
RedCASTLE: Practically Applicable 𝑘𝑠-Anonymity
for IoT Streaming Data at the Edge in Node-RED

Frank Pallas
fp@ise.tu-berlin.de

TU Berlin, Information Systems Engineering
Berlin, Germany

Julian Legler
julian.legler@campus.tu-berlin.de

TU Berlin
Berlin, Germany

Niklas Amslgruber
n.amslgruber@campus.tu-berlin.de

TU Berlin
Berlin, Germany

Elias Grünewald
eg@ise.tu-berlin.de

TU Berlin, Information Systems Engineering
Berlin, Germany

ABSTRACT
In this paper, we present RedCASTLE, a practically applicable so-
lution for Edge-based 𝑘𝑠 -anonymization of IoT streaming data in
Node-RED. RedCASTLE builds upon a pre-existing, rudimentary
implementation of the CASTLE algorithm and significantly ex-
tends it with functionalities indispensable for real-world IoT sce-
narios. In addition, RedCASTLE provides an abstraction layer for
smoothly integrating 𝑘𝑠 -anonymization into Node-RED, a visually
programmable middleware for streaming dataflows widely used
in Edge-based IoT scenarios. Last but not least, RedCASTLE also
provides further capabilities for basic information reduction that
complement 𝑘𝑠 -anonymization in the privacy-friendly implemen-
tation of usecases involving IoT streaming data. A preliminary
performance assessment finds that RedCASTLE comes with rea-
sonable overheads and demonstrates its practical viability.

CCS CONCEPTS
• Security and privacy→ Pseudonymity, anonymity and un-
traceability; • Applied computing → Event-driven architec-
tures; • Software and its engineering→ Publish-subscribe / event-
based architectures; • Information systems→ Data streams.

KEYWORDS
privacy, IoT, streaming data, anonymization, Node-RED, privacy
engineering

preprint version (2021-10-29), accepted as Regular research paper for the
8th International Workshop on Middleware and Applications for the Internet of Things

© 2021 ACM, to be published in the ACM Digital Library: https://dl.acm.org/doi/10.1145/3493369.3493601

1 INTRODUCTION
Ensuring privacy is one of the most important challenges when
implementing real-world IoT scenarios such as building automation,
connected cities, intelligent energy grids, or smart healthcare [19].
In all these and many further cases, the data collected and processed
may reveal personal and sometimes highly sensitive information in
amultitude of ways. Regulatory provisions such as the GDPR aswell
as users’ demands to protect their privacy therefore often require to
minimize the level of detail at which continuously flowing IoT data
such as sensor measurements or observed events are processed.
At the same time, respective data must still be detailed enough to
facilitate intended functionalities.

For balancing these often diverging goals, advanced anony-
mization techniques ensuring properties such as 𝑘-anonymity [17],
ℓ-diversity [8], or 𝑡-closeness [5] have been established. Algorithms

and respective implementations for ensuring these are publicly
available. However, their practical adoption in real-world IoT sce-
narios is currently hindered by at least two shortcomings:

First, most algorithms and implementations focus on anonymi-
zing persistent datasets stored in and retrieved from, for instance,
a database while IoT scenarios strongly rest upon streaming data
that are processed “on the fly”. Ensuring above-mentioned privacy
properties for data streams, in turn, has seen significantly less cov-
erage in the scientific discourse so far [2, 15]. Second, and similarly
important, existing implementations are rather rudimentary and
hardly address questions of integration into established tools and
solutions employed in practice. This is particularly true for com-
bining anonymization measures with Edge-computing approaches,
which have also been proposed for privacy-friendly designs of
IoT scenarios [13]. Without such integration, however, respective
anonymization techniques will hardly be adopted in practice.

To address these challenges, we herein propose RedCASTLE, an
easily integratable and flexibly configurable anonymization exten-
sion to the widely used IoT middleware Node-RED. RedCASTLE
allows to implement a broad variety of information reduction ap-
proaches as well as to ensure 𝑘𝑠 -anonymity via the established
CASTLE algorithm [2] for IoT data streams with minimum integra-
tion effort. In particular, RedCASTLE comprises:

• a set of configurable functions for basic information reduc-
tion, such as attribute suppression, data filtering, and data
mapping,

• an extension of the pre-existing CASTLEGUARD library to
facilitate the 𝑘-anonymization of actual data streams with
numerical and non-numerical data, and

• a practically applicable and easily adoptable extension that
coherently integrates said functionality into Node-RED, a
highly interoperable middleware for streaming dataflows
widely established for IoT- and Edge-usecases.

The provided extension is publicly available under an open
source license.1 Our work builds upon a pre-existing, rudimentary
implementation, CASTLEGUARD [15]. So far, however, CASTLE-
GUARD is significantly limited in matters of practical applicability
and lacks, for instance, connectivity to real streaming data sources
(instead ofmerely simulating them by reading a .csv-file line by line),

1RedCASTLE is available under the MIT license at https://github.com/
PrivacyEngineering/RedCASTLE.

ar
X

iv
:2

11
0.

15
65

0v
1 

 [
cs

.C
R

] 
 2

9 
O

ct
 2

02
1

https://orcid.org/0000-0002-5543-0265
https://orcid.org/0000-0001-8715-0156
https://orcid.org/0000-0001-9076-9240
https://dl.acm.org/doi/10.1145/3493369.3493601
https://github.com/PrivacyEngineering/RedCASTLE
https://github.com/PrivacyEngineering/RedCASTLE


M4IoT’21, December 6–10, 2021, Virtual Event, Canada Pallas, Legler, Amslgruber, and Grünewald

capabilities to handle non-numerical data, or integration into real-
world pipelines. We herein address these limitations and thereby
provide – to the best of our knowledge – the first solution for
Edge-based 𝑘-anonymization of streaming data that is practically
applicable in real-world settings.

Our considerations and contributions unfold as follows: In sec-
tion 2, we provide relevant background knowledge and related
work. On this basis, we depict our general integration approach
(section 3) as well as our newly introduced functionalities for basic
information reduction (section 4) and 𝑘𝑠 -anonymization (section
5) in Node-RED. A preliminary performance assessment of our
solution is provided in section 6, section 7 concludes.

2 BACKGROUND & RELATEDWORK
In this section, we begin with the relevant background on IoT and
the anonymization of streaming data in the Node-RED middleware.

2.1 IoT, Edge, and the Role of Streaming Data
Internet-of-Things (IoT) scenarios arise in a broad variety of ap-
plications, from building automation [6], connected cities [7], or
energy grids [16] to smart healthcare [10]. All these scenarios rest
upon vast amounts of status and measurement data being collected,
processed, integrated, and acted upon in a timely manner.

After initial trends towards centralized, often cloud-based ar-
chitectures where data are sent back and forth between the place
of collection and effectuation (e.g., a smart meter collecting con-
sumption data and controlling the charging behavior of an electric
vehicle) on the one and a centralized processing pipeline on the
other hand, recent developments increasingly recognize the need
for more decentralized architectures. This is particularly driven
by growing amounts of data conflicting with limited bandwidths
and processing capacities and by near-real-time requirements of
certain IoT usecases conflicting with inevitable network latencies
of cloud-centric approaches.

In Edge and Fog computing [1] models, parts of the data pro-
cessing are therefore carried out closer to the points of collection
and effectuation. This allows to filter, aggregate, and otherwise pre-
process data before forwarding them to upstream services and to
implement significant parts of the functionality locally. Especially
for continuous streams of measurement data and events from large
numbers of sensors and devices, this significantly decreases the
amount of data to be transferred as well as round-trip latencies
between an event occurring and the respective response being car-
ried out. Besides such possible benefits in matters of performance,
Edge and Fog computing may, last but not least, also serve as en-
abling technology for more privacy-friendly implementations of
IoT-scenarios through patterns such as early filtering, aggregation,
or anonymization [13].

2.2 Anonymization for Streaming Data
Data anonymization is one of the most fundamental techniques for
implementing privacy-friendly systems. Naïve approaches for doing
so, however, pose the risk of re-identifiablity of individuals through
so-called quasi-identifiers [17] and, thus, the factual disclosure
of personal data. To avoid such risks, advanced anonymization

schemes and measures like 𝑘-anonymity [17], ℓ-diversity [8] or
𝑡-closeness [5] have been established.

Respective approaches are, though, designed with rather static
datasets in mind and do not fit the givens and requirements arising
in the context of IoT streaming data [9]. Besides the relatively slow
anonymization process, which conflicts with near-real-time require-
ments in IoT usecases [2], this is particularly the case because the
underlying assumptions do not hold for IoT streaming data. Instead,
appropriately adapted anonymization models are required.

Focusing on 𝑘-anonymity, a suitable model is model is 𝑘𝑠 -ano-
nymity, as implemented in the CASTLE algorithm [2]. Here, ar-
riving streaming data is assigned to different clusters based on
automatically generalized values for a manually defined set of nu-
merical quasi-identifiers. For instance, the algorithmmay determine
four different value-ranges for a quasi-identifier “vendor-id” and six
value-ranges for a quasi-identifier “station-id” in an electric vehicle
charging use case. All messages with similar combinations of so-
generalized quasi-identifiers are then combined into one cluster.2

Every cluster is then considered to be𝑘𝑠 -anonymous if it contains
at least 𝑘 values. If clusters cannot be made 𝑘𝑠 -anonymous, they
will be merged with other clusters. When new data arrives and does
not fit into an existing cluster, the closest cluster gets enlarged (but
only if it is not already 𝑘𝑠 -anonymous) or a new cluster is created.

Compared to other adopted models such as FAANST [18] or
K-VARP [9], CASTLE has seen the strongest recognition in the sci-
entific discourse. In addition, a continuously maintained reference
implementation is available as part of the CASTLEGUARD library
[15]. We therefore chose CASTLE as the basis for our streaming
data anonymization component.

2.3 Node-RED
Node-RED is best described as a visually programmable middleware
for streaming dataflows. It supports a broad variety of interfaces
for data in- and e-gress and is widely used in several industries
for implementing complex and dynamically adaptable IoT data
flows.3 Given its low footprint, Node-RED is particularly suitable
and advocated for usecases involving above-mentioned Edge-based
preprocessing of IoT streaming data.

Within Node-RED, all functionalities are provided via so-called
nodes which are dynamically linked through wires into flows. Mes-
sages are brought into a flow via special input nodes, which exist for
a broad variety of data sources such as MQTT channels, message
buses or mesh networks like KNX or ZWave, or even low-level UDP
datagrams. Similarly, messages can be published via output nodes,
which can again represent an MQTT channel, an HTTP call to be
performed, etc. Between input and output, messages are processed
and may be transformed in function nodes of different kinds. In all
three categories, available node types are manifold and the library
is continuously extended.4

The broad spectrum of available node types notwithstanding,
anonymization capabilities – especially following advanced schemes

2Details on quasi-identifiers, their importance in the context of anonymization, etc.
had to be left out due to space constraints. For more in-depth elaborations, see [17].
3Existing large-scale industrial applications of NodeRED mentioned in developer fo-
rums include, for instance, medical settings, energy provision, or integration of indus-
trial PLCs. See https://discourse.nodered.org/t/node-red-at-enterprise-level/11205/8
4For the all available node types, see https://flows.nodered.org/search?type=node.

https://discourse.nodered.org/t/node-red-at-enterprise-level/11205/8
https://flows.nodered.org/search?type=node


RedCASTLE: Practically Applicable 𝑘𝑠 -Anonymity for IoT Streaming Data at the Edge in Node-RED M4IoT’21, December 6–10, 2021, Virtual Event, Canada

like 𝑘𝑠 -anonymity – are currently lacking in the Node-RED ecosys-
tem. This particularly hinders the adoption of Node-RED in privacy-
sensitive usecases or requires separate, non-integrated measures
like anonymization proxies to be added between a Node-RED in-
stance and any upstream service. Both options would come with
significant downsides in matters of implementable usecases, in-
creased efforts, or performance drops.

Instead, we thus propose to integrate advanced anonymization
capabilities directly into Node-RED.

3 INTEGRATING ANONYMIZATION INTO
NODE-RED

In line with other endeavors for practically applicable privacy engi-
neering [3, 4, 14], our solution shall not only provide the func-
tionality to 𝑘𝑠 -anonymize data but also fulfill further nonfunc-
tional requirements such as coherently integrating with established
toolchains and respective application patterns or raising low inte-
gration effort.

In this vein, RedCASTLE is provided as a self-contained exten-
sion to Node-RED that encapsulates the underlying functionality
of CASTLEGUARD and makes it available through a custom func-
tion node that natively integrates and can be used in flows like
any other function node. Similarly, functionalities for basic infor-
mation reduction are also made accessible in a separate class of
function nodes. Thereby, RedCASTLE decouples the anonymiza-
tion functionality as far as possible from Node-RED’s core and
ensures future-proofness. As CASTLEGUARD is implemented in
Python while Node-RED requires custom nodes to be written in
JavaScript, messages are exchanged between these subcomponents
via a low-overhead, brokerless local ZeroMQ message queue.

Based on these building blocks, 𝑘𝑠 -anonymization of IoT stream-
ing data can be implemented within Node-RED in line with its com-
mon visual programming paradigm and respectively established
patterns and practices as follows (see figure 1).

Ingress. The messages to be anonymized enter a flow through
any kind of input node available in Node-RED, ensuring maximum
flexibility and interoperability. A quite common usecase might here
be an MQTT-input that subscribes to one or multiple channels.

Information Reduction. Even though not necessarily required
for 𝑘𝑠 -anonymization, performing basic information reductions –
attribute suppression, filtering, mappings – on the messages before-
hand allows to eliminate unnecessary but possibly privacy-sensitive
attributes, reduces complexity for the subsequent step, and also
helps rendering initially unfitting data suitable for automated gen-
eralization (e.g., when mapping a discrete vehicle model string to
a numerical price parameter in a smart charging scenario). In ad-
dition, it may help reduce the bandwidth required for forwarding
messages from an Edge-node to upstream services afterwards. Such
reduction is done in an information reduction node that is added to
the flow and wired to the input node. Available reductions as well
as configuration parameters are laid out in section 4 below.

MQTT in MQTToutPre-
Processing 𝐤𝐬 Anonymizer Post-

Processing

CASTLEGUARD

CASTLE

MQTT 
Broker

ClientsClientsClients

Node-RED

ZeroMQ

ZeroMQ

1
2

3

4

5
6

7

0

Figure 1: 𝑘𝑠 -anonymization process in RedCASTLE.

𝑘𝑠 -Anonymization. The actual generalization and clustering of
messages according to the 𝑘𝑠 -anonymization model laid out above
(see section 2.2) is done with a separate CASTLEGUARD node. This
node abstracts away the complex functionality of the underlying
component (as well as respective inter-component communication)
and is simply wired to the information reduction node and, thus,
fed with pre-processed messages. Again, available functionalities
and respective configuration parameters are laid out in more detail
below in section 5. As soon as a cluster fulfills the 𝑘𝑠 -criterion,
respective messages are bulk-released by the CASTLEGUARD node.

Re-Publishing. To forward anonymized data to upstream services
outside of Node-RED like a cloud-based processing pipeline or
subsequent Edge-local components, a respective output node is
wired to the CASTLEGUARD node. Again, a quite common usecase
might here be an MQTT-output publishing respective messages via
an external broker. For doing so, the CASTLEGUARD node only
needs to be wired to any of the output nodes available in Node-RED.

Of course, additional function nodes can be inserted at any stage
of this basic flow: Before generalization takes place, before the ac-
tual 𝑘𝑠 -anonymization, or after the CASTLEGUARD-step. Similarly,
some use cases might only use an information reduction node and
go without 𝑘𝑠 -anonymization or vice versa. This way, our separated
nodes integrate well into larger, more complex flows, allowing to
flexibly work with anonymized data in Node-RED.

4 BASIC INFORMATION REDUCTION
For basic data reduction, RedCASTLE provides the following mes-
sage manipulations that can all be configured by attaching the
configuration to the specific message5:

Attribute Suppression. Not all parameters of incoming messages
may be relevant for the dataflow to be carried out. At the same
time, removing certain attributes (such as individual identifiers)
from messages may provide benefits in matters of privacy and/or
required bandwidth. RedCASTLE therefore allows to specify names
for those attributes that are to be stripped from every message that
passes a data reduction node. For this aim, a suppress properties
node allows to remove attributes from messages accordingly.

5For the specific syntax to be used for this and all subsequently described configura-
tions, see https://github.com/PrivacyEngineering/RedCASTLE.

https://github.com/PrivacyEngineering/RedCASTLE


M4IoT’21, December 6–10, 2021, Virtual Event, Canada Pallas, Legler, Amslgruber, and Grünewald

Filters. Besides suppressing single attributes, messages can also
be filtered out completely based on different conditions. In particu-
lar, RedCASTLE implements attribute-driven allow- and disallow
filters. This does, for instance, completely drop all messages with
an objectID-value included in a provided set of disallowed IDs.
In addition, with a range-filter numerical value ranges for mes-
sage attributes can be specified. In this case, all messages with the
respective values being outside the respective range are dropped.

Conditional Changes. Conditional changes basically allow to ma-
nipulate message data depending on conditions being matched
or not. RedCASTLE allows to add or change the value of an at-
tribute changeAttributeName, either on the basis of a string be-
ing matched or based on numerical value ranges. This allows, for
instance, to implement above-mentioned mapping functionality:
whenever a parameter vehicle-model matches a particular string,
a new numerical parameter vehicle-price may be set. Similarly,
numerical price ranges may also be explicitly mapped to (numbered
or string-named) price-categories.

Except range-based ones, all these reduction functions can be
used with numerical and non-numerical attributes. Additional func-
tionalities might be added in the future, but with suppression, fil-
tering, and conditional changes, RedCASTLE already provides the
most relevant capabilities for information reduction on continu-
ously flowing messages.

5 NODE-RED-ADOPTED 𝑘𝑠-ANONYMIZATION
Providing practically valuable𝑘𝑠 -anonymization inNode-RED based
in the pre-existing CASTLEGUARD implementation required sev-
eral extensions to be made. In particular, this regards the previous
lack of suitable integration interfaces as well as missing support
for non-numerical data.

5.1 Integration Interface
First and foremost, we added actual streaming data interfaces as
in- and outputs to CASTLEGUARD. Before, CASTLEGUARD only
accepted .csv-files as inputs and printed 𝑘𝑠 -anonymized outputs to
the command-line, severely limiting its practical use for real-world
scenarios. We therefore extended CASTLEGUARD by a lightweight
ZeroMQ interface allowing for a coherent and low-overhead inte-
gration and message exchange with Node-RED.

This interface is employed by our above-mentioned abstracting
RedCASTLE function node, which basically receives a message
within the Node-RED context, ensures that the modified CASTLE-
GUARD process is running, and forwards the message “as-is” to
this process via said message queue. Similarly, whenever messages
are bulk-released by CASTLEGUARD, this is also done via a second
ZeroMQ interface listened to by the RedCASTLE function node.
All respective, 𝑘𝑠 -anonymized messages are then released by the
function node and forwarded and processed within Node-RED as
usual. Once RedCASTLE is installed, all this works seamlessly and
automatically, without requiring any further configuration etc.

5.2 Non-Numerical Data
In addition, we also extended CASTELGUARD itself to provide
advanced functionality for handling non-numerical data by auto-
matically converting them to numerical categories. Non-numerical

data could so far not be handled at all by the pre-existing implemen-
tation. Given that in real-world IoT scenarios, message attributes
are non-numerical (e.g., string-based) quite often and that these
attributes (such as, for instance, a vehicle model) might be relevant
quasi-identifiers, this significantly limits practical applicability. To
at least partially close this gap, we extended CASTLEGUARD with
basic capabilities for handling non-numerical message attributes
and for incorporating them in the 𝑘𝑠 -anonymization process, in-
cluding automated categorization.

For this purpose, non-categorized-attributes can be spec-
ified in RedCASTLE’s configuration. Whenever a so far unseen
value is detected for one of these attributes, it is assigned to a new
numerical category ID and replaced in the message accordingly. A
previously seen value, in turn, is replaced with the previously de-
termined category so that, e.g., all occurences of a vehicle-model
“e-tron 55” are replaced with the same category ID.

In CASTLEGUARD’s 𝑘𝑠 -anonymization procedure, these cate-
gories are then treated specifically. As there is no natural ordering
of category IDs or, respectively, no semantic meaning embodied in
their ordering, grouping them based on value rangeswould not have
made sense. Instead, categories are treated as sets in our extended
implementation. Clusters may then be created independently from
the category ID ordering and without generalizing them so that,
for instance, one cluster may comprise the IDs {3, 6} and the other
one {1, 2, 4, 9}. Consequently, instead of min-max-ranges, a list of
all category IDs inside a cluster is also placed into the output.

5.3 Anonymization Parameters
Besides above-mentioned extensions and adaptations, we also made
the underlying 𝑘𝑠 -anonymization procedure highly configurable.
Parameters are set in a JSON configuration file and can be divided
into algorithm- and dataset-related ones.

Algorithm-specific parameters. In this group, parameters that
control the 𝑘𝑠 -anonymization procedure can be configured. This
includes the k for the 𝑘𝑠 -anonymity, the maximum amount of tuples
delta, the maximum allowed active clusters beta and the config-
uration parameter mu for controlling the maximum information
loss.

Dataset-specific parameters. For the algorithm to work correctly,
some information has to be specified in this parameters group. The
sensitive attribute has to be set as well as the quasi identifiers and,
if existing, the identifier attribute. The attributes to be interpreted
as non-numerical values as described in 5.2 are also specified here.

6 PRELIMINARY PERFORMANCE
ASSESSMENT

For validating at least the basic viability of our approach in matters
of expectable overheads and to preclude being on a fundamen-
tally flawed path, we conducted a set of preliminary performance
assessments.

In line with established best-practices for security- and privacy-
related performance benchmarks [11, 12], we deployed 3 medium-
sized n2-standard-2 Google Cloud instances to separate different
components from each other. The first instance is used for the



RedCASTLE: Practically Applicable 𝑘𝑠 -Anonymity for IoT Streaming Data at the Edge in Node-RED M4IoT’21, December 6–10, 2021, Virtual Event, Canada

0

5

10

15

Messages per second

La
te

nc
y 

ov
er

he
ad

 in
 s

ec
on

ds

15 30 60 80 max

+
+

+
+ +

Figure 2: Latency overhead induced by RedCASTLE’s 𝑘𝑠 -
anonymization for different message frequencies (median,
25th and 75th percentile, and 1.5 times the interquartile
range, outliers represented by dots, means by crosses).

MQTT broker, the second is running the data emulator (the “bench-
marking client”) and the last one is running the actual system under
test, the Node-RED server with RedCASTLE. To minimize external
impact, all servers are created in the same availability zone and
placed within a Virtual Private Cloud Network.

Based on this general setting, we benchmarked 1) the additional
delay introduced by RedCASTLE’s 𝑘𝑠 -anonymization and 2) the
difference in matters of achievable message throughput with and
without RedCASTLE being used. Benchmarkswere conducted using
a realistic dataset of electric vehicle charging events provided by
the city of Boulder, Colorado.6 To spice up the dataset, several fake
persons with specific vehicle models and unique IDs were used to
enrich the original dataset. We chose a realistic 𝑘 = 5 for our initial
assessments, all other anonymization parameters (see 5.3) were
kept at their default. All CPU- and network loads were constantly
monitored during benchmark runs and stayed – with one exception,
see below – within ranges ensuring we actually benchmarked what
we intended to.

Message delay. Given the clustering approach behind 𝑘𝑠 -ano-
nymity laid out above, messages are not immediately propagated
through the message-flow defined in Node-RED but rather collected
in a cluster until enough messages are present for successfully 𝑘𝑠 -
anonymizing them. This necessarily implies a delay of message
delivery which can be expected to be higher for lower message fre-
quencies.We therefore determined the additional delays induced for
15, 30, 60, 80, and the highest possible amount of messages per sec-
ond. In line with our expectations, the medium delay per individual
message as well as the observed deviations from this value decrease
significantly with higher message frequencies, with the mean de-
lay stabilizing around 1-2 seconds in our chosen scenario (see Fig.
2). For many real-world usecases employing privacy-sensitive IoT
streaming data, these results appear to be reasonable and acceptable.
From 80 messages/s onward, however, the CPU load of one core
increased significantly and also resulted in slight latency increases.

6"Electric Vehicle Charging Station Energy Consumption", https://open-data.
bouldercolorado.gov/datasets/183adc24880b41c4be9fd6a14eb6165f_0/explore

Figure 3: Measuredmaximum throughput with and without
𝑘𝑠 -anonymization component (moving 1-minute window)

Given Python’s single-thread characteristics, this perfectly resem-
bles RedCASTLE’s expectable behavior and vividly illustrates the
computational complexity behind 𝑘𝑠 -anonymization.

Maximum throughput. Besides the delay necessarily introduced,
our 𝑘𝑠 -anonymization mechanism expectably also has an impact
on the achievable message throughput, which we determined by
letting our benchmarking client fire as many messages as possible.
This resulted in a relatively stable average throughput around 90
messages/s with RedCASTLE’s 𝑘𝑠 -anonymization integrated into
the Node-RED flow (see figure 3). With 𝑘𝑠 -anonymization being
skipped, we were surprisingly no longer able to saturate the Node-
RED instance: Message throughput in this case reached around 230
messages/s with neither the Node-RED instance nor the two other
ones reaching a CPU load above 20%. Network interfaces were also
far from operating at full capacity. This points towards a so far
unidentified bottleneck in Node-RED.

On the one hand, this clearly indicates a strong need for further
investigations to identify the actual bottleneck limiting message
throughput. On the other, more pragmatically speaking one, the
observed limitations are what Node-RED users are currently left
with in the employed scenario, no matter what the bottleneck ac-
tually is. From this perspective, RedCASTLE’s 𝑘𝑠 -anonymization
reduces achievable message throughput by roughly 60% – a signifi-
cant overhead that will nonetheless be deemed reasonable in many
real-world usecases and will also relativize with more complex and
computationally intensive message flows being implemented at the
Edge around RedCASTLE’s anonymization.

Both the induced latencies and the throughput reduction do,
finally, appear in a different light when taking into account that the
anonymization functionality provided by RedCASTLE is indispens-
able for the lawful implementation of many real-world usecases
involving privacy-sensitive IoT streaming data. When seen as such
an enabling technology, the additional benefits that can be gener-
ated from respective usecase implementations will in most cases
clearly outweigh or justify the observed overheads. Altogether, our
initial performance assessments thus suggest non-negligible but
still bearable overheads to result from applying RedCASTLE in real-
world usecases. More in-depth investigations – covering different
values for 𝑘 , more complex Node-RED flows and trying to pinpoint
the observed bottleneck – are nonetheless necessary for getting a
more comprehensive picture in the future. By and large, however,

https://open-data.bouldercolorado.gov/datasets/183adc24880b41c4be9fd6a14eb6165f_0/explore
https://open-data.bouldercolorado.gov/datasets/183adc24880b41c4be9fd6a14eb6165f_0/explore


M4IoT’21, December 6–10, 2021, Virtual Event, Canada Pallas, Legler, Amslgruber, and Grünewald

RedCASTLE appears to be a practically viable approach for imple-
menting indispensable anonymization functionality in Edge-based
streaming data processing.

7 CONCLUSION AND FUTUREWORK
In this paper, we presented RedCASTLE – the, to the best of our
knowledge, first practically viable solution for 𝑘𝑠 -anonymization of
IoT streaming data within a widespread Edge middleware. RedCAS-
TLE builds upon a pre-existing, rudimentary implementation of
the CASTLE algorithm, significantly extends it by actual streaming
interfaces and capabilities for handling non-numerical data, and
provides coherent integration into Node-RED. Due to the nature of
𝑘𝑠 -anonymization and its computational complexity, RedCASTLE
inevitably introduces overheads in matters of message latency and
throughput. Given that many application scenarios will not be re-
alizable without solid anonymization at all and that the observed
overheads will relativize in more complex Edge data flows, these
overheads will, however, be deemed bearable in many real-world
usecases.

Interesting areas for future work include the addition of fur-
ther information reduction functions as well as also transferring
anonymization functionalities for ℓ-diversity, 𝑡-closeness, and Y-
differential privacy already provided by CASTLEGUARD. Imple-
menting these in JavaScript instead of employing a pre-existing
Python implementation, in turn, would expectably lead to a more
native integration into Node-RED and eliminate kludges such as
context-changing inter-process communication. Finally, more in-
depth performance benchmarks as indicated in section 6 are also
an advisable subject for future reasearch to better understand and
optimize the impact of RedCASTLE in real-world scenarios.

These and further open issues notwithstanding, however, Red-
CASTLE is the first of its kind implementation for 𝑘𝑠 -anonymizing
IoT streaming data within a widely used Edge middleware in an
integrated, coherent manner. It therefore allows for the lawful im-
plementation of many respective usecases involving personal data
and, thus, renders them practically viable at all.

REFERENCES
[1] David Bermbach, Frank Pallas, David García Pérez, Pierluigi Plebani, Maya

Anderson, Ronen Kat, and Stefan Tai. 2018. A Research Perspective on Fog
Computing. In Service-Oriented Computing – ICSOC 2017 Workshops. 198–210.
https://doi.org/10.1007/978-3-319-91764-1_16

[2] Jianneng Cao, Barbara Carminati, Elena Ferrari, and Kian-Lee Tan. 2011. CASTLE:
Continuously Anonymizing Data Streams. IEEE Transactions on Dependable and
Secure Computing 8, 3 (2011), 337–352. https://doi.org/10.1109/TDSC.2009.47

[3] Elias Grünewald and Frank Pallas. 2021. TILT: A GDPR-Aligned Transparency
Information Language and Toolkit for Practical Privacy Engineering. In Proceed-
ings of the 2021 Conference on Fairness, Accountability, and Transparency. ACM.
https://doi.org/10.1145/3442188.3445925

[4] Elias Grünewald, Paul Wille, Frank Pallas, Maria C. Borges, and Max-R. Ulbricht.
2021. TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in
RESTful Architectures. In 2021 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). IEEE Computer Society.

[5] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. 2007. t-Closeness:
Privacy Beyond k-Anonymity and l-Diversity. In 2007 IEEE 23rd International
Conference on Data Engineering. 106–115. https://doi.org/10.1109/ICDE.2007.
367856 ISSN: 2375-026X.

[6] Georgios Lilis, Gilbert Conus, Nastaran Asadi, and Maher Kayal. 2017. Towards
the next generation of intelligent building: An assessment study of current
automation and future IoT based systems with a proposal for transitional design.
Sustainable Cities and Society 28 (2017), 473–481. https://doi.org/10.1016/j.scs.
2016.08.019

[7] Yi Liu, Chao Yang, Li Jiang, Shengli Xie, and Yan Zhang. 2019. Intelligent edge
computing for IoT-based energy management in smart cities. IEEE network 33, 2
(2019), 111–117.

[8] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakr-
ishnan Venkitasubramaniam. 2007. l-diversity: Privacy beyond k-anonymity.
ACM Transactions on Knowledge Discovery from Data 1, 1 (March 2007), 3–es.
https://doi.org/10.1145/1217299.1217302

[9] Ankhbayar Otgonbayar, Zeeshan Pervez, Keshav Dahal, and Steve Eager. 2018.
K-VARP: K-anonymity for varied data streams via partitioning. Information
Sciences 467 (2018), 238–255. https://doi.org/10.1016/j.ins.2018.07.057

[10] Pasquale Pace, Gianluca Aloi, Raffaele Gravina, Giuseppe Caliciuri, Giancarlo
Fortino, and Antonio Liotta. 2019. An Edge-Based Architecture to Support
Efficient Applications for Healthcare Industry 4.0. IEEE Transactions on Industrial
Informatics 15, 1 (2019), 481–489. https://doi.org/10.1109/TII.2018.2843169

[11] Frank Pallas, David Bermbach, Steffen Müller, and Stefan Tai. 2017. Evidence-
Based Security Configurations for Cloud Datastores. In Proceedings of the ACM
Symposium on Applied Computing. 424–430. https://doi.org/10.1145/3019612.
3019654

[12] Frank Pallas and Martin Grambow. 2018. Three Tales of Disillusion: Bench-
marking Property Preserving Encryption Schemes. In 15th International Con-
ference on Trust, Privacy and Security in Digital Business - TrustBus. 39–54.
https://doi.org/10.1007/978-3-319-98385-1_4

[13] Frank Pallas, Philip Raschke, and David Bermbach. 2020. Fog Computing as
Privacy Enabler. IEEE Internet Computing 24, 4 (2020), 15–21. https://doi.org/10.
1109/MIC.2020.2979161

[14] Frank Pallas, Max-R Ulbricht, Stefan Tai, Thomas Peikert, Marcel Reppenhagen,
Daniel Wenzel, Paul Wille, and Karl Wolf. 2020. Towards application-layer
purpose-based access control. In Proceedings of the 35th Annual ACM Symposium
on Applied Computing. 1288–1296. https://doi.org/10.1145/3341105.3375764

[15] Alistair Robinson, Frederick Brown, Nathan Hall, Alex Jackson, Graham Kemp,
and Matthew Leeke. 2020. CASTLEGUARD: Anonymised Data Streams with
Guaranteed Differential Privacy. In 2020 IEEE Intl Conf on Dependable, Auto-
nomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing,
Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and
Technology Congress. 577–584. https://doi.org/10.1109/DASC-PICom-CBDCom-
CyberSciTech49142.2020.00102

[16] Farzad Samie, Lars Bauer, and Jörg Henkel. 2019. Edge Computing for Smart Grid:
An Overview on Architectures and Solutions. 21–42. https://doi.org/10.1007/978-
3-030-03640-9_2

[17] Latanya Sweeney. 2002. k-Anonymity: A Model For Protecting Privacy. Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 05 (Oct.
2002), 557–570. https://doi.org/10.1142/S0218488502001648 Publisher: World
Scientific Publishing Co.

[18] Hessam Zakerzadeh and Sylvia L. Osborn. 2011. FAANST: Fast Anonymizing
Algorithm for Numerical Streaming DaTa. In Data Privacy Management and
Autonomous Spontaneous Security, Joaquin Garcia-Alfaro, Guillermo Navarro-
Arribas, Ana Cavalli, and Jean Leneutre (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 36–50.

[19] Jun Zhou, Zhenfu Cao, Xiaolei Dong, and Athanasios V. Vasilakos. 2017. Security
and Privacy for Cloud-Based IoT: Challenges. IEEE Communications Magazine
55, 1 (2017), 26–33. https://doi.org/10.1109/MCOM.2017.1600363CM

https://doi.org/10.1007/978-3-319-91764-1_16
https://doi.org/10.1109/TDSC.2009.47
https://doi.org/10.1145/3442188.3445925
https://doi.org/10.1109/ICDE.2007.367856
https://doi.org/10.1109/ICDE.2007.367856
https://doi.org/10.1016/j.scs.2016.08.019
https://doi.org/10.1016/j.scs.2016.08.019
https://doi.org/10.1145/1217299.1217302
https://doi.org/10.1016/j.ins.2018.07.057
https://doi.org/10.1109/TII.2018.2843169
https://doi.org/10.1145/3019612.3019654
https://doi.org/10.1145/3019612.3019654
https://doi.org/10.1007/978-3-319-98385-1_4
https://doi.org/10.1109/MIC.2020.2979161
https://doi.org/10.1109/MIC.2020.2979161
https://doi.org/10.1145/3341105.3375764
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00102
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00102
https://doi.org/10.1007/978-3-030-03640-9_2
https://doi.org/10.1007/978-3-030-03640-9_2
https://doi.org/10.1142/S0218488502001648
https://doi.org/10.1109/MCOM.2017.1600363CM

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 IoT, Edge, and the Role of Streaming Data
	2.2 Anonymization for Streaming Data
	2.3 Node-RED

	3 Integrating Anonymization into Node-RED
	4 Basic Information Reduction
	5 Node-RED-Adopted ks-Anonymization
	5.1 Integration Interface
	5.2 Non-Numerical Data
	5.3 Anonymization Parameters

	6 Preliminary Performance Assessment
	7 Conclusion and Future Work
	References

