t.)

Check for
Updates

Fault Origin Adjudication

Karthikeyan Bhargavan
University of Pennsylvania

bkarthik@saul.cis.upenn.edu

ABSTRACT

When a program P fails to satisfy a requirement R suppos-
edly ensured by a detailed specification S that was used to
implement P, there is a question about whether the prob-
lem arises in S or in P. We call this determination fault
origin adjudication and illustrate its significance in various
software engineering contexts. The primary contribution of
this paper is a framework for formal fault origin adjudication
for network protocols using the NS simulator and the SPIN
model checker. We describe our architecture and illustrate
its use in a case study involving a standard specification for
packet radio routing.

1. INTRODUCTION

It is generally accepted that non-trivial computer programs
will have faults. It is also well known that faults can derive
from each of several stages of the software engineering lifecy-
cle. For instance, a program P may deviate from its detailed
specification S. But it is also possible that the specifica-
tion S was incorrect because it failed to ensure high-level
user requirements R. In this paper we introduce a tech-
nique for automated analysis to determine which of these
two possibilities obtains, assuming that high-level require-
ments have been properly expressed and a deviation from
them has been found. We call this process Fault Origin
Adjudication (FOA).

To see a characteristic example, suppose a development
project is implementing a standard specification S of a com-
munication protocol. This protocol is expected to have a
property R, but testing of the program reveals that the pro-
gram fails to satisfy R for some test input W. Clearly the
problem needs to be repaired, but the way it needs to be
repaired depends on the origin of the fault. If the program
does not conform to the standard, then this may be the
cause of the failure: the program should be revised to con-
form. This conformance should ensure interoperability with
other implementations of S. Moreover, the design of S was
probably intended to guide the implementor to a program

Permission to make digital or hard copies of al or part of thiswork for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or afee.

FMSP '00, Portland, Oregon.
Copyright 2000 ACM 1-58113-262-X/00/0008...$5.00.

Carl A. Gunter
University of Pennsylvania

gunter@cis.upenn.edu

61

Davor Obradovic
University of Pennsylvania

davor@saul.cis.upenn.edu

that satisfies R. However, if the standard does not ensure
the requirement, then the standard specification may be the
origin of the difficulty. In the worst case, no conformant
implementation of the standard will satisfy the property R.
In a less extreme case, there is a risk that some implemen-
tations will conform with the standard but not satisfy R,
leading to potential failures. Thus, if the fault lies with S,
then the matter needs to be referred to the standards body
and a revision of S should be made.

Of course, this reflects an ideal world in which standards
are sufficiently unambiguous that one knows how to create
a conformant implementation. Moreover, one must know
what properties a conformant implementation is meant to
satisty. Even if this ideal is not achieved, it is important to
have techniques appropriate to address the problem as rig-
orously or formally as possible. In fact, the problem of fault
origin adjudication arises naturally in commercial practice
on a daily basis. To see a recent concrete example, consider
the standard for the Java Virtual Machine (JVM). It is con-
sidered crucial that implementations of the JVM conform to
its standard since this ensures interoperability between im-
plementations (indeed, at least one lawsuit was fought over
incompatibilities). It is equally important that implemen-
tations of the JVM satisfy certain requirements, especially
concerning security. Consider, for instance, the requirement
R that the JVM is type safe and the specification S of the
JVM in early versions of [19]. This S provided a specification
of class loaders that left open the possibility of conformant
implementations P that did not satisfy R. Indeed, there
were several such implementations, including the Sun JDK
implementations in versions 1.1.x, the Netscape implemen-
tations up to 4.05, and versions of the Microsoft implemen-
tation of Java through August of 1999.! Subsequently the
specification has been repaired to address this problem [18],
and it has also been addressed in at least the Sun JDK ver-
sion 1.2.

Networking software often displays a similar pattern. For in-
stance, distance vector routing, which was used in the early
Internet and is still widely used in the Internet today, was
given a standard specification [15, 21]. Other documents
provided analysis of the protocol [22] and characterized its
applicability [20]. High level requirements included, for in-

!This example is due to Drew Dean. Dirk Balfanz, Ed Fel-
ten, Dan Wallach, and Drew Dean created (different) pro-
grams casting integers to object references in each of these
implementations.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F349360.351132&domain=pdf&date_stamp=2000-08-24

stance, the expectation that router advertisements would
eventually allow the routers to determine shortest paths [2].
Implementations of RIP that conform to the standard will
satisfy this property. Indeed, this property has been checked
using formal verification [6]. RIP is a seasoned standard
based on a well-understood mathematical foundation. Many
(probably most) other protocols are less well-understood,
including new protocols being developed as Internet Drafts
(http://www.ietf.org/ID.html). In general, it is challeng-
ing to determine whether a standard satisfies a requirement
before there is a conformant implementation to test it. Once
an implementation exists, tests can be run with sample in-
put and deviations from the requirements lead to insights
about whether the standard enforces the requirements. If
the implementation conforms to the standard but violates a
requirement in testing, then the standard does not enforce
the requirement for conformant implementations.

In this paper we describe a framework for fault origin ad-
judication and a technique for using the NS simulator and
the SPIN model checker to support this framework in the
context of network simulations. Our approach is applicable
to safety properties that can be characterized using traces
of network events like the transmission of a packet, assum-
ing that the standard can be adequately modeled using
SPIN. This approach is applied to a case study for illus-
tration, namely the Ad Hoc On Demand Distance Vector
(AODV) routing protocol for packet radio ([10] is S) and
NS simulations based on an implementation P of AODV
by the Monarch group (http://www.monarch.cs.cmu.edu).
These are analyzed relative to various requirements R for
the AODV protocol, such as freedom from loops [26]. We
have treated the task of finding deviations from R in another
work [4].

The paper is divided into five sections. The second sec-
tion discusses software artifacts and the relationship be-
tween them in terms of our reference model [13]. In the
third section we use this foundation to derive a framework
for analyzing fault origin adjudication and describe an ap-
proach to formal analysis for fault origin adjudication for
network protocols using SPIN and NS. This framework is
applied to AODYV in the fourth section. The fifth section
provides analysis and conclusions.

2. RELATING SOFTWARE ARTIFACTS

A software project generates a variety of artifacts in the
form of code, documentation, and orally communicated (or
uncommunicated) assumptions. It is helpful to use a ‘refer-
ence model’ for these artifacts as a foundation for classifica-
tion and analysis. We have proposed a general model called
WRSPM in [13] and applied it in a case study [3]. We use
it again in this paper as a strategy for characterizing the
issues in fault origin adjudication. Software projects do not
always generate all of the artifacts in the reference model,
and it is uncommon for any of them to be described with
mathematical rigor, let alone formally. However, this paper
will illustrate how the classification is useful in generating
formal models from real-world artifacts. In effect, the ref-
erence model helps bridge the gap between formalism and
reality. Before looking at the FOA framework and our net-

62

working case study it is helpful to have some background
on the reference model and an extended toy example of the
concepts we aim to explore.

2.1 TheWRSPM Reference Moddl

The WRSPM reference model consists of five artifacts clas-
sified into two overlapping groups as depicted in Figure 1.
Here W, the ‘world’, describes assumptions about the oper-

Environment @m System

Figure 1: Five Software Artifacts

ational environment, and R represents a set of requirements
to be met by a program. The goal of a programming project
is to produce a program P that satisfies the requirements R
when it is run on a programming platform M in an envi-
ronment that satisfies the restrictions W. The role of the
specification S is to provide enough information for a pro-
grammer to build such a program. Compliance with the
specification is supposed to guarantee satisfaction of the re-
quirements.

Our earlier work describes the expected relationships in a
somewhat general form [13, 3]. In this paper we make sim-
pler assumptions and focus on systems whose observable be-
havior is a finite trace of events generated during the exe-
cution. In that sense, we can regard R, S and P as sets of
traces of events:

e R represents the set of all event traces that satisfy the
requirements.

e S represents the set of event traces allowed by the stan-
dard specification.

e P represents the set of event traces that a given im-
plementation can produce.

We say that the triple (R, S, P) is safe if P C S C R (Fig-
ure 2). In other words, all program behaviors are allowed

Figure 2: Safe Artifacts

by the standard and the standard guarantees fulfillment of
the requirements. Notice that a program that does noth-
ing (i.e. whose set of traces is empty) refines every stan-
dard, and, similarly, a contradictory standard refines every
requirement.

Table 1: Seven Kinds of Traces

Region | Meaning
Standard-allowed traces that
A break the requirements and

are realizable by the program.
Standard-allowed traces that

B break the requirements and

are not realizable by the program.
Program-realizable traces that

C break the requirements and

are disallowed by the standard.
Program-realizable traces that

D satisfy the requirements and

are disallowed by the standard.
Program-realizable traces that

E satisfy both the standard

and the requirements.
Standard-allowed traces that

F satisfy the requirements and

are not realizable by the program.
Traces that satisfy the requirements,
G but are not allowed by the standard
and are not realizable by the program.

In practice, the trace sets admitted by the artifacts can inter-
sect arbitrarily so traces can generally fall into any of seven
disjoint regions depicted in Figure 3. We will view traces

S P

()

R

Figure 3: Artifacts in the General Case

falling outside of all P,S and R as irrelevant for our study.
Interpretations of the seven regions are given in Table 1.

When the artifacts are safe, all traces are contained in re-
gions E,F and G. Notice that in that case we have

E=P, F=S-P,G=R-5,

so E, F and G correspond to the three disjoint regions of
the diagram in Figure 2. Any trace falling into A,B,C or D
indicates a violation of the safety refinement between the ar-
tifacts. Traces in regions A or B break the inclusion S C R.
The difference is that traces in A are realizable by the pro-
gram, while traces in B are not. This makes ‘bug-hunting’
in A more practical than in B. Analogously, regions C and
D break the inclusion P C S. Traces in either C or D fail
to satisfy the standard. However, traces in C also break the
requirements, which makes them easier to detect.

2.2 A Toy Example
We now provide an example to illustrate each of the four
kinds of safety violations (A,B,C and D) on an example.

63

Consider a problem of searching for a number in a sorted
array. Suppose that a[0..n] is a nondecreasingly sorted array
of numbers. Given a number z and a pair of indices (I, u),
where 0 < [< u < n, the program should return true if z
appears among the elements a[l], a[l+1], ... , a[u], otherwise
it should return false. Indices I and u represent boundaries
of the searching region.

Let us consider a solution which in each step breaks the ar-
ray into two parts, eliminates one of them, and recursively
searches for x in the other part. This idea generalizes bi-
nary search, so we will refer to the algorithm as Generalized
Binary Search (GBS). An attempted specification of GBS is
given in Table 2. This could be viewed as a standard where

Table 2: GBS Standard Specification S:

function: Find
given: Nondecreasingly sorted array a[0..n]
arguments: number 2, indices [and u

Step 1: If w is smaller than [, immediately return false, otherwise
proceed with Step 2.

Step 2: If u equals [then proceed with Step 3, otherwise proceed
with Step 4

Step 3: If z equals a[l], immediately return true, otherwise immedi-
ately return false.

Step 4: Pick an index m such that I < m < u.

Step 5: If 2 equals a[m], immediately return true, otherwise proceed
with Step 6.

Step 6: If z is smaller than a[m], recursively invoke Find with ar-
guments z,l, m and return that result, otherwise proceed with
Step 7.

Step 7: Recursively invoke Find with arguments &, m, u and return
that result.

different implementors may choose different ways of splitting
the array based on their own criteria. The concept is simi-
lar to one that appears in programming language standards
when a compiler writer is given the latitude to evaluate the
arguments of a function in any order he or she chooses since
this enables various optimizations. For our purposes it is
unimportant whether there is really any advantage in allow-
ing this latitude for binary search.

A computation proceeds in a sequence of recursive calls of
the function Find. Each call involves three arguments—a
number x and indices [and u. Therefore, we can define ob-
servable behavior to be the sequence of such (z, [, u)-triples
in the order in which they appear during the computation,
together with the final answer returned. For instance, sup-
pose that the array is a[0..4] = [2, 30, 80, 100, 114]. Consider
the following traces:

1. (30,0,4) — (30,1,4) — (30,1,2) — true
2. (30,0,4) — (30,2,4) — (30,2,3) — (30, 2,2) — false

The first trace is allowed by the GBS standard Si, but the
second trace is not (in the very first step, number 30 was

dropped out of the search region—the region changed from
[0..4] to [2..4], but 30 appears only on position 1).

We will also allow incomplete traces to be regarded as ob-
servable behaviors. This makes the set of observable behav-
iors prefix-closed, which matches the usual intuition. For
example, the trace (30,0,4) — (30,1,4) is also considered
valid with respect to Si, since it is a prefix of a complete
trace allowed by Si.

Our requirement needs to be a safety property on the set
of all traces. This constraint is a natural consequence of
our semantic model, in which behaviors are finite traces.
Safety properties are traditionally [1] characterized as prop-
erties which are violated by finite trace prefixes. In other
words, a safety property is determined by the set of finite
traces that it allows. Since we consider only finite traces,
our methodology can be applied only to safety properties.
Liveness properties require a different notion of refinement
from the ordinary subset inclusion on the sets of traces.

One way to ensure safety is to set an upper bound on the
number of computation steps. This is much like using timers
in the networking context, where we require that an action
be carried out within a certain time window. In this ex-
ample, we require that each computation reaches the cor-
rect answer within n steps, where n is the size of the initial
search region. Table 3 describes the requirement precisely.

Table 3: GBS Requirement R

R is the prefix closure of the set of all traces of the form
(z,l,u) = T — a, where the following holds:

e T is any trace such that |T| <u—1+1.
(|7'| := the number of “arrows” in T.)

true if « € {a[l],all +1],...a[u]}
o = .
false otherwise

Table 4 gives an implementation of the standard in C. Notice

Table 4: GBS Implementation P

int Find (int x, int 1, int u)
{

int m;

if (u<l) return O;
if (u==1) return (x==all]);
m=(1+u) /2;
if (x == a[m]) return 1;
if (x < a[m])

return (Find (x,1,m));
else

return (Find (x,m,u));

the difference between the implementation and the standard
in the choice of the pivoting position (m). The standard
allows m to range arbitrarily over the set {I,I +1,... ,u},
while the implementation always chooses middle element as

the pivot. For instance, another implementation might have
chosen pivot points randomly in the allowed range.

Errorsin the standard (A and B cases)
Suppose that our sorted array is a[0..2] = [5,6,10]. If we
invoke Find (10,0,2), we get a divergent computation:

(10,0,2) — (10,1,2) — (10,1,2) — (10,1,2) — - - -

Any finite prefix of this computation will be a behavior re-
alizable by P. In particular, consider the behavior

T, = (10,0,2) — (10,1,2) — (10,1,2) — (10,1, 2).

The initial search region (positions 0 through 2) has the size
3, but T; did not produce a correct answer in the first 3 steps.
Therefore, Th ¢ R. On the other hand, T is realizable by
P and Si. According to the Figure 3, this is an example of
an A-region error.

In this case, P is a correct implementation of the standard
but still produces an error. This indicates an error in the
standard. In fact, S allows many more incorrect behaviors
besides those that can be demonstrated by P. For instance,
it is easy to see that, with the same array a, Si allows the
trace

T, = (5707 2) - (5707 2) - (5707 2) - (5707 2)

by repeatedly picking the pivot position m = 2. Just like
T:, trace T also breaks the requirements, but it is not ob-
tainable through P. In our diagram 7% corresponds to a
B-region error.

Errorsin the implementation (C and D cases)

In the previous scenario, P was a valid implementation of
an incorrect standard S1. We can try to fix this by revising
a standard. Table 5 shows a new standard S>. Framed parts

Table 5: GBS Standard Specification S2

function: Find
given: Nondecreasingly sorted array a[0..n]
arguments: number z, indices [and u

Step 1: If w is smaller than [, immediately return false, otherwise
proceed with Step 2.

Step 2: If u equals [then proceed with Step 3, otherwise proceed
with Step 4

Step 3: If z equals a[l], immediately return true, otherwise immedi-
ately return false.

Step 4: Pick an index m such that .

Step 5: If 2 equals a[m], immediately return true, otherwise proceed
with Step 6.

Step 6: If z is smaller than a[m], recursively invoke Find with argu-

ments | z,l, (m — 1) | and return that result, otherwise proceed

with Step 7.

Step 7: Recursively invoke Find with arguments |z, (m + 1), v |and

return that result.

contain differences between the two versions.

Table 6: Overview of the Errors

| [A [B | ¢ [D]
(R,S1, P) T T empty | empty
(R,S>,P) || empty | empty T: Ts

Consider the trace 71 again, now with the new standard.
The trace is produced by P, it breaks the requirement R,
but this time it is not allowed by the standard S». Hence,
in the context (R, S, P), trace T: is a C-region error.

Finally, we look at the case when our implementation P
produces a correct behavior which does not comply to the
standard S2. Let the array be the same (a[0..2] = [5, 6, 10]).
Consider the behavior of P on input (4,0, 2):

T3 = (4,0,2) = (4,0,1) — (4,0,0) — false.

This computation took three steps. It can be shown that any
Se-compliant computation would solve this instance in at
most two steps. Therefore, T5 € S>. Yet Ts clearly satisfies
R. This classifies T3 as a D-region error with respect to
(R, S2, P).

One can show that standard S> indeed ensures R. Program
P is an incorrect implementation of S» that can produce
both correct and incorrect behaviors. Furthermore, there
are correct behaviors of P that violate the standard (e.g.
T3). An categorized overview of the errors is given in Ta-
ble 6.

3. FAULT ORIGIN ADJUDICATION (FOA)
FRAMEWORK

Recall the counterexamples Th and T from the previous sec-
tion. 77 was a violation of the standard S> which, at the
same time, violated the requirement. On the other hand T}
only violated the standard, but not the requirement. Imag-
ine a simple validation framework which tests implemen-
tation behaviors against requirements but not against the
standard. Such a framework would correctly recognize T
as a failure, but it would not find anything wrong with T5.
Discovering the problem with T3 would be useful because
it would inform the standardization process and might be
important for interoperability with other implementations
of the standard. This shows the value of testing with re-
spect to the standard as well as testing with respect to the
requirements. This idea is the basis of our FOA framework.

Figure 4 shows the abstract view of the FOA framework.
The framework consists of three parts: trace generator (to
the left), conformance checker and property checker:

Trace generator takes as its input program P and sce-
nario W. A scenario typically includes inputs to P and
certain ‘world assumptions’ about the environment in
which P runs. P and W are fed into the machine (M)
which runs them and produces a trace T.

Property checker takes as its input a trace T (produced
by the trace generator or some other way) and require-
ments R. It tests whether T satisfies the requirements
and outputs a yes/no answer.

65

Conformance checker takes as its inputs a trace T and a
standard specification S. It tests whether T is allowed
by the standard and outputs a yes/no answer.

A combination of answers from the conformance checker and
the property checker enables us to reason about the fault ori-
gin. Table 7 describes the four possible outcomes and their

Table 7: FOA Outcomes and their Interpretations

Property check
TeR | T¢R
Conformance T €S E A
check T¢S D C
[Region | Interpretation and remedy [
E Everything OK.
D Incorrect implementation of the standard.
Correct the program.
C Incorrect implementation of the standard.
Correct the program.
A Incorrect standard.
Revise the standard and the program accordingly.

interpretations. Notice that this framework catches only
errors which can be demonstrated through a particular ¢m-
plementation. This includes only three kinds of errors (A,C
and D). Detection of B-region errors would involve (random)
simulations of the standard specification, or model checking.
The latter will usually be computationally infeasible for the
general case.

3.1 Network Protocols

The general FOA framework is as described in Figure 4.
For the particular case of network protocols, we describe a
methodology for each of the three phases required for the
adjudication. Many network protocols have the following
characteristics which guide the way the three phases must
be implemented:

1. The protocol is specified in the form of a reasonably
precise standard. While low-level details are left to
the implementations, aspects like packet formats are
clearly specified.

2. The software runs concurrently as processes on a num-
ber of nodes geographically dispersed in a network.

3. The processes communicate by asynchronously passing
packets to one another.

4. The network is dynamically changing and communica-
tion is unreliable.

5. A number of actions are carried out under real-time
constraints based on timers.

6. The requirements are typically safety properties of the
packets injected into the system. Liveness properties
are typically converted to safety properties by stipu-
lating a time limit for an action to occur.

Trace T

Trace

Generation

YES

NO

Figure 4: Fault Origin Adjudication Framework

We now show how network software is tested to pro-
duce traces (trace generator). We then describe how the
traces can be checked for requirements using SPIN (property
checker). Finally, we show how SPIN can be used to check
if the traces are conformant with the specification (confor-
mance checker). In this manner, we develop a complete sys-
tem for the fault origin adjudication of network protocols
with respect to a wide range of properties.

The tools that we use are the Network Simulator NS
(http://www-mash.CS.Berkeley.EDU/ns) and the model-
checker SPIN (http://netlib.bell-labs.com/netlib/
spin/whatispin.html). NS [9] is popular among protocol
designers for performance analysis of new or modified net-
work protocol designs. Given simulator code for the protocol
in C++ and a network scenario, NS carries out a discrete
event simulation of the network for a specified length of time.
The simulation produces a trace which is normally used for
measuring performance. SPIN [16], on the other hand, is a
model-checker. It takes as input an abstract model of a pro-
tocol written in the specification language—Promela. SPIN
can simulate the protocol along with an environment model.
Given a property written in Linear Temporal Logic [23] or
in Promela, SPIN can also verify by exhaustive state-space
search that the protocol model satisfies the property.

3.2 Protocol Testing - Trace Generation

The concurrent nature of network routing software makes
it rather difficult to test in real situations. Therefore, es-
tablished network protocol design practice involves using
network simulators like NS to test the protocol code for a
variety of artificial scenarios. We use NS to carry out the
simulations and produce the resulting trace. The inputs to
the system are as shown in the Figure 5, which essentially
expands the corresponding part of Figure 4.

The protocol is typically encoded as a C++ program that
reacts to incoming packets and possibly produces outgoing
packets. A network scenario is a description of the number
of nodes in the network, their topology, and a description
of data sources and sinks. Scenarios are written in Tcl and
provided as input to NS. Given the above inputs, NS carries
out a random (seeded) simulation of the network up to a

; PRG Protocol . 4

‘ :manual Code T

‘ ™| :ns Trace
w Network .)

: Scenario

Figure 5: Trace Generation Using NS

specified time and produces a trace of all the packets gen-
erated and transported through the network. The output
trace is in a specific NS trace format with one line for each
packet transmission or reception event.

3.3 Property Checking

Given a trace produced by NS, we need to check that it
satisfies the requirements R. This check can be carried out
by a number of methods [4]. In this paper, we show how to
use SPIN. The Property Checker is as shown in Figure 6.

TransREQ: manual

FR: formula

T P : >~ YES
—>(_ Parse: PERL : e
insTrace | © ! ; 3

Package: Promela [= NO

Figure 6: Property Checking Using SPIN

First, the NS trace needs to be translated into something
that SPIN can understand. We do this in two steps. The
parser, written in PERL, parses the NS packet trace format
and decomposes each packet event into its constituent fields
which SPIN can read. Then a Promela process re-packages
the fields into SPIN packet events. This translation mech-
anism has to be written just once for each protocol packet

type.

Next the requirements R are encoded into Promela. This
is straightforward for safety properties—for each property
we encode a monitoring process which checks if the trace so
far is conformant to the property. Promela is particularly
attractive for encoding these properties because

1. Communication is a primitive in Promela, so prop-
erties about packets do not need to be encoded in a
different formalism.

2. Promela has dynamic process creation, so monitoring
processes can be spawned on-demand.

3. There is a well-known method for converting Linear
Temporal Logic formulae to Promela processes.

Once all the above modules are in place, the trace is fed
into a SPIN execution of the property checker. If the trace
fails to satisfy the property, the execution halts and declares
an error. If no errors are found, the trace conforms to the
requirements.

3.4 Conformance Checking

The conformance checker re-uses the parsing programs de-
scribed in the previous section for translating NS packet
traces to SPIN events. For conformance, we need to check if
the input packet trace could have been produced by the spec-
ification S. The specification in this case is in the form of a
protocol standard. Network protocol standards are typically
designed based on a prototype implementation. However,
there are usually some implementation issues that are left
to the programmers discretion. In addition, there are ambi-
guities that stem from the incompleteness of the specifica-
tion. Therefore, although the standard is designed around
an executable prototype, it is typically abstract and non-
deterministic.

The main elements of conformance checking are as shown in
Figure 7. The standard first needs to be encoded in a for-
mal framework for analysis. This formalism should support
non-determinism and concurrent processes. Moreover, it is
important for the encoding to be as abstract as the orig-
inal specification. Therefore, the formalism must support
high-level communication and abstract data structures. We
choose Promela as the formal language for our encoding.
Promela has all the above features and has been widely used
as an abstract language for real communication protocols.
Importantly, Promela models can be automatically analyzed
using SPIN.

We encode the standard as a Promela process that runs at
one node. We encode the environmental assumptions in the
form of auxiliary processes. This model of the standard can

67

TransSPEC: manual

PS: Promela \

DRIVER: Promela

YES

~(_ Parse: PERL

T -
‘nsTrace |:

NO

Package: Promela

Figure 7: Conformance Checking Using SPIN

be model-checked for various properties in SPIN, including
deadlock-detection and satisfaction by LTL formulae. How-
ever, the huge state space of the encoding makes it imprac-
tical to check it for network of more than 2 or 3 nodes.

Once the standard is encoded in Promela, we encode a driver
for the protocol. The driver reads the input packet trace,
and checks whether the protocol standard allows the se-
quence of events described in the trace. To carry out this
check, the driver essentially determinizes the standard with
respect to the input trace and attempts to force it to gener-
ate the trace. If the standard fails to generate the trace, the
trace is not conformant to the standard. This determiniza-
tion is simple for most network protocols, although it need
not be in general.

Finally, the trace is fed to a SPIN execution of the standard
and its driver. If the driver manages to consume the entire
trace without error, the trace is conformant with the stan-
dard. If not, then the trace must have been generated by a
faulty implementation of the standard.

4. CASE STUDY

We apply FOA as described above to analyze Ad-Hoc On-
Demand Distance Vector routing [26, 25, 10] (AODV), an
emerging standard for routing in packet radio networks. We
find traces that fall in all the categories described.

41 Ad-hoc On-demand Distance Vector
Routing Protocol

In mobile, wireless networks, nodes communicate with each
other on links that have limited range. When the nodes
communicate without the use of a central base station there
is a need for protocols and algorithms that allow a group of
nodes to cooperate in transporting data from one node to
another. Such a protocol implicitly creates an ad hoc inter-
network where each participating node acts as a router. A
typical example of the network’s operation is as shown in
Figure 8—when one node needs to communicate with an-

TN

Figure 8: Packet Radio Routing

other which is not in its range, it asks an intermediate node
to forward its packets. The intermediate node is a router
that provides packets a hop on the way to their destina-
tions.

Ad Hoc On Demand Distance Vector routing (AODV) is one
of the protocols that has been proposed as a standard for
such wireless networks. In AODV, intermediate forwarding
nodes store dynamic information about paths to the des-
tination for which they need to forward data. The term
‘distance vector’ refers to the fact that the only informa-
tion they store for each destination node is the length of
the ‘best’ path, and the next node on this path. We re-
fer to this path information at each node as the route to
the destination. Since nodes keep moving around, routes
need to be frequently re-computed with respect to the new
topology. AODV provides an algorithm for the distributed
computation of routes, along with a protocol for realizing
the algorithm.

However, as a result of the dynamic nature of a mobile net-
work, routes are frequently out-of-date—the paths that they
refer to do not exist any more. Moreover, since simple dis-
tance vector protocols just store ‘short-sighted’ information
about the path, they cannot easily detect that the path has
been broken unless the break is in their immediate vicinity.
In particular, there could be routing loops as shown in Fig-
ure 9, that are created for periods of time. Loops are the
worst kind of route inconsistency—they are difficult to de-
tect, and they consume lots of bandwidth in the meanwhile.

AODV has been designed to avoid routing loops. This is
done by attaching recency information to paths and ensuring
that the path information at nodes is kept as up-to-date as
possible. The recency information is in the form of sequence
numbers issued by the destination. AODV thus maintains
on-demand routes for destination nodes, consisting of a hop-
count to the destination (length of the path), the next node
on the path, and the sequence number issued to the path.

4.2 Framework

We analyze AODV with respect to the framework described
in earlier sections. The mapping of the software artifacts is
as shown in the Table 8. The requirement R asserts that,
in any run of the protocol over any network, the routes to a
destination should never form a loop. We call this loop free-
dom. The specification S is the second version of the AODV
standard, available as an IETF Internet Draft [25]. The im-

next=C
hops=5

,®
= / next=D
o vl
®

next=A
hops=3

Figure 9: Loop in a Distance Vector Protocol

Table 8: Framework Mapping for AODV

Monarch AODV Code (C++, Simulator specific)
NS Simulator

Random Scenarios, S1, S2, S3

AODV Version 2 [25]

Loop Freedom

==

plementation P we consider is the prototype implementa-
tion of AODV for the NS simulator, written in C++ by the
CMU Monarch group (http://www.monarch.cs.cmu.edu).
For the tests, we start out with a set of large randomly gen-
erated network scenarios. In this paper, we present three
simple scenarios which illustrate all the errors that can be
detected by the FOA framework.

4.3 SPIN Modeling
In order to analyze the AODV traces produced by NS, we

carry out the following steps:

1. Decide on packet formats in Promela.

2. Write a Perl program to parse the NS packet format
and extract the fields relevant to AODV. Write a dual
Promela program that takes these fields and packages
them up as a Promela AODV packet.

3. Encode the requirements as formulae in Promela.

4. Encode the specification in Promela.

5. Finally we write a driver for the specification in
Promela.

After all the above modules are in place, we need to carry
out the two tests

Property Checking We feed traces generated by NS into
the SPIN execution of the formulae and the parsing
programs. If any of the properties is violated at any
point in the trace, the execution terminates with an
error; the test outputs NO. Otherwise, it reaches the
end of the trace without incident and the trace outputs
YES.

Conformance Checking We feed the same packet traces
into the SPIN execution of the standard along with
the driver and parsing programs. If the driver fails
to force the standard to generate the trace, the test
outputs NO. If the standard succeeds in generating
the entire trace, the test answers YES.

44 Tests& Results

Network software is typically simulated for large randomly
selected topologies. We simulate the AODV protocol in NS
for a number of such scenarios, and find errors in the AODV
code, as well as the standard. We present three simple sce-
narios which illustrate the different errors encountered. We
use the traces produced by NS for these scenarios to help us
adjudicate the origin of faults in AODV.

Scenario S1

S1 as shown in Figure 10. A solid line between two nodes
indicates that the two nodes have a wireless link between
them—they are within range of each other.

S1 is the simplest scenario involving three nodes—A, B and
D. A wants to continuously send packets to D. Therefore,
the aim of the system is to ensure A knows to send all these
packets to B, and B knows to forward them to D. We simu-
late this scenario in NS and produce a trace T1. Using FOA
analysis, we find that T1 passes the property check, but it
fails the conformance check.

™) ® O
Source
for
D
Figure 10: Scenario S1
Scenario 2

In Scenario S2, shown in Figure 11, we make the nodes mo-
bile. In particular, after 10 seconds, the destination node D
moves out of range of the other nodes. At the same time,
B has started sending packets to D. Now the system must
adapt to this change of topology and A, B must discover
that they can no longer reach D. We simulate this scenario
to generate trace T2. Using FOA analysis, we find that T2
violates the requirements as well as fails to conform to the
standard.

Scenario 3

Finally, in Scenario S3, shown in Figure 12, A needs to send
packets to D, but D is never reachable by A,B or C. After

69

[l ® :

Source

for

D
Time 10

D
Moves Sc;urce

Aw or
& D

Figure 11: Scenario S2

10s, A moves away from B and C. At the same time, B
starts sending packets to A. In this case, A,B and C must
first discover that D is unreachable and then B, C must
discover that A is unreachable. We simulate this scenario
to produce a trace T3. T3 conforms to the standard, but it
fails to satisfy the requirement.

Time0 @ B @
Dis
Unreachable Source
for
D
Time10
A
Moves Sc}urce
Aw or
& A

Figure 12: Scenario S3

The three traces obtained above fall in different categories
with respect to the FOA framework as shown in Table 9.

Table 9: AODYV Traces
| Trace | Error Region |

T1 D
T2 C
T3 A

T1 and T2 indicate that the implementation is faulty in that
it does not correctly implement the standard. Indeed, we
have since found at least three bugs in the simulator code
which cause it to be non-conformant with respect to the
standard. More importantly, the simulator implementation
of AODYV allows routing loops. However, T3 indicates that

the standard itself is faulty in that it allows routing loops to
be formed. We have since confirmed at least four conditions
under which the standard allows loops to be formed. As
a result, the standard itself needs to be revised if it is to
guarantee loop freedom.

The AODV standard has reached a fourth version [10] by
the time of this writing. Whether any of the issues we dis-
cuss here have been resolved in subsequent versions of the
artifacts in Table 8 does not affect the point of our case
study, which is to illustrate the FOA framework. However,
efforts are underway to address all of the points raised in
this paper. We prepared a discussion [8] of the issues known
to us concerning the standard and this was circulated on the
Manet mailing list. The fault in Scenario S1 was located by
ourselves working with Mike Berry. The faults in Scenarios
S2 and S3 were located by ourselves based on a similar fault
found by Joshua Broch and Dave Maltz reported in their
1998 Mobicomm tutorial.

5. CONCLUSION AND ANALYSIS

We have described the idea of fault origin adjudication and
presented a framework for applying NS and SPIN to carry
it out for a broad class of network protocols and properties.
We illustrated this technique for a non-trivial case study
based on distance vector routing for packet radio using the
AODV protocol. Let us now consider briefly some further
aspects of the assumptions and scope of the approach.

A salient feature of our approach has been that we pay at-
tention to even seemingly minute differences in software ar-
tifacts, believing that these aberrations often give rise to
important faults. However, we do not deal directly with
some of the actual artifacts. In particular, our automated
analysis does not treat S or R directly; instead we analyze
Promela encodings of S and R. Nevertheless, we believe that
this level of encoding is justifiable. Any attempt at auto-
mated analysis must require that all the artifacts be formal-
ized. The only question is whether Promela induces a level
of unnatural encoding—can the Promela model be consid-
ered equivalent to the original artifact? For many (perhaps
most) network protocols, R and S can indeed be naturally
expressed in Promela, since it is: (a) abstract enough to elide
detail, (b) expressive enough to represent non-deterministic
behavior and temporal formulae, and (c) especially tailored
for describing communication protocols. Having said that,
one can conceive of requirements that will be difficult to ex-
press in Promela (any property to do with arithmetic or sets
for instance), and standards that will be difficult to encode
(for example ones that involve complex data structures).

FOA can be viewed as a testing activity. Our framework pro-
vides formal support for it in cases with certain attributes.

e The framework is not bound to any specific language
or a tool. The FOA procedure can be carried out as
long as the following elements are provided:

1. An implementation, standard specification, and
requirements.

2. A way for the user to collect observable behaviors
from the implementation (trace generator).

70

3. A mechanism (or a tool) for testing whether a
given behavior satisfies the requirements (prop-
erty checker).

4. Requirements formally stated in a language that
can be understood by the property checker.

5. A mechanism (or a tool) for testing whether a
given behavior satisfies the standard specification
(conformance checker).

6. A faithful formal model of the standard specifica-
tion given in a language that can be understood
by the conformance checker.

e The framework can be applied only for the analysis of
safety properties.

e The framework can detect and adjudicate errors, but
it does not generally provide a proof of system correct-
ness.

e The framework can detect only three out of four kinds
of errors discussed (Table 7). The case which is not
handled is the B-region.

The last two shortcomings could be addressed by attempt-
ing a direct verification of the refinement between S and
R through an exhaustive check. This approach does po-
tentially offer a stronger result, but unfortunately it does
not scale well. The state space of S, which needs to be
explored during the exhaustive check, grows roughly expo-
nentially with the size of S. This can be a serious problem
even with examples of moderate sizes. On the other hand,
FOA is more resistant to such problems, since checking if
given trace satisfies S and R is typically fast. An alterna-
tive (direct) method for finding errors in the standard is to
use tools like SPIN to generate traces from nondeterministic
specifications S, by using randomized or some other kinds
of simulations. Then these traces could be checked for the
properties in R.

There are many approaches to the logical analysis of net-
work protocols [7]. For instance, an interesting extension
of the passive analysis described in this paper would be to
investigate how one could actively ‘steer’ trace generation to
produce traces of particular interest (e.g. those that would
illustrate some interesting scenarios). One possibility would
be to use ideas similar to those presented in [14]. It de-
scribes a method for testing ‘multi-party’ protocols under
‘stress’ scenarios which include packet loss and momentary
loss of router state.

Another idea would be to instantiate FOA with various
property checkers and conformance checkers, and compare
their effectiveness to the tools we already use [5]. Several
studies have been done on generation and analysis of test-
oracles for various logics [27, 12, 11, 24, 17] that can be used
as FOA property checkers.

Acknowledgments

We would like to express gratitude for assistance we received
from the following people: Martin Abadi, Mike Berry, Drew
Dean, David Dill, Dave Johnson, Dave Maltz, Madanlal
Musuvathi, Charles Perkins and researchers in the Mon-
itoring and Checking group at Penn. This research was

supported by DARPA Contract F30602-98-2-0198 and ARO
Contract DAAG-98-1-0466.

6.
[1]

[2

[6

[7

(8

[9

[10

[11]

REFERENCES

Martin Abadi and Leslie Lamport. Composing
specifications. ACM Transactions on Programming
Languages and Systems (TOPLAS), 15:73-132, 1993.

Dimitri P. Bertsekas and Robert Gallager. Data
Networks. Prentice Hall, 1991.

Karthikeyan Bhargavan, Carl A. Gunter, Elsa L.
Gunter, Michael Jackson, Davor Obradovic, and
Pamela Zave. The Village Telephone System: A case
study in formal software engineering. In Theorem
Proving in Higher Order Logics 11th International
Conference TPHOLs ’98. Springer, September 1998.

Karthikeyan Bhargavan, Carl A. Gunter, Moonjoo
Kim, Insup Lee, Davor Obradovic, Oleg Sokolosky,
and Mahesh Viswanathan. Verisim: Formal analysis of
network simulations. In Proceedings of the 2000 ACM
SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA), August 2000.

Karthikeyan Bhargavan, Carl A. Gunter, and Davor
Obradovic. An assessment of tools used in the verinet
project. Technical Report MS-CIS-00-15, University of
Pennsylvania, 2000. http://www.cis.upenn.edu/
verinet/papers/tool-assessment.ps.

Karthikeyan Bhargavan, Carl A. Gunter, and Davor
Obradovic. RIP in SPIN/HOL, August 2000. To
appear in: Theorem Proving and Higher-Order Logics.

Karthikeyan Bhargavan, Carl A. Gunter, and Davor
Obradovic. A taxonomy of logical network analysis
techniques. Technical Report MS-CIS-00-14,
University of Pennsylvania, 2000. http:
//www.cis.upenn.edu/verinet/papers/taxonomy.ps.

Karthikeyan Bhargavan, Davor Obradovic, and
Carl A. Gunter. Analyzing the occurrence of loops in
AODV. Manet Mailing List, December 1999.

Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd,
John Heidemann, Ahmed Helmy, Polly Huang, Steven
McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu.
Advances in network simulation. Computer,
33(5):59-67, May 2000.

Santanu Das, Charles E. Perkins, and Elizabeth M.
Royer. Ad hoc on demand distance vector (AODV)
routing. Internet-Draft Version 4, IETF, October
1999.

Laura K. Dillon and Y.S. Ramakrishna. Generating
Oracles from Your Favorite Temporal Logic
Specifications. In Proc. 4th ACM SIGSOFT Symp.
Foundations of Software Engineering, San Francisco,
pages 106-117, October 1996.

Laura K. Dillon and Q. Yu. Oracles for Checking
Temporal Properties of Concurrent Systems. In
Proceedings of the 2nd ACM SIGSOFT Symposium on
Foundations of Software Engineering (SIGSOFT’94),
volume 19, pages 140-153, December 1994.
Proceedings published as Software Engineering Notes.

71

[13]

[15]

[16]

18]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Carl A. Gunter, Elsa L. Gunter, Michael Jackson, and
Pamela Zave. A reference model for requirements and
specifications. IEEE Software, 17(3):37-43, May/June
2000.

Ahmed Helmy and Deborah Estrin. Simulation-based
‘STRESS’ Testing Case Study. In Sizth International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems
(MASCOTS), July 1998.

C. Hendrick. Routing information protocol. RFC
1058, IETF, June 1988.

Gerard J. Holzmann. The Spin Model Checker. IEEE
Trans. on Software Engineering, 23(5):279-295, May
1997.

L. J. Jagadeesan, A. Porter, C. Puchol, J. C.
Ramming, and L.G.Votta. Specification-based testing
of reactive software: Tools and experiments. In
Proceedings of the International Conference on
Software Engineering, May 1997.

Sheng Liang and Gilad Bracha. Dynamic class loading
in the java virtual machine. In Proceedings of the 1998
ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages & Applications
(OOPSLA ’98), volume 33 of SIGPLAN Notices,
pages 36—44, Vancouver, British Columbia, Canada,
October 1998.

Tim Lindholm and Frank Yellin. The Java Virtual
Machine Specification. Addison Wesley, 1996.

G. Malkin. Rip version 2 applicability statement. RFC
1722, IETF, November 1994.

G. Malkin. Rip version 2 carrying additional
information. RFC 1723, IETF, November 1994.

G. Malkin. Rip version 2 protocol analysis. RFC 1721,
IETF, November 1994.

Z. Manna and A. Pnueli. The Temporal Logic of
Reactive and Concurrent Systems. Springer-Verlag,
1991.

T.O. O’Malley, D.J. Richardson, and L.K. Dillon.
Efficient Specification-Based Test Oracles. In Second
California Software Symposium (CSS’96), April 1996.

Charles E. Perkins and Elizabeth M. Royer. Ad hoc
on demand distance vector (AODV) routing.
Internet-Draft Version 2, IETF, March 1998.

Charles E. Perkins and Elizabeth M. Royer. Ad-hoc
on-demand distance vector routing. In Proceedings of
the 2nd IEEE Workshop on Mobile Computer Systems
and Applications, pages 90-100, February 1999.

D.J. Richardson, S. Leif Aha, and T.O. O’Malley.
Specification-Based Oracles for Reactive Systems. In
14th International Conference on Software
Engineering, May 1992.

