skip to main content
10.1145/3492866.3549728acmconferencesArticle/Chapter ViewAbstractPublication PagesmobihocConference Proceedingsconference-collections
research-article
Public Access

Outdoor-to-indoor 28 GHz wireless measurements in manhattan: path loss, location impacts, and 90% coverage

Published:03 October 2022Publication History

ABSTRACT

Outdoor-to-indoor (OtI) signal propagation further challenges link budgets at millimeter-wave (mmWave). To gain insight into OtI mmWave at 28 GHz, we conducted an extensive measurement campaign consisting of over 2,000 link measurements in West Harlem, New York City, covering seven highly diverse buildings. A path loss model constructed over all links shows an average of 30 dB excess loss over free space at distances beyond 50 m. We find the type of glass to be the dominant factor in OtI loss, with 20 dB observed difference between clustered scenarios with low- and high-loss glass. Other factors, such as difference in floor height, are found to have an impact between 5--10 dB. We show that for urban buildings with high-loss glass, OtI data rates up to 400 Mb/s are supported for 90% of indoor users by a base station (BS) up to 49 m away. For buildings with low-loss glass, such as our case study covering multiple classrooms of a public school, data rates over 2.8/1.4 Gb/s are possible from a BS 68/175 m away when a line-of-sight path is available. We expect these results to be useful for the deployment of OtI mmWave networks in dense urban environments and the development of scheduling and beam management algorithms.

References

  1. FCC. 2021. Notes from the FCC: Addressing the Homework Gap. https://www.fcc.gov/news-events/notes/2021/02/01/addressing-homework-gap. (2021).Google ScholarGoogle Scholar
  2. NYC Mayor's Office of the CTO. 2020. The New York City Internet Master Plan. https://www1.nyc.gov/assets/cto/downloads/internet-master-plan/NYC_IMP_1.7.20_FINAL-2.pdf. (2020).Google ScholarGoogle Scholar
  3. M. Polese, F. Restuccia, and T. Melodia. 2021. DeepBeam: Deep Waveform Learning for Coordination-Free Beam Management in MmWave Networks. In Proc. ACM MobiHoc.Google ScholarGoogle Scholar
  4. Z. L. Fazliu, C. F. Chiasserini, F. Malandrino, and A. Nordio. 2020. Graph-Based Model for Beam Management in Mmwave Vehicular Networks. In Proc. ACM MobiHoc.Google ScholarGoogle Scholar
  5. S. G. Sanchez, S. Mohanti, D. Jaisinghani, and K. R. Chowdhury. 2022. Millimeter-Wave Base Stations in the Sky: An Experimental Study of UAV-to-Ground Communications. IEEE Trans. Mobile Comput., 21, 2, 644--662.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. S. Aggarwal, U. S. Sardesai, V. Sinha, D. D. Mohan, M. Ghoshal, and D. Koutsonikolas. 2020. LiBRA: Learning-Based Link Adaptation Leveraging PHY Layer Information in 60 GHz WLANs. In Proc. ACM CoNEXT.Google ScholarGoogle Scholar
  7. Z. He, S. Mao, S. Kompella, and A. Swami. 2017. On Link Scheduling in Dual-Hop 60-GHz mmWave Networks. IEEE Trans. Veh. Technol., 66, 12, 11180--11192.Google ScholarGoogle ScholarCross RefCross Ref
  8. D. Chizhik, J. Du, R. Feick, M. Rodriguez, G. Castro, and R. A. Valenzuela. 2020. Path Loss and Directional Gain Measurements at 28 GHz for Non-Line-of-Sight Coverage of Indoors With Corridors. IEEE Trans. Antennas Propag., 68, 6, 4820--4830.Google ScholarGoogle ScholarCross RefCross Ref
  9. V. Raghavan, A. Partyka, A. Sampath, S. Subramanian, O. H. Koymen, K. Ravid, J. Cezanne, K. Mukkavilli, and J. Li. 2018. Millimeter-Wave MIMO Prototype: Measurements and Experimental Results. IEEE Commun. Mag., 56, 1, 202--209.Google ScholarGoogle ScholarCross RefCross Ref
  10. K. Du, O. Ozdemir, F. Erden, and I. Guvenc. 2021. 28 GHz Indoor and Outdoor Propagation Measurements and Analysis at a Regional Airport. In Proc. IEEE PIMRC.Google ScholarGoogle Scholar
  11. S. Y. Jun, D. Caudill, J. Chuang, P. B. Papazian, A. Bodi, C. Gentile, J. Senic, and N. Golmie. 2020. Penetration Loss at 60 GHz for Indoor-to-Indoor and Outdoor-to-Indoor Mobile Scenarios. In Proc. EuCAP.Google ScholarGoogle Scholar
  12. H. Zhao, R. Mayzus, S. Sun, M. Samimi, J. K. Schulz, Y. Azar, K. Wang, G. N. Wong, F. Gutierrez, and T. S. Rappaport. 2013. 28 GHz Millimeter Wave Cellular Communication Measurements for Reflection and Penetration Loss In and Around Buildings in New York City. In Proc. IEEE ICC.Google ScholarGoogle Scholar
  13. M. Z. Aslam, Y. Corre, J. Belschner, G. S. Arockiaraj, and M. Jager. 2020. Analysis of 60-GHz In-street Backhaul Channel Measurements and LiDAR Ray-based Simulations. In Proc. EuCAP.Google ScholarGoogle Scholar
  14. J. Du, D. Chizhik, R. Feick, M. Rodriguez, G. Castro, and R. A. Valenzuela. 2020. Suburban Fixed Wireless Access Channel Measurements and Models at 28 GHz for 90% Outdoor Coverage. IEEE Trans. Antennas Propag., 68, 1, 411--420.Google ScholarGoogle ScholarCross RefCross Ref
  15. T. Chen, M. Kohli, T. Dai, A. D. Estigarribia, D. Chizhik, J. Du, R. Feick, R. A. Valenzuela, and G. Zussman. 2019. 28 GHz Channel Measurements in the COSMOS Testbed Deployment Area. In Proc. ACM mmNets'19 Workshop.Google ScholarGoogle Scholar
  16. Y. Xing and T. S. Rappaport. 2018. Propagation Measurement System and Approach at 140 GHz-Moving to 6G and Above 100 GHz. In Proc. IEEE GLOBECOM.Google ScholarGoogle Scholar
  17. J. Ko, Y.-J. Cho, S. Hur, T. Kim, J. Park, A. F. Molisch, K. Haneda, M. Peter, D.-J. Park, and D.-H. Cho. 2017. Millimeter-Wave Channel Measurements and Analysis for Statistical Spatial Channel Model in In-Building and Urban Environments at 28 GHz. IEEE Trans. Wireless Commun., 16, 9, 5853--5868.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. K. Du, O. Mujumdar, O. Ozdemir, E. Ozturk, I. Guvenc, M. L. Sichitiu, H. Dai, and A. Bhuyan. 2022. 60 GHz Outdoor Propagation Measurements and Analysis Using Facebook Terragraph Radios. In Proc. IEEE RWS.Google ScholarGoogle Scholar
  19. M. Samimi, K. Wang, Y. Azar, G. N. Wong, R. Mayzus, H. Zhao, J. K. Schulz, S. Sun, F. Gutierrez, and T. S. Rappaport. 2013. 28 GHz Angle of Arrival and Angle of Departure Analysis for Outdoor Cellular Communications Using Steerable Beam Antennas in New York City. In Proc. IEEE VTC.Google ScholarGoogle Scholar
  20. A. Shkel, A. Mehrabani, and J. Kusuma. 2021. A Configurable 60GHz Phased Array Platform for Multi-Link mmWave Channel Characterization. In Proc. IEEE ICC Workshops.Google ScholarGoogle Scholar
  21. Y. Xing and T. S. Rappaport. 2021. Millimeter Wave and Terahertz Urban Microcell Propagation Measurements and Models. IEEE Commun. Lett., 25, 12, 3755--3759.Google ScholarGoogle ScholarCross RefCross Ref
  22. Y. Zhang, D. J. Love, N. Michelusi, J. V. Krogmeier, S. Jyoti, A. Sprintson, and C. R. Anderson. 2018. Improving Millimeter-wave Channel Models for Suburban Environments with Site-specific Geometric Features. In Proc. ACES.Google ScholarGoogle Scholar
  23. A. Narayanan, E. Ramadan, J. Carpenter, Q. Liu, Y. Liu, F. Qian, and Z.-L. Zhang. 2020. A First Look at Commercial 5G Performance on Smartphones. In Proc. ACM WWW.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. O. H. Koymen, A. Partyka, S. Subramanian, and J. Li. 2015. Indoor mmWave Channel Measurements: Comparative Study of 2.9 GHz and 29 GHz. In Proc. IEEE GLOBECOM.Google ScholarGoogle Scholar
  25. NIST Communcations Technology Laboratory. 2022. NextG Channel Model Alliance. (2022). https://www.nist.gov/ctl/nextg-channel-model-alliance.Google ScholarGoogle Scholar
  26. C. A. L. Diakhate, J.-M. Conrat, J.-C. Cousin, and A. Sibille. 2017. Millimeter-wave Outdoor-to-Indoor Channel Measurements at 3, 10, 17 and 60 GHz. In Proc. EuCAP.Google ScholarGoogle Scholar
  27. N. Ntetsikas, N. Babu, M. H. Tariq, C. B. Papadias, J. Du, D. Chizhik, R. Valenzuela, M. Rodriguez, and R. Feick. 2022. 60 ghz outdoor to indoor (o2i) propagation measurements in a university campus. In Proc. IEEE SPAWC Workshop.Google ScholarGoogle Scholar
  28. C. U. Bas, R. Wang, T. Choi, S. Hur, K. Whang, J. Park, J. Zhang, and A. F. Molisch. 2018. Outdoor to Indoor Penetration Loss at 28 GHz for Fixed Wireless Access. In Proc. IEEE ICC.Google ScholarGoogle Scholar
  29. C. Larsson, F. Harrysson, B.-E. Olsson, and J.-E. Berg. 2014. An Outdoor-to-Indoor Propagation Scenario at 28 GHz. In Proc. EuCAP.Google ScholarGoogle ScholarCross RefCross Ref
  30. FCC. 2021. FCC Established Two New Innovation Zones in Boston and Raleigh. https://www.fcc.gov/document/fcc-established-two-new-innovationzones-boston-and-raleigh-0. (2021).Google ScholarGoogle Scholar
  31. D. Raychaudhuri, I. Seskar, G. Zussman, T. Korakis, D. Kilper, T. Chen, J. Kolodziejski, M. Sherman, Z. Kostic, X. Gu, H. Krishnaswamy, S. Maheshwari, P. Skrimponis, and C. Gutterman. 2020. Challenge: COSMOS: A City-Scale Programmable Testbed for Experimentation with Advanced Wireless. In Proc. ACM MobiCom.Google ScholarGoogle Scholar
  32. M. Kohli, A. Adhikari, G. Avci, S. Brent, J. Moser, S. Hossain, A. Dash, I. Kadota, R. Feick, D. Chizhik, J. Du, R. A. Valenzuela, and G. Zussman. 2022. 28GHz Outdoor-Indoor West Harlem NYC Public School Dataset. (2022). https://nextg.nist.gov/submissions/131.Google ScholarGoogle Scholar
  33. M. Kohli, A. Adhikari, G. Avci, S. Brent, A. Dash, J. Moser, S. Hossain, I. Kadota, C. Garland, S. Mukherjee, R. Feick, D. Chizhik, J. Du, R. A. Valenzuela, and G. Zussman. 2022. Outdoor-to-Indoor 28 GHz Wireless Measurements in Manhattan: Path Loss, Environmental Effects, and 90% Coverage. (2022). arXiv: 2205.09436 [eess.SP]. https://arxiv.org/abs/2205.09436.Google ScholarGoogle Scholar
  34. M. Schmieder, M. Peter, R. Askar, I. Komsic, and W. Keusgen. 2018. Measurement and Characterization of 28 GHz High-Speed Train Backhaul Channels in Rural Propagation Scenarios. In Proc. EuCAP.Google ScholarGoogle Scholar
  35. NYC Dept. of Information Technology & Telecommunications. 2022. 5G Rollout. (2022). https://www1.nyc.gov/site/doitt/business/5g-design/5g.page.Google ScholarGoogle Scholar
  36. Samsung. 2022. Compact Macro (Access Unit). (2022). https://www.samsung.com/global/business/networks/products/radio-access/access-unit/.Google ScholarGoogle Scholar
  37. K. Du, O. Ozdemir, F. Erden, and I. Guvenc. 2021. Sub-Terahertz and mmWave Penetration Loss Measurements for Indoor Environments. In Proc. IEEE ICC Workshops.Google ScholarGoogle Scholar
  38. H. Kim and S. Nam. 2021. Transmission Enhancement Methods for Low-Emissivity Glass at 5G mmWave Band. IEEE Antennas Wireless Propag. Lett., 20, 1, 108--112.Google ScholarGoogle ScholarCross RefCross Ref
  39. C. Vargas, L. da Silva Mello, and R. C. Rodriguez. 2017. Measurements of Construction Materials Penetration Losses at Frequencies From 26.5 GHz to 40 GHz. In Proc. IEEE PACRIM.Google ScholarGoogle Scholar
  40. 3GPP. 2020. Study on Channel Model for Frequencies From 0.5 to 100 GHz (3GPP TR 38.901 version 16.1.0 Release 16). (2020). https://www.etsi.org/deliver/etsi_tr/138900_138999/138901/16.01.00_60/tr_138901v160100p.pdf.Google ScholarGoogle Scholar
  41. S. Yang, J. Zhang, and J. Zhang. 2019. Impact of Foliage on Urban MmWave Wireless Propagation Channel: A Ray-tracing Based Analysis. In Proc. IEEE ISAP.Google ScholarGoogle Scholar
  42. D. Chizhik, J. Du, and R. A. Valenzuela. 2021. Universal Path Gain Laws for Common Wireless Communication Environments. IEEE Trans. Antennas Propag.Google ScholarGoogle Scholar
  43. D. Shakya, D. Chizhik, J. Du, R. A. Valenzuela, and T. S. Rappaport. 2022. Dense Urban Outdoor-Indoor Coverage from 3.5 to 28 GHz. In Proc. IEEE ICC.Google ScholarGoogle Scholar
  44. B. Sadhu, Y. Tousi, J. Hallin, S. Sahl, S. K. Reynolds, O. Renstrom, K. Sjogren, O. Haapalahti, N. Mazor, B. Bokinge, G. Weibull, H. Bengtsson, A. Carlinger, E. Westesson, J.-E. Thillberg, L. Rexberg, M. Yeck, X. Gu, M. Ferriss, D. Liu, D. Friedman, and A. Valdes-Garcia. 2017. A 28-GHz 32-Element TRX Phased-Array IC With Concurrent Dual-Polarized Operation and Orthogonal Phase and Gain Control for 5G Communications. IEEE J. Solid-State Circuits, 52, 12, 3373--3391.Google ScholarGoogle ScholarCross RefCross Ref
  45. Z. Deng, J. Zhou, H. J. Qian, and X. Luo. 2021. A 22.9-38.2-GHz Dual-Path Noise-Canceling LNA With 2.65-4.62-dB NF in 28-nm CMOS. IEEE J. Solid-State Circuits, 56, 11, 3348--3359.Google ScholarGoogle ScholarCross RefCross Ref
  46. I.-J. Hwang, J.-I. Oh, H.-W. Jo, K.-S. Kim, J.-W. Yu, and D.-J. Lee. 2021. 28/38 GHz Dual-Band Vertically Stacked Dipole Antennas on Flexible Liquid Crystal Polymer Substrates for Millimeter-Wave 5G Cellular Handsets. IEEE Trans. Antennas Propag.Google ScholarGoogle Scholar
  47. A. Ershadi, S. Palermo, and K. Entesari. 2021. A 22.2-43 GHz Gate-Drain Mutually Induced Feedback Low Noise Amplifier in 28-nm CMOS. In Proc. IEEE RFIC.Google ScholarGoogle Scholar
  48. Y.-W. Chang, T.-C. Tsai, J.-Y. Zhong, J.-H. Tsai, and T.-W. Huang. 2020. A 28 GHz Linear and Efficient Power Amplifier Supporting Wideband OFDM for 5G in 28nm CMOS. In Proc. IEEE/MTT-S IMS.Google ScholarGoogle ScholarCross RefCross Ref
  49. M. S. Zia, D. M. Blough, and M. A. Weitnauer. 2022. Effects of SNR-Dependent Beam Alignment Errors on Millimeter-Wave Cellular Networks. IEEE Trans. Veh. Technol.Google ScholarGoogle ScholarCross RefCross Ref
  50. ATIS 3GPP. 2020. Study on Support of NR Downlink 256 Quadrature Amplitude Modulation (QAM) for Frequency Range 2 (FR2) (ATIS.3GPP.38.883.V1600). (2020). https://www.atis.org/wp-content/uploads/3gpp-documents/Rel16/ATIS.3GPP.38.883.V1600.pdf.Google ScholarGoogle Scholar
  51. 3GPP. 2019. User Equipment (UE) Conformance Specification; Radio Transmission and Reception (3GPP TS 38.521-4 version 15.0.0 Release 15). (2019). https://www.etsi.org/deliver/etsi_ts/138500_138599/13852104/15.00.00_60/ts_13852104v150000p.pdf.Google ScholarGoogle Scholar
  52. E. Peralta, T. Levanen, T. Ihalainen, S. Nielsen, M. H. Ng, M. Renfors, and M. Valkama. 2018. 5G New Radio Base-Station Sensitivity and Performance. In ISWCS.Google ScholarGoogle Scholar
  53. T. Chen, P. Maddala, P. Skrimponis, J. Kolodziejski, X. Gu, A. Paidimarri, S. Rangan, G. Zussman, and I. Seskar. 2022. Programmable and Open-Access Millimeter-Wave Radios in the PAWR COSMOS Testbed. In Proc. ACM MobiCom'21 WiNTECH Workshop.Google ScholarGoogle Scholar

Index Terms

  1. Outdoor-to-indoor 28 GHz wireless measurements in manhattan: path loss, location impacts, and 90% coverage

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            MobiHoc '22: Proceedings of the Twenty-Third International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing
            October 2022
            442 pages
            ISBN:9781450391658
            DOI:10.1145/3492866

            Copyright © 2022 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 3 October 2022

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate296of1,843submissions,16%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader