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ABSTRACT
Imitation learning (IL) is a popular approach in the continuous con-
trol setting as among other reasons it circumvents the problems of
reward mis-specification and exploration in reinforcement learning
(RL). In IL from demonstrations, an important challenge is to obtain
agent policies that are smooth with respect to the inputs. Learning
through imitation a policy that is smooth as a function of a large
state-action (𝑠-𝑎) space (typical of high dimensional continuous con-
trol environments) can be challenging. We take a first step towards
tackling this issue by using smoothness inducing regularizers on
both the policy and the cost models of adversarial imitation learning.
Our regularizers work by ensuring that the cost function changes in
a controlled manner as a function of 𝑠-𝑎 space; and the agent policy
is well behaved with respect to the state space. We call our new
smooth IL algorithm Smooth Policy and Cost Imitation Learning
(SPaCIL, pronounced “Special”). We introduce a novel metric to
quantify the smoothness of the learned policies. We demonstrate
SPaCIL’s superior performance on continuous control tasks from
MuJoCo. The algorithm not just outperforms the state-of-the-art IL
algorithm on our proposed smoothness metric, but, enjoys added
benefits of faster learning and substantially higher average return.

KEYWORDS
imitation learning, continuous control, smooth policy, regularization,
deep reinforcement learning

1 INTRODUCTION
A vast majority of problems of interest, including but not limited
to autonomous control and robotics, are characterized by high di-
mensional continuous (real-valued) state and action spaces [34]. Re-
cently, a multitude of reinforcement learning (RL) approaches (like
DDPG [28], TRPO [41], PPO [43], SAC [14], etc) have been pro-
posed to solve these challenging continuous control tasks. However,
these algorithms require specification of a proper cost (or reward)
function for any learning to be possible [1]. To circumvent this re-
quirement, and to guide exploration in high dimensional continuous
state-action spaces, Imitation Learning (IL) using demonstrations
has been studied extensively [2, 7, 12, 17, 40].

In high dimensional continuous control, an important challenge
is to obtain an input-robust agent policy, i.e., a policy that varies
in a controlled manner with respect to changes in the input state-
action pair (see Fig. 1). This view of policy smoothness is equivalent
to Lipschitz-continuity of the learned agent policy. Such a smooth
policy can ensure agent safety, reduce agent energy consumption,
and make agent behavior predictable in desired situations [25]. From

a control-theoretic perspective, policy smoothness certifies input-
output stability (i.e, finite L2 gain) during both exploration and
deployment [20]. In certain environments, smoothness is desired
from a visual standpoint, e.g., smooth autonomous camera control
while recording a live basketball match [8].
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Figure 1: Understanding smoothness and non-smoothness of a
policy. Consider the grey region to be a portion of the environ-
ment. We use blue circles to denote the environment states, and
arrows denote the actions. Let state 𝑠1 be perturbed to another
state 𝑠2 within a radius 𝜚 of 𝑠1. Action 𝑎2 comes from a smooth
policy as its direction and magnitude are similar to 𝑎1. On the
other hand, 𝑎3 comes from a non-smooth policy because of sig-
nificant deviation from 𝑎1 in both magnitude and direction.

While policy smoothness has recently gained attention in the RL
community [44], it has been largely untouched in IL settings. To
the best of our knowledge, policy smoothness with respect to the
inputs has not been previously characterized and studied in IL. It is
important to note here that by virtue of learning from demonstra-
tions (and by employing a cost (or reward) recovery scheme), IL
provides us with an additional degree of control over the final agent
policy. This additional control is not available in RL. To address the
challenge of obtaining smooth agent policies in high dimensional
continuous environments via IL using demonstrations, we propose a
smooth IL algorithm: Smooth Policy and Cost Imitation Learning
(SPaCIL). SPaCIL learns smooth agent policies by regularizing both
the cost and the policy optimization steps of adversarial imitation
learning setup. Adversarial IL is a state-of-the-art IL framework that
uses Inverse Reinforcement Learning (IRL) approach [30, 38], and
recovers both a cost function and an agent policy. We demonstrate
that our dual regularization of parameterized function approximators
(for the cost and the policy) can assure the desired smoothness. At a
higher level, the regularizers work by penalizing drastic changes in
the cost and the policy at each step of the agent learning process. The
policy regularization step is essential to control the smoothness of the
learned policy model directly. The need for cost regularization stems
from the observation that a cost function is a succinct definition of
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a task, and by imposing proper structure on costs, we can not only
recover better costs but guide our policy optimization step towards
desirable policies. It is important to note that our regularizers are
not tied to a specific IL objective but are general entities that can be
used with wide array of algorithms. Additionally, as a byproduct of
our goal, we show that we achieve considerable gains in the training
and performance of the agent policy.

Related Work. A few recent works [5, 16, 19, 22, 24, 26, 29, 44,
48, 49] address some or the other notion of smoothness in adja-
cent/orthogonal problem settings. However, none of these works
deal with smoothness in IL. The work by Kim et al. [22] on using
reinforcement learning (RL) for the autonomous helicopter flight
uses quadratic penalties for actions to modify the overall cost to
encourage small actions and smooth control of the helicopter. That
work deals with a low dimensional finite action setting and explic-
itly weights the cost associated with each action by a fixed factor.
Such a weighing is not possible in high dimensional 𝑠-𝑎 spaces. For
learning controllers for autonomous blimps, Ko et al. [24] parame-
terize their controller using the slope of a policy-smoothing function
that determines the controller’s smoothness near a certain switching
curve. However, a definite expression for policy-smoothing function
exists, and the smoothness is desired over a limited region of the
state space. This setting is in stark contrast to our setting, where we
desire smoothness over the entire state space. Le et al. [26] study
the problem of smoothly imitating an expert behaviour (using struc-
tured prediction) by ensuring that actions for adjacent states along a
trajectory are similar, irrespective of proximity of adjacent states in
the state space. In contrast, our notion of smoothness is not condi-
tioned on the trajectory information and we work with the idea of
smoothness of the policy space with respect to the state space. The
works by Blonde et al. [5] and Shen et al. [44] are closest to our goal.
Blonde et al. [5] show that enforcing Lipschitz-continuity of the
learned reward function is essential for off-policy imitation learning
to work well. Shen et al. [44] discuss a policy regularizer to obtain
smooth policies in Reinforcement Learning (RL). We, on the other
hand, focus on obtaining smooth policies in IL. Additionally, Shen et
al.’s [44] work does not provide a proper evaluation of smoothness.
Smoothness-inducing regularizers, similar to Shen et al.’s [44], have
been previously discussed in the context of semi-supervised learning,
unsupervised domain adaptation, and harnessing adversarial exam-
ples [16, 19, 29, 48, 49]. State-of-the-art IL algorithm, GAIL [17]
introduces various cost function regularizers to obtain various in-
stances of IL algorithms; however, none of those regularizes enforce
any special structure on the costs.

In what follows, we describe our smooth IL approach in greater
detail. The main contributions of the paper are as follows:

(1) Formalization of the notion of smooth policies using Lipschitz
continuity.

(2) Theoretical study of how Lipschitz continuous rewards fa-
cilitate in obtaining Lipschitz continuous agent policy in on-
policy continuous control.

(3) Introduction of smoothness inducing cost function and policy
function regularizers to realize a smooth IL algorithm.

(4) Introduction of a novel metric (that captures Lipschitz con-
tinuity of a learned policy) to assess the smoothness of a
learned policy.

(5) Empirical testing of smoothness of the learned policies, and
validation of other claims on high dimensional continuous
control tasks.

2 BACKGROUND
Markov Decision Process. We consider gamma discounted infi-

nite horizon continuous Markov Decision Processes (MDPs) [45] as
the core framework. An MDP is specified by the tuple < S,A, 𝑃, 𝑐,
𝛾, 𝜌0 >, where S ⊂ R𝐷𝑠 and A ⊂ R𝐷𝑎 are compact sets with non-
zero Lebesgue measure. S is the set of possible states,A is the set of
possible actions and 𝑐 : S × A → R is the cost function. 𝐷𝑠 and 𝐷𝑎
are the dimensions of the state and the action spaces, respectively. 𝑃
for any (𝑠, 𝑎, 𝑠 ′) ∈ S ×A ×S triplet gives the probability of moving
from state 𝑠 to state 𝑠 ′ on taking action 𝑎 at 𝑠. 𝛾 is the discount factor
and 𝜌0 is the initial state distribution.

Policy, occupancy measure, and expected cost. A stationary sto-
chastic policy, 𝜋 (𝑎 |𝑠) gives agent’s behaviour in the environment.
Return, 𝐺 , is a measure of goodness of a policy and is defined as
𝐺 (𝜋) = −E𝜋 [𝑐 (𝑠, 𝑎)] = −E[

∑
𝑡 ≥0 𝛾

𝑡𝑐 (𝑠𝑡 , 𝑎𝑡 ))]. The return is esti-
mated from trajectories as: 𝐺 (𝜋) = −E𝜏 [

∑𝑇
𝑡=0 𝛾

𝑡𝑐 (𝑠𝑡 , 𝑎𝑡 )], where
𝜏 ∼ 𝜋 is a trajectory of the form {(𝑠𝑖 , 𝑎𝑖 )}𝑇𝑖=1. Here 𝑠0 ∼ 𝜌0 is the
starting state, 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 ) and 𝑠𝑡+1 ∼ 𝑃 (·|𝑠𝑡 , 𝑎𝑡 ). 𝑇 denotes the time
step until which we sample a trajectory. There is a one-to-one map-
ping between a policy, 𝜋 and its occupancy measure, 𝜌𝜋 : S ×A →
R defined as 𝜌𝜋 (𝑠, 𝑎) = 𝜋 (𝑎 |𝑠)∑∞𝑡=0 𝛾𝑡𝑃 (𝑠𝑡 = 𝑠 |𝜋). Expected cost
in terms of 𝜌𝜋 is given by E𝜋 [𝑐 (𝑠, 𝑎)] =

∫
S×A 𝜌𝜋 (𝑠, 𝑎)𝑐 (𝑠, 𝑎) 𝑑𝑠𝑑𝑎.

The stationary distribution of the policy 𝜋 is denoted by 𝜌𝜋 (𝑠). The
expert policy is denoted by 𝜋𝐸 . For a general function of states,
𝑓 (𝑠), E𝑠∼𝜌 [𝑓 (𝑠)] means a 𝛾-discounted expectation (as is for𝐺 (𝜋)),
unless stated otherwise.

Value functions and advantage. The value function𝑉 𝜋 and action
value function 𝑄𝜋 can be written as 𝑉 𝜋 (𝑠) = −E𝜋 [𝑐 (·, ·) | 𝑠0 = 𝑠]
and 𝑄𝜋 (𝑠, 𝑎) = −E𝜋 [𝑐 (·, ·) | 𝑠0 = 𝑠, 𝑎0 = 𝑎]. Advantage function
𝐴𝜋 (𝑠, 𝑎) = 𝑄𝜋 (𝑠, 𝑎) − 𝑉 𝜋 (𝑠) reflects the expected additional cost
that the agent bears after taking action 𝑎 in state 𝑠.

Parameterized representations. We use parameterized function
approximators (neural networks) for realization of the cost and the
policy. When needed, we denote the cost function as 𝑐𝜔 (𝑠, 𝑎) and the
policy as 𝜋𝜃 (𝑎 |𝑠), where 𝜔 ∈ Ω ⊂ R𝐷𝜔 and 𝜃 ∈ Θ ⊂ R𝐷𝜃 . 𝐷𝜔 and
𝐷𝜃 are the dimensions of the parameters. We assume that Ω and Θ
are compact sets. C is the space of all cost functions. Π is the space
of all policies. ∥·∥ denotes the 𝐿2 norm unless specified otherwise.
| · | represents the usual norm.

Imitation Learning. IL solution approaches can be broadly di-
vided into: Behaviour Cloning (BC) [4, 39] and imitation learning
using inverse reinforcement learning (IRL, [1, 11, 27, 50]). For high
dimensional continuous control tasks, IL using IRL is the method
of choice as BC suffers from covariate shift errors [35, 37]. IL us-
ing IRL can be cast as the following bi-level optimization problem
(GAIL, [17]):

IL(𝜋𝐸 ) = argmax
𝑐∈C

−𝜓 (𝑐)+(
min
𝜋 ∈Π
E𝜋 [𝑐 (𝑠, 𝑎)]

)
− E𝜋𝐸 [𝑐 (𝑠, 𝑎)], (1)
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where 𝜓 : C → R is a closed proper convex cost function loss
specifier, i.e., it helps specify a trainable loss for the cost function
model. In the first level of optimization, we fix the cost function
and update the policy using min𝜋 ∈Π E𝜋 [𝑐 (𝑠, 𝑎)]. Next, we fix the
policy from the previous update, and update the cost function using
argmax𝑐∈C −𝜓 (𝑐) + E𝜋 [𝑐 (𝑠, 𝑎)] − E𝜋𝐸 [𝑐 (𝑠, 𝑎)].

Policy optimization. The policy update step (performed using the
trust region based policy optimization algorithm (TRPO, [41])) is
given by:

𝜋𝑘+1 = argmin
𝜋
− E𝑠∼𝜌𝜋𝑘 ,𝑎∼𝜋𝑘

[
𝜋 (𝑎 | 𝑠)
𝜋𝑘 (𝑎 | 𝑠)

𝐴𝜋𝑘 (𝑠, 𝑎)
]

subject to E𝑠∼𝜌𝜋𝑘 [DKL (𝜋𝑘 (· | 𝑠)∥𝜋 (· | 𝑠)] ≤ 𝛿. (2)

Here, DKL (𝜋𝑘 (· | 𝑠)∥𝜋 (· | 𝑠)) = E𝑎∼𝜋𝑘
[
𝜋𝑘 ( · |𝑠)
𝜋 ( · |𝑠)

]
is the Kullback–

Leibler (KL) divergence and the constraint (in Eqn. 2) bounds the
KL-divergence between two consecutive policies by 𝛿 . Here, the
expectation in constraint is not 𝛾-discounted.

Cost optimization. Using the cost function loss specifier𝜓GA (𝑐)
of GAIL [17] the cost parameters are updated as:

𝑐𝑘+1 =argmax
𝑐

E𝑠∼𝜌𝜋𝑘 [log(𝐷 (𝑠, 𝜋𝑘 (· | 𝑠))]+

E𝑠∼𝜌𝜋𝐸 [log(1 − 𝐷 (𝑠, 𝜋𝐸 (· | 𝑠))] (3)

where log(𝐷 (𝑠, 𝜋𝑘 (· | 𝑠)) = 𝑐 (𝑠, 𝜋𝑘 (· | 𝑠)) is the cost function and
𝐷 : S × A → (0, 1) is the classifier.

Gaussian policy representation. Additionally, to include stochas-
ticity [31] in the on-policy [45] policy gradient approach (TRPO) we
consider our stationary stochastic policies to be Guassian distributed
with 𝜇𝜃 (𝑠) as the mean and standard deviation (std) given by a fixed
quantity 𝜎 . Here, 𝜇𝜃 (𝑠) is a deterministic function of the states pa-
rameterized by 𝜃 . Thus, an action 𝑎 sampled from our policy can be
written as,

𝑎 ∼ N(𝜇𝜃 (𝑠), 𝜎) =⇒ 𝑎 = 𝜇𝜃 (𝑠) + 𝜎𝑧, 𝑧 ∼ N(0, 1), (4)

where N(·) is the standard Normal distribution.

3 PROBLEM DEFINITION
3.1 Defining smooth policy, smooth cost, and

smooth transition model
This section formally defines a smooth policy, a smooth cost, and a
smooth transition model.

DEFINITION 1 (SMOOTH POLICY). Let 𝜉 be a metric on the
space of policies, Π. A stationary stochastic policy 𝜋 (𝑎 |𝑠) : S×A →
[0, 1] is smooth with respect to the inputs, S, if for all 𝑠1, 𝑠2 ∈ S it is
Lipschitz continuous and hence, there exist an 𝑀𝜋 ≥ 0 such that

∀𝑠1, 𝑠2 ∈ S, 𝜉 (𝜋 (· | 𝑠1), 𝜋 (· | 𝑠2)) ≤ 𝑀𝜋 ∥𝑠1 − 𝑠2∥. (5)

DEFINITION 2 (SMOOTH COST). A cost function 𝑐 : S×A → R
is smooth with respect to the inputs,S×A, if for all (𝑠1, 𝑎1), (𝑠2, 𝑎2) ∈
S × A it is Lipschitz continuous and hence, there exist an 𝑀𝑐 ≥ 0
such that

∀(𝑠1, 𝑎1), (𝑠2, 𝑎2) ∈ S,
∥(𝑐 (𝑠1, 𝑎1) − 𝑐 (𝑠2, 𝑎2))∥ ≤ 𝑀𝑐 (∥𝑠2 − 𝑠1∥ + ∥𝑎2 − 𝑎1∥) . (6)

DEFINITION 3 (SMOOTH TRANSITION MODEL). If the transi-
tion model, 𝑃 is 𝐿𝑝 -Lipschitz continuous it satisfies the following
constraint for every two state action pairs (𝑠1, 𝑎1) , (𝑠2, 𝑎2) ∈ S ×A
and all 1-Lipschitz value functions 𝑉 :����∫

𝑠′∈S
(𝑃 (𝑠 ′ |𝑠1, 𝑎1) − 𝑃 (𝑠 ′ |𝑠2, 𝑎2))𝑉 (𝑠 ′)𝑑𝑠 ′

���� (7)

≤ 𝐿𝑝 (∥𝑠1 − 𝑠2∥ + ∥𝑎1 − 𝑎2∥). (8)

If 𝑉 is 𝐿𝑣 Lipschitz, the right hand side of the inequality in Eqn.
8 will be scaled by 𝐿𝑣 .

3.2 IL with smooth policy
Smooth policies are crucial in high dimensional continuous control
for diverse reasons ranging from critical (robot safety) to aesthetic
(visual appeal). When a cost function can be appropriately con-
structed and specified by a problem designer, reinforcement learning
is the go-to solution approach. However, cost function design is a te-
dious task, and cost functions tend to be grossly mis-specified [1, 9].
Imitation learning helps overcome the challenge of cost function
design by defining strategies that learn agent policies from (expert)
demonstrations. However, existing IL approaches do not guaran-
tee that the learned policies are smooth, i.e., there is no existing
approach that solves the following (general) problem:

𝜋★smooth = argmin
𝜋 ∈Π

E𝜋 [𝑐 (𝑠, 𝑎) |{(𝑠𝐸 , 𝑎𝐸 )} ∼ 𝜋𝐸 ]

subject to 𝜉

(
𝜋, 𝜋perturbed

)
≤ 𝜖 ′, (9)

where E𝜋 [𝑐 (𝑠, 𝑎) |{(𝑠𝐸 , 𝑎𝐸 )} ∼ 𝜋𝐸 ] represents a general IL objec-
tive, 𝜋perturbed represents a policy obtained by perturbing the orig-
inal policy (𝜋) by a small amount, and 𝜖 ′ captures desired policy
smoothness. The policy perturbation can be achieved in numer-
ous ways. For our purpose of policy smoothness, 𝜋perturbed is ob-
tained by inducing controlled amount of noise in the states along
trajectories sampled by a policy 𝜋 . Hence, the problem is to ob-
tain optimal smooth agent policy, 𝜋★smooth from the class of poli-
cies, Π using expert demonstration data (𝑁 trajectories of the form:
𝜏𝐸
𝑖
= {(𝑠 𝑗 , 𝑎 𝑗 )}𝑇𝑗=1, 𝑖 = 1, 2, ...𝑁 ). The policy optimization is subject

to the constraint: 𝜉
(
𝜋, 𝜋perturbed

)
≤ 𝜖 ′, i.e., choose that policy which

when perturbed in a controlled manner behaves similar to the origi-
nal unperturbed policy. The similarity in behaviour is characterized
using the distance metric 𝜉 defined over Π.

4 METHOD FOR OBTAINING SMOOTH
POLICIES IN IL

We take the approach of adversarial imitation learning [12, 17] to
solve the problem discussed above (Eqn. 9). Adversarial IL is a
high dimensional counterpart of IL using IRL, and is mathematically
formulated as:

IL(𝜋𝐸 ) = argmax
𝑐∈C′

(
min
𝜋 ∈Π
E𝜋 [𝑐 (𝑠, 𝑎)]

)
− E𝜋𝐸 [𝑐 (𝑠, 𝑎)], (10)

where C′ is the cost function class modified by the loss function
choosen to train the cost model. In this approach, the agent policy (𝜋)
and the cost function (𝑐) are simultaneously learned using bi-level
optimization of parameterized models. The cost function is learned
using the expert demonstration data and the samples from the current
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agent policy model. The cost model update rule is defined in Eqn. 3.
The agent policy is learned using trust region-based policy optimiza-
tion algorithm (Eqn. 2). To achieve the goal of policy smoothness,
we propose to include smoothness inducing regularizers in both
the policy and the cost optimization steps of adversarial imitation
learning:

IL(𝜋𝐸 ) = argmax
𝑐∈C′

(
min
𝜋 ∈Π
E𝜋 [𝑐 (𝑠, 𝑎)] + R𝜋(𝑠)

)
−E𝜋𝐸 [𝑐 (𝑠, 𝑎)] − R𝑐(𝑠,𝑎) , (11)

where R𝜋(𝑠) is the smoothness inducing regularizer on policy, and
R𝑐(𝑠,𝑎) is the smoothness inducing regularizer on cost function. The
exact forms of these regularizers is discussed shortly. While policy
regularization using a regularizer that captures the constraint in Eqn.
9 seems like an obvious first approach, it is not immediately clear
as to why we need to regularize the cost function. In the following
section we describe the need for cost smoothness.

4.1 Smooth costs assist in learning a smooth policy
A cost function is a central tool to perform learning through in-
teraction. Using the following theorems, we show that a smooth
cost function helps in obtaining smooth RL policies (, and hence
in IL using IRL). We show that a Lipschitz continuous (smooth)
cost function ensures resulting optimal value functions 𝑉★(𝑠) and
𝑄★(𝑠, 𝑎) are Lipschitz continuous (smooth). We then show that if a
Lipschitz continuous mapping is used to obtain 𝜋★ from 𝑄★, then
𝜋★ is Lipschitz continuous. These results are of independent interest
apart from providing a clear motivation to regularize cost function
learning in our method.

THEOREM 1 (GENERALIZATION OF THEOREM 5.9 IN [32]
FOR THE CASE OF CONTINUOUS STATE AND ACTION SPACE).
For a given MDP, if the cost function, 𝑐 (𝑠, 𝑎) and the transition
model, 𝑃 (𝑠 ′ |𝑠, 𝑎) are 𝐿𝑐 and 𝐿𝑝 -Lipschitz continuous, respectively,
with respect to the state and the action pairs and 𝛾𝐿𝑝 < 1 then
a) the optimal state value function 𝑉 ∗ (𝑠) is 𝐿𝑐

1−𝛾𝐿𝑝 Lipschitz with
respect to states, and
b) the optimal state action value function𝑄∗ (𝑠, 𝑎) is 𝐿𝑐

1−𝛾𝐿𝑝 Lipschitz
continuous with respect to states and actions.

This theorem is a generalization of Theorem 5.9 in [32] for the
case of continuous state and action space. The proof follows along
the lines of one in [32] by replacing discrete Bellman optimality
operator for V and Q with continuous counterparts. The proof is
included in Appendix A.1.

THEOREM 2. Let 𝜅 be a pseudo-metric on the space of condi-
tional state-action value functions 𝑄 (𝑠, ·). Let 𝐻 : 𝑄 (𝑠, ·) → 𝜇 (𝑠) be
a smooth mapping that outputs (near) greedy stationary mean poli-
cies with respect to the input conditional state action value function
𝑄 (𝑠, ·) such that
∥𝐻 (𝑄 (𝑠1)) − 𝐻 (𝑄 (𝑠2))∥ ≤ 𝐿𝜇𝜅 (𝑄 (𝑠1, ·), 𝑄 (𝑠2, ·)) ,∀𝑠1, 𝑠2 ∈ S.
For a given 𝐿𝑐

1−𝛾𝐿𝑝 -Lipschitz continuous state action value function

𝑄∗ (𝑠, 𝑎), the policy obtained as 𝜇★(𝑠) = 𝐻 (𝑄∗ (𝑠, ·)) is Lipschitz
continuous with respect to states. Then, the stationary stochastic
policy 𝜋★ obtained from 𝜇★ as N(𝜇★, 𝜎) (for a fixed 𝜎) is Lipschitz
continuous with respect to states.

The proof is included in Appendix A.2.

4.2 Exact forms of regularizers
With the said motivations and goal in mind, we now discuss our
regularizers’ exact forms to achieve smooth policies in IL.

Policy Smoothing. The aim of the policy regularizer is to en-
courage the agent policy to be smooth within an 𝜖 neighbourhood
of all the states sampled according to the current policy model.
At each iteration of the policy update step, we sample N trajecto-
ries from the current policy where each trajectory is of the form
𝜏𝑖 = {(𝑠𝑡

𝑖
, 𝑎𝑡
𝑖
)}𝑇
𝑡=1. We then nudge every state, 𝑠, in the sampled

batch to obtain, 𝑠, such that 𝑠 lies in an 𝜖-radius ball around 𝑠

(i.e., 𝑠 ∈ B𝑑 (𝑠, 𝜖)) and the policy, 𝜋𝜃 changes the most at this 𝑠 ′.
The maximum policy change is defined using a suitable divergence
D (𝜋𝜃 (𝑠), 𝜋𝜃 (̃𝑠)). In this work, we consider D to be Jeffrey’s Diver-
gence:DJ (𝑃 ∥𝑄) = 1

2DKL (𝑃 ∥𝑄) + 1
2DKL (𝑄 ∥𝑃). This policy regular-

izer is similar in spirit to the one considered in [44]. At a fundamental
level, the regularizer measures the local Lipschitz continuity of pol-
icy 𝜋𝜃 under the divergence D and thus limits the policy output
decision change if a small perturbation is added to a certain state 𝑠.

R𝜋𝑠 (𝜃𝑘 ) = E𝑠∼𝜌𝜋𝜃𝑘 max
𝑠∈B𝑑 (𝑠,𝜖)

DJ
(
𝜋𝜃𝑘 (· | 𝑠), 𝜋𝜃𝑘 (· | 𝑠)

)
. (12)

Note that the term inside expectation is𝛾 discounted. This regularizer
is now added to the policy optimization (TRPO) objective function
to obtain smooth policy update rule:

𝜃𝑘+1 =argmin
𝜃

− E𝑠∼𝜌𝜋
𝜃𝑘
,𝑎∼𝜋𝜃𝑘

[
𝜋𝜃 (𝑎 | 𝑠)
𝜋𝜃𝑘 (𝑎 | 𝑠)

𝐴
𝜋𝜃𝑘 (𝑠, 𝑎)

]
+

𝜆1E𝑠∼𝜌𝜋
𝜃𝑘

max
𝑠̃∈B𝑑 (𝑠,𝜖)

DJ (𝜋𝜃 (· | 𝑠)∥𝜋𝜃 (· | 𝑠)) , (13)

subject toE
𝑠∼𝜌𝜋𝜃𝑘

[
DKL

(
𝜋𝜃𝑘 (· | 𝑠)∥𝜋𝜃 (· | 𝑠)

]
≤ 𝛿.

Cost Smoothing. To obtain smooth costs, we propose to regularize
the cost optimization step. The goal of this regularizer is to regulate
the worst change in cost function within an 𝜖-ball around states
obtained from the mixture trajectories, 𝜏 ← 𝜁𝜏𝐸 + (1 − 𝜁 )𝜏𝑖 , where
𝜁 is a mixing parameter. The smoothness is induced for (𝑠, 𝑎) pairs
sampled from the mixture trajectory to generalize smoothness across
the entire state-action space.

A few more words about trajectory mixing are warranted here.
The mixing of trajectories considered in our work is reminiscent
of policy mixing introduced in RL in Kakade et al. [21] and in IL
introduced in Ross et al. [36]. Policy mixing in these works aims
to ensure conservative policy update at each policy iteration step.
A greedy policy update based purely on approximate state-action
values has shown to affect the policy learning process adversely. A
similar mixing of expert and non-expert data is used in the regularizer
sampling distribution of WGAN-GP [13]. The goal of data mixing
in WGAN-GP is to ensure Lipschitzness property is satisfied by the
gradients (of a model) for both the expert and the non-expert data.
Our regularizer draws inspiration from the observations mentioned
above. We mix agent and expert trajectories to ensure costs are
smoothened both as a function of agent and expert 𝑠-𝑎 pairs and
not just imperfect agent data. Such mixing guarantees conservative
enforcement of smoothness regularizer over cost function, rather
than changing cost function drastically over iterations, making the
learning algorithm unstable. Additionally, our regularizer provides a
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consistent learning signal to the cost model even when the agent and
the expert policy supports do not overlap [3, 13]. The cost regularizer
takes the following exact form:

R𝑐(𝑠,𝑎) (𝜃 ) = E𝑠∼𝜌𝜋̂𝜃 max
𝑠∈B𝑑 (𝑠,𝜖)

∥𝑐 (𝑠, 𝜋𝜃 (.|𝑠)) − 𝑐 (𝑠, 𝜋𝜃 (.|𝑠))∥2 . (14)

Here, 𝜋𝜃 is a mixture policy whose exact form is not required for
our purposes. We only need samples, 𝜏 from this policy (which are
obtained as 𝜏 ← 𝜁𝜏𝐸 + (1 − 𝜁 )𝜏𝑖 , where 𝜁 is the mixing parameter).
Using the regularizer of Eqn. 14, the cost optimization problem
becomes:

𝑤𝑘+1 =argmax
𝑤

E
𝑠∼𝜌𝜋𝜃𝑘 [log(𝐷𝑤 (𝑠, 𝜋𝜃𝑘 (· | 𝑠))]+

E𝑠∼𝜌𝜋𝐸 [log(1 − 𝐷𝑤 (𝑠, 𝜋𝜃𝐸 (· | 𝑠))]− (15)

𝜆2E𝑠∼𝜌𝜋̂𝜃 max
𝑠∈B𝑑 (𝑠,𝜖)

∥𝑐 (𝑠, 𝜋𝜃 (.|𝑠)) − 𝑐 (𝑠, 𝜋𝜃 (.|𝑠))∥2 .

5 PRACTICAL ALGORITHM
Maximization over 𝜖-Ball. Both the regularized optimization

problems in Eqn. 13 and Eqn. 15 require us to solve a maximization
problem over the 𝜖-ball around a certain state 𝑠. The goal of this
maximization problem is to find a state 𝑠 ′ within an 𝜖-ball of a state
𝑠 at which a certain function, 𝑓 (𝑠, 𝑠 ′) takes the maximum value. In
Algorithm 1, we discuss a general projected gradient based approach
to solve this maximization problem that is applicable to both Eqn. 13
and Eqn. 15. For the policy smoothing regularizer of Eqn. 12 the 𝑓 in
Algorithm 1 is given by 𝑓 (𝑠, 𝑠 ′) = 𝐷 𝐽 (𝜋𝜃 (𝑠), 𝜋𝜃 (𝑠 ′)) (the Jeffrey’s
divergence between policies 𝜋𝜃 (𝑠) and 𝜋𝜃 (𝑠 ′)). For the cost smooth-
ing regularizer of Eqn. 14, 𝑓 (𝑠, 𝑠 ′) = ∥𝑐 (𝑠, 𝜋𝜃 (.|𝑠)) − 𝑐 (𝑠, 𝜋𝜃 (.|𝑠 ′))∥2
(the 𝐿2 distance between costs ). Now that we have a procedure to ob-
tain the regularizers, our proposed Smooth IL algorithm is provided
in Algorithm 2.

Algorithm 1 Maximization of 𝑓 over 𝜖-ball of a state 𝑠

1: Input: 𝑠, 𝜖, 𝜂𝛿
2: Initialize: 𝛿0
3: (𝑁 steps of projected gradient descent)
4: for ℓ = 1, 2, . . . , 𝑁 -1
5: (Update 𝛿 in the direction of increase in 𝑓 )
6: 𝛿ℓ+1 = 𝛿ℓ + 𝜂𝛿∇𝛿 𝑓 (𝑠, 𝑠 + 𝛿ℓ )
7: (Project 𝛿ℓ+1 onto the 𝜖-ball)
8: 𝛿ℓ+1 = ΠB𝑑 (0,𝜖) (𝛿ℓ+1)
9: end for

5.1 Evaluating smoothness of the learned policy
To quantify the smoothness of the learned agent policy, we introduce
the following (general) novel metric that captures local Lipschitz
continuity of the policy:

𝐽 (𝜋) = E𝑠∼𝜌𝜋
[

max
𝑠∈B𝑑 (𝑠,𝜖)

DJ (𝜋 (· | 𝑠), 𝜋 (· | 𝑠))
]
, (16)

where the term inside expectation is not 𝛾-discounted. We do not
include discounting here because we desire policy at any state sam-
pled by the policy to be smooth. For the particular case of Gaussian
policies, to assess the Lipschitz continuity of a stochastic policy 𝜋 ,
we can look at the Lipschitz smoothness of its deterministic mean

Algorithm 2 SPaCIL: Smooth Reward and Policy Imitation Learn-
ing

1: Input: Expert trajectories 𝜏𝐸 ∼ 𝜋𝐸 , initial policy and discrimi-
nator parameters 𝜃0,𝑤0

2: for 𝑘 = 1, 2, . . . , 𝐾
3: Smooth policy update:
4: Sample 𝑁 trajectories 𝜏𝑘

𝑖
∼ 𝜋𝜃𝑘 , 𝑖 = 1, 2, · · · , 𝑁

5: Estimate regularizer in Eqn. 12 using Algorithm 1
6: Update policy using regularized TRPO of Eqn. 13
7: Smooth cost update:
8: Estimate regularizer in Eqn. 14 using Algorithm 1
9: Update cost using Eqn. 15

10: end for

function 𝜇 (see Eqn. 4). For this case, practical smoothness metric
takes the following form:

𝐽 ({𝜏𝑖 }𝑁𝑖=1) =
1
𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑗=1

max
𝑠 𝑗 ∈B𝑑 (𝑠 𝑗 ,𝜖)

∥𝜇 (𝑠 𝑗 ) − 𝜇 (𝑠 𝑗 )∥
∥𝑠 − 𝑠 𝑗 ∥

, 𝑠 𝑗 ∼ 𝜏𝑖 .

(17)

We do not (on purpose) consider a global Lipschitz constant 𝐿 corre-
sponding to the deterministic mean function, 𝜇 (𝑠) of the following
form:

𝐿 = max
𝑠1≠𝑠2

∥𝜇 (𝑠1) − 𝜇 (𝑠2)∥
∥𝑠1 − 𝑠2∥

, 𝑠1, 𝑠2 ∈ S. (18)

The choice to quantify smoothness using local Lipschitz constant
stems from the fact that finding the maximum over S in Eqn. 18 is
impractical for high dimensional environments.

6 EXPERIMENTS
Overview. In this section, we aim at investigating the following

research questions (RQs):
(1) Using average return (𝐺) as a metric, how well does the

learned agent policy for SPaCIL and GAIL behave in the
environment? (Sec. 6.1, Table 1, Fig. 2)

(2) Does regularization of the policy and the cost space result in
faster learning for SPaCIL? (Sec. 6.1, Fig. 2)

(3) Using our smoothness metric (𝐽 ), which algorithm gives the
best resulting smooth policies? (Sec. 6.1, Table 2)

(4) How good is our smoothness evaluation metric (𝐽 )? If we
sufficiently perturb our smooth agent policy model, does 𝐽
worsen? (Sec. 6.2, Fig. 3)

(5) How do the two regularizations affects SPaCIL’s performance
and in what ways? (Sec. 6.3, Fig. 4)

We answer these questions by performing multiple experiments
on continuous control tasks from MuJoCo [47]. We specifically
work with these environments: Reacher-v2, Hopper-v2, Walker2d-
v2, HalfCheetah-v2, and Ant-v2. We would drop v2 from these
environments in all future references to them.

Implementation details. For all the environments, the expert is
trained using TRPO [41]. We then sample trajectories from the best
expert model and form our demonstration dataset. The demonstra-
tion dataset does not necessarily come from a smooth expert policy
because we do not explicitly incorporate smoothness during TRPO
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Table 1: Average Return (and one standard deviation) from 100 trajectories sampled from 5 different best agent models (i.e., five
different random seeds). We observe that SPaCIL outperforms GAIL by a substantial margin, and enjoys much lesser variance in
average return across different runs.

Reacher Hopper Walker2d HalfCheetah Ant

S / A R11 / R2 R11 / R3 R17 / R6 R17 / R6 R111 / R8

Expert (non-smooth) -4.18±1.79 3562.04±26.61 4224.34±18.79 4022.09±79.72 4872.84±568.69

GAIL -5.27±2.72 3326.43±872.42 4275.00±14.69 4064.12±120.30 4587.81±117.84
SPaCIL -4.39±1.61 3662.71±39.27 4397.58±6.92 4141.10±93.84 4788.73±75.18

Table 2: Smoothness metric (𝐽 ) (and one standard deviation) of the best trained models estimated over 150 randomly sampled
trajectories from five different policy models. SPaCIL learns a substantially smooth policy irrespective of how smoothness encoded
in expert demonstrations.

Reacher Hopper Walker2d HalfCheetah Ant

Expert (non-smooth) 1.77e-05±3.34e-06 12.34±0.089 56.61±0.031 23.88±11.70 6.4±3.81e-3

GAIL 5.86e-5±9.79e-5 12.91±0.85 117.31±6.65 24.25±0.77 1.543±0.62
SPaCIL 2.69e-5±2.02e-5 7.77±0.067 35.61±0.47 17.73±0.12 0.93±0.09

-- Expert              GAIL              SPaCIL

Av
er
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e 
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Figure 2: Learning curves for GAIL and SPaCIL on challenging continuous control tasks. The x axis is the number of algorithmic
iterations. The dotted green line represents the demonstration dataset’s average return. The dual regularization of SPaCIL results in
faster learning.

training. This setting is practical as in reality we might have non-
smooth demonstrations but would still desire a smooth controller.
The imitation learning algorithms are trained on these datasets. The
algorithms do not have access to the actual environment rewards
and dynamics. To make the comparison fairer, for each environ-
ment, all the hyperparameters of GAIL and SPaCIL are the same
except for SPaCIL’s regularization-specific hyperparameters. More
implementation details can be found in Appendix B.

6.1 Policy average return and smoothness
As the first set of experiments, we train GAIL and SPaCIL on demon-
stration datasets from each environment. The algorithms are trained
for 400 to 500 iterations depending on when the average return
stabilizes. The learning curves are included in Fig. 2. The average
return from SPaCIL is better than GAIL across all the environments.
Higher returns mean that our smoothness regularizations result in
overall better-behaved agents (RQ 1). SPaCIL also enjoys lesser vari-
ance in average return, implying the learned policies will give the

said average returns with greater confidence. SPaCIL additionally
performs better than the average return of the demonstration data for
Hopper, Walker, and HalfCheetah.

The smoothness metric 𝐽 is estimated from 150 trajectories (sam-
pled using different random seeds) from five best agent models. Here
as well, SPaCIL outperforms GAIL and recovers much smoother
learned agent policies (RQ 3). The training curves and 𝐽 for Walker
are particularly interesting. GAIL’s inability to tap onto the smooth-
ness (seen from very high 𝐽 for this task) results in a much higher
variance of the training curve. From the nature of the learning curve
for Reacher, we see that the advantage of SPaCIL over GAIL is more
pronounced in high-dimensional tasks. From Fig. 2 it is evident that
SPaCIL results in faster stabilized returns (RQ 2).

6.2 Validating smoothness metric
This section aims to answer if the proposed smoothness metric (𝐽 )
is truly meaningful. To answer this, we take the best SPaCIL policy
model for HalfCheetah and Hopper, and perturb this model by adding
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(a) HalfCheetah (b) Hopper

Figure 3: Variation of scaled average policy smoothness metric
(J) and scaled average return for perturbed SPaCIL models for
HalfCheetah and Hopper. Scaling is performed w.r.t. SPaCIL J
and G, respectively. The x-axis quantifies perturbation as the
standard deviation of noise added to model parameters. For
sufficiently perturbed models, 𝐽 is very high, validating 𝐽 as a
smoothness metric.

a zero mean, fixed standard deviation Gaussian noise to the model pa-
rameters. Standard deviations considered are: 0.001, 0.01, 0.005, 0.009
and 0.1. We then obtain the average return, and the average smooth-
ness metric (𝐽 ) from all these perturbed models. Fig. 3 depicts scaled
average returns and average 𝐽 for HalfCheetah and Hopper. The
scaling is done with respect to SPaCIL model’s average return and
average 𝐽 (in green colour), i.e., in Fig. 3 SPaCIL model’s both
average return and average 𝐽 are equal to one. We observe that the
average return decreases by a small amount with small perturbation
with severe decrease when perturbation standard deviation is 0.1
(high). This means that our learned policy model is quite robust
to model parameter perturbation. The smoothness metric initially
decreases showing existence of a policy that is smoother than the
baseline at the cost of decrease in return. This highlights an impor-
tant facet of our method - we want high performing policies to be
smooth, and not desire excessive smoothness at the cost of lesser
return. Also, an extremely smooth policy might mean the agent can
hardly move and hence gets a low return. When the model is suffi-
ciently perturbed (with a perturbation standard deviation of 0.1), the
resulting 𝐽 is very high, showing that the policy model is non-smooth
(RQ 4).

6.3 Policy regularization vs. cost regularization:
Which is more important?

We run Hopper with varying amounts of cost and policy regulariza-
tions. Fig. 4 depicts the results from this experiment. We get the
best smooth policy for 𝜆1 = 0.001 and 𝜆2 = 1 with 𝐺 = 3642.76
and 𝐽 = 9.556. The agent obtains the maximum return of 3715.08 at
𝜆1 = 0 and 𝜆2 = 1, i.e., merely smoothing the costs results in policies
that enjoy higher return. However, this policy is highly non-smooth
with a 𝐽 = 68.67. Thus, the agent has to pay some additional cost
to obtain visual smoothness. We can see from Fig. 4 that a delicate
balance of both policy and cost regularization is needed to obtain
high performing smooth policies.

7 CONCLUSION
In this work, we develop a novel model-free on-policy IL algorithm:
Smooth Policy and Cost Imitation Learning (SPaCIL) that learns a

(a) Returns

(b) Jacobians

Figure 4: Average return (𝐺) and average smoothness metric
(𝐽 ) variation with varying policy and cost regularization param-
eters (𝜆1 and 𝜆2) for Hopper. Both policy and cost regulariza-
tions are needed to obtain high performing smooth policies.

smooth agent policy. Smoothness in policies is achieved by regular-
izing both the cost and the policy models of adversarial imitation
learning framework. Through smoothness-inducing regularization,
our algorithm can encode the domain knowledge about the smooth-
ness of costs and policies. Our algorithm not only obtains smooth IL
policies (measured by the policy smoothness metric that we intro-
duce), it results in policies with a higher return than state-of-the-art
adversarial IL algorithm GAIL. Our algorithm enjoys added benefits
of faster learning and a much lower variance in average returns and
smoothness metric.
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A PROOFS
A.1 Proof of Theorem 1

PROOF. This theorem is a generalization of Theorem 5.9 in [32]
for the case of continuous state and action space. The proof fol-
lows along the lines of one in [32] by replacing discrete Bellman
optimality operator forV and Q with continuous counterparts. Let
T : V → V be the Bellman optimality operator, where V is the
space of value functions. Then,

(T𝑉 ) (𝑠) = min
𝑎

(
𝑐 (𝑠, 𝑎) + 𝛾

∫
𝑠′∈S

𝑝 (𝑠 ′ |𝑠, 𝑎)𝑉 (𝑠 ′)𝑑𝑠 ′
)

(19)

If 𝑉 (𝑠) is 𝐿𝑣 Lipschitz in 𝑠, then, so is (T𝑉 ) (𝑠). This can be seen as
follows:
∀𝑠1, 𝑠2 ∈ S we have,

| (T𝑉 ) (𝑠1) − (T𝑉 ) (𝑠2) | =

|min
𝑎

(
𝑐 (𝑠1, 𝑎) + 𝛾

∫
𝑠′∈S

𝑝 (𝑠 ′ |𝑠1, 𝑎)𝑉 (𝑠 ′)𝑑𝑠 ′
)

−min
𝑎

(
𝑐 (𝑠2, 𝑎) + 𝛾

∫
𝑠′∈S

𝑝 (𝑠 ′ |𝑠2, 𝑎)𝑉 (𝑠 ′)𝑑𝑠 ′
)
|. (20)

Define 𝑎 as,

𝑎 ≜



argmin
𝑎∈A

(𝑐 (𝑠1, 𝑎) + 𝛾
∫
𝑠′∈S

𝑝 (𝑠 ′ |𝑠1, 𝑎)𝑉 (𝑠 ′)𝑑𝑠 ′),

if 𝑉 (𝑠1) ≤ 𝑉 (𝑠2)

argmin
𝑎∈A

(𝑐 (𝑠2, 𝑎) + 𝛾
∫
𝑠′∈S

𝑝 (𝑠 ′ |𝑠2, 𝑎)𝑉 (𝑠 ′)𝑑𝑠 ′),

if 𝑉 (𝑠1) > 𝑉 (𝑠2) .

(21)

Then,

| (T𝑉 ) (𝑠1) − (T𝑉 ) (𝑠2) | ≤

|𝑐 (𝑠1, 𝑎) + 𝛾
∫
𝑠′∈S

𝑝 (𝑠 ′ |𝑠1, 𝑎)𝑉 (𝑠 ′)𝑑𝑠 ′

−𝑐 (𝑠2, 𝑎) − 𝛾
∫
𝑠′∈S

𝑝 (𝑠 ′ |𝑠2, 𝑎)𝑉 (𝑠 ′)𝑑𝑠 ′ |, (22)

where we have used the fact that ∀𝑓1, 𝑓2 : S → R bounded functions
such that min𝑠∈S 𝑓1 (𝑠) ≤ min𝑠∈S 𝑓2 (𝑠) and 𝑠 = argmin𝑠∈S 𝑓1 (𝑠),
we have |min𝑠∈S 𝑓1 (𝑠)−min𝑠∈S 𝑓2 (𝑠) | ≤ |𝑓1 (𝑠)− 𝑓2 (𝑠) |. Then using
triangle inequality, we have ∀𝑠1, 𝑠2 ∈ S,

| (T𝑉 ) (𝑠1) − (T𝑉 ) (𝑠2) | ≤ ∥𝑐 (𝑠1, 𝑎) − 𝑐 (𝑠2, 𝑎)∥+

𝛾

����∫
𝑠′∈S
(𝑝 (𝑠 ′ |𝑠1, 𝑎) − 𝑝 (𝑠 ′ |𝑠2, 𝑎))𝑉 (𝑠 ′)𝑑𝑠 ′

���� . (23)

(1/𝐿𝑣)𝑉 is 1-Lipschitz, hence using the Definition 3 and Lipschitz-
ness of cost we get,

| (T𝑉 ) (𝑠1) − (T𝑉 ) (𝑠2) | ≤ (𝐿𝑐 + 𝐿𝑣𝐿𝑝 )∥𝑠1 − 𝑠2∥ . (24)

Hence, (T𝑉 ) (𝑠) is 𝐿𝑐 + 𝛾𝐿𝑣𝐿𝑝 -Lipschitz in 𝑠 and 𝑎, if 𝑉 is 𝐿𝑣-
Lipschitz in 𝑠 and 𝑎. Choose 𝑉0 = 0. 𝑉 ∗ is the stationary point of T
[33]:𝑉 ∗ = lim𝑛→∞ T𝑛𝑉0. Hence,𝑉 ∗ is 𝐿𝑐 +𝛾𝐿𝑝𝐿𝑐 +𝛾2𝐿2𝑝𝐿𝑐 + · · · =
𝐿𝑐/(1 − 𝛾𝐿𝑝 )-Lipschitz continous.

Proof. b)we know that

𝑄∗ (𝑠, 𝑎) = 𝑐 (𝑠, 𝑎) + 𝛾
∫
𝑠′∈S

𝑝 (𝑠 ′ |𝑠, 𝑎)𝑉 ∗ (𝑠 ′)𝑑𝑠 ′ (25)

For this optimal state action value function 𝑄∗ and 𝑠1, 𝑠2 ∈ S, we
then have

|𝑄∗ (𝑠1, 𝑎1) −𝑄∗ (𝑠2, 𝑎2) | ≤ |𝑐 (𝑠1, 𝑎1) − 𝑐 (𝑠2, 𝑎2) |+

𝛾

����∫
𝑠′∈S
(𝑝 (𝑠 ′ |𝑠1, 𝑎1) − 𝑝 (𝑠 ′ |𝑠2, 𝑎2))𝑉 (𝑠 ′)𝑑𝑠 ′

���� (26)

=⇒ |𝑄∗ (𝑠1, 𝑎1) −𝑄∗ (𝑠2, 𝑎2) | ≤ (𝐿𝑐 + 𝛾𝐿𝑣∗𝐿𝑝 ) (∥𝑠1 − 𝑠2∥ + ∥𝑎1 − 𝑎2∥)
(27)

Using the value of 𝐿𝑣∗ from the part a), we get

|𝑄∗ (𝑠1, 𝑎1) −𝑄∗ (𝑠2, 𝑎2) | ≤ (
𝐿𝑐

1 − 𝛾𝐿𝑝
) (∥𝑠1 − 𝑠2∥ + ∥𝑎1 − 𝑎2∥)

(28)

Hence, Proved. □

A.2 Proof of Theorem 2
PROOF. From Lipschitz continuity of optimal 𝑄★ function, we

have ∀𝑠1, 𝑠2 ∈ S,��𝑄∗ (𝑠1, 𝑎1) −𝑄∗ (𝑠2, 𝑎2)�� ≤ (
𝐿𝑐

1 − 𝛾𝐿𝑝

)
(∥𝑠1 − 𝑠2∥ + ∥𝑎1 − 𝑎2∥).

(29)

This can be re-written as����max
𝑎1

𝑄∗ (𝑠1, 𝑎1) −max
𝑎2

𝑄∗ (𝑠2, 𝑎2)
���� (30)

≤
(

𝐿𝑐

1 − 𝛾𝐿𝑝

)
(∥𝑠1 − 𝑠2∥ + ∥𝑎1 − 𝑎2∥). (31)

Now, it is easy to see that |max𝑎1 𝑄∗ (𝑠1, 𝑎1)−max𝑎2 𝑄∗ (𝑠2, 𝑎2) | ≤
max𝑎 |𝑄∗ (𝑠1, 𝑎) −𝑄∗ (𝑠1, 𝑎) | [18]. From equivalence of norms, there
exists a 1

𝐾1
≥ 0 such that

max
𝑎
|𝑄∗ (𝑠1, 𝑎) −𝑄∗ (𝑠1, 𝑎) | ≤ 𝐾1 |max

𝑎1
𝑄∗ (𝑠1, 𝑎1) −max

𝑎2
𝑄∗ (𝑠2, 𝑎2) |.

Note that max𝑎 |𝑄∗ (𝑠1, 𝑎) −𝑄∗ (𝑠1, 𝑎) | and 𝜅 are both pseudo-metrics
on the space of𝑄 (𝑠, ·) functions. Thus, from topological equivalence
of pseudo-metrics, there exists a𝐾2 ≥ 0 such that𝜅 (𝑄 (𝑠1, ·), 𝑄 (𝑠2, ·))
≤ 𝐾2max𝑎 |𝑄 (𝑠1, 𝑎)−𝑄 (𝑠2, 𝑎) |. Thus, we have𝜅 (𝑄 (𝑠1, ·), 𝑄 (𝑠2, ·)) ≤
𝐾1𝐾2 |max𝑎1 𝑄∗ (𝑠1, 𝑎1) −max𝑎2 𝑄∗ (𝑠2, 𝑎2) |. Thus, for all 𝑠1, 𝑠2 ∈ S
and for all 𝑎 ∈ A we have,

𝜅 (𝑄 (𝑠1, ·), 𝑄 (𝑠2, ·)) ≤ 𝐾1𝐾2
(

𝐿𝑐

1 − 𝛾𝐿𝑝

)
(∥𝑠1 − 𝑠2∥). (32)

Now, using definition and Lipschitz continuity of 𝐻 , we get

∥𝜇 (𝑠1) − 𝜇 (𝑠2)∥ = ∥𝐻 (𝑄★(𝑠1, ·)) − 𝐻 (𝑄★(𝑠2, ·))∥ (33)

≤ 𝐿𝜇𝜅
(
𝑄★(𝑠1, ·), 𝑄★(𝑠2, ·)

)
(34)

≤ 𝐾1𝐾2𝐿𝜇
𝐿𝑐

1 − 𝛾𝐿𝑝
∥𝑠1 − 𝑠2∥ . (35)

Thus, the optimal mean policy 𝜇★ is
𝐾1𝐾2𝐿𝜇𝐿𝑐
1−𝛾𝐿𝑝 -Lipschitz continuous

with respect to the states. Then, the stationary stochastic policy
𝜋★ obtained as N(𝜇★(𝑠), 𝜎) (for a fixed 𝜎) is

𝐾1𝐾2𝐿𝜇𝐿𝑐
1−𝛾𝐿𝑝 -Lipschitz

continuous with respect to the states. □
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B EXPERIMENTAL SETUP AND
HYPERPARAMETER DETAILS

B.1 Policy, Cost and Value Models
Policy. In our work, the policy, 𝜋𝜃 (𝑎 | 𝑠), is parameterized with

a neural network. The neural network takes in a state vector 𝑠 and
deterministically maps 𝑠 to a vector 𝜇. The neural network is ad-
ditionally used to learn a vector 𝑟 of log standard deviation with
the same dimension as 𝑎. During training, the action is sampled
stochastically from N(𝜇, 𝑒𝑥𝑝 (𝑟 )). While evaluating a policy, the
mean action 𝜇 is chosen.

Value. The value neural network simply takes in a state 𝑠 and
outputs scalar 𝑉 (𝑠).

Discriminator. The discriminator network takes in a state-action
pair (𝑠, 𝑎) and outputs a scalar 𝑥 . The cost of this state-action pair is
then defined as 𝑐 (𝑠, 𝑎) = 𝑙𝑜𝑔(𝑆 (𝑥)), where 𝑆 (𝑥) = 𝑒𝑥

𝑒𝑥+1 .

B.1.1 Neural network details. All the models (policy, value, and
cost functions) in this work are multi-layer perceptrons (MLPs). The
policy models for all the algorithms (TRPO, GAIL, and SPaCIL)
have two layers of 400 and 300 neurons each. The value functions
across all the algorithms have two layers of 100 neurons each. Sim-
ilarly, the discriminator network (a representative for cost model)
has two layers of 100 neurons each. The non-linearity used in all
the models is tanh. All the weights and biases are initialized using
𝑈 (−𝑘, 𝑘) where 𝑘 = 1√

size of weights
. The final layer across models

has zero bias and weights multiplied by 0.1. The step size and learn-
ing rate for the policy model is determined by the TRPO algorithm.
All the other models are trained using Adam optimizer [23] with a
learning rate of 1𝑒-3 for the value network, and a learning rate of
0.01 for the discriminator network.

B.2 Expert learning using TRPO
The MuJoCo environments used in our experiments are from the
OpenAI Gym [6]. We specifically work with v2 of Reacher, Hopper,
Walker2d, HalfCheetah, and Ant. The expert is trained using TRPO
[41]. The TRPO hyperparameters max KL and damping are both
fixed to 0.01 for all the environments. The batch size is 50000 for
all the environments except Reacher’s 5000. We train all the envi-
ronments for 500 iterations except Reacher’s 200. We fix 𝛾 = 0.995
for all the environments except Reacher’s 0.99. We fix 𝜏 = 0.95 for
Reacher, 𝜏 = 0.99 for Hopper and Walker, and 𝜏 = 0.97 for the rest.

B.3 GAIL and SPaCIL parameters
The best set of hyperparameters for SPaCIL are listed in Table
3. The policy regularization strength is denoted by 𝜆1. The cost
regularization strength is denoted by 𝜆2. The step size parameter
in the projected gradient descent part of regularizer estimation is
denoted as 𝜈 and takes a value of 0.02 across environments. The
perturbation strength around a particular state (to project onto 𝜖-
Ball) is denoted by 𝜖. It takes a value of 0.01 across environments.
For regularization purposes, we keep the policy 𝜎 fixed to 1. The
mixing parameter 𝜇 is randomly sampled from a uniform distribution
over [0, 1). sampled Generalized advantage estimation (GAE, [42])
parameters, 𝛾 and 𝜏 are same as TRPO for all the environments.

GAIL has all the hyperparameters, except training data size, same
as that of TRPO. We are provided with a fixed number of expert
trajectories before training begins. This number is the same for both
GAIL and SPaCIL, and is listed in Table 3. Each trajectory consists
of 50 (𝑠, 𝑎) pairs for Reacher-v2, and 1000 (𝑠, 𝑎) pairs for all the other
tasks.

Table 3: Environments details and performance of expert poli-
cies.

Environment 𝜆1 𝜆2 Expert traj No. Agent traj No.

Reacher-v2 0.01 0.001 50 50
Hopper-v2 0.001 0.001 6 6
Walker2d-v2 0.001 0.001 10 10
HalfCheetah-v2 0.01 0.001 6 6
Ant-v2 0.001 0.001 15 15

B.4 The MuJoCo Tasks
Reacher-v2. In this environment, the agent is a grasping arm with

a hinge, a body with a joint, and a tip that grasps (see Fig. 5). With
the hinge fixed at the center of a square grid environment, the agent’s
tip is placed at a random starting state. The agent’s goal is to be able
to grasp a target that is randomly spawned in the square grid.

Hopper-v2. In this environment, the agent is a robot with a torso
and a leg (see Fig. 5). The agent is tasked with learning to hop
through the environment. The learned walking behaviour is desired
to have a stable gait.

HalfCheetah-v2. In this environment, the agent is a robot with
only one forelimb and one hind-limb (see Fig. 5). The agent is tasked
with learning to walk and hop through the environment. The learned
walking behaviour is desired to have a stable gait.

Walker2d-v2. In this environment, the agent is a robot with a torso
and two legs (see Fig. 5). The agent is tasked with learning to jump
and walk through the environment. The learned walking behaviour
is desired to have a stable gait.

Ant-v2. In this environment, the agent is a robot with four legs
(see Fig. 5). The agent is tasked with learning to hop through the
environment. The learned walking behaviour is desired to have a
stable gait.

B.5 Deep RL tricks used in the implementation
We use the following standard tricks from deep reinforcement learn-
ing (DRL) in our implementation:

(1) We keep and use a running average of the states to deal with
covariate shift in the input data.

(2) We evaluate the performance of our algorithms on a separate
test environment. We keep track of the best evaluation return
to save our best agent model. We sample 20, 000 𝑠-𝑎 pairs
at each test iteration for testing. The action is sampled as
the mean action (𝜇 (𝑠)) at a certain state (𝑠) rather than from
the stochastic policy. The evaluation performance curves for
GAIL and SPaCIL are included in Fig. 6).
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Reacher Hopper Walker HalfCheetah Ant

Figure 5: Robotic continuous control tasks from MuJoCo.

(3) Different components of our code are run on different devices
(i.e., CPU and GPU) to optimize for algorithm’s run time.
While sampling trajectories from the agent policy, we use
multi-threading and run the code on the CPU. All the gradient
calculations vis back-propagation are performed on GPU
cores.

C IMPLEMENTATION OF PROJECTION
At the crux of our algorithm are the following policy and cost regu-
larizers:

R𝜋𝑠 (𝜃𝑘 ) = E𝑠∼𝜌𝜋𝜃𝑘 max
𝑠∈B𝑑 (𝑠,𝜖)

DJ
(
𝜋𝜃𝑘 (𝑠), 𝜋𝜃𝑘 (̃𝑠)

)
, (36)

and

R𝑐(𝑠,𝑎) (𝜃 ) = E𝑠∼𝜌𝜋̂𝜃 max
𝑠∈B𝑑 (𝑠,𝜖)

∥𝑐 (𝑠, 𝜋𝜃 (.|𝑠)) − 𝑐 (𝑠, 𝜋𝜃 (.|𝑠))∥2 . (37)

Both the regularizers in Eqn. 36 and Eqn. 37 require us to solve
a maximization problem over the 𝜖-ball around a certain state 𝑠.
The goal of this maximization problem is to find a state 𝑠 ′ within
an 𝜖-ball of a state 𝑠 at which a certain function, 𝑓 (𝑠, 𝑠 ′) takes
the maximum value. In Algorithm 3, we discuss a general pro-
jected gradient based approach to solve this maximization prob-
lem that is applicable to both Eqn. 36 and Eqn. 37. For the policy
smoothing regularizer of Eqn. 36 the 𝑓 in Algorithm 3 is given
by 𝑓 (𝑠, 𝑠 ′) = 𝐷J (𝜋𝜃 (𝑠), 𝜋𝜃 (𝑠 ′)) (the Jeffrey’s divergence between
policies 𝜋𝜃 (𝑠) and 𝜋𝜃 (𝑠 ′)). For the cost smoothing regularizer of
Eqn. 14, 𝑓 (𝑠, 𝑠 ′) = ∥𝑐 (𝑠, 𝜋𝜃 (.|𝑠)) − 𝑐 (𝑠, 𝜋𝜃 (.|𝑠 ′))∥2 (the 𝐿2 distance
between costs ). Here we provide exact details of how to obtain
∇𝛿 𝑓 (𝑠, 𝑠 + 𝛿ℓ ) (in step 6) and how to project onto the ball ΠB𝑑 (step
8).

For 𝑓 (𝑠, 𝑠 ′) = 𝐷 𝐽 (𝜋𝜃 (𝑠), 𝜋𝜃 (𝑠 ′)) and Guassian distributed policies

(i.e., 𝜋𝜃 (· | 𝑠)
𝑑
= N(𝜇𝜃 (𝑠), 𝜎2)), 𝑓 is reduced to

∥𝜇𝜃 (𝑠)−𝜇𝜃 (𝑠′) ∥22
𝜎2 . Gra-

dient of this quantity is estimated using automatic back-propagation
[15] through the policy neural network. Gradient of 𝑓 (𝑠, 𝑠 ′) = ∥𝑐 (𝑠, 𝜋𝜃 (.|𝑠))−
𝑐 (𝑠, 𝜋𝜃 (.|𝑠 ′))∥2 can be equivalently estimated using back-propagation.

Once we have 𝛿ℓ+1 from Step 6 of Algorithm 3, the projection onto
the ball B𝑑 (0, 𝜖) is evaluated using the following formula:

𝛿new = 𝛿oldmin
{
1,

𝜖

∥𝛿old∥2

}
. (38)

Algorithm 3 Maximization of 𝑓 over 𝜖-ball of a state 𝑠

1: Input: 𝑠, 𝜖, 𝜂𝛿
2: Initialize: 𝛿0
3: (𝑁 steps of projected gradient descent)
4: for ℓ = 1, 2, . . . , 𝑁 -1
5: (Update 𝛿 in the direction of increase in 𝑓 )
6: 𝛿ℓ+1 = 𝛿ℓ + 𝜂𝛿∇𝛿 𝑓 (𝑠, 𝑠 + 𝛿ℓ )
7: (Project 𝛿ℓ+1 onto the 𝜖-ball)
8: 𝛿ℓ+1 = ΠB𝑑 (0,𝜖) (𝛿ℓ+1)
9: end for

D DISCUSSION ON SMOOTHNESS METRIC
An alternative view of smoothness metric. To quantify the smooth-

ness of the learned policy, we had introduced a novel metric that
took the following form:

𝐽 ({𝜏𝑖 }𝑁𝑖=1) =
1
𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑗=1

max
𝑠 𝑗 ∈B𝑑 (𝑠 𝑗 ,𝜖)

∥𝜇 (𝑠 𝑗 ) − 𝜇 (𝑠 𝑗 )∥
∥𝑠 − 𝑠 𝑗 ∥

, 𝑠 𝑗 ∼ 𝜏𝑖 .

(39)

where 𝜇 (𝑠) is the deterministic mean function for 𝜋 (· | 𝑠). We had
gotten the above form for the metric by starting out by defining Lip-
schitz constant 𝐿 corresponding to the deterministic mean function,
𝜇 (𝑠) for a general norm is given by

𝐿 = max
𝑠1≠𝑠2

∥𝜇 (𝑠1) − 𝜇 (𝑠2)∥
∥𝑠1 − 𝑠2∥

, 𝑠1, 𝑠2 ∈ S. (40)

Taking 𝑠1 = 𝑠 + 𝛿𝑠 and 𝑠2 = 𝑠

𝐿 = max
𝛿𝑠≠0

∥𝜇 (𝑠 + 𝛿𝑠) − 𝜇 (𝑠)∥
∥𝑠 + 𝛿𝑠 − 𝑠 ∥ , (41)
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Figure 6: Evaluation curves for GAIL and SPaCIL on challenging continuous control tasks. The dotted green line represents the
average return of the demonstration dataset. The dual regularization of policies and costs results in faster learning for SPaCIL.

Table 4: Validating our smoothness metric is a good measure of smoothness

0 0.1 0.09 0.05 0.01 0.001

Reacher G -4.18±1.79 -163.44±43.95 -47.07±11.08 -30.12±10.25 -11.67±2.18 -12.35±2.14
Reacher J 2.69e-5±2.02e-5 14.42±2.06 1.02±0.12 0.29±0.05 8.67e-4±1.79e-4 3.72e-4±7.85e-5

Hopper G 3662.71±39.27 79.73±73.48 4.69±0.033 383.59±313.75 2644.44±1207.97 3667.35±9.72
Hopper J 7.77±0.067 18.24±3.01 18.34±0.0162 5.43±0.13 6.732±0.27 7.86±0.19

Walker2d G 4397.58±6.92 3.21±2.81 61.92±53.04 245.21±119.8 4199.56±17.19 4329.44±10.69
Walker2d J 35.61±0.067 85.91±1.06 125.97±6.06 37.56±1.60 39.37±1.1 38.53±0.12

HalfCheetah G 4141.10±93.84 -743.56±60.59 -729.94±242.07 128.97±141.52 3642.23±75.71 4061.67±75.59
HalfCheetah J 17.73±0.11 61.63±6.72 88.67±33.76 4.47±2.03 17.72±0.19 18.51±0.21

Ant G 4788.73±75.18 -4880.08±1719.81 -1454.50±961.96 1685.58±482.09 4561.18±617.04 4628.54±893.13
Ant J 0.93±0.09 186.91±74.77 43.58±27.72 1.64±2.27 0.91±0.07 0.97±0.04

Using the first order Taylor series approximation for 𝜇 at 𝑠 : 𝜇 (𝑠 +
𝛿𝑠) = 𝜇 (𝑠) + 𝐽𝜇 (𝑠)𝛿𝑠 we get

𝐿 = max
𝛿𝑠2≠0

∥ 𝐽𝜇 (𝑠)𝛿𝑠 ∥
∥𝛿𝑠 ∥ , (42)

For 𝐿2 norm, the quantity on the right in Eqn. 42 is the spectral
norm of 𝐽𝜇 (𝑠) . Hence, the local Lipschitz constant, 𝐿 at a particular
state 𝑠 is given by the spectral norm of the Jacobian, 𝐽 at that state:
∥ 𝐽𝜇 (𝑠)∥2 = 𝜎𝑚𝑎𝑥 (𝐽𝜇 (𝑠)) , i.e., the maximum singular value [10, 46].
Therefore, another approach to evaluate the smoothness of 𝜋 , is to
estimate the expected Jacobian norm using sampled trajectories as,

𝐸 [∥ 𝐽𝜇 (𝑠) ∥2] =
1
𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑗=1
∥ 𝐽𝜇 (𝑠 𝑗 ) ∥2, 𝑠 𝑗 ∼ 𝜏𝑖 (43)

where 𝑇 and 𝑁 are the number of sampled trajectories and time
steps, respectively. A sampled trajectory, 𝜏 ∼ 𝜋 is a trajectory of
the form {𝑠0, 𝑎0, 𝑠1, 𝑎1, ....., 𝑠𝑇 }, where 𝑠0 ∼ 𝜌0 is the starting state,
𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 ), and 𝑇 denotes the time step at which we terminate an
episode. The quantity in Eqn. 43 is the average spectral norm instead
of the maximum of the norms. Hence, in our work, we use Eqn. 39
as the smoothness metric. 𝐽 ({𝜏𝑖 }𝑁𝑖=1) in Eqn. 39 can be estimated
using the batch {𝜏𝑖 }𝑁𝑖=1 of data sampled from any policy.

E MORE RESULTS
We include results from some more experiments here. Fig. 6 shows
the average return (and one standard deviation) over an evaluation
environment. Table 4 reports average return and average metric for
perturbed models various tasks where perturbation is the variance of
Gaussian noise added to the original model parameters.
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