
Towards Demystifying Intra-Function Parallelism in
Serverless Computing

Michael Kiener
michael.kiener@tum.de

Chair of Computer Architecture
and Parallel Systems

Technische Universität München
Garching (near Munich), Germany

Mohak Chadha
mohak.chadha@tum.de

Chair of Computer Architecture
and Parallel Systems

Technische Universität München
Garching (near Munich), Germany

Michael Gerndt
gerndt@in.tum.de

Chair of Computer Architecture
and Parallel Systems

Technische Universität München
Garching (near Munich), Germany

ABSTRACT
Serverless computing offers a pay-per-use model with high
elasticity and automatic scaling for a wide range of applica-
tions. Since cloud providers abstract most of the underlying
infrastructure, these services work similarly to black-boxes.
As a result, users can influence the resources allocated to their
functions, but might not be aware that they have to parallelize
them to profit from the additionally allocated virtual CPUs
(vCPUs). In this paper, we analyze the impact of paralleliza-
tion within a single function and container instance for AWS
Lambda, Google Cloud Functions (GCF), and Google Cloud
Run (GCR). We focus on compute-intensive workloads since
they benefit greatly from parallelization. Furthermore, we
investigate the correlation between the number of allocated
CPU cores and vCPUs in serverless environments. Our results
show that the number of available cores to a function/con-
tainer instance does not always equal the number of allocated
vCPUs. By parallelizing serverless workloads, we observed
cost savings up to 81% for AWS Lambda, 49% for GCF, and
69.8% for GCR.

CCS CONCEPTS
• Computer systems organization → Cloud computing.

KEYWORDS
Serverless, Function-as-a-Service, Container-as-a-Service, Par-
allelization, Parallel execution, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
WoSC ’21, December 6–10, 2021, Québec, Canada
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/20/12. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Michael Kiener, Mohak Chadha, and Michael Gerndt. 2021. Towards
Demystifying Intra-Function Parallelism in Serverless Computing.
In Workshop on Serverless Computing (WoSC ’21), December 6–
10, 2021, Québec, Canada. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
With the advent of Amazon Web Services (AWS) Lambda in
2014, serverless computing has gained popularity and more
adoption in different application domains such as machine
learning [6, 7, 15], scientific computing [9, 14, 16, 17], and
linear algebra [31]. In serverless computing, developers do
not have to manage infrastructure themselves but completely
hand over this responsibility to a Function-as-a-Service Plat-
form. Several open-source and commercial FaaS platforms
such as OpenWhisk, Google Cloud Functions (GCF), and
Lambda are currently available. Applications are developed
as small units of code, called functions that are independently
packaged and uploaded to a FaaS platform and executed on
event triggers such as HTTP requests. On function invocation,
the FaaS platform creates an execution environment (instance)
which provides a secure and isolated runtime environment for
the function. The functions can be written using various lan-
guages such as Java, Go, or Nodejs and a language-specific
environment called as runtime is created in the function’s
execution environment. However, due to the limitations on
the available runtimes in commercial FaaS platforms such
as GCF, serverless Container-as-a-Service (CaaS) offerings
such as Google Cloud Run (GCR) [24] have been introduced.
GCR is a fully-managed service based on Knative [20]. CaaS
provides developers greater flexibility and allows them to
build custom container images for their functions.

While most details about the backend infrastructure man-
agement are abstracted away from the user by commercial
FaaS and serverless CaaS platforms, they still allow develop-
ers to configure the amount of memory and number of vCPUs
(GCR) allocated to a function/container instance [25, 30]. As
a result, each function/container instance has a fixed number
of CPU cores and memory associated with it. For commercial

ar
X

iv
:2

11
0.

12
09

0v
3

 [
cs

.D
C

]
 9

 N
ov

 2
02

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

WoSC ’21, December 6–10, 2021, Québec, Canada Michael Kiener et al.

Figure 1: Left: average execution time and cost for the
modified MVT benchmark [12] in C++ using AWS Lambda
(us-east1). Right: Number of CPU cores allocated for
the different memory profiles for AWS Lambda.

FaaS platforms such as Lambda and GCF, the performance
of the function is directly related to the amount of function
memory configured. This is because these platforms increase
the amount of compute capacity available to a function by
increasing the number of vCPUs or the fraction of the CPU
time if more memory is configured [18]. Serverless is adver-
tised as a pay-per-use model, where the users are billed based
on the execution time of the functions measured in 100ms
(GCR/GCF) and 1ms (Lambda) intervals. However, due to
the billing policies followed by cloud providers, increasing
the amount of memory often leads to an increase in costs
due to fees payment wrt GB-Second (and GHz-Second with
GCF/GCR [23, 26]). The comparison between the average
execution time and cost [29] for the modified MVT bench-
mark [12] when deployed on Lambda is shown in Figure 1.
Although the average execution time decreases when more
memory is configured, the cost increases significantly. Further-
more, after a certain memory configuration (>2048MB) allo-
cating more memory does not considerably affect the function
execution time. Serverless FaaS/CaaS platforms launch the
function instances on the platform’s traditional Infrastructure-
as-a-Service (IaaS) virtual machines (VM) offerings [8, 18].
However, the provisioning of such VM’s is abstracted away
from the user. As a result, the user is not aware of the details
of the provisioned VMs such as the number of CPU cores
and the virtual CPUs (vCPUs). Figure 1 shows the number of
CPU cores available to the function for the different memory
profiles on AWS Lambda. We obtain the number of avail-
able cores using the Linux proc filesystem. Since the native
implementation of the MVT benchmark is single-threaded it
cannot utilize the underlying cores leading to resource under-
utilization. To this end, parallelization of functions can lead
to a significant reduction in execution time and thus reduced
costs.

Our key contributions are:

• Identification of #CPU cores and vCPU allocations:
We investigate the number of allocated CPU cores in

FaaS/CaaS platforms and how they are mapped to the
allocated vCPUs.

• Intra-function parallel workloads: We modify and
parallelize three different compute-intensive serverless
workloads1, using C++, Java and Go. We execute these
workloads on AWS Lambda, GCF, and GCR, and ana-
lyze their execution times.

• Cost analysis: We demonstrate the benefits of paral-
lelizing functions and discuss conditions when paral-
lelization can be beneficial.

The rest of the paper is structured as follow. §2 describes
the previous work on inter-function parallelism and current
strategies for performance optimization of FaaS functions. §3
describes our methodology. In §4, our experimental results
are presented. Finally, §5 concludes the paper and presents
an outlook.

2 RELATED WORK
The majority of previous work on parallelizing applications
via FaaS has focused on splitting the workload via separate
function instances, i.e., inter-function parallelism [4, 5, 31].
Shankar et al. [31] showed that the elasticity provided by
serverless computing can be used to efficiently execute lin-
ear algebra algorithms, which are inherently parallel. They
implemented a system to split a linear algebra algorithm into
tasks which are then executed by AWS Lambda functions.
The data between function instances is shared via a persistent
object-store. With their system, they achieved performance
within a factor of two, as compared to a server-centric Mes-
sage Passing Interface (MPI) [1] implementation. Pons et
al. [4] analyzed the performance of fork/join workflows us-
ing existing services such as AWS Step Functions [2], Azure
Durable Functions [3], and OpenWhisk Composer [22]. They
found that, while OpenWhisk Composer offers the best per-
formance, all of the function orchestration solutions have
significant overhead for executing parallel workloads. In [5],
the authors present a system called Crucial that allows devel-
opers to program highly-concurrent stateful applications with
serverless architectures. Crucial ports multi-threaded applica-
tions to a serverless environment, by leveraging a distributed
shared memory layer. For coordinating functions they used
shared objects. With Crucial, the authors achieved perfor-
mance results similar to that of an equivalent Spark cluster.
While distributing workloads across function invocations can
be useful due to the high elasticity, results show that it can
still lead to significant communication and synchronization
overhead. In contrast, we focus on intra-function parallelism
where we parallelize functions and execute them within a
single function instance.

1We use the term serverless workload and function interchangeably.

Towards Demystifying Intra-Function Parallelism in Serverless Computing WoSC ’21, December 6–10, 2021, Québec, Canada

Evaluating the general performance of FaaS platforms and
improving the performance of FaaS functions has also been
actively researched [8, 10]. In [10], the authors present the
Serverless Application Analytics Framework (SAAF), to im-
prove observability on the performance of FaaS functions
on commercial FaaS platforms. SAAF currently supports
multiple FaaS platforms and several different programming
languages. In our previous work [8], we examined the under-
lying processor architectures on GCF and demonstrated the
usage of Numba [21], a Just-in-Time (JIT) compiler based
on LLVM for optimizing and improving the performance of
compute-intensive Python based FaaS functions. We showed
that the optimization of FaaS functions can improve perfor-
mance by 18.2x and save costs by 76.8%. However, all of
the previous approaches evaluate the performance of single-
threaded FaaS functions. In contrast, we evaluate and analyze
the performance of parallelized FaaS functions. Furthermore,
we investigate different function configurations and evaluate
their respective parallel efficiency. Moreover, we demonstrate
significant cost savings for parallelized functions as compared
to their sequential implementations.

3 METHODOLOGY
In this section, we first describe the different compute-intensive
serverless workloads used in this work. Following this, we
describe the different language runtimes we used for adapting
and modifying the different workloads. Finally, we describe
our benchmarking workflow.

3.1 Serverless Workloads
For our experiments, we chose two microbenchmarks, i.e.,
Atax and MVT from NPBench [12, 33] and one application,
i.e., Monte Carlo from PyPerf [13]. Both Atax and MVT take
a JSON file as input describing the input matrix and vector
sizes. Atax performs a matrix-vector product, followed by
multiplying the result again with the matrix. On the other
hand, MVT performs two matrix-vector products, followed
by adding the results to different vectors. The Monte Carlo
simulation estimates the digits of π . It generates random
numbers in a 1x1 square and counts all points for which the
distance to the center is less than 1. The ratio of points is an
estimate of π

4 which is used to estimate π . It takes a JSON file
as input specifying the number of iterations for the simulation.
We port the different workloads, initially written in Python to
the different language runtimes used in this work (§3.2).

3.2 Language Runtimes
To evaluate the different services, i.e., AWS Lambda, GCF,
and GCR wrt the performance of parallelized functions, we
chose multiple programming languages, i.e., C++, Go, and
Java. We chose C++ since it is widely used for scientific

Table 1: Runtime configurations. Includes parallelization
technique, version, compiler and flags. For GCR, the con-
tainer deployment image is also mentioned.

Language Parallelization Version Compiler & Flags GCR Image
C++ OpenMP AWS: C++11, GCR: C++17 g++, -O3 debian:buster-slim
Go goroutines AWS,GCR: 1.16, GCF: 1.13 gc, GOOS=linux debian:buster-slim

Java ExecutorService Java 11 OpenJDK 11 maven:3.8-jdk-11

computing in high performance computing applications [14].
However, none of the major commercial FaaS platforms sup-
port C++ by default. For executing C++ functions on AWS
Lambda, we use the custom C++ Lambda runtime [28] based
on the Lambda Runtime API [27]. For GCF, it was not pos-
sible to run C++ functions since it does not support custom
runtimes. On the other hand, for GCR we use a custom docker
image and install the required dependencies to build the C++
function.

We chose Go since it is widely used and supported by
default on Lambda and GCF. Furthermore, it was designed
with concurrency in mind which simplifies parallelization of
functions. As our final language, we chose Java not only due
to its popularity but also due to differences in its design as
compared to the other two languages. In contrast to C++ and
Go, Java applications are compiled to bytecode which is exe-
cuted by the Java Virtual Machine (JVM). Similar to Go, Java
is also available by default on both Lambda and GCF. For
running Go, C++, and Java based functions on GCR, we used
custom docker images with the required dependencies.The
details about the different language runtimes, i.e., their ver-
sions, compiler, compiler flags, and the different GCR images
is shown in Table 1.

For parallelizing the different serverless workloads (§3.1)
using the different languages, we first identified suitable re-
gions using profilers. Following this, we used additional li-
braries or language-specific features to parallelize those re-
gions. For C++, we used OpenMP which is commonly used
for shared memory programming. OpenMP allows developers
to annotate code using pragmas which are automatically used
by the compiler to generate multi-threaded code. In the case of
Go, we made use of goroutines, which are lightweight threads
having their own stack. For Java, we utilized the ExecutorSer-
vice class which allows developers to create a thread pool and
submit tasks to be executed by the threads. While OpenMP
supports automatic division of work between threads, for Go
and Java, we had to manually split the workload between the
threads.

3.3 Benchmarking Workflow
Initially, we deploy all the serverless wokloads (§3.1) using
the respective command line interfaces (CLIs) provided by
AWS and Google. Figure 2 shows the different steps involved
in our benchmarking process. To facilitate automatic function

WoSC ’21, December 6–10, 2021, Québec, Canada Michael Kiener et al.

Firefox file:///Users/michael/MasterArbeit/Slides/figures/python.svg

1 of 1 8/26/21, 8:09 PM

Invoke via

AWS CLI

Invoke

User Input (Service,
Benchmark, Language)

config.json

Get service specific configuration

Execution loop

Get Config

GCF/GCR
Executor

Firefox file:///Users/michael/MasterArbeit/Slides/figures/python.svg

1 of 1 8/26/21, 8:09 PM

Update function

Main loop

AWS Executor

Firefox file:///Users/michael/MasterArbeit/Slides/figures/python.svg

1 of 1 8/26/21, 8:09 PM

Invoke

Update function

Get Logs

results.json

Write back results to .json
Write back

Update
Get Logs

1

23
4

5

5

6

7

7
Update via

AWS CLI

8

9

10

Get Logs

via gcloud
CLI

via HTTP
request

Figure 2: Different steps involved in our benchmarking
workflow.

invocation and collection of function logs, we implement mul-
tiple Python scripts. At the beginning, the user provides the
service type, serverless workload, and the language runtime
(§3.2) as input to the Python script 1 . Following this, the
function configuration according to the input parameters is
retrieved from a JSON file 2 . The function configuration
contains relevant parameters to invoke the function such as the
function URL. In the main loop 3 of the Python script, we
repeatedly invoke the function synchronously, i.e., we await
the function result before invoking it again 4 . For Lambda,
we use the aws CLI for invoking the functions, while for
GCF/GCR the functions are triggered using HTTP requests
5 . Each function takes a JSON file as input that specifies its

input size and the number of threads to utilize. We execute
each serverless workload 20 times, 10 times sequentially and
10 times with multiple threads. Following this, we update
the memory configuration of the function 6 . For this, we
use their respective CLIs 7 . After all function executions
have finished, we store the results in a JSON file 10 . For
Lambda, all the required data can be retrieved from the func-
tion response, while for GCF/GCR we use the gcloud CLI
8 , 9 .

4 EXPERIMENTAL RESULTS
In this section, we describe our experimental setup and present
results wrt performance and costs for the parallelized server-
less workloads for the different services. Finally, we discuss
the impact of cold starts in our experiments.

4.1 Experimental Setup
For GCF and Lambda, we deployed the different workloads
(§3.1) using the memory profiles 512MB, 2048MB, 4096MB,
and 8192MB. For Lambda, we also utilized the highest avail-
able memory configuration for a function, i.e., 10240MB. In

Figure 3: Number of available CPU cores for the different
services at the different memory configurations.

contrast to GCF and Lambda, GCR allows developers to con-
figure the number of vCPUs allocated to a function along with
the memory. For GCR, we used similar memory configura-
tions as GCF except for 2048MB. In this case, we configured
the workloads with 2148MB of memory since that is the
minimum memory required to allocate 4vCPUs to a func-
tion. We allocate 4vCPUs for every memory configuration
in GCR except for 512MB where we allocate 2vCPUs. To
reduce variance in performance measurements for the server-
less workloads due to cold starts [10], we set the maximum
number of concurrent instances for all services to one. Fur-
thermore, we set the maximum number of concurrent requests
that can be handled by a container in GCR to one. This is
done to prevent the sharing of vCPUs while handling multiple
simultaneous requests. We deploy all functions on GCR and
GCF in the us-central1 region. For Lambda, all functions
are deployed in the us-east1 region.

4.2 #CPU cores to vCPU mapping
For the different services, language runtimes (§3.2), and con-
figurations (§4.1), we identified the number of available CPU
cores. We obtained the number of available cores for the func-
tion/container instance using the Linux proc filesystem. The
number of available CPU cores for the different services at the
different memory profiles is shown in Figure 3. For Lambda,
we observed at least two CPU cores for every memory config-
uration. Lambda allocates one full vCPU per 1769MB of allo-
cated function memory [30]. This implies that the amount of
allocated vCPUs is not equal to the number of available CPU
cores. For instance, for a memory configuration of 512MB
on Lambda, we observed two CPU cores while not getting
a full allocated vCPU. Moreover, Lambda always rounds up
the number of available CPU cores as shown in Figure 3. For
example, 4096MB translates to 2.3vCPUs, but we observed
three CPU cores for that specific configuration. For GCF, we
always observed two CPU cores irrespective of the config-
ured function memory. Similarly for GCR, we observed at
least two CPU cores for the different configurations (§4.1).

Towards Demystifying Intra-Function Parallelism in Serverless Computing WoSC ’21, December 6–10, 2021, Québec, Canada

(a) AWS Atax (b) AWS MVT (c) AWS Monte Carlo

(d) GCF Atax (e) GCF MVT (f) GCF Monte Carlo

(g) GCR Atax (h) GCR MVT (i) GCR Monte Carlo

Figure 4: Obtained average speedups for the different parallelized workloads on AWS Lambda, GCF, and GCR. For a
particular memory configuration, the red line shows the ideal speedup wrt the number of available CPU cores.

However, for the container with the Java language runtime
(§3.2), we observed only one CPU core when configured with
1vCPU. For greater than 1vCPU allocations in GCR, the num-
ber of available CPU cores is always equal to the number of
configured vCPUs. Note that although not shown in Figure 3,
AWS Lambda provides four CPU cores for function instances
configured with 6GB of memory.

A possible explanation for observing two CPU cores at
lower memory configurations for the different services, i.e.,
AWS Lambda and GCF can be hyperthreading or Simulta-
neous Multithreading (SMT) [11] present in modern Intel
Server Family of Processors, i.e, Haswell-EP, Broadwell-EP,
Skylake-SP, and Cascade Lake-SP. As shown in previous
works [8, 18], these are the family of processors found in the
Virtual Machines of the commercial FaaS providers on which
the function/container instances are launched.

4.3 Comparing Performance
Figure 4 shows the average speedups obtained for the differ-
ent serverless workloads (§3.1) across the different memory
configurations (§4.1) for the different services. For a particu-
lar memory configuration, we compute the speedup obtained

by dividing the mean execution time of the sequential server-
less workload by the mean execution time of the parallelized
version. Note that, when executing a parallelized workload,
we use the maximum number of available CPU cores for a par-
ticular memory configuration (§4.2). For Lambda and GCF,
we don’t observe any significant speedup for lower memory
configurations, i.e., less than 2048MB. This is because, in
Lambda and GCF, each function instance has a fixed memory
and fraction of allocated CPU cycles. Since both FaaS plat-
forms do not allocate complete two vCPUs for lower memory
configurations, utilizing the underlying two CPU cores does
not improve performance. For Lambda, two vCPUs are al-
located for a memory configuration greater than 3538MB,
while for GCF they are allocated at a memory configuration
of 4096MB [23]. This is also apparent from the increase in
speedup observed for GCF when switching from 2048MB to
4096MB as shown in Figures 4d, 4e, and 4f. For memory con-
figurations greater than 4096MB, we observed speedup close
to the number of available vCPUs for both GCF and Lambda.
This shows that irrespective of the number of available CPU
cores to a function instance, the performance of a parallelized
function is limited by the allocated vCPUs.

WoSC ’21, December 6–10, 2021, Québec, Canada Michael Kiener et al.

(a) AWS Atax C++ (b) AWS Atax Go (c) AWS Atax Java

(d) AWS MVT C++ (e) AWS MVT Go (f) AWS MVT Java

(g) AWS Monte Carlo C++ (h) AWS Monte Carlo Go (i) AWS Monte Carlo Java

Figure 5: Comparison of cost per million function invocations (in USD) for the different workloads on Lambda. The cost
values highlighted with red represent the maximum cost savings obtained across the different memory configurations.

Table 2: Maximum obtained cost savings, language run-
time, and memory configuration for the different server-
less workloads on GCF/GCR.

Service Benchmark Max. Cost savings Runtime Memory
GCF Atax 49.1% Java 4096MB
GCF MVT 39.7% Java 4096MB
GCF Monte Carlo 44.1% Java 8192MB
GCR Atax 59.5% Go 2148MB
GCR MVT 63.4% Go 2148MB
GCR Monte Carlo 69.8% Go 2148MB

For Lambda, the parallelized versions of Atax and MVT
microbenchmarks perform consistently worse than Monte
Carlo for higher memory configurations. This is because
both these microbenchmarks have a greater number of par-
allel regions than Monte Carlo and require synchronization
and communication between the application threads. More-
over, the Go and C++ implementations of the serverless work-
loads perform better than the Java based implementation as
shown in Figures 4a, 4b, 4c, 4g, 4h, and 4i . This can be
attributed to the performance degradation of parallel imple-
mentations using Java threads with an increase in the number
of application threads and communication [32]. For GCF, the
Go implementations perform worse as compared to Lambda

and GCR, since GCF uses an old runtime version for Go.
As a sanity check, we could reproduce the results by using
golang:1.13-buster as the container image for Go with
GCR. For GCR, speedup values obtained are similar to that
for Lambda, i.e., close to the number of allocated vCPUs and
therefore capped at four. Note that for GCR, we even obtained
speedup values for the lowest memory configurations since
we were able to allocate two complete vCPUs. The observed
performance and speedup depend on the parallelization effi-
ciency of the different serverless workloads (§3.1).

4.4 Comparing Costs
To calculate costs for the different serverless workloads (§3.1),
we use the obtained mean execution time across the differ-
ent memory configurations. For Lambda, we round up the
execution time to the nearest 1ms increment, while for GCF
and GCR it is rounded up to the nearest 100ms increment.
Following this, we use the rounded up mean execution time
to calculate function compute time in terms of different units
defined by the providers [23, 26, 29]. For Lambda, the com-
pute time depends on the amount of allocated memory, i.e.,
GB-Seconds, for GCF it depends on the configured mem-
ory and the allocated CPU clock cycles, i.e., GB-Seconds

Towards Demystifying Intra-Function Parallelism in Serverless Computing WoSC ’21, December 6–10, 2021, Québec, Canada

and GHz-Seconds, and for GCR it depends on the config-
ured memory and the allocated vCPUs, i.e, GB-Seconds and
vCPU-Seconds. The different providers define a fixed price
for one second of compute time depending on the deploy-
ment region. We use the pre-defined price values specified by
all cloud providers for calculating the compute costs for the
serverless workloads. In our calculations, we exclude costs for
free-tiers and networking. Moreover, we calculate costs per
million function invocations. As a result, a fixed price of $0.2
and $0.4 is added for Lambda and GCF/GCR respectively.

Figure 5 shows the cost comparison for the sequential and
parallelized serverless workloads (§3.1) across the different
memory configurations on Lambda. For Lambda, the differ-
ence in costs for the sequential and parallelized serverless
workloads is not significant for lower memory configurations,
i.e., less than 2048MB. However, for the sequential serverless
workloads the costs significantly increase for higher memory
configurations, while for the parallelized versions the increase
in cost is considerably less. For instance, the increase in aver-
age cost from the lowest to the highest memory configuration
for the workloads parallelized using C++ is 30%, while for
the sequential versions it is 498%. Therefore, by efficiently
parallelizing serverless workloads we can obtain improved
performance (§4.3) at approximately the same costs. Over-
all, we observed that parallelizing functions with C++ leads
to minimum costs as shown in Figure 5. For the sequential
workloads, Java is the cheapest, except for lower memory
configurations. For Lambda, we obtained maximum cost sav-
ings of 81% for the Go implementation of the Monte Carlo
workload as shown in Figure 5h.

Due to space limitations, we do not present detailed cost
analysis results for GCF/GCR but summarize our findings
in Table 2. We obtain the maximum cost savings for GCF
with a memory allocation of at least 4096MB which also
corresponds to the highest obtained speedup values (§4.3).
For GCR, the maximum cost savings are obtained for the
memory configuration of 2148MB with 4vCPUs.

4.5 Impact of Cold Starts
From our experiments, we observed that the latency of cold
starts is equally long for the sequential and parallel implemen-
tations of the serverless workloads (§3.1). Since cold starts
constitute a fraction of the function execution time, if large
enough, they can potentially impact the speedup and cost
savings obtained from parallelizing serverless workloads. The
average billable cold start latency for the different services
and language runtimes (§3.2) is shown in Figure 6. While
AWS Lambda directly provides the billed cold start time in
function logs, for GCF and GCR, we compute the billed cold
start latency by subtracting the billed function execution time

Figure 6: Average billable cold start latency for the differ-
ent runtimes across the different services.

on a cold and warm start. In our experiments, we did not ob-
serve a significant difference in the cold start latencies for the
different serverless workloads and function memory configu-
rations. However, the values shown in Figure 6 are averaged
across all benchmarks. We observed a significant cold start
latency for the Java runtime on GCR as compared to the C++
and Go runtimes. A possible explanation for this could be a
high amount of time required for the Java Virtual Machine
(JVM) to warm up.

5 CONCLUSION & FUTURE WORK
In this paper, we analyzed the effect of parallelizing compute-
intensive serverless workloads within a function/container
instance in terms of performance and costs for AWS Lambda,
Google Cloud Functions, and Google Cloud Run. We identi-
fied that for the different services the number of CPU cores
available to the function/container does not always equal the
number of allocated vCPUs. Furthermore, we demonstrate
that parallelizing serverless workloads can significantly im-
prove performance and lead to cost savings. For Lambda, we
observed cost savings up to 81%, for GCF up to 49%, and for
GCR up to 79.8%.

In the future, we plan to evaluate other serverless offerings
and language runtimes. Furthermore, investigating a hybrid
approach between inter and intra-function parallelism to re-
duce synchronization overhead is another future direction.

6 ACKNOWLEDGEMENT AND
REPRODUCIBILITY

This work was supported by the funding of the German Fed-
eral Ministry of Education and Research (BMBF) in the scope
of the Software Campus program.

All code artifacts related to this work are available at2. We
also evaluated other parallelized workloads which could not
be included in this paper due to page limitations. Please refer
to [19] for our comprehensive evaluation results.

2https://github.com/MichaelKiener/Serverless-parallel-workloads

WoSC ’21, December 6–10, 2021, Québec, Canada Michael Kiener et al.

REFERENCES
[1] [n.d.]. MPI: A Message-Passing Interface Standard. https://www.mpi-

forum.org/docs/mpi-3.1/mpi31-report.pdf
[2] AWS. 2020. AWS Step Functions | AWS. https://aws.amazon.com/step-

functions/
[3] Azure. 2020. Azure Durable Functions | Azure. https://docs.microsoft.

com/en-us/azure/azure-functions/durable/
[4] Daniel Barcelona-Pons, Pedro García-López, Álvaro Ruiz, Amanda

Gómez-Gómez, Gerard París, and Marc Sánchez-Artigas. 2019. FaaS
Orchestration of Parallel Workloads. In Proceedings of the 5th Interna-
tional Workshop on Serverless Computing (Davis, CA, USA) (WOSC

’19). Association for Computing Machinery, New York, NY, USA,
25–30. https://doi.org/10.1145/3366623.3368137

[5] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard París, Pierre
Sutra, and Pedro García-López. 2019. On the FaaS Track: Building
Stateful Distributed Applications with Serverless Architectures. In Pro-
ceedings of the 20th International Middleware Conference (Davis, CA,
USA) (Middleware ’19). Association for Computing Machinery, New
York, NY, USA, 41–54. https://doi.org/10.1145/3361525.3361535

[6] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and
Randy Katz. 2019. Cirrus: A serverless framework for end-to-end ml
workflows. In Proceedings of the ACM Symposium on Cloud Computing.
13–24.

[7] Mohak Chadha, Anshul Jindal, and Michael Gerndt. 2020. Towards
Federated Learning Using FaaS Fabric. In Proceedings of the 2020
Sixth International Workshop on Serverless Computing (WoSC’20).
Association for Computing Machinery, New York, NY, USA, 49–54.
https://doi.org/10.1145/3429880.3430100

[8] Mohak Chadha, Anshul Jindal, and Michael Gerndt. 2021. Architecture-
Specific Performance Optimization of Compute-Intensive FaaS Func-
tions. arXiv preprint arXiv:2107.10008 (2021).

[9] Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna
Woodard, Ben Blaiszik, Ian Foster, and Kyle Chard. 2020. FuncX:
A Federated Function Serving Fabric for Science. In Proceedings
of the 29th International Symposium on High-Performance Parallel
and Distributed Computing (Stockholm, Sweden) (HPDC ’20). As-
sociation for Computing Machinery, New York, NY, USA, 65–76.
https://doi.org/10.1145/3369583.3392683

[10] Robert Cordingly, Navid Heydari, Hanfei Yu, Varik Hoang, Zohreh
Sadeghi, and Wes Lloyd. 2021. Enhancing Observability of Server-
less Computing with the Serverless Application Analytics Frame-
work. In Companion of the ACM/SPEC International Conference on
Performance Engineering (Virtual Event, France) (ICPE ’21). Asso-
ciation for Computing Machinery, New York, NY, USA, 161–164.
https://doi.org/10.1145/3447545.3451173

[11] Susan J Eggers, Joel S Emer, Henry M Levy, Jack L Lo, Rebecca L
Stamm, and Dean M Tullsen. 1997. Simultaneous multithreading: A
platform for next-generation processors. IEEE micro 17, 5 (1997),
12–19.

[12] NPBench Github. 2021. https://github.com/spcl/npbench. Accessed:
09/06/2021.

[13] Pyperformance Github. 2021. https://github.com/python/
pyperformance. Accessed: 09/09/2021.

[14] Piotr Grzesik and Dariusz Mrozek. 2021. Serverless Nanopore Base-
calling with AWS Lambda. In Computational Science – ICCS 2021,
Maciej Paszynski, Dieter Kranzlmüller, Valeria V. Krzhizhanovskaya,
Jack J. Dongarra, and Peter M. A. Sloot (Eds.). Springer International
Publishing, Cham, 578–586.

[15] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso,
Ana Klimovic, Ankit Singla, Wentao Wu, and Ce Zhang. 2021. Towards
Demystifying Serverless Machine Learning Training. Proceedings of

the 2021 International Conference on Management of Data (Jun 2021).
https://doi.org/10.1145/3448016.3459240

[16] Anshul Jindal, Mohak Chadha, Michael Gerndt, Julian Frielinghaus,
Vladimir Podolskiy, and Pengfei Chen. 2021. Poster: Function Deliv-
ery Network: Extending Serverless to Heterogeneous Computing. In
2021 IEEE 41st International Conference on Distributed Computing
Systems (ICDCS). 1128–1129. https://doi.org/10.1109/ICDCS51616.
2021.00120

[17] Anshul Jindal, Michael Gerndt, Mohak Chadha, Vladimir Podolskiy,
and Pengfei Chen. 2021. Function delivery network: Extending server-
less computing for heterogeneous platforms. Software: Practice and
Experience 51, 9 (2021), 1936–1963. https://doi.org/10.1002/spe.2966
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2966

[18] D. Kelly, F. Glavin, and E. Barrett. 2020. Serverless Computing:
Behind the Scenes of Major Platforms. In 2020 IEEE 13th Interna-
tional Conference on Cloud Computing (CLOUD). 304–312. https:
//doi.org/10.1109/CLOUD49709.2020.00050

[19] Michael Kiener. 2021. Towards Demystifying Intra-Function Paral-
lelism in Serverless Computing. Masterarbeit. Technische Universität
München.

[20] Knative. [n.d.]. https://knative.dev/docs/. Accessed 09/24/2020.
[21] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba:

A LLVM-Based Python JIT Compiler. In Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC (Austin, Texas)
(LLVM ’15). Association for Computing Machinery, New York, NY,
USA, Article 7, 6 pages. https://doi.org/10.1145/2833157.2833162

[22] OpenWhisk Composer. 2020. OpenWhisk Composer | OpenWhisk.
https://github.com/apache/openwhisk-composer

[23] Google Cloud Platform. 2021. https://cloud.google.com/functions/
pricing. Accessed: 09/06/2021.

[24] Google Cloud Platform. 2021. https://cloud.google.com/run/. Accessed:
09/06/2021.

[25] Google Cloud Platform. 2021. https://cloud.google.com/run/docs/
configuring/cpu. Accessed: 09/06/2021.

[26] Google Cloud Platform. 2021. https://cloud.google.com/run/pricing.
Accessed: 09/06/2021.

[27] Danilo Poccia. [n.d.]. https://aws.amazon.com/blogs/aws/new-for-
aws-lambda-use-any-programming-language-and-share-common-
components/. accessed: 08/25/2021.

[28] Danilo Poccia. [n.d.]. https://github.com/awslabs/aws-lambda-cpp.
accessed: 08/25/2021.

[29] Amazon Web Services. 2021. https://aws.amazon.com/lambda/pricing/.
Accessed: 09/06/2021.

[30] Amazon Web Services. 2021. https://docs.aws.amazon.com/lambda/
latest/dg/configuration-function-common.html. Accessed: 09/06/2021.

[31] Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan Pu, Benjamin
Recht, Ion Stoica, Jonathan Ragan-Kelley, Eric Jonas, and Shivaram
Venkataraman. 2020. Serverless Linear Algebra. In Proceedings of
the 11th ACM Symposium on Cloud Computing (Virtual Event, USA)
(SoCC ’20). Association for Computing Machinery, New York, NY,
USA, 281–295. https://doi.org/10.1145/3419111.3421287

[32] Guillermo L. Taboada, Juan Touriño, and Ramón Doallo. 2009. Java
for High Performance Computing: Assessment of Current Research
and Practice. In Proceedings of the 7th International Conference on
Principles and Practice of Programming in Java (Calgary, Alberta,
Canada) (PPPJ ’09). Association for Computing Machinery, New York,
NY, USA, 30–39. https://doi.org/10.1145/1596655.1596661

[33] Alexandros Nikolaos Ziogas, Tal Ben-Nun, Timo Schneider, and
Torsten Hoefler. 2021. NPBench: a benchmarking suite for high-
performance NumPy. In Proceedings of the ACM International Confer-
ence on Supercomputing. 63–74.

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/
https://doi.org/10.1145/3366623.3368137
https://doi.org/10.1145/3361525.3361535
https://doi.org/10.1145/3429880.3430100
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3447545.3451173
https://github.com/spcl/npbench
https://github.com/python/pyperformance
https://github.com/python/pyperformance
https://doi.org/10.1145/3448016.3459240
https://doi.org/10.1109/ICDCS51616.2021.00120
https://doi.org/10.1109/ICDCS51616.2021.00120
https://doi.org/10.1002/spe.2966
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2966
https://doi.org/10.1109/CLOUD49709.2020.00050
https://doi.org/10.1109/CLOUD49709.2020.00050
https://knative.dev/docs/
https://doi.org/10.1145/2833157.2833162
https://github.com/apache/openwhisk-composer
https://cloud.google.com/functions/pricing
https://cloud.google.com/functions/pricing
https://cloud.google.com/run/
https://cloud.google.com/run/docs/configuring/cpu
https://cloud.google.com/run/docs/configuring/cpu
https://cloud.google.com/run/pricing
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-use-any-programming-language-and-share-common-components/
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-use-any-programming-language-and-share-common-components/
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-use-any-programming-language-and-share-common-components/
https://github.com/awslabs/aws-lambda-cpp
https://aws.amazon.com/lambda/pricing/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://doi.org/10.1145/3419111.3421287
https://doi.org/10.1145/1596655.1596661

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Serverless Workloads
	3.2 Language Runtimes
	3.3 Benchmarking Workflow

	4 Experimental Results
	4.1 Experimental Setup
	4.2 #CPU cores to vCPU mapping
	4.3 Comparing Performance
	4.4 Comparing Costs
	4.5 Impact of Cold Starts

	5 Conclusion & Future Work
	6 Acknowledgement and Reproducibility
	References

