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Abstract 
In this paper we examine how trends in programming methodology support the definition of value types. We ask the question 
have we really advanced in the move from traditional to OO methodologies, have we produced square wheels, or have we just 
changed terminology? We ask this to determine what we should be teaching our students. The work was motivated by a concern 
that students, through what is, or is not, taught, are missing or rejecting the lessons of history and producing poorer designs 
because of this. 

Introduction 
Object-oriented techniques and languages have grown in 
popularity over recent years to become a key methodology, 
and are often seen as a universal panacea to the "software 
crisis" and promoted with evangelical zeal. It is indeed 
unusual to find a university today where OO is not taught as 
the primary or only style - modules have been replaced by 
classes, data structures by classes, and functions by methods. 
Moreover with the hype surrounding OO and each new 
development within it, students often arrive at university 
knowing they should be taught C++, or now Java, and 
express this view quite forcibly. This has further accelerated 
the change in what is taught. 

But what is the effect of  this change on our students and 
the development of  their critical thinking skills? How often 
does a student when asked if some method/language is good 
simply respond with "yes, its OO"? Is OO the universal 
panacea it is claimed to be, or have we sometimes been 
teaching the design of  square wheels which are deemed good 
by nature of  being objects? This work was motivated by a 
concern that students, through what is, or is not, taught, are 
missing, or on principle rejecting, the lessons of  computing 
history. This in turn is leading to poorer design skills and 
lower levels of  understanding. 

In this paper we use fractions to examine how trends in 
programming methodology support the definition of  value 
types. Fractions are a simple data type and were chosen for 
their familiarity - it must be a rare programmer indeed who 
has never had a maths lesson at some stage on fractions! 
They are an example of  what we term value types; other 
examples include integers, magnitude & direction vectors, 
playing card suits, and time durations. Programming 
languages usually support a number o f  standard value types; 
such as integer, floating point, and boolean. However 
programming languages cannot provide all of  the many 
different value types used in different applications, so as for 
other kinds of  type the ability to defined new ones easily and 
naturally is important. 

In our investigation we ask the question have we really 
advanced, have wc produced square wheels, or have we just 

changed terminology? What should we be teaching our 
students? 

Value Types In Programming Languages 
For the purposes of  this paper we define two broad 
categories of  types; value and state. A value type is one 
which is naturally viewed as a set of  values with functions 
which operate on values of  the type to produce new values. 
Integers are an example of  a value type. The standard 
addition function on integers maps two integer values to their 
sum, it does not in any sense change the value of  either of  its 
arguments. A state type is one which is naturally viewed as 
having some state together with functions which change that 
state. For example, a stack is a state type. The standard 
addition ("push") function on stacks changes a stack's value 
by the addition of  a new element. 

The standard numerical types in programming 
languages; such as integers, floating point numbers and 
booleans; are value types as are non-numerical ones; such as 
characters. There are o f  course an unlimited number of  value 
types, some other examples are; currency quantities, time 
durations, magnitude/direction vectors, colours, and playing 
card suits. 

We use fractions as a prototypical value type and 
evaluate how they can be defined and used in the 
"traditional" and object-oriented methodologies. For brevity 
we will only define the addition operation over fractions and 
omit much of  the detail and standard optimisations. 
Fractions happen to be a numerical type, with obvious 
similarities to integers and floating point numbers, which 
raises the issue of  the overloading of  standard operator 
symbols. This is an accident of  our choice and does not 
effect the general issues discussed and we comment only 
briefly on it. 

Traditional and Object-oriented Abstract Data 
Types 
The traditional ADT methodology is based on the concept of  
types as sets of  values together with a collection of  functions 
which define mappings between elements of  the set. Under 
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this methodology the types required to solve a problem are 
identified along with the functions that need to be 
pe r fo rm"ed  on those types. The values are passive 
participants in the operations of  the functions. The language 
features developed to support programmer-defined types 
include records, modules and information hiding. This 
methodology, along with structured programming, was 
standard in industry and education until object-orientation 
became popular. We show how fractions are defined using 
this methodology in Design 1 below. 

During the 80's the computing industry tulrned to object- 
oriented programming (and OO software engineering in 
general) as the panacea to the software crisis, and in 
universities C++ slowly replaced C, Pascal and other 
languages as the core teaching language. In the last few 
years Java, arguably a much better language than C++, has 
help fuel the wholesale switch to OO. 

The object-oriented methodology can be defined ([1, 5, 
7]) as a method in which: 
• An object is characterized by a number if  operations and a 

state which remembers the effect of  these operations; that 
is an object is an active entity which posses a changing 
value. 

• Objects are the fundamental building blocks 
• Each object is an instance of some type/class 
Put another way, the OO methodology is based on simulation 
and anthropomorphism where active objects replace the 
passive values of  the traditional ADT. Designs 2 and 3 below 
show the standard OO solutions for value types, and as will 
be seen they are lacking when compared to the traditional 
ADT of  Design 1. 

However, OO languages have developed over time, and 
this opens up possibilities to improve on the representation 
of value types. Designs 4 and 5 below suggest a possible 
approach. 

We now present the five designs for fractions along with 
some brief notes. We then discuss the designs and the 
questions posed in the introduction. 

Design 1: "Traditional"Abstract Data Types 
The following code shows a partial implementation of a 
traditional ADT fraction type in Ada. 

package Fract is 

type Fraction is private; 

function val (a, b : Integer) return Fraction; 

function add (a, b : Fraction) return Fraction; 

procedure Put(a : Fraction); 

private 

type Fraction is record 

hum : Integer; 

denom : Integer; 

end record; 

end Fract; 

package body Fract is 

-- reduce 2/4 to 1/2 etc.. 

procedure normalise(f : in out Fraction) is ... 

function val (a, b : Integer) return Fraction is ... 

function add (a, b : Fraction) return Fraction is 

ans : Fraction; 

begin 

ans.num := a.num * b.denom + a.denom * b.num; 

ans.denom := a.denom * b.denom; 

normalise(ans); 

return ans; 

end; 

end Fract; 

// sample use 

procedure trial is 

f, g, h : Fraction; 

begin 

f := Fract.val(2,5); 

g := Fract.add(f, Fract.val(l, i0)); 

h := Fract.add(Fract.val(l, i0), f); 

Put("f : "); Put(f); NewLine; 

Put('g = " ; Put(g); New_Line; 

Put("h = " ; Put(h); New_Line; 

end trial; 

Examining this example we note: 
• The form of  the fimction calls which use fractions follows 

that for language-defined types (we defer comment on 
operator notation till after Design 2). Whether a value type 
is programmer or language-defined makes no difference. 

• In the definition of  fraction addition the two operands have 
equal status. The function is clearly one of  two operands, 
both of  which are referred to in the same manner. 

As the example shows, the methodology supports 
programmer-defined value types naturally and consistently 
with those defined by the language. 

Design 2: Immutable Objects 
The immutable object, that is one whose state is set once at 
creation, has been the standard O 0  approach for value types 
since Smalltalk. The following code shows a partial fraction 
package written using immutable objects. 

public class FractObj 

{ private int n, d; 

private static int gcd(int a, int b) ... 

public FractObj () . . . 
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public FractObj (int n, int d) . . .  

public String toString() 

[ return n ~ ~/" + d; 

} 

// disguise the new operation - looks more like a value 

public static FractObj val(int n, int d) 

{ return new FractObj(n, d); 

} 

public FractObj add(FractObj b) 

{ int n, d; 

n = this.n * b.d + b.n * this.d; 

d = this.d * b.d; 

return new FractObj(n, d); 

// sample use 

public static void main() 

{ FractObj f, g, h; 

f = FractObj.val(2, 5); 

g = f.add(FractObj.val(l, i0)); 

h = FractObj.val(l, 10).add(f); 

System.out.print("f : "); System.out.println(f); 

System.out.print("g = "); System.out.println{g); 

System.out.print(*h = "); System.out.println(h); 

This design has a number of  drawbacks, including: 
• The use of  fraction values isn' t  very natural. The 

expression a .  a d d  (b)  reads naturally as "add b to a" not 
as "add a and b to give a new value", as would the 
expression a d d  ( a ,  b ) .  

• The definition of  fraction operations is not natural. 
In the definition of  a d d  the two operands are referred to 
differently, the operation does not look like an operation on 
two operands. Though operations are defined less often than 
they are used, this issue is still important. (By renaming the 
local variables the use of  " t h i s  . "  can be avoided, however 
the operands would still be referred to differently.) 

Note on Programmer-defined Operators 
Many languages allow standard operator (infix function) 
symbols to be used for programmer-defined types. They can 
be used to disguise the unnatural form o f  expressions which 
use immutable object value types by enabling a .  o p  ( b ) to 
be written as a o p  b. However this only works for those 
types for which infix operator notation itself is natural, and 
it does nothing for the definition of  the type; for this reason 
it is an orthogonal issue to that discussed here. They would 
be a worthwhile extension to Java, especially for users of  
numerical value types, and this has been proposed by others 
[4, 8]. 

Design 3: Static Methods 

A standard variation in the design o f  OO value types is the 
use of  class methods. These differ from instance methods in 
that they have no implicit object argument, but as part o f  the 
type have access to its internal structure. Class methods are 
found in most OO languages, for example the static methods 
o f  Java and C++. Friend methods in C++, defining two 
classes in the same Java package, or two types in the same 
Ada module, provide a similar feature. 

A fragment o f  our fraction example written in Java using 
class methods is now shown. 

public class FracBin 

{ private int n, d; 

public static FracBin add(FracBin a, FracBin b) 

{ int n, d; 

n = a.n * b.d + b.n * a.d; 

d = a.d * b.d; 

return new FracBin(n, d) ; 

// sample usage 

FracBin f, g, h; 

f = FracBin.val(2, 5); 

g = FracBin.add(f, FracBin.val(l, i0)); 

h = FracBin.add(FracBin.val(l, i0), f); 

This method provides a "look and feel" for programmer- 
defined value types which is fairly close to those defined by 
the language. A confusion of  the approach is that the 
methods visually appear to be part o f  the object instance, yet 
they are part o f  the object type. (For friends the methods are 
disassociated from the type.) 

Design 4: Value and  Behaviour Classes  
The CO approach to state types has changed over time. One 
development is the use o f  two classes; one for storing most 
o f  the state/value, and another containing mostly operations; 
to produce a value/behaviour division. This design can be 
seen, for example, in Weiss" design for binary search trees 
[10]. 

Though examples do not abound the same general 
approach can adapted to value types. When applied to state 
types the division of  value and behaviour is not complete and 
each distinct instance of  the type has an instance o f  the 
behaviour class, which itself contains the instance(s) o f  the 
value class. For a natural model o f  value types we need only 
one instance o f  the behaviour class, which should contain no 
values at all. We of  course need many instances o f  the value 
class. 

In Java the method is supported through static classes, 
that is a class containing only static members,  and packages. 
Our fraction example  written using a value/behaviour  
division is as follows. 

package Fractions; 
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private Var(int n, int d) ... 

public class Fraction 

{ protected int n, d; 

protected static int gcd(int a, int b) ... 

protected Fraction() ... 

protected Fraction(int n, int d) ... 

public String toString() ... 

} 

public class FractOps 

{ public static Fraction val(int n, int d) ... 

public static Fraction add(Fraction a, Fraction b) 

{ int n, d; 

n = a.n * b.d + b.n * a.d; 

d = a.d * b.d; 

return new Fraction(n, d) ; 

/ /  sample usage 

Fraction f, g, h; 

f = FractOps.val(2, 5); 

g = FractOps.add(f, FractOps.val(l, i0)); 

h = FractOps.add(FractOps.val(l, I0), f); 

There is little against this method. For the client the values, 
variables and operations behave in the same way as for built- 
in value types. The addition of programmer-defined 
operators would remove any lingering distinction for the 
client. 

For the implementor the approach is also natural; a type 
is defined to represent values in the required domain and 
functions to operate on these. A minor drawback is that the 
data type is defined by two separate entities, not one. 

Design 5: Value/Behaviour Nested Classes 
Nested classes can also be used to produce a value/behaviour 
division, for example see [11]. They were introduced in Java 
1.1 [6] and are provided in other languages. 

Following the same approach of Design 4 the model can 
be adapted for value types with a static outer class containing 
the behaviour. This addresses the minor drawback of  Design 
4, allowing the type to be defined by a single class (albeit 
with a member class). The following code shows this 
approach applied to our fraction example. 

public class FractInn 

{ private static int gcd(int a, int b) ... 

public static class Var 

{ private int n, d; 

public String toString() ... 

public static Var val(int n, int d) 

{ return new Var(n, d); 

} 

]public static Var add(Var a, Var b) 

( int n, d; 

n = a.n * b.d + b.n * a.d; 

d = a.d * b.d; 

return new Vat(n, d) ; 

// sample usage 

FractInn.Var f, g, h; 

f = FractInn.val(2, 5); 

g = FractInn.add(f, FractInn.val (1, 10) ) ; 

h = FractInn.add(FractInn.val (i, i0) , f) ; 

Discussion 
The traditional ADT approach, as shown in Design 1, fits 
value types well. It provides a natural form for both client 
and implementor, there are no hidden implicit arguments, 
values which are passive participants in a "real world" 
function do not get represented as active objects in the 
programming language model, and it provides all the 
desirable features of  encapsulation and information hiding. 

Turning to the object-oriented methodology there is an 
apparent mismatch between it and value types, as it is based 
on an active model of data as its fundamental building block. 

An easy solution to this mismatch would be to ignore it, 
and this has often been chosen. Look at a CS2 textbook 
which uses a language with good support for the traditional 
ADT methodology, for example see [2] which uses Ada 95, 
and you are likely to find a number of  programmer-defined 
value types covered. However pick a CS2 textbook which 
uses the CO methodology and the first data type covered will 
probably be some linear container type. 

As shown in Design 2, it is hard to argue that the use of  
immutable objects is natural as the explanation of addition is 
"send the method add x to the object y". This is a confusing 
and forced model to teach to students (or use in industry). 

Design 3 and the use of  programmer-defined operators 
are an attempt to disguise the differences between language 
and programmer-defined value types. It has little to 
recommend it, lacks the clarity of  Design 1, and goes against 
the CO philosophy as the operations are not characteristics 
of  instances. The overuse of  static methods in the CO 
method is often treated akin to the overuse of  global 
variables in the traditional approach. 

Designs 4 and 5 demonstrate that clear and natural 
approaches to value types are possible in CO languages. 
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However they do embody a significant shift in philosophy 
from that o f  "traditional object-orientation' .  

Design 4 provides the benefit  lacking in Design 3, there 
is a clear distinction between the class which represents the 
value and the static class which provides the functions. Here 
Java's package system provides a similar benefit  to the 
traditional module, as typified by the Ada package, by 
allowing dependant types/objects to be encapsulated within 
a single entity while providing appropriate restrictions on 
external clients. However, is a class which has no instances 
conformant with a methodology were objects ,  not classes, 
are the fundamental building blocks? 

There is little to detract, from a client or implementor 
viewpoint, from Design 5 and its use of  nested classes. But 
again is it object-oriented? Comparing the nested class 
solution to Design 1 shows that they are, apart from minor 
syntax differences, fundamentally the same. The behaviour 
class has replaced the module, the nested value class the type 
defined within the module. The process we have followed to 
discover a good method of  supporting value types in OO 
languages has simply rediscovered the original ADT method. 

It is now not hard to understand why texts which teach 
the OO methodology exclusively often ignore value types, 
they simply don't  fit the model very well. But what does that 
teach students? Many arrive at our universities already 
persuaded that OO is the only approach, that older methods 
are out-dated and to be ignored. I f  we then teach the OO 
methodology exclusively, what happens when they are faced 
with a problem requiring value types? Having taught now for 
a number of  years a graduate class attended by students who 
undertook their graduate studies at many  different 
universities in different countries, the unfortunate answer is 
"square wheels" justified on the grounds that they are 
"object-or iented"  and often additionally "that 's  what 
industry wants". 

Would it not be better to tackle the mismatch of  value 
types and OO methodology directly and teach students a 
more holistic approach which includes the clear separation 
of  value and behaviour when appropriate, as well as their 
combination? In some texts, for example [10, 11], we see 
movemen t  in this direction for state types but the 
development has gone largely uuremarked. The use o f  
behaviour-only classes of  static methods is also seen for 
algorithms, such as sorting, in many texts. It is certainly 
disappointing that Java, a recent language, still uses the 
simple immutable objects o f  Design 2 for some of  it's 
language-defined value types. For example the language- 
defined library types BigInteger and BigDecimal [9] 
follow this model and texts have followed this and used it for 
programmer-defined value types as well, for example see the 
complex numbers defined in [3]. 

C o n c l u s i o n  
It would seem that the humble fraction is not quite as humble 

as it first appears, it has resisted the might o f  the OO Borg 
and refused to be assimilated; our final "OO"  solution turns 
out to be the original traditional one in a rather thin disguise. 

The starting point for this research was concern over 
many  o f  my  students arriving in university, as 
undergraduates or graduates, already knowing that object- 
oriented programming was the best way of  designing and 
implementing programs. Such students often demand, and 
are given, OO languages and OO methodologies. Older 
languages and methodologies are not favoured by them, and 
the OO texts available to them tend to skimp when covering 
value types, or present awkward solutions. 

As Design 5 shows, an OO language such as Java is 
quite capable of  supporting value types in a natural and 
straightforward manner; and of  course broader languages 
such as Ada 95 also support both traditional and OO 
approaches. What  is needed is a better blending in design 
methodologies of  the traditional and the modern, so that our 
students both learn from the old and benefit  from the new. 
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