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ABSTRACT
The increasing usage of machine learning models raises the ques-
tion of the reliability of these models. The current practice of testing
with limited data is often insufficient. In this paper, we provide
a framework for automated test data synthesis to test black-box
ML/DL models. We address an important challenge of generating
realistic user-controllable data with model agnostic coverage cri-
teria to test a varied set of properties, essentially to increase trust
in machine learning models. We experimentally demonstrate the
effectiveness of our technique.

1 INTRODUCTION
Artificial Intelligence systems are increasingly being used in critical
applications, such as to assess a criminal defendant’s likelihood
of committing a crime [9], selecting resumes for recruitment [7],
loan processing [26], etc. While AI holds the promise of delivering
valuable insights and knowledge across a multitude of applications,
the broad adoption of AI systems will rely heavily on the ability to
trust their output.

In order to assure the reliability of AI systems, in this paper, we
address some of shortcomings of automated testing of AI models, as
described below. The data scientists use the technique of splitting
the cleaned data to get train and test set in order to build and
select the best model in terms of accuracy. In industry, Model Risk
Management [1] phase of the Data and AI lifecycle independently
tests the model on various characteristics such fairness, robustness,
drift, and business KPIs before deploying the model. Such risk
management imposes the following additional requirements.
• Risk management requires additional realistic test data, not used
by data scientists as the available test split may not be a complete
representation of the possible payload data making it insufficient.

• Simulation of anticipatory data-drift condition to generate syn-
thetic payload to test the model under such data distribution
drift.

• As the above requirements warrants generation of synthetic test
data, it is important to generate the data based on some coverage
criteria suitable for AI testing.

• Use of synthetic test data to test fairness [18,44], robustness
[7,28] properties in AI model which is majorly skipped by current
industrial practices.
Although existing techniques like GAN [14], Variational Auto-

encoder [16] can generate synthetic realistic data, they are not
customizable by user-specification. Moreover, existing coverage cri-
teria like neuron coverage, sign coverage, boundary value coverage,
etc. [22, 28] are not model-agnostic and cannot be combined with
existing generative models.

To address the majority of the above-mentioned drawbacks, we
build a testing framework, called AITEST. The salient features of
our framework are listed next.

• First, to address the limited test data, we develop a technique to
synthetically generate realistic test data. For example, if there are
two columns like age and marital-status - a random genera-
tion technique can generate married people younger than 20 even
though such as behavior is not present in the training data. Our
data synthesis technique ensures that such a case never occurs.
Specifically, the generated data (without any customization) has
the similar statistical characteristics of the training data.

• Second, our synthetic data generation process is customizable.
Consider a case where the training data is taken from a North
America region where Male-Female ratio is, say 3:2, which is
captured as a constraint inferred from the training data. To cater
to the testing for a different geographic region that has a dif-
ferent Male:Female (say 1:1), it is important to test the fairness
metric with such synthetic data. AITEST allows to incorporate
user-defined constraints (UDC) to add and/or update the data con-
straints. The UDC is also important to capture any domain-based
constraints which are hard to infer from the data or expected pay-
load characteristics. The flexibility of having UDC is important
from an AI Testing perspective to test various unprecedented
what-if scenarios even before deploying the model in production.

• Third, to cater to the challenge of defining a model-agnostic
coverage criterion, we re-use the notion of program path cov-
erage. However, the notion of paths cannot be defined for all
models. Therefore, we introduce the notion of model-agnostic
path-coverage and present algorithms for test-data synthesis
ensuring high coverage. Essentially, we create a decision tree
model with high fidelity which imitates the model under test. The
test cases are then, equally distributed in the regions defined by
the constraints in each path (hereafter called path-constrains) in
the decision tree. Coverage of paths in the decision tree ensures
decision region coverage of the model under test.

• AITEST performs goal-oriented test data synthesis. We perform
group/individual fairness and robustness testing which are meta-
morphic properties [35] whose testing does not require an oracle
to get label for synthetic data.

The current scope of our system is classification models for tabular
data. To the best of our knowledge, no other techniques address
this in tabular domain. Ribeiro et al. demonstrated the importance
of testing NLP models in [31]. Our contributions are listed below:

• We develop an algorithm to generate realistic test data which
is cutomizable giving the user an opportunity to perform drift-
testing.

• We define a model-agnostic path coverage criteria and re-use an
existing global explainability algorithm to generate the data of-
fering maximum coverage.

• Our technique tests fairness and robustness with realistic syn-
thetic data which is not done by other realistic synthetic test data
generation techniques.
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2 BACKGROUND
In this section, we present the background of some of the already
known concepts that we use in our framework.

Decision Tree Surrogate. We use an algorithm, called TREPAN [8]
to create a decision tree surrogate of any given model with black-
box access for defining its coverage. Essentially, TREPAN uses train-
ing data with model predictions (instead of ground truth) to imitate
the decision logic of the black-box model with a decision tree (an
interpretable model). TREPAN also generates random synthetic
samples when the number of training samples for an intermediate
node in the decision tree is reduced below a given threshold. Note
that it uses the labels from the target classifier even for those syn-
thetically generated samples. The use of these additional samples
helps to create a better surrogate.

Fairness. A fair classifier tries not to discriminate individuals or
groups defined by the protected attribute (like race, gender, caste,
and religion) [4]. Next, we describe metrics related to group fair-
ness (between two groups) and individual fairness (between two
individuals) by using the following notations. Each sample/indi-
vidual is denoted as (𝑋 , 𝑌 , 𝑍 ) where 𝑋 are all attributes used in
the prediction, 𝑌 is the corresponding ground-truths for the sam-
ples in 𝑋 , and 𝑍 is the binary protected attribute which may be
included in 𝑋 . A classifier is a mapping ℎ: 𝑋 → [0, 1]. The final
prediction is denoted by 𝑌 where 𝑌 = 1 ⇔ ℎ(𝑋 ) > 𝜎 . We will use
𝑃 (𝑌 = 1|𝑍 = 1) as the probability of a favorable outcome (𝑌 = 1)
for the privileged group (𝑍 = 1).
Group Fairness. Below we recall some prominent group discrimi-
nation metrics that we use. Under the definition of disparate im-
pact [12], a system is fair if:

𝑃 (𝑌 = 1 |𝑍 = 0)
𝑃 (𝑌 = 1 |𝑍 = 1)

> 𝜖 . In other words, the probability of the favorable
outcome of the unprivileged and privileged group should be more
than a particular threshold. Typically, based on US Govt. rules, in
many scenarios 𝜖 = 0.8.
Individual Fairness. Based on the notion of counterfactual fair-
ness [19], a decision is fair towards an individual if it is the same in
(a) the actual world and (b) a counterfactual world where the indi-
vidual belonged to a different demographic group. Essentially, a test
case corresponding to individual fairness consists of a pair of sam-
ples where the two samples only differ in protected attribute values
- one from the privileged group and the other from the unprivileged
group. Formally, ℎ(𝑠) < 𝜖 and ℎ(𝑠 ′) ≥ 𝜖 where 𝑠 .𝑍 ≠ 𝑠 ′.𝑍 and
𝑠 .𝑦 = 𝑠 ′.𝑦 ∀𝑦 ∈ 𝑌 .

Note that just removing the protected attribute from the training
data doesn’t ensure fairness in AI models due to the existence of
possible indirect bias [4], and therefore such a testing is required.
Further, our testing framework is generic enough to work for any
other definition of fairness, but currently we are using the one used
in [13] [34] [4].

Adversarial Robustness. Testing for adversarial robustness con-
sists of creating two realistic samples based on some perturbation
function 𝑝 and checking if both of them give different outcomes
(test failure).

Figure 1: AITEST Architecture

3 DATA SYNTHESIS
Figure 1 shows the different components of AITEST architecture
and how they interact with each other. At first, AITEST processes
the training data to obtain a set of constraints. Using such con-
straints, AITEST can generate synthetic data using a new constraint
solver, after optionally merging user-defined constraints and path
constraints. Finally, it generates the test cases for specific properties
which are fed to testers. This section discusses different components
of AITEST in detail.

3.1 Constraints
The first step is to understand each column in the given data and find
associations between different type of columns. Note that we ignore
the label column in this phase. As per our constraint language
specified in Table 1, constraints are of two types - column constraints
which are defined for each column, and association constraintswhich
are defined based on more than one column.
Column Constraints. We assume that a column can have either
numeric or category datatype, the latter having a fixed set of
unique values. Based on the column’s datatype, different kinds
of distribution constraints are inferred. For each category column,
AITEST gathers frequency distribution of all the unique set of
values, whereas for numeric column, AITEST gathers statistical
properties such as minimum-maximum bound and various sta-
tistical distributions. Note that we try to fit five common statis-
tical distributions for numeric columns - 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚, 𝑛𝑜𝑟𝑚𝑎𝑙 , 𝑏𝑒𝑡𝑎,
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 and 𝑔𝑎𝑚𝑚𝑎, using Scipy’s distribution fit [3] that uses
maximum likelihood estimation technique, and then use the Kol-
mogrov Smirnov (KS) test [17, 23] to check which distribution fits
the column best. KS test compares the data with a reference prob-
ability distribution, and measures the distance between empirical
distribution function of the sample and cumulative distribution
function of the reference distribution. The KS statistic value (or
𝑝-value) is high (1) when the fit is good, and low (0) otherwise. The
lack of fit is significant if 𝑝-value < 0.05. We say that a distribution
fits the column if 𝑝-value from the KS test > 0.05 and is the best
amongst the distributions checked. Due of this check, a numerical
column may not have any associated distribution.
Associations.We aim to capture two types of relationships involv-
ing a pair of source and target column. The cat_cat is defined be-
tween two category columns. We perform Chi-square(𝜒2) test [27]
and use uncertainty coefficient, Thiel’s U [33] to measure indepen-
dence between categorical attributes to identify the source and
target column. Thiel’s U is based on the conditional entropy be-
tween two nominal attributes and measures the degree of asso-
ciation from the source to target, with the value in range [0, 1],
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Table 1: Constraints
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ::= 𝑐𝑜𝑙𝑢𝑚𝑛 | 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛
𝑐𝑜𝑙𝑢𝑚𝑛 ::= 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 | 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 ::= 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 ::= 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 | 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠
𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 ::= 𝑚𝑖𝑛 |𝑚𝑎𝑥
𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 ::= 𝑛𝑜𝑟𝑚𝑎𝑙 | 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 | 𝑏𝑒𝑡𝑎

𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 | 𝑔𝑎𝑚𝑚𝑎
𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 ::= 𝑐𝑎𝑡_𝑐𝑎𝑡 | 𝑐𝑎𝑡_𝑛𝑢𝑚
𝑐𝑎𝑡_𝑛𝑢𝑚 ::= ∀𝑣 ∈ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙, (𝑣, 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙)
𝑐𝑎𝑡_𝑐𝑎𝑡 ::= ∀𝑣 ∈ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙, (𝑣, 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙)

where 0 means no association and 1 represents a full association.
We capture the frequency distribution of values in the target col-
umn for each unique value-combination in the source column. The
cat_num association is defined between a category source and a nu-
meric target column. For every unique value in the source category
column, we find column-level constraints for the filtered samples
in the target numeric column. For numeric target column, we do
not represent joint categorical source columns in the association
constraint as the count of numerical samples becomes very less
for each value-combination of source categorical columns which
prohibits distribution fit. However, our synthesis phase (described
later) partially considers all the cat_num association constraints for
a numerical column.

Note that the datasets are generally preprocessed before training
a model and therefore, all the redundant columns or columns de-
pendent on other columns are pruned. Hence, an association from
a numeric column to another numeric one capturing a polynomial
relationship may not be useful, especially for testing ML models.
Furthermore, it is also possible to define many other constraints,
for example, associations defined by considering more than two
columns. But, we found the suggested set of constraints enough
and best suited for our data synthesis technique.

To capture the dependency between all the constraints, we de-
fine a directed graph,𝐺 (𝑁, 𝐸) and call it the Constraint Dependency
Graph (𝐶𝐷𝐺). Each node 𝑛 ∈ 𝑁 in this 𝐶𝐷𝐺 corresponds to a fea-
ture/column and is annotated with an associated inference error
related to individual feature constraints. This 𝑖𝑛𝑓 _𝑒𝑟𝑟𝑜𝑟 (𝑛) is 0 for
categorical columns and numerical columns where no distribution
is inferred. For a numerical column 𝑛 having some distribution,
𝑖𝑛𝑓 _𝑒𝑟𝑟𝑜𝑟 (𝑛) = 1 − 𝑝-value. Each directed edge 𝑒 ∈ 𝐸 in the graph
corresponds to either a cat_num association or part of cat_cat asso-
ciation between source and target node. Edge 𝑒 is annotated with
𝑖𝑛𝑓 _𝑒𝑟𝑟𝑜𝑟 (𝑒) which is 1−𝑢-value for cat_cat edges, where 𝑢-value
is the uncertainty coefficient for 𝑒 , and for each cat_num edge, it is
an average of numerical distributions errors for all category source
values. Since a numerical column may not have any continuous
distribution function in feature constraint (but may have associ-
ation), each node is classified into two types - 1) GenNode: one
having distribution function and 2) NonGenNode: not having any
distribution function. Later, we demonstrate how to use this 𝐶𝐷𝐺
for data synthesis.

Consider a toy dataset with five categorical attributes (gender,
education, martial, age-grp, intelligence) and one nu-
meric attribute (salary) with relevant associations between them.
An exemplar 𝐶𝐷𝐺 is shown in Figure 2 (G1).

Figure 2: CDG (G1) and DAG (G2)

3.2 User-Defined Constraint Specification
Apart from the data constraints, AITEST also enables a user to add
new constraints or delete/modify the existing data constraints in
form of user-defined ones (UDC) which take precedence over the
existing data constraints. Our specification supports three types of
UDCs as listed below.
• Add UDC - User can add constraints which spans both associ-
ation and column related constraints. For example, if data con-
straints infer that values of salary lie in the range [2k-30k] with
no distribution, then, using UDC, user can override this random
generation by specifying, say a normal distribution with loc=15k
and scale=0.1 lying in the same bounds [2k-30k].

• Modify UDC - User can specify constraints to modify/override
the existing data constraints, both association and feature related
constraints, as in the usage scenarios below.
RangeModification - Let’s consider that the userwants to generate
salary values for females in a particular range, say, 5k-50k, which
is different from the bounds 2k-30k as specified in cat_num associ-
ation between gender and salary. Using user-defined constraints,
he/she can override the value bounds or statistical distribution
in feature/associations constraints with the desired values.
Distribution Modification - Another scenario of its utility can be
when the user wants to generate test cases to check for group
fairness in AI model. For a protected attribute, say gender, the
frequency distribution of M:F is, say 3:1, in the feature constraint.
But, it may be desired to check for fairness with the test set hav-
ing a different relative proportion of M and F, say 1:1. Our UDC
template allows such frequency distribution overriding.

• Delete UDC - User can ask the system to drop certain associations
or feature constraints from the inferred data constraints during
test data synthesis. For instance, drop range constraints on an
attribute, or drop associations between a protected (gender) and
non-protected (salary) attribute during test data generation.

Later in Section 3.3, we discuss the way to handle such UDCs in
our synthesis algorithm.

3.3 Realistic Data Synthesis
In this section, we present the overall algorithm of data synthesis
in three stages - starting from realistic data synthesis from data
constraints, and subsequently adding user-defined constraints and
coverage constraints. Furthermore, the synthesizer also expects
the count of samples to be generated as an input. Note that the
synthesizer does not generate data for the label column.

In order to generate values for the toy example, we need to
consider the following set of constraints.
(1) Feature Constraints of individual attributes

• Continuous Marginal Distribution: Synthesizer can generate
values by sampling from the existing distribution e.g. salary
from normal distribution.
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Algorithm 1: Data Synthesis using Data Constraints
1 Function DataSynthesis(InputData, n)
2 DataConstraints = genConstrains(InputData)
3 CDG = createCDG(DataConstraints)
4 return DataSynWithDataCons(CDG, n)
5 end
6 Function createCDG(DC, n)
7 G.nodes = {}
8 G.edges = {}
9 foreach 𝑐 ∈ 𝐷𝐶.𝑐𝑜𝑙𝑢𝑚𝑛𝑠 do
10 G.nodes += 𝑛𝑐
11 end
12 foreach 𝑓 𝑐 ∈ 𝐷𝐶.𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 do
13 𝑛𝑐 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 += 𝑓 𝑐
14 if (𝑛𝑐 .𝑡𝑦𝑝𝑒 == 𝑁𝑈𝑀 ∧ ∃𝑐 ∈ 𝑓 𝑐 𝑠.𝑡 . 𝑐.𝑡𝑦𝑝𝑒 == 𝑐𝑜𝑛𝑡_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)

then
15 𝑛𝑐 .𝐺𝑒𝑛𝑁𝑜𝑑𝑒 = 𝐹𝑎𝑙𝑠𝑒

16 else
17 𝑛𝑐 .𝐺𝑒𝑛𝑁𝑜𝑑𝑒 = 𝑇𝑟𝑢𝑒

18 end
19 end
20 foreach 𝑎𝑐 ∈ 𝐷𝐶.𝑎𝑠𝑠𝑜𝑐_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 do
21 𝑛𝑐 .𝑎𝑠𝑠𝑜_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 += 𝑎𝑐
22 end
23 return G
24 end
25 Function DataSynWithDataCons(CDG, n)
26 DAG = preProcess(CDG)
27 return generate(DAG, n)
28 end
29 Function preProcess(CDG)
30 DAG = CDG.copy()
31 while ∃ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑐𝑦𝑐𝑙𝑒 c∈ 𝐷𝐴𝐺 do
32 delete edge (𝑛𝑖 , 𝑛 𝑗 ) with minimal confidence s.t. 𝑛 𝑗 .𝐺𝑒𝑛𝑁𝑜𝑑𝑒 = 𝑇𝑟𝑢𝑒
33 end
34 return DAG
35 end
36 Function DataSynWithDataCons(DAG, n)
37 while 𝑛 𝑗 ∈ 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑂𝑟𝑑𝑒𝑟 (𝐷𝐴𝐺.𝑛𝑜𝑑𝑒𝑠) do
38 data = genDataEachColumn(𝑛 𝑗 , DAG, n)
39 𝑛 𝑗 .𝑑𝑎𝑡𝑎 = 𝑑𝑎𝑡𝑎

40 end
41 end
42 Function genDataEachColumn(𝑛 𝑗 , DAG, n)
43 if (𝑛 𝑗 .𝐺𝑒𝑛𝑁𝑜𝑑𝑒 ∧ 𝑛 𝑗 .𝑡𝑦𝑝𝑒 == 𝑁𝑈𝑀) then
44 dataOwn = gen(𝑛 𝑗 .dist, n, 𝑛 𝑗 .range, 𝑛 𝑗 .isUnique)
45 minDiv = +Inf
46 minDivData = null
47 foreach (e = (𝑛𝑖 ,𝑛 𝑗 ) do
48 data=genData(e,𝑛𝑖 )
49 div = KL-div(dataOwn, data)
50 if 𝑑𝑖𝑣 <𝑚𝑖𝑛𝐷𝑖𝑣 then
51 minDivData = data
52 end
53 end
54 𝑛 𝑗 .𝑑𝑎𝑡𝑎 = 𝑑𝑎𝑡𝑎

55 else if (𝑛 𝑗 .𝐺𝑒𝑛𝑁𝑜𝑑𝑒) then
// type CAT

56 e = (𝑛𝑖 ,𝑛 𝑗 ) for any 𝑛𝑖
57 data=genData(e,𝑛𝑖 )
58 𝑛 𝑗 .𝑑𝑎𝑡𝑎 = 𝑑𝑎𝑡𝑎

59 else
// NonGenNode

60 e = (𝑛𝑖 ,𝑛 𝑗 ) s.t. 𝑒𝑟𝑟𝑜𝑟 (𝑒) is min for all 𝑛𝑖
61 data=genData(e,𝑛𝑖 )
62 𝑛 𝑗 .𝑑𝑎𝑡𝑎 = 𝑑𝑎𝑡𝑎

63 end
64 end

• Discrete Marginal Distribution: Synthesizer can generate re-
quired number of values for a fixed frequency ratio (e.g.
gender in a, say M:F=2:1) using enumeration.

(2) Association Constraints

• Conditional Distribution for Numerical variables (cat_num):
Using sampling from the distribution for specific categor-
ical values. For education=masters, if salary follows a
uniform distribution with specific bounds, then for every
masters value, we can sample a value from this distribution
for salary.

• Conditional Distribution for Categorical variables (cat_cat):
For each value-combination of gender, age-grp in source,
say {Female, Senior}, the frequency distribution of target
education (say primary:secondary:tertiary=1:2:3) is used to
generate synthetic values for education for all rows contain-
ing {Female, Senior}.

But, the challenge is how to generate values for an attribute
while considering multiple constraints at once.

Data synthesis for a node can be done in two ways - either by
using the generation procedure for feature distributions (marginal
distributions) or by solving the association constraint in each in-
coming edge whose source values have already been generated
(conditional distribution). This essentially outlines the challenges
in our data synthesis algorithm - 1) the order of processing the
nodes through𝐶𝐷𝐺 , and 2) how to compute the data for each node.

Note that the 𝐶𝐷𝐺 can contain cycles involving three or more
nodes. To address the node processing problem, the synthesizer pre-
processes the𝐶𝐷𝐺 to remove any cycles, essentially turning it into a
directed acyclic graph (DAG) (Graph G2 in Figure 2). The synthesizer
breaks a cycle by removing any one incoming edge to a GenNodewith
maximal error in the cycle. This is because a NonGenNode requires
an association constraint to generate its value and removing the
most-erroneous edge ensures that less error is propagated through
the graph. Once the DAG is obtained, the generation proceeds
node-by-node in topological order or bottom-up order in the DAG.

Assuming that there is no singleton disconnected node in the
graph, this transformation leads to a DAGwhich has only GenNodes
in the leaves. The synthesizer generates values in the leaves using
the marginal distribution-based generation procedure described
before. Subsequently, the generation proceeds through the DAG in
the topological order starting from the leaves, generating values
for each non-leaf node.

Consider a case, where a non-leaf node has a single incoming
edge. In this case, it is easy to see that considering the association
constraints to compute the data (as described before) is better with
respect to its own distribution as it incurs zero loss for categorical
columns and minimal distribution loss for the numeric columns
while also respecting the relationship with the other feature values.

In the case of multiple incoming edges, there are three cases. If
the current node 𝑛 is a GenNode and numeric, then for every incom-
ing edge 𝑒 (of type cat_num), the synthesizer generates data and
computes KL-divergence error [18] (𝑘𝑙_𝑒𝑟𝑟𝑜𝑟 (𝑒)) with respect to its
own distribution in column constraints. It finally selects the edge
𝑒 ′ having minimal kl_error. Based on (𝑒 ′ = (𝑐𝑎𝑡, 𝑛)), it samples data
from the numerical distribution corresponding to every categorical
value of variable 𝑐𝑎𝑡 . For each such generated value of 𝑛, it accepts
the samples only if (∀𝑒 ′′ = (𝑐𝑎𝑡 ′, 𝑛), 𝑒 ′′! = 𝑒) the range constraints
for 𝑒 ′′ are also satisfied, thereby minimizing the difference from his
own distribution while maintaining cross-feature relationships. For
example, salary is generated by the distribution corresponding to
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each education value, but the generated value also respects the
salary range of the corresponding intelligence value. If this
node 𝑛 is a GenNode but categorical, it uses cat_cat relationship
involving multiple source nodes to compute the data. In the third
case, i.e. for a NonGenNode, the synthesizer selects the incoming
edge with minimum error (𝑒𝑟𝑟𝑜𝑟 (𝑒)) and computes the data. We
define error of node 𝑛 and edge 𝑒 as follows.

𝑒𝑟𝑟𝑜𝑟 (𝑛) =
{
𝑖𝑛𝑓 _𝑒𝑟𝑟𝑜𝑟 (𝑛), if 𝑛 is a leaf-node,
𝑒𝑟𝑟𝑜𝑟 (𝑒 ′) + 𝑘𝑙_𝑒𝑟𝑟𝑜𝑟 (𝑒 ′) × 𝑖𝑛𝑓 _𝑒𝑟𝑟𝑜𝑟 (𝑛), ow.

where 𝑒𝑟𝑟𝑜𝑟 (𝑒) = 𝑖𝑛𝑓 _𝑒𝑟𝑟𝑜𝑟 (𝑒) + 𝑒𝑟𝑟𝑜𝑟 (𝑛′) when 𝑛′ is source of 𝑒 ,
and 𝑒 ′ is the incoming edge selected to generate values of node 𝑛.
Essentially, this synthesis error of node 𝑛 is propagated to all the
outgoing edges in the graph. The pseudo-code of our realistic data
synthesis algorithm is presented in Algorithm 1.

In the above example, the order of processing nodes is gender,
age-grp, education, marital, intelligence, and salary. The
synthesizer applies the case of multiple incoming edges for the
education and salary nodes.

Algorithm 2: Data Synthesis using Data Constraints and
User-defined constraints
1 Function DataSynWitUDC(CDG, n, UDC)
2 DAG = preProcessWithUDC(CDG, UDC)
3 return DataSynWithDataCons(DAG, n)
4 end
5 Function preProcessWithUDC(CDG, UDC)
6 DAG = CDG.copy()
7 DAG = processUDC(DAG, UDC)
8 while ∃ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑐𝑦𝑐𝑙𝑒 𝑐 ∈ 𝐷𝐴𝐺 do
9 delete edge 𝑒 = (𝑛𝑖 , 𝑛 𝑗 ) with minimal confidence s.t.

𝑛 𝑗 .𝐺𝑒𝑛𝑁𝑜𝑑𝑒 = 𝑇𝑟𝑢𝑒 where
10 end
11 return DAG
12 end
13 Function processUDC(DAG, UDC)
14 foreach 𝑐 ∈ 𝑈𝐷𝐶.𝐴𝑑𝑑 do
15 delete 𝑐 from 𝐷𝐴𝐺
16 end
17 foreach 𝑐 ∈ 𝑈𝐷𝐶.𝐴𝑑𝑑 do
18 if 𝑐 = 𝑛𝑐 .𝑐𝑜𝑛𝑠 is a feature constraint then
19 Add to the corresponding node 𝑛𝑐 in 𝐷𝐴𝐺
20 remove incoming edges to 𝑛𝑐
21 end
22 if 𝑐 = (𝑛𝑖 , 𝑛 𝑗 ) .𝑐𝑜𝑛𝑠 is an association constraint then
23 Add to (𝑛𝑖 , 𝑛 𝑗 ) .𝑐𝑜𝑛𝑠 to 𝐷𝐴𝐺
24 remove other incoming edges to 𝑛 𝑗
25 end
26 end
27 foreach 𝑐 ∈ 𝑈𝐷𝐶.𝑀𝑜𝑑𝑖 𝑓 𝑦 do
28 if 𝑐 = 𝑛𝑐 .𝑐𝑜𝑛𝑠 is a feature constraint ∧ of type distribution then
29 Modify the corresponding node 𝑛𝑐 in 𝐷𝐴𝐺
30 remove incoming edges to 𝑛𝑐
31 else if 𝑐 = (𝑛𝑖 , 𝑛 𝑗 ) .𝑐𝑜𝑛𝑠 is an association constraint ∧ then
32 Modify (𝑛𝑖 , 𝑛 𝑗 ) .𝑐𝑜𝑛𝑠 im 𝐷𝐴𝐺
33 remove other incoming edges to 𝑛 𝑗
34 else
35 𝑐 = 𝑛𝑐 .𝑐𝑜𝑛𝑠// Update constraints in node 𝑛𝑐 DAG// Make it high

confidence
36 end
37 end
38 return DAG
39 end

Handling User-Defined Constraints (UDCs). If user specifies some
additional constraints to override the existing ones obtained from
data, then the synthesizer first merges the two set of constraints.
This resultant merged constraint set is then used to synthesize test

data by amodification of the above process, as shown inAlgorithm 2.
Essentially, UDC nodes are made leaf node in the DAG by removing
all the incoming edges. Also, the effect of UDC generated data is
propagated through the DAG in such a way that it overrides any
incoming edge selection choice described above.

UDCs are merged with data constraints with the existing data
constraints, as below. Note that the UDCs have higher priority than
the inferred data constraints.

• Add/Modify UDCs - For every such UDC, we add/modify that
constraint in our set of data constraints. In case of conflict, we
record the over-riding constraints in our data constraints and
make sure that the former get precedence over the latter during
the synthesis process.
- Range modification - Note that there is a need to handle the
cases of range modification in a more systematic way. Consider
a case where data constraints have a feature constraints on an
attribute, say salary, where the values are bounded by range
(𝑚𝑖𝑛𝑑𝑎𝑡𝑎,𝑚𝑎𝑥𝑑𝑎𝑡𝑎), say 2k-30k and follow a uniform distribu-
tion with certain parameters. Now, user specifies to override just
the range for Salary as (𝑚𝑖𝑛𝑢𝑠𝑒𝑟 ,𝑚𝑎𝑥𝑢𝑠𝑒𝑟 ), say 5k-50k without
any change in associated statistical distribution. Overriding just
the bounds in the data constraints may impact the present distri-
bution parameters. Therefore, using the original min-max bounds
2k-30k along with the specified uniform distribution parameters
in the data constraints, we first generate a set of salary values, V.
We then scale these generated values using the below formula
for every value v ∈ V to the final output values for salary.

𝑣𝑠𝑐𝑎𝑙𝑒𝑑 =𝑚𝑖𝑛𝑢𝑠𝑒𝑟 +
(𝑣 −𝑚𝑖𝑛𝑑𝑎𝑡𝑎) ∗ (𝑚𝑎𝑥𝑢𝑠𝑒𝑟 −𝑚𝑖𝑛𝑢𝑠𝑒𝑟 )

(𝑚𝑎𝑥𝑑𝑎𝑡𝑎 −𝑚𝑖𝑛𝑑𝑎𝑡𝑎)

This scaling ensures that the mean of scaled values is linearly
scaled version of the values before scaling.

• Delete UDC - If the overriding constraints specify to drop an
entire feature, 𝑓 from the resultant test set, then we drop the col-
umn constraints along with all its related association constraints
where 𝑓 is mentioned as either source or target.

Path Coverage Constraints. The key idea here is to build a decision
tree of the target model (in a model agnostic way) and use its path
coverage as the coverage criteria for the target model. AITEST
uses the TREPAN algorithm [8] to create a surrogate decision tree
(see Section 2). TREPAN generates random data to augment the
input training samples. We essentially change this step to generate
realistic data instead of using random data. All path constraints
are fetched for each path. The aim is to generate data satisfying
the path constraints and satisfying majority of the data and UDC.
Below, we describe the change in the above procedure to generate
𝑛 samples belonging to a path.

Each constraint in a path is either an equality predicate for cate-
gorical value or range constraints for numeric values. The columns
with equality predicate are made leaf node in the CDG by deleting
all incoming edges. However, the range constraints are added to
the CDG nodes as additional feature constraints. Similar DAG gen-
eration and topological generation order starts with one necessary
modification - only in the case where a range constraint does not
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agree with the association constraints, then the association con-
straints are ignored and the data is generated by considering the
feature and range constraints.

Algorithm 3: Property-based Test Data Synthesis
1 Function accuracy(n, CDG, UDC, DT, Model)
2 data = DS(CDG, n, DT, UDC)
3 label = labeler(data)
4 label1 = test(data)
5 return accuracy(label,label1)
6 end
7 Function group_fairness(model, n, CDG, UDC, DT, protected_attribute, priv_expr,

fav_outcome, metrics)
8 result = []
9 data = DS(CDG, n, DT, UDC)

10 label1 = test(data, model)
11 foreach𝑚𝑒𝑡𝑟𝑖𝑐 ∈𝑚𝑒𝑡𝑟𝑖𝑐𝑠 do
12 metric,value = evaluate(metric, data, label, protected_attribute, priv_expr,

fav_outcome)
13 add (metric,value) to result
14 end
15 return result
16 end
17 Function individual_fairness(model, n, CDG, UDC, DT, protected_attribute, priv_expr,

fav_outcome)
18 data = DS(CDG, n, DT, UDC)
19 indiv_algo(data, model,protected_attribute, priv_expr, fav_outcome, DS)

// indiv_algo can be any off-the-shelf algorithm to detect

individual discrimination

20 end
21 Function robustness(model, n, CDG, UDC, DT)
22 failure_count = total_failure_count = 0
23 data = DS(CDG, n, DT, UDC)
24 labels = test(data, model)
25 foreach sample ∈ data do
26 data1 = perturb(sample)
27 labels1 = test(data1, model)
28 flag=0
29 foreach label ∈ labels1 do
30 if labels[sample]!=label then
31 if !flag then
32 failure_count++;
33 flag = 1
34 end
35 total_failure_count++;
36 end
37 end
38 end
39 return total_failure_count, failure_count/|data|
40 end

3.4 Property-based Test Data Synthesis
We further intend to generate realistic test cases to test an input
AI model for a number of properties, namely Individual Fairness,
Group Fairness and Robustness. Note that, all these properties are
metamorphic in nature which do not require any oracle to tell the
gold standard label for the synthetic test data. We use the same
base approach as presented above with a few changes depending on
the property, as shown in Algorithm 3. For property-based testing,
AITEST takes data constraints, required test size, class label and
protected attribute as an input.

The property-based test input generation starts with removing
the feature related to input class label along with all the association
constraints where this feature is specified as either a source or tar-
get. This ensures that any approximation caused due to constraint
inference or synthesis does not seep into the prediction labels for
these test inputs.

3.4.1 Individual Fairness Test Case Generator. We generate a set of
synthetic samples using the synthetic test case generation proce-
dure. For each sample, we change the predefined set of protected
attribute (like race/gender) to create pair of test cases and which
are checked against the model for label match. This closely resem-
bles with the approach mentioned in [13] which generates random
samples (in comparison to our realistic samples) and subsequently
perturbs them. Once a discriminatory sample, 𝑠 is found, we gen-
erate further more test inputs in its neighborhood using the below
perturbation function 𝑝 . We use an off-the-shelf explainer LIME [30]
to get a set of top (say 50%) attributes, 𝑋 ′ such that 𝑋 ′⊂𝑋 , con-
tributing to the explanation of test 𝑠 . For every prominent attribute,
say 𝑥 ′∈𝑋 ′, we then generate further more local test inputs as per
the below scheme based on its datatype.
Categorical: Perturb 𝑠 .𝑥 ′ for all possible values of 𝑥 ′ to generate
more tests.
Numerical: Generate inputs by perturbing 𝑠 .𝑥 ′ for all integers or
floats in range [𝑠 .𝑥 ′- 𝛿 , 𝑠 .𝑥 ′+𝛿]. We have set 𝛿 as 3 in our case. It is
to be noted that the perturbation in such cases are bounded by the
minimum and maximum permissible bounds of attribute as inferred
from data constraints.

3.4.2 Group Fairness Test Case Generator. Specifically just for the
group fairness use case, we unconditionally make the protected
attribute independent by removing all those associations from the
data constraints where it is mentioned as the target. This is done
to ensure that the protected attribute in resultant synthetic test
inputs follow the same frequency distribution as that of the input
training data set. For example, if gender in the training data has
composition of M:F in the ratio 2:1, then, it is desirable to test the
model for group fairness with the test cases having same 2:1 M:F
ratio. Note that this frequency distribution of protected attribute
can be over-ridden by means of user-specified constraints as well
as mentioned earlier in Subsection 3.2.

3.4.3 Robustness Test Case Generator. For every realistic test sam-
ple 𝑠 , we perform robustness testing of the input model by gener-
ating more inputs in its neighbourhood, and checking if the pre-
dictions of any neighbour is different than that of 𝑠 . Here, we use
the same definition of perturbation function 𝑝 as the one used in
Individual Fairness Test Generator.

4 EXPERIMENTAL EVALUATION
Benchmark&Configuration.Wehave assessed the performance
of our approach on 10 open-source data sets, namely, German [11],
Adult-8 [25], Car [4], US Exec [24], Iris [11], Ecoli [11], Cancer [11],
Instacart [32], Penbased [5], and Magic [5]. Note that these datasets
are used by prior state-of-the-art as well to report their evaluation.

Our code is implemented as ≈1500 LOC of Python code. All the
experiments are performed in a machine running macOS 10.14,
having 16GB RAM, 2.7Ghz CPU running Intel Core i7 running
Python 3.7. For each benchmark, we have generated target model
(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦>85%) using default configuration as in scikit-learn.

Experiment Goals. By conducting our set of experiments, we
broadly try to achieve three goals, as mentioned below.
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• Realisticity Assessment - How realistic is the data generated using
our synthesis algorithm on various metrics?

• Property Based Testing - How well do the generated test cases
contribute towards different property based testing?

• Coverage Based Testing - How well do the realistic tests perform
while also considering path coverage constraints?

Realisticity Assessment. This subsection discusses the results
of various experiments performed to evaluate our realistic test
generation approach. We compare the results on association-range
anomaly, density anomaly and 𝐽𝑆-divergence [20] with CTGAN
and TVAE [36] synthesizers shown in Table 2, and compare the
results on model accuracy (a use-case of synthetic data other than
testing) with the input training data shown in Table 3. The metrics
are described below.

Association-Range Anomaly: We generate synthetic data for 1000
samples and find the samples which are out of range with respect
to the given data. This includes not only samples with out of range
numerical column values but also samples with numerical values
out of range for values in categorical columns. For example, for
a sample with education=primary, the salary value must be in
range for education=primary, which can be different from salary
range for education=tertiary.

Density Anomaly: We generate synthetic data of size 1000 and
find anomalies using a KNN classifier [29] trained on the input data.
The classifier sets a threshold based on the euclidean distance of
𝑘th neighbour, which is used as the outlying score.
𝐽𝑆-Divergence Score: We generate 1000 synthetic data samples

and use 𝐽𝑆-Divergence metric to find the difference in distribu-
tions for all columns in the given and synthetic data, averaged
over all columns. We also find Association 𝐽𝑆-Divergence for subset
of numerical columns filtered based on categorical column val-
ues. For example, for a salary column, we find 𝐽𝑆-divergence
for salary values of education=primary and salary values for
education=tertiary. We duplicate either the input data or syn-
thetic one, whichever is smaller, to make them of same size for
comparison.

Model Accuracy: We divide the input data in 𝑑𝑡𝑟𝑎𝑖𝑛 and 𝑑𝑡𝑒𝑠𝑡
using the chosen split, and train a model 𝑀1 using 𝑑𝑡𝑟𝑎𝑖𝑛 . We
generate synthetic data 𝑑𝐴𝐼𝑇𝐸𝑆𝑇 using the data constraints from
𝑑𝑡𝑟𝑎𝑖𝑛 having the same size as that of 𝑑𝑡𝑟𝑎𝑖𝑛 . We generate the labels
in 𝑑𝐴𝐼𝑇𝐸𝑆𝑇 using 𝑀1’s predictions and then, train another model
𝑀2 using this 𝑑𝐴𝐼𝑇𝐸𝑆𝑇 . We compare the accuracy of models𝑀1 and
𝑀2 on 𝑑𝑡𝑒𝑠𝑡 .

The results in Table 2 show that the AITEST-generated synthetic
data has almost all of the samples for all 10 datasets in range with
respect to given data, as compared to CTGAN and TVAE, which
have more than 10% out of range samples for 7 datasets, and more
than 30% out of range samples for 4 datasets. The density anomaly
results show that AITEST outperforms CTGAN and TVAE in 6 out
of 10 datasets. The 𝐽𝑆-Divergence results show that AITEST, simi-
larly to CTGAN and TVAE, preserves the distribution of columns
and the associations. The average difference in 𝐽𝑆-Divergence for
AITEST and CTGAN/TVAE over all datasets is 2.3% for columns and
2.6% for associations. Note that the 𝐽𝑆-Divergence scores are below
reasonable range and do not change even if the size of generated
data is large. This is due to the fact that we preserve not only the

Table 2: Comparative Realisticity Assessment

Bench. AITEST vs CTGAN vs TVAE
Assoc.-Range Density JS-Div. Assoc. JS-Div.

Iris 0, 970, 852 63, 798, 760 0.18, 0.18, 0.17 0.11, 0.15, 0.16
Ecoli 0, 400, 453 10, 90, 5 0.17, 0.13, 0.14 0.13, 0.12, 0.14
Cancer 0, 935, 70 916, 237, 458 0.24, 0.19, 0.19 0.22, 0.20, 0.18
Penbased 0, 918, 784 998, 651, 274 0.35, 0.32, 0.34 0.35, 0.28, 0.30
Magic 0, 74, 16 992, 321, 944 0.25, 0.21, 0.19 0.27, 0.22, 0.24
Adult-8 0, 26, 49 9, 57, 30 0.35, 0.35, 0.32 0.22, 0.18, 0.18
Car 0, 110, 557 1, 157, 607 0.49, 0.49, 0.57 0, 0, 0
US Exec 6, 420, 102 8, 41, 1000 0.59, 0.57, 0.29 0.26, 0.32, 0.33
German 0, 815, 331 6, 23, 2 0.34, 0.34, 0.31 0.22, 0.27, 0.21
Instacart 0, 113, 102 563, 180, 284 0.32, 0.31, 0.30 0.33, 0.33, 0.31
Table 3: Accuracy of Models trained with Synthetic Data

Benchmark Train vs Synth for variable train-test split ratio
RF Accuracy (%) DT Accuracy (%)

70:30 80:20 70:30 80:20
Iris 91.11, 91.11 93.33, 93.33 96.66, 90.00 96.66, 96.66
Ecoli 85.14, 84.15 81.18, 69.30 85.29, 85.29 79.41, 83.82
Cancer 95.32, 88.30 91.81, 90.64 93.85, 93.85 90.35, 91.22
Penbased 98.57, 81.98 96.69, 86.11 98.72, 84.81 96.68, 82.40
Magic 87.57, 73.36 82.10, 69.90 86.96, 72.87 82.72, 68.24
Adult-8 80.25, 81.15 78.35, 76.71 79.89, 81.25 78.41, 75.66
Car 84.25, 80.14 82.88, 79.45 85.71, 83.67 84.69, 82.65
German 77.33, 72.67 71.67, 61.67 74.00, 74.50 70.00, 69.00
US Exec 85.55, 84.70 82.44, 82.44 83.05, 83.05 82.20, 66.53
Instacart 56.46, 56.31 55.71, 52.57 56.39, 56.36 55.68, 52.77

𝑅𝐹 -Random Forest, 𝐷𝑇 -Decision Tree

Table 4: Property Testing: 𝑇𝑒𝑠𝑡 vs 𝐴𝐼𝑇𝐸𝑆𝑇 with DC only

Benchmark Split RS (%) SS (%) DI
Test AIT Test AIT Test AIT

Adult-8: RF 70:30 43.99 47.96 84.56 83.41 0.29 0.55
80:20 43.79 47.86 83.94 82.79 0.29 0.68

Adult-8: DT 70:30 31.7 25.29 85.98 86.82 0.41 0.76
80:20 33.76 28.23 85.83 84.71 0.4 0.65

German: RF 70:30 45.33 33.67 94.33 91.33 0.96 0.8
80:20 44.5 31 93 90.3 0.97 0.85

German: DT 70:30 24 16.67 99 98 0.97 0.86
80:20 25.5 16 98 96.5 1.01 0.94

US Exec: RF 70:30 72.52 88.95 96.03 99.43 1.05 1.02
80:20 79.24 88.56 95.34 97.88 1.08 1.02

US Exec: DT 70:30 49.86 66.01 100 100 1.17 1.1
80:20 45.76 60.59 98.31 100 1.17 0.88

Car: RF 70:30 7.53 4.35 71.23 71.21 1.76 1.99
80:20 2.04 1.79 72.45 70.69 0.76 1.93

Car: DT 70:30 0.68 1.25 84.93 79.65 3.64 3.83
80:20 0 0 74.49 72.22 1.13 1.8

AIT-𝐴𝐼𝑇𝐸𝑆𝑇 , 𝑅𝑆/𝑆𝑆-Robustness/Success Score, 𝐷𝐼 -Disparate Impact

correctness properties of the data using associations, but also the
original distribution of the data, as described in Section 3.3. Ideally
this score should be 0, but since there are multiple constraints to
be satisfied, especially for columns that are highly correlated with
many other columns, the score is greater than 0. So, for datasets
with large number of correlated columns, the score is on a higher
side.

The model accuracy results in Table 3 show that the accuracy of
model trained on synthetic data generated using AITEST is similar
to the model trained on the given data for all datasets. Note that
the average accuracy difference between the models trained on
synthetic and input data is less than 3% for 24 experiments out of
40 (10 datasets × 2 models × 2 splits).

Property-based Testing. In this subsection, we evaluate the effec-
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tiveness of our test generation approach to test an input AI model
for different properties in following two modes of generation.

• Synthesis using Data Constraints only (DC)
• Synthesis using Data Constraints along with User-Defined
Constraints (DC + UDC)

Synthesis using DC. In Table 4, we compare the effectiveness of
AITEST-generated test data (using only the data constraints) with
tests from train-test split for the varied set of properties. We expect
that the synthesized test data will be equally effective or better for
testing such properties. Next, we describe the relevant metrics to
evaluate different test properties used in our set of experiments.
• Adversarial Robustness -We use Robustness Score (i.e.𝑅𝑆 = #𝑆𝑢𝑐𝑐/#𝐺𝑒𝑛)
as an evaluation metric, where 𝑆𝑢𝑐𝑐 denotes the subset of the
generated test cases (𝐺𝑒𝑛) which fail robustness testing.

• Individual Fairness -We use Success Score (i.e. 𝑆𝑆 = #𝐷𝑖𝑠𝑐/#𝐺𝑒𝑛) [4]
as an appropriate metric to evaluate individual discrimination
present in the model. Here, 𝐷𝑖𝑠𝑐 denotes the subset of the gener-
ated test cases (𝐺𝑒𝑛) which results in individual discrimination.
Higher the value of 𝑆𝑆 and 𝑅𝑆 , better is the test set in uncovering
faults for individual fairness and robustness, respectively.

• Group Discrimination - We use Disparate Impact (DI) [12] which
is a well known metric to evaluate group fairness. As per the
industry standards, any test suite with 𝐷𝐼<0.8 is treated as the
one successful in uncovering group bias.
We divide the input data in 𝑑𝑡𝑟𝑎𝑖𝑛 and 𝑑𝑡𝑒𝑠𝑡 using the chosen

split. We fetch the data constraints present in 𝑑𝑡𝑟𝑎𝑖𝑛 and synthesize
realistic test inputs 𝑑𝐴𝐼𝑇𝐸𝑆𝑇 with required sample count set as size
of 𝑑𝑡𝑒𝑠𝑡 . While synthesizing realistic data to test for group fairness
property, we make sure that the protected attribute in the generated
data has similar distribution as in 𝑑𝑡𝑟𝑎𝑖𝑛 . We, therefore, discard all
the incoming associations to the protected attribute during the
generation process. For individual fairness test case generation,
we first synthesize a set of seed samples satisfying the inferred
data constraints, out of which the discriminatory ones are then
perturbed in its neighborhood to generate even more realistic test
cases (refer Section 3.4). The synthesized realistic inputs are then
tested for different properties to report relevant metrics. Note that
we consider only one protected attribute at a time per benchmark.
However, the effectiveness of AITEST will not be hampered even
by considering multiple protected attributes.

We observe the following from Table 4:
• On an average across all benchmarks and models, robustness
success rate offered by AITEST is ≈35%, while it is ≈34% for tests
from the chosen test split.

• AITEST on an average (≈88%) is equally effective at finding
individual discrimination than the tests from test splits across all
model variants for all benchmarks.

• For the models, such as related to Adult-8, showing group dis-
crimination with DI for test-split less than 0.8, AITEST-generated
tests yield a 𝐷𝐼<0.8, and hence, uncover group discrimination.
We conclude from these experiments that test data synthesis

(without considering UDC and path coverage) is equally (or more)
effective for discovering faults. This is attributed to the reason that
our generation procedure slightly deviates from the actual distribu-
tion of the training data, and in most cases, such deviation helps in

Table 5: Property Testing: Test vs AITEST with DC+UDC

Bench. M:F RS (%) SS (%) DI
Test AIT Test AIT Test AIT

Adult-8

1:1 66.84 78.33 14.31 21.22 0.411 0.847
2:1 66.84 76.43 14.31 16.50 0.411 0.772
1:2 66.84 74.04 14.31 29.03 0.411 0.778
1:3 66.84 79.24 14.31 23.72 0.411 0.848
3:1 66.84 78.48 14.31 14.92 0.411 0.905

Car

1:1 98.98 96.55 24.49 31.67 1.135 0.242
2:1 98.98 96.36 24.49 27.59 1.135 2.235
1:2 98.98 98.25 24.49 32.14 1.135 3.676
1:3 98.98 100 24.49 32.69 1.135 -1
3:1 98.98 98.04 24.49 32.08 1.135 4.421

US Exec

1:1 55.93 40.25 2.12 1.22 1.207 1
2:1 55.93 38.14 2.12 0 1.207 0.987
1:2 55.93 47.88 2.12 0 1.207 0.911
1:3 55.93 36.6 2.12 0.42 1.207 0.940
3:1 55.93 41.1 2.12 1.3 1.207 0.959

German

1:1 71.5 87 1 8 1.002 0.940
2:1 71.5 75 1 7 1.002 0.877
1:2 71.5 83.5 1 10 1.002 0.848
1:3 71.5 83 1 6.5 1.002 0.989
3:1 71.5 83.5 1 5 1.002 0.810

AITEST, All runs are for Decision Tree with 80:20 split

finding more faults. We believe that in real industrial scenarios, the
real payload data may not follow the exact distribution present in
the training data, but such test data synthesis can help to uncover
more faults.

Synthesis using DC+UDC. In this experiment, we synthesize test
inputs using data constraints along with our user-defined con-
straints where we override the Male-Female ratio (M:F) for gender
(protected attribute) in data constraints by a different one. Note
that here we intend to guage the deviation that synthesis using
UDCs can bring, and therefore, for this experiment, we compare
𝑑𝑡𝑒𝑠𝑡 against the AITEST-generated samples satisfying the input
data constraints along with the given UDC. Hence, for individual
fairness testing, no neighborhood-based perturbation is carried out
in this experiment. The results for different metrics are recorded in
Table 5 for different models trained on different benchmarks.
• With the variation in M:F ratios, an average improvement of ≈5%
and ≈2% is recorded in Robustness and Success Score, resp., over
the random test-split.

• 55% models show an improvement of >5% in Individual Discrim-
ination testing, with Adult-8 M:F=1:2 showing the maximum
gain of ≈15%.

• 55% models show a positive gain in Robustness testing with an
average of ≈10%.

• AITEST-generated tests for Car benchmark with UDC M:F=1:1
uncovers group discrimination with 𝐷𝐼 as 0.242 (<0.8) which
remains hidden while testing with original test-split (𝐷𝐼=1.135).

• Synthesis using UDC generates varied test suites which deviates
relative to the original test-split (i.e. |𝐴𝐼𝑇𝐸𝑆𝑇 −𝑇𝑒𝑠𝑡 |/𝑇𝑒𝑠𝑡 ) on
an average of ≈194% for Individual Discrimination, ≈15% for
Robustness, and ≈78.5% for Group Discrimination testing. This
significant deviation ascertain the need for UDC based testing to
determine trustworthiness of the model under what-if scenarios.

Importance of Coverage-based Testing. Here, we examine the
benefit of path coverage constraints during generation of test inputs.
To perform this experiment, we learn a Random Forest or Decision
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Table 6: Effectiveness of TREPAN

Benchmark Model M 𝑀𝑎𝑐𝑐 𝑆𝑎𝑐𝑐 𝑆𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦

US Exec
RF 86.02% 86.02% 100%
LR 86.02% 86.02% 100%

KNN 84.32% 82.63% 95.34%

German
RF 72% 72% 99%
LR 66.5% 71.5% 85%

KNN 66.5% 66% 71.5%

Adult-8
RF 76.23% 76.23% 100%
LR 78.29% 78.12% 97.56%

KNN 77.95% 78.49% 89.30%

Cancer
RF 94.74% 93.86% 99.12%
LR 96.49% 93.86% 95.61%

KNN 91.23% 91.23% 98.25%

Car
RF 65.31% 65.31% 100%
LR 64.29% 64.29% 100%

KNN 71.43% 71.43% 97.96%

Iris
RF 90% 90% 100%
LR 90% 96.67% 93.33%

KNN 93.33% 96.67% 96.67%

Ecoli
RF 80.88% 76.47% 92.65%
LR 85.29% 76.47% 88.24%

KNN 86.76% 86.76% 88.24%

Penbased
RF 74.03% 73.62% 96.95%
LR 92.68% 90.68% 92.59%

KNN 99.5% 96.09% 95.86%

Magic
RF 73.79% 73.5% 99.5%
LR 78.68% 77.92% 96.82%

KNN 78.81% 80.44% 83.96%

Bank Market
RF 88.43% 88.43% 100%
LR 89.45% 89.15% 98.06%

KNN 89.59% 89.30% 91.05%
𝑅𝐹 -Random Forest, 𝐿𝑅-Logistic Regression, 𝐾𝑁𝑁 -k-Nearest Neighbors

Tree Classifier with a precision of 85%-97% for each benchmark.
We split the input data in 80:20 to get 𝑑𝑡𝑟𝑎𝑖𝑛 and 𝑑𝑡𝑒𝑠𝑡 , respectively.
Using this trained model𝑀 and 𝑑𝑡𝑟𝑎𝑖𝑛 , we then learn a surrogate
decision tree 𝑆 using TREPAN with 𝑆𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦>90%. We use fidelity
as a metric to judge how well the surrogate mimics the input target
model. It is defined as the fraction of the test inputs for which both
the surrogate and input model output the same decision. Note that
we have set the minimum sample count needed for split decision as
30 in our TREPAN configuration while conducting all experiments.
As per our evaluation on our benchmarks in Table 6, our TREPAN
implementation is efficient at inferring decision paths from the
target model 𝑀 with an average fidelity of ≈92% across varied
benchmarks for different models. Also, average prediction accuracy
of the surrogate 𝑆 (≈81.9%) doesn’t differ much from the target
model𝑀’s accuracy (≈82.3%).

We record the total count of unique decision paths present in
this surrogate 𝑆 as 𝑇𝑜𝑡𝑎𝑙 and the count of unique decision paths
traversed by all the test inputs in 𝑑𝑡𝑒𝑠𝑡 in 𝑇𝑒𝑠𝑡 column. Using the
path coverage constraints inferred from 𝑆 and data constraints
inferred from training inputs 𝑑𝑡𝑟𝑎𝑖𝑛 , we then generate exactly same
number of synthetic test inputs (Algorithm DC+PC) as there were
in original test set 𝑑𝑡𝑒𝑠𝑡 using AITEST. We then record the count
of unique decision paths traversed by these synthetic test inputs
as 𝐴𝐼𝑇 . Apart from this, we also record the count of unique paths
traversed by test cases from both 𝑑𝑡𝑒𝑠𝑡 and the AITEST-generated
ones which fail individual discrimination and robustness testing.
We summarize the key observations from Table 7 below:

• On an average across all models trained on different benchmarks,
the test inputs generated using AITEST offers ≈51% more path
coverage than test-split ones. A significant improvement in path
coverage ≈[52% − 64%] is recorded for different models trained
with German, Adult-8 and US Exec benchmarks.

Table 7: Path Coverage: Test vs AITEST with DC+PC

Bench. M 𝑇𝑜𝑡𝑎𝑙 All Tests IndDisc Fails Robust Fails
Test AIT Test AIT Test AIT

Car RF 42 28 42 21 32 28 42
DT 46 31 46 20 31 31 46

US Exec RF 161 58 161 5 18 26 102
DT 179 65 179 3 14 57 167

German RF 149 72 149 15 24 54 99
DT 149 71 149 3 18 64 132

Adult-8 RF 4171 1829 4171 702 1809 1596 3624
DT 4409 1841 4409 555 1285 1739 4172

• AITEST-generated tests fail individual discrimination and ro-
bustness testing on an average of ≈16% and ≈45%, resp., more
decision paths than the test-split.

Thus, we can conclude that AITEST performs much better at gener-
ating diverse tests covering varied decision paths than the random
ones. This stands valid for both the overall set of generated tests,
and their failure subsets for both individual discrimination and
robustness testing as well.

Timings. Constraints inference takes from a few seconds for a
small input data to about 250 seconds for a dataset with 1 million
rows and 70 columns. The synthesizer takes from a few seconds for
100 rows to ≈30 seconds for 10, 000 rows.

5 RELATEDWORK
This section discusses the existing works spread across two related
spheres - model coverage and realistic data synthesis.

Model Coverage. Neuron coverage (DeepXplore) [28] measures
the percentage of neurons in a deep neural network that are acti-
vated.𝐾-multisection neuron coverage (KMNC) and Strong Neuron
Activation Coverage (SNAC) [22] extend the idea of neuron cover-
age, measuring how thoroughly the given set of test inputs cover
the range for a neuron and capturing the percentage of corner
case regions that are covered by the set of test inputs, respectively.
Neuron Boundary Coverage (NBC) and Top-𝑘 Neuron Coverage
(TKNC) [22] are similar coverage criteria specific for deep neural
networks measuring the coverage of corner cases by test data, and
the fraction of top-𝑘 neurons within a layer for given test data,
respectively. This is done by partitioning the region into sections
between the boundaries, and measuring if each partition has been
visited. It is claimed that good quality test datasets have neuron
activation values spread across the boundaries and close to the
corner regions. DeepCT [21] considers the interactions of neurons
and proposes a set of combinatorial testing criteria for DNNs. Ad-
equacy [15], as a measure, studies the effects of features from the
adjacent layer. Their intent comes from the fact that a deeper neural
layer captures complex features and therefore, its next layer can
be considered as its summary. These testing criteria mainly focus
on feed-forward neural networks, while DeepStellar [10] proposed
the model-based testing criteria for recurrent neural networks.

All these coverage criteria are non-generic and specific to model
architecture. We define a model agnostic coverage criteria which is
universal and can be used for any model with a black-box access.

Realistic Data Synthesis. Note that there exist sophisticated tech-
niques, such as GAN [14] and VAE [16], which can generate realis-
tic synthetic data. But, such approaches suffer from the following
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problems which prohibit their usage in this practical setting. 1)
GAN/VAE based approaches require to train a model which in-turn
requires hyper-parameter tuning which is currently done by hand.
Although there are approaches for auto-building classification
models [2], but such techniques are still not available for genera-
tive models. Compared to our approach, all these techniques are
inflexible and cannot generate custom data for specific domains
based on user-defined constraints. 2) The inherent data constraints
are not easily customizable - based on user-defined constraints and
path constraints which are applicable for test data generation. 3)
The inherent data constraints captured by such frameworks are
not interpretable - so, if user wants to see the current distribution
and customize it for test data generation, then it’s not possible. We,
therefore, use a two step technique for data-synthesis. In the first
step, we capture the inherent feature/column and association con-
straints present in the data. The set of constraints are represented
in form of a directed graph. The graph can then be changed consid-
ering additional constraints, like user-defined constraints and path
constraints. Finally, a sampling algorithm is employed to generate
data from the graph. An another technique called SMOTE [6] is also
prominently used to generate synthetic data, but it can generate
only in the neighbourhood of the existing data.

6 CONCLUSION
We have presented a framework for black-box testing of AI models
which involves 1) generation of realistic synthetic data with 2)
model-agnostic path coverage, 3) user-controllable data generation,
and 3) enabling testing of fairness and robustness properties.

Our main learning is that state-of-the-art synthesis techniques
are not always suitable for handling practical requirements such
as user-defined-constraints and coverage. Handling such scenarios
increases in model trustworthiness under what-if scenarios and
increased diversity in test results.
Future Work.We plan to investigate automated testing of unsu-
pervised models and for modalities like text and image classifiers,
and time-series predictive models.
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