
The Humble Fraction

Nigel Perry
Massey University

Palmerston North, New Zealand
<N.Perry@ massey.ac.nz>

Abstract
In this paper we examine how trends in programming methodology support the definition of value types. We ask the question
have we really advanced in the move from traditional to OO methodologies, have we produced square wheels, or have we just
changed terminology? We ask this to determine what we should be teaching our students. The work was motivated by a concern
that students, through what is, or is not, taught, are missing or rejecting the lessons of history and producing poorer designs
because of this.

Introduction
Object-oriented techniques and languages have grown in
popularity over recent years to become a key methodology,
and are often seen as a universal panacea to the "software
crisis" and promoted with evangelical zeal. It is indeed
unusual to find a university today where OO is not taught as
the primary or only style - modules have been replaced by
classes, data structures by classes, and functions by methods.
Moreover with the hype surrounding OO and each new
development within it, students often arrive at university
knowing they should be taught C++, or now Java, and
express this view quite forcibly. This has further accelerated
the change in what is taught.

But what is the effect of this change on our students and
the development of their critical thinking skills? How often
does a student when asked if some method/language is good
simply respond with "yes, its OO"? Is OO the universal
panacea it is claimed to be, or have we sometimes been
teaching the design of square wheels which are deemed good
by nature of being objects? This work was motivated by a
concern that students, through what is, or is not, taught, are
missing, or on principle rejecting, the lessons of computing
history. This in turn is leading to poorer design skills and
lower levels of understanding.

In this paper we use fractions to examine how trends in
programming methodology support the definition of value
types. Fractions are a simple data type and were chosen for
their familiarity - it must be a rare programmer indeed who
has never had a maths lesson at some stage on fractions!
They are an example of what we term value types; other
examples include integers, magnitude & direction vectors,
playing card suits, and time durations. Programming
languages usually support a number o f standard value types;
such as integer, floating point, and boolean. However
programming languages cannot provide all of the many
different value types used in different applications, so as for
other kinds of type the ability to defined new ones easily and
naturally is important.

In our investigation we ask the question have we really
advanced, have wc produced square wheels, or have we just

changed terminology? What should we be teaching our
students?

Value Types In Programming Languages
For the purposes of this paper we define two broad
categories of types; value and state. A value type is one
which is naturally viewed as a set of values with functions
which operate on values of the type to produce new values.
Integers are an example of a value type. The standard
addition function on integers maps two integer values to their
sum, it does not in any sense change the value of either of its
arguments. A state type is one which is naturally viewed as
having some state together with functions which change that
state. For example, a stack is a state type. The standard
addition ("push") function on stacks changes a stack's value
by the addition of a new element.

The standard numerical types in programming
languages; such as integers, floating point numbers and
booleans; are value types as are non-numerical ones; such as
characters. There are o f course an unlimited number of value
types, some other examples are; currency quantities, time
durations, magnitude/direction vectors, colours, and playing
card suits.

We use fractions as a prototypical value type and
evaluate how they can be defined and used in the
"traditional" and object-oriented methodologies. For brevity
we will only define the addition operation over fractions and
omit much of the detail and standard optimisations.
Fractions happen to be a numerical type, with obvious
similarities to integers and floating point numbers, which
raises the issue of the overloading of standard operator
symbols. This is an accident of our choice and does not
effect the general issues discussed and we comment only
briefly on it.

Traditional and Object-oriented Abstract Data
Types
The traditional ADT methodology is based on the concept of
types as sets of values together with a collection of functions
which define mappings between elements of the set. Under

Vol 31. No. 4 December 1999 61 :~:: -:~:~:!~:, SIGCSE Bulletin

http://crossmark.crossref.org/dialog/?doi=10.1145%2F349522.349400&domain=pdf&date_stamp=1999-12-01

Humble (continued from page 61)

this methodology the types required to solve a problem are
identified along with the functions that need to be
pe r fo rm"ed on those types. The values are passive
participants in the operations of the functions. The language
features developed to support programmer-defined types
include records, modules and information hiding. This
methodology, along with structured programming, was
standard in industry and education until object-orientation
became popular. We show how fractions are defined using
this methodology in Design 1 below.

During the 80's the computing industry tulrned to object-
oriented programming (and OO software engineering in
general) as the panacea to the software crisis, and in
universities C++ slowly replaced C, Pascal and other
languages as the core teaching language. In the last few
years Java, arguably a much better language than C++, has
help fuel the wholesale switch to OO.

The object-oriented methodology can be defined ([1, 5,
7]) as a method in which:
• An object is characterized by a number if operations and a

state which remembers the effect of these operations; that
is an object is an active entity which posses a changing
value.

• Objects are the fundamental building blocks
• Each object is an instance of some type/class
Put another way, the OO methodology is based on simulation
and anthropomorphism where active objects replace the
passive values of the traditional ADT. Designs 2 and 3 below
show the standard OO solutions for value types, and as will
be seen they are lacking when compared to the traditional
ADT of Design 1.

However, OO languages have developed over time, and
this opens up possibilities to improve on the representation
of value types. Designs 4 and 5 below suggest a possible
approach.

We now present the five designs for fractions along with
some brief notes. We then discuss the designs and the
questions posed in the introduction.

Design 1: "Traditional"Abstract Data Types
The following code shows a partial implementation of a
traditional ADT fraction type in Ada.

package Fract is

type Fraction is private;

function val (a, b : Integer) return Fraction;

function add (a, b : Fraction) return Fraction;

procedure Put(a : Fraction);

private

type Fraction is record

hum : Integer;

denom : Integer;

end record;

end Fract;

package body Fract is

-- reduce 2/4 to 1/2 etc..

procedure normalise(f : in out Fraction) is ...

function val (a, b : Integer) return Fraction is ...

function add (a, b : Fraction) return Fraction is

ans : Fraction;

begin

ans.num := a.num * b.denom + a.denom * b.num;

ans.denom := a.denom * b.denom;

normalise(ans);

return ans;

end;

end Fract;

// sample use

procedure trial is

f, g, h : Fraction;

begin

f := Fract.val(2,5);

g := Fract.add(f, Fract.val(l, i0));

h := Fract.add(Fract.val(l, i0), f);

Put("f : "); Put(f); NewLine;

Put('g = " ; Put(g); New_Line;

Put("h = " ; Put(h); New_Line;

end trial;

Examining this example we note:
• The form of the fimction calls which use fractions follows

that for language-defined types (we defer comment on
operator notation till after Design 2). Whether a value type
is programmer or language-defined makes no difference.

• In the definition of fraction addition the two operands have
equal status. The function is clearly one of two operands,
both of which are referred to in the same manner.

As the example shows, the methodology supports
programmer-defined value types naturally and consistently
with those defined by the language.

Design 2: Immutable Objects
The immutable object, that is one whose state is set once at
creation, has been the standard O 0 approach for value types
since Smalltalk. The following code shows a partial fraction
package written using immutable objects.

public class FractObj

{ private int n, d;

private static int gcd(int a, int b) ...

public FractObj () . . .

SIGCSE Bulletin : ~:: , 62 December 1999 Vol 31. No. 4

public FractObj (int n, int d) . . .

public String toString()

[return n ~ ~/" + d;

}

// disguise the new operation - looks more like a value

public static FractObj val(int n, int d)

{ return new FractObj(n, d);

}

public FractObj add(FractObj b)

{ int n, d;

n = this.n * b.d + b.n * this.d;

d = this.d * b.d;

return new FractObj(n, d);

// sample use

public static void main()

{ FractObj f, g, h;

f = FractObj.val(2, 5);

g = f.add(FractObj.val(l, i0));

h = FractObj.val(l, 10).add(f);

System.out.print("f : "); System.out.println(f);

System.out.print("g = "); System.out.println{g);

System.out.print(*h = "); System.out.println(h);

This design has a number of drawbacks, including:
• The use of fraction values isn' t very natural. The

expression a . a d d (b) reads naturally as "add b to a" not
as "add a and b to give a new value", as would the
expression a d d (a , b) .

• The definition of fraction operations is not natural.
In the definition of a d d the two operands are referred to
differently, the operation does not look like an operation on
two operands. Though operations are defined less often than
they are used, this issue is still important. (By renaming the
local variables the use of " t h i s . " can be avoided, however
the operands would still be referred to differently.)

Note on Programmer-defined Operators
Many languages allow standard operator (infix function)
symbols to be used for programmer-defined types. They can
be used to disguise the unnatural form o f expressions which
use immutable object value types by enabling a . o p (b) to
be written as a o p b. However this only works for those
types for which infix operator notation itself is natural, and
it does nothing for the definition of the type; for this reason
it is an orthogonal issue to that discussed here. They would
be a worthwhile extension to Java, especially for users of
numerical value types, and this has been proposed by others
[4, 8].

Design 3: Static Methods

A standard variation in the design o f OO value types is the
use of class methods. These differ from instance methods in
that they have no implicit object argument, but as part o f the
type have access to its internal structure. Class methods are
found in most OO languages, for example the static methods
o f Java and C++. Friend methods in C++, defining two
classes in the same Java package, or two types in the same
Ada module, provide a similar feature.

A fragment o f our fraction example written in Java using
class methods is now shown.

public class FracBin

{ private int n, d;

public static FracBin add(FracBin a, FracBin b)

{ int n, d;

n = a.n * b.d + b.n * a.d;

d = a.d * b.d;

return new FracBin(n, d) ;

// sample usage

FracBin f, g, h;

f = FracBin.val(2, 5);

g = FracBin.add(f, FracBin.val(l, i0));

h = FracBin.add(FracBin.val(l, i0), f);

This method provides a "look and feel" for programmer-
defined value types which is fairly close to those defined by
the language. A confusion of the approach is that the
methods visually appear to be part o f the object instance, yet
they are part o f the object type. (For friends the methods are
disassociated from the type.)

Design 4: Value and Behaviour Classes
The CO approach to state types has changed over time. One
development is the use o f two classes; one for storing most
o f the state/value, and another containing mostly operations;
to produce a value/behaviour division. This design can be
seen, for example, in Weiss" design for binary search trees
[10].

Though examples do not abound the same general
approach can adapted to value types. When applied to state
types the division of value and behaviour is not complete and
each distinct instance of the type has an instance o f the
behaviour class, which itself contains the instance(s) o f the
value class. For a natural model o f value types we need only
one instance o f the behaviour class, which should contain no
values at all. We of course need many instances o f the value
class.

In Java the method is supported through static classes,
that is a class containing only static members, and packages.
Our fraction example written using a value/behaviour
division is as follows.

package Fractions;

Vol 31. No. 4 December 1999 63 SIGCSE Bulletin

Humble ~on#nuedfrom page 6~ private Vat() I • o

private Var(int n, int d) ...

public class Fraction

{ protected int n, d;

protected static int gcd(int a, int b) ...

protected Fraction() ...

protected Fraction(int n, int d) ...

public String toString() ...

}

public class FractOps

{ public static Fraction val(int n, int d) ...

public static Fraction add(Fraction a, Fraction b)

{ int n, d;

n = a.n * b.d + b.n * a.d;

d = a.d * b.d;

return new Fraction(n, d) ;

/ / sample usage

Fraction f, g, h;

f = FractOps.val(2, 5);

g = FractOps.add(f, FractOps.val(l, i0));

h = FractOps.add(FractOps.val(l, I0), f);

There is little against this method. For the client the values,
variables and operations behave in the same way as for built-
in value types. The addition of programmer-defined
operators would remove any lingering distinction for the
client.

For the implementor the approach is also natural; a type
is defined to represent values in the required domain and
functions to operate on these. A minor drawback is that the
data type is defined by two separate entities, not one.

Design 5: Value/Behaviour Nested Classes
Nested classes can also be used to produce a value/behaviour
division, for example see [11]. They were introduced in Java
1.1 [6] and are provided in other languages.

Following the same approach of Design 4 the model can
be adapted for value types with a static outer class containing
the behaviour. This addresses the minor drawback of Design
4, allowing the type to be defined by a single class (albeit
with a member class). The following code shows this
approach applied to our fraction example.

public class FractInn

{ private static int gcd(int a, int b) ...

public static class Var

{ private int n, d;

public String toString() ...

public static Var val(int n, int d)

{ return new Var(n, d);

}

]public static Var add(Var a, Var b)

(int n, d;

n = a.n * b.d + b.n * a.d;

d = a.d * b.d;

return new Vat(n, d) ;

// sample usage

FractInn.Var f, g, h;

f = FractInn.val(2, 5);

g = FractInn.add(f, FractInn.val (1, 10)) ;

h = FractInn.add(FractInn.val (i, i0) , f) ;

Discussion
The traditional ADT approach, as shown in Design 1, fits
value types well. It provides a natural form for both client
and implementor, there are no hidden implicit arguments,
values which are passive participants in a "real world"
function do not get represented as active objects in the
programming language model, and it provides all the
desirable features of encapsulation and information hiding.

Turning to the object-oriented methodology there is an
apparent mismatch between it and value types, as it is based
on an active model of data as its fundamental building block.

An easy solution to this mismatch would be to ignore it,
and this has often been chosen. Look at a CS2 textbook
which uses a language with good support for the traditional
ADT methodology, for example see [2] which uses Ada 95,
and you are likely to find a number of programmer-defined
value types covered. However pick a CS2 textbook which
uses the CO methodology and the first data type covered will
probably be some linear container type.

As shown in Design 2, it is hard to argue that the use of
immutable objects is natural as the explanation of addition is
"send the method add x to the object y". This is a confusing
and forced model to teach to students (or use in industry).

Design 3 and the use of programmer-defined operators
are an attempt to disguise the differences between language
and programmer-defined value types. It has little to
recommend it, lacks the clarity of Design 1, and goes against
the CO philosophy as the operations are not characteristics
of instances. The overuse of static methods in the CO
method is often treated akin to the overuse of global
variables in the traditional approach.

Designs 4 and 5 demonstrate that clear and natural
approaches to value types are possible in CO languages.

SIGCSE Bulletin 64 December 1999 Vol 31. No. 4

However they do embody a significant shift in philosophy
from that o f "traditional object-orientation' .

Design 4 provides the benefit lacking in Design 3, there
is a clear distinction between the class which represents the
value and the static class which provides the functions. Here
Java's package system provides a similar benefit to the
traditional module, as typified by the Ada package, by
allowing dependant types/objects to be encapsulated within
a single entity while providing appropriate restrictions on
external clients. However, is a class which has no instances
conformant with a methodology were objects , not classes,
are the fundamental building blocks?

There is little to detract, from a client or implementor
viewpoint, from Design 5 and its use of nested classes. But
again is it object-oriented? Comparing the nested class
solution to Design 1 shows that they are, apart from minor
syntax differences, fundamentally the same. The behaviour
class has replaced the module, the nested value class the type
defined within the module. The process we have followed to
discover a good method of supporting value types in OO
languages has simply rediscovered the original ADT method.

It is now not hard to understand why texts which teach
the OO methodology exclusively often ignore value types,
they simply don't fit the model very well. But what does that
teach students? Many arrive at our universities already
persuaded that OO is the only approach, that older methods
are out-dated and to be ignored. I f we then teach the OO
methodology exclusively, what happens when they are faced
with a problem requiring value types? Having taught now for
a number of years a graduate class attended by students who
undertook their graduate studies at many different
universities in different countries, the unfortunate answer is
"square wheels" justified on the grounds that they are
"object-or iented" and often additionally "that 's what
industry wants".

Would it not be better to tackle the mismatch of value
types and OO methodology directly and teach students a
more holistic approach which includes the clear separation
of value and behaviour when appropriate, as well as their
combination? In some texts, for example [10, 11], we see
movemen t in this direction for state types but the
development has gone largely uuremarked. The use o f
behaviour-only classes of static methods is also seen for
algorithms, such as sorting, in many texts. It is certainly
disappointing that Java, a recent language, still uses the
simple immutable objects o f Design 2 for some of it's
language-defined value types. For example the language-
defined library types BigInteger and BigDecimal [9]
follow this model and texts have followed this and used it for
programmer-defined value types as well, for example see the
complex numbers defined in [3].

C o n c l u s i o n
It would seem that the humble fraction is not quite as humble

as it first appears, it has resisted the might o f the OO Borg
and refused to be assimilated; our final "OO" solution turns
out to be the original traditional one in a rather thin disguise.

The starting point for this research was concern over
many o f my students arriving in university, as
undergraduates or graduates, already knowing that object-
oriented programming was the best way of designing and
implementing programs. Such students often demand, and
are given, OO languages and OO methodologies. Older
languages and methodologies are not favoured by them, and
the OO texts available to them tend to skimp when covering
value types, or present awkward solutions.

As Design 5 shows, an OO language such as Java is
quite capable of supporting value types in a natural and
straightforward manner; and of course broader languages
such as Ada 95 also support both traditional and OO
approaches. What is needed is a better blending in design
methodologies of the traditional and the modern, so that our
students both learn from the old and benefit from the new.

References
[1] Cardelli, L. and Wegner, E, On Understanding Types, Data

Abstraction, and Polymorphism, Computing Surveys 17, 4
(1985), 471-522.

[2] Feldman, M.B., Software construction and data structures
with Ada 95. Addison-Wesley, 1997.

[3] Flanagan, D., Java Examples in a Nutshell. O'Reilly &
Associates, 1997.

[4] Gosling, J., The Evolution of Numerical Computing in Java,
Javasoft, URL <http://www.javasoft.com/people/jag/FEhtml>,
1998.

[5] Horowitz, E., Sahni, S., and Mehta, D., Fundamentals of Data
Structures in C++. Computer Science Press, 1995.

[6] Horstmann, C.S. and Cornell, G., Core Java 1.1, vol. 1 -
Fundamentals. Sun Microsystems Press/Prentice Hall, 1997.

[7] Jacobson, I., Object-Oriented Software Engineering. ACM
Press/Addison-Wesley, 1992.

[8] Steele Jr., G.L., Growing a Language. In Proceedings o f
OOPSLA' 98, Vancouver, 1998.

[9] Sun Microsystems, JDK TM 1.1 Documentation, URL
<http ://j ava.sun.com/products/jdk/1.1/docs.httml>, 1996.

[10]Weiss, M.A., Data Structures & Algorithm Analysis in Java TM.

Addison Wesley Longman, 1999.
[ll]Winder, R. and Roberts, G., Developing Java Software. John

Wiley & Sons, Chichester, 1998.

Vol 31. No. 4 December 1999 65 I~:~:~:<:<~<"~ SIGCSE Bulletin

