Note that before Turning point 1

in Fig. 5, as κ increases, the makespan drops since more small jobs

are packed into the fewest number of shared servers, resulting in

decrement of communication contention and overhead introduced

by larger jobs to be scheduled later. However, as κ continues to

grow, communication contention becomes more noticeable since

more large jobs are scheduled to the shared servers, leading to the

increase of makespan. Finally, as κ becomes sufficiently large, then

the majority or even all jobs use shared servers to schedule their

workers, which can slightly decrease the communication overhead

due to the smaller resultant ring-span (see Turning point 2 in Fig. 5).

Next, we investigate the influence of communication contention

by reducing the number of servers. We set T = 1500. Intuitively,

the larger number of servers, the less communication contention.

As we can see from Fig. 6, as we increase the number of servers

from 10 to 20, the makespan of FF, LS and SJF-BCO decrease due to

the degradation of contention level. Note that, if enough resources

are available in the cluster, then each job will have a separate set

of servers using SJF-BCO, i.e., its performance will become better

as number of GPUs increases. In this case, no communication con-

tention will be introduced using SJF-BCO. The intuition that FF

has the largest makespan reduction is that the average idle time

for workers drops dramatically since a smaller execution time limit

could be set as the number of servers increases.

Lastly, we inspect the influence of λ on the makespan for SJF-

BCO with λ ∈ {1, 2, 4, 8} and κ = 1. As we can see from Fig. 7, the
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makespan monotonically decreases as the λ increases. Recall that a

larger λ-value implies a larger number of servers could be selected.

Then, the job has a higher chance to open new servers to schedule its

workers, resulting in less communication contention and a smaller

communication overhead. Interestingly, λ plays a similar role as κ,
with the aim to balance communication overhead and contention.

Specifically, κ affects the overall balance between all jobs since it

determines the portion of jobs to use either FA-FFP or LBSGF, while

λ focuses more on the balance between communication contention

and overhead for a specific job that uses LBSGF to schedule.

8 CONCLUSION
In this paper, we studied resource scheduling for DDL jobs in a

multi-tenant GPU cluster, where we considered the communication

contention and overhead determined by the distribution of work-

ers. We showed that this problem can be formulated as a highly

non-trivial non-linear integer program with nonconvex and mixed

packing-covering constraints. We then converted the problem into

a tractable integer linear program, which enables the design of

approximation algorithms. Specifically, we developed a new analyt-

ical model that jointly considers the placements and starting times

of each DDL job. Through careful reformulation, we then trans-

formed the problem into an integer linear program with a more

tractable structure, and proposed an approvable approximation al-

gorithm. We provided rigorous theoretical analysis and conducted

experiments to demonstrate the efficacy of our algorithms.
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