
0

Design of Distributed Reconfigurable Robotics Systems with
ReconROS

CHRISTIAN LIENEN andMARCOPLATZNER, Paderborn University, Computer Science Department

Robotics applications process large amounts of data in real-time and require compute platforms that provide
high performance and energy-e�ciency. FPGAs are well-suited for many of these applications, but there is a
reluctance in the robotics community to use hardware acceleration due to increased design complexity and a
lack of consistent programming models across the so�ware/hardware boundary. In this paper we present
ReconROS, a framework that integrates the widely-used robot operating system (ROS) with ReconOS, which
features multithreaded programming of hardware and so�ware threads for recon�gurable computers. �is
unique combination gives ROS 2 developers the �exibility to transparently accelerate parts of their robotics
applications in hardware. We elaborate on the architecture and the design �ow for ReconROS and report on a
set of experiments that underline the feasibility and �exibility of our approach.

CCS Concepts: •Computer systems organization →Embedded and cyber-physical systems; Architec-
tures; Robotics;

Additional Key Words and Phrases: robot operating sysstem (ROS), FPGA acceleration, robotics

ACM Reference format:
Christian Lienen and Marco Platzner. 2021. Design of Distributed Recon�gurable Robotics Systems with
ReconROS. ACM Trans. Recon�g. Technol. Syst. 1, 1, Article 0 (October 2021), 21 pages.
DOI: 10.1145/nnnnnnn.nnnnnnnn

1 INTRODUCTION
Robotics systems are o�en distributed and can involve challenging computational tasks. Resource-
e�ciency is a fundamental challenge of such systems since large amounts of data must be processed
with so� or even hard real-time constraints [25]. Compared to implementations on CPUs and
GPUs, FPGAs have been shown to o�er higher performance and higher energy-e�ciency for
many of the involved tasks, e.g., for vision kernels [16], for morphological image processing
functions [3], for feature detection and description algorithms [21], and for convolutional neural
network inference [22]. However, despite the demonstrated advantages of FPGAs, their uptake
into the robotics domain is still limited for several reasons. On one hand, FPGA design and, all
the more, so�ware/hardware co-design are arguably more challenging than embedded so�ware
development. On the other hand, robotics engineers and application developers are typically not
trained in FPGA circuit or hardware/so�ware co-design.
High level synthesis (HLS) tools are available today that accept standard C/C++ for describing

behavior and (semi-)automatically translate such descriptions to FPGA hardware. Although HLS
tools increase productivity and are thus highly useful, a consistent programming model for im-
plementing so�ware and hardware functions is still lacking. Porting a robotics application from
so�ware to hardware or accelerating parts of the application in hardware requires the creation of

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 ACM. 1936-7406/2021/10-ART0 $15.00
DOI: 10.1145/nnnnnnn.nnnnnnnn

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

ar
X

iv
:2

10
7.

07
20

8v
4

 [
cs

.R
O

]
 2

8
O

ct
 2

02
1

0:2 Lienen and Platzner

suitable interfaces between so�ware and FPGA hardware and very o�en leads to a re-development
of substantial parts of the application.

Besides the demand for increased computational capacity and robustness, also the distributedness
of typical robotics systems caused by the functional decomposition of larger applications into
distinct processes that run in parallel, and o�en under real-time constraints, as well as the potential
spatial distribution of these processes pose opportunities and challenges for hardware acceleration.
�ere have been approaches for including recon�gurable hardware into distributed embedded
systems, for example ReCoNets [7], LMGS [2] or RSS [4], but these approaches are not compatible
with existing and widely-used so�ware abstractions for creating distributed robotics systems.

In our work, we take up a very popular programming environment in the robotics domain,
the robot operating system (ROS). ROS is a middleware layer that models applications as set of
communicating nodes and provides several communication mechanisms for information exchange.

In this paper, which is an extension of our previous conference publication [11], we present the
open source project ReconROS as a novel integration of ROS with ReconOS [1]. �is paper extends
the conference publication mainly by more detailed explanations of the design �ow and tool chain,
by supporting also the ROS 2 communication paradigms actions and services, and by presenting
and quantitatively evaluating ReconROS on more advanced robotics applications, especially a
distributed real-world mechatronics model with multiple FPGAs. ReconOS provides an architecture
and programming model to enable shared memory multi-threading for so�ware and hardware
threads. As a result, ReconROS allows robotics developers to utilize hardware acceleration for
ROS applications either as hardware-accelerated ROS nodes or as ROS nodes mapped completely
to hardware. �e la�er option provides a consistent programming model for ROS applications,
independently of the mapping of ROS nodes to so�ware or hardware.
�e remainder of the paper is organized as follows: Section 2 provides an overview over ROS

and related approaches for integrating hardware accelerators into ROS. Section 3 elaborates on
di�erent approaches for accelerating ROS applications, before Section 4 details ReconROS with
its architecture and design �ow. In Section 5, we present experiments to quantify overheads
involved when mapping ROS nodes to hardware and to demonstrate the feasibility and �exibility
of ReconROS. Finally, Section 6 concludes the paper and gives an outlook to future work.

2 BACKGROUND AND RELATEDWORK
In this section, we �rst brie�y introduce the robot operating system (ROS) and then analyze and
compare related approaches for integrating FPGA hardware acceleration into ROS.

2.1 The Robot Operating System (ROS)
�e Robot Operating System (ROS)1 is an open source middleware on top of Linux for robotics
applications that was originally developed by Willow Garage and is now coordinated by the Open
Robotic Foundation. ROS comprises a multitude of libraries and an infrastructure for building and
reusing robot-related so�ware modules. �e ROS programming paradigm splits larger so�ware
architectures into nodes, which use certain communication mechanisms for information exchange.

�e decomposition into nodes promises code reusability and modularity for robot architectures.
Available communicationmechanisms comprise (i) a many-to-many publish/subscribemodel, which
allows to broadcast messages to multiple subscribers but is one-way, (ii) services that follow a client-
server model where the server provides data only if requested by the client, basically mimicking a
remote procedure call, and (iii) actions. Actions are the most elaborated communication mechanism
where a client inquires about a functionality at a server, starts the functionality if it is available, and
1h�ps://www.ros.org

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

https://www.ros.org

Design of Distributed Reconfigurable Robotics Systems with ReconROS 0:3

then receives regular feedback about the server’s progress. Technically, actions are implemented in
two phases. �e �rst phase corresponds to a ROS service and the second phase comprises a second
ROS service and a feedback channel using the ROS publish/subscribe mechanism.
ROS 2 is the latest release of ROS. In earlier versions only one ROS node per Linux process

was supported. �is prevented the use of shared memory communication when two or more
ROS nodes are mapped to the same compute node. While this limitation was mitigated through
the support of so-called nodelets, with ROS 2 multiple ROS nodes can natively run within one
Linux process and there is support for shared memory communication. ROS 2 is built on top of
an exchangeable communication layer, the data distribution service (DDS). DDS is an industry
standard for decentralized communication and available from di�erent vendors. Compared to
older ROS versions, the use of DDS provides be�er con�gurability and improves properties such as
scalability, reliability and durability [?].

Another important element of ROS are ROS messages, which are multi-layered combinations of
built-in data types such as integers, �oats and strings. Besides prede�ned message types, e.g., for
images or 3D point clouds, custom messages can be created. Since the length of a message might
vary during runtime, the ROS 2 middleware supports dynamic memory allocation for messages.

2.2 Related Approaches for ROS-FPGA Integration
In the last years, a few approaches have been presented that integrate recon�gurable hardware
accelerators into a ROS so�ware architecture. Yamashina et al. [24] proposed so-called ROS-
compliant FPGA components. A ROS node is implemented in so�ware and accesses the hardware
component, i.e., the accelerator, via a so�ware wrapper. Communication within the ROS network is
completely handled in so�ware and, whenever acceleration is needed, only the payload of the ROS
message is transmi�ed to the hardware component. Semantically, the communication between
the ROS so�ware wrapper and the hardware accelerator is a remote procedure call, realized in
Xilinux. In [23], the automated design tool cReComp (creator for recon�gurable component) is
presented to help generate ROS-compliant FPGA components and thus reduce development costs.
For the implementation of a ROS-compliant FPGA component with cReComp, the developer has to
modify a con�guration �le and create user logic for the hardware accelerator. �e con�guration
�le contains information about the interface between the processing system and the programmable
logic. cReComp generates the so�ware and hardware parts for this interface. An evaluation by a
group of test developers con�rmed higher design productivity compared to manually designed
interfaces.
In follow-up work, Sugata et al. [20] identify the communication times between ROS nodes

as bo�lenecks and aim to reduce these times through implementing the ROS publish/subscribe
messaging in hardware. In their system, communication is divided into two phases: the connection
establish phase, which is supported by so�ware, and the data communication phase that is realized
by two network stacks implemented in FPGA hardware. �is reduces the communication time
between nodes by 50 percent. Ohkawa et al. [14] extend this work by using high level synthesis
(HLS) for accelerator implementation and ROS protocol interpretation to increase productivity.
�eir approach takes the ROS message de�nition, the ROS node con�guration, and behavioral
code wri�en in C/C++ for the accelerator and generates the FPGA design. �e infrastructure
of the generated design includes several components: the hardwired TCP/IP stacks for the data
communication phase, a data conversion between ROS messages and the application, an interface
between the data conversion and the application, and, �nally, the application itself.
Leal et al. [9] present Forest, an approach for combining the more recent release ROS 2 with

hardware acceleration. Forest uses con�guration �les to specify so-called ROS 2-FPGA nodes,

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

0:4 Lienen and Platzner

which are a composition of a ROS 2 so�ware node, an HLS-coded FPGA hardware module, and a
PYNQ driver for the interaction between the ROS 2 so�ware node and the hardware module.

While [14, 20] migrate almost a complete ROS node to hardware, Podlubne and Göhringer [15]
go one step further and propose a methodology for full-hardware implementation of a number
of ROS nodes. �eir hardware designs comprise four parts: the ROS application nodes that use
publish/subscribe communication, a so-called application-to-ROS converter, a communication
interface, and a manager. Basically, the application-to-ROS converter serializes the ROS-based IP
tra�c on an AXI bus, the communication interface handles the AXI messages and sends them to a
TCP/IP stack to connect to external ROS nodes, and the manager coordinates the communication
between the ROS nodes and the TCP/IP stack. Conceptually, the application-to-ROS converter
must reside in hardware, but the communication interface and the manger could also be mapped to
the processing system of the platform FPGA. However, the main feature of this methodology is the
option to implement one or more ROS nodes fully in hardware and map them to recon�gurable logic
without the need of using a processor. Likewise, any application implemented in recon�gurable
hardware can be made ROS-compatible. Furthermore, the presented implementation can use
dynamic custom ROS messages.
Strohmer et al. [19] presented a ROS-enabled hardware framework for experimental robotics.

�ey use the programmable logic on a Xilinx Zynq-7000 for signal conditioning and partition the
available CPU cores into a non real-time part running Linux with ROS and a real-time part running
control algorithms. A distributed network of FPGAs can extend the signal conditioning part using
TosNet, which provides memory access across multiple nodes by memory mirroring.

Eisoldt et al. [5] contributed ReconfROS, a framework for ROS hardware acceleration based on
shared-memory communication. �e architecture on the system-on-chip comprises a so�ware
part including a ROS node, a shared memory area, and one or more processing blocks in the
programmable logic. �e so�ware-mapped ROS node subscribes to topics and writes received
messages into the shared memory area, from where the data can be accessed by the hardware
processing blocks. Finally, the so�ware-mapped ROS node publishes the resulting data. �e control
of the processing blocks is done via control registers which are mapped into the virtual address
space of the so�ware application.

3 DESIGN CONSIDERATIONS
�e goal of this work is to provide developers of ROS 2-based robotics applications with a �exible
means to utilize programmable logic for hardware acceleration. On the level of ROS 2 applications,
there are several schemes for such an integration, which are sketched in Figure 1. Figure 1(a) shows
a scheme where some parts of a ROS 2 node, typically runtime-consuming functions, are mapped
to one or several accelerators in programmable logic. �e semantics of the communication between
the ROS 2 node and the accelerators is that of a remote procedure call (RPC). In Figure 1(b), a
hardware accelerator is shared between several ROS 2 nodes. Communication semantics is still
RPC, but the implementation is more involved since proper arbitration between the accesses of the
ROS 2 nodes is required. �e third scheme shown in Figure 1(c) is the most advanced and allows
to map complete ROS 2 nodes to hardware. Essentially, the hardware accelerator is turned into
a ROS 2 node. In this scheme, all ROS 2 nodes can communicate via the ROS 2 communication
mechanisms, independently of their mapping to so�ware or hardware. Semantically, this is the
most intriguing scheme since it provides a consistent programming model across hardware and
so�ware where all ROS 2 nodes use exactly the same ROS 2 functions.

O�en, developers decide to a�ach interfaces to sensors and actuators directly to the recon�gurable
hardware and provide peripheral cores in hardware to access them rather than pu�ing them under

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

Design of Distributed Reconfigurable Robotics Systems with ReconROS 0:5

HardwareSoftware

(a) (b)

RPC

(c)

ROS2
node

Hardware
accelerator

HardwareSoftware

Pub/
sub

Pub/
sub

ROS2
node

ROS2
node

ROS2
node

HardwareSoftware

RPC

RPC
ROS2
node

ROS2
node

Hardware
accelerator

Hardware
acceleratorRPC

HardwareSoftware

(d) (e)

RPC

(f)

ROS2
node

Hardware
accelerator

HardwareSoftware

Pub/
sub

ROS2
node

ROS2
node

Peripheral
Core

HardwareSoftware

ROS2
node

ROS2
node

Pub/
sub

ROS2
node

Pub/
sub

Pub/
sub

Peripheral
Core

Fig. 1. Di�erent schemes for integrating ROS 2 node with hardware accelerators

operating system control on the host CPU. Figure 1(d) and Figure 1(e) sketch such schemes with
dashed lines. While these schemes are popular for maximizing performance in concrete robotics
applications, there are also two possible pitfalls: First, �exibility is reduced since directly connected
peripherals can not be accessed by other ROS 2 nodes, and much less so when the ROS 2 nodes are
mapped to di�erent compute nodes in a distributed system. Second, many sensors and actuators
come with standardized interfaces and corresponding drivers, e.g., USB, for which the use of an
existing, so�ware-accessible peripheral of the compute platform is much more productive than to
implement suitable interfaces and protocol stacks in hardware. Along the same line, the scheme
shown in Figure 1(f) directly connects several ROS 2 nodes mapped to hardware without relying on
ROS 2 communication mechanisms. �is can increase performance in particular cases, but again
lacks �exibility since the mapping of the ROS 2 nodes is severely constrained.
ReconROS2 integrates the ROS 2 middleware with the ReconOS/Linux architecture and pro-

gramming model for hardware/so�ware multithreading on platform FPGAs and can realize all
schemes shown in Figure 1(a)-(f) and their combinations. On one hand, ReconOS enables us to
develop applications as a set of so�ware and hardware threads under the shared memory model.
On the other hand, ROS 2 allows for declaring several ROS 2 nodes within one Linux process.
�erefore, in the schemes shown in Figure 1(a)(b)(d) each hardware accelerator is encapsulated by
a ReconOS hardware thread. In contrast to most of related work, ReconROS hardware accelerators
can communicate with the ROS 2 so�ware nodes not only by passing data in an RPC manner, but
can also use shared memory communication in the Linux virtual address space, which is more
e�cient when larger data structures have to be passed. In such a case, pointers to arbitrarily
large ROS 2 messages are passed and the accelerators themselves retrieve the relevant message
payload from shared memory. Furthermore, since ReconOS hardware threads can execute standard
operating system synchronization primitives, the required arbitration for the scheme in Figure 1(b)

2h�ps://github.com/Lien182/ReconROS

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

0:6 Lienen and Platzner

Characteristic [24],[23],
[20],[14] [15] [19] [5] [9] ReconROS

ROS version 1 1 1 1 2 2
Support of hardware/so�ware
co-designed ROS nodes X 7 X X X X

Multiple ROS
nodes per FPGA 7 X 7 7 7 X

Consistent hardware/so�ware
programming model 7 7 7 7 7 X

Memory access
for hardware accelerators 7 7 7 X 7 X

Support of arbitrarily
long ROS messages 7 7 7 X 7 X

Support of ROS
services and actions 7 7 7 7 7 X

Table 1. Comparison of approaches for integrating hardware accelerators with ROS

is straight-forward to realize. In the more advanced schemes shown in Figure 1(c)(e)(f), ReconOS
hardware threads implement complete ROS 2 nodes and allow them to access operating system
functions and also ROS 2 communication primitives, using the whole set of standard and even
custom-de�ned ROS messages.
Table 1 compares ReconROS with related approaches. In contrast to all other approaches

except for [9], ReconROS leverages the more future-oriented ROS 2 version which promises
improved scalability and real-time properties. Hardware acceleration of a ROS node mostly implies
to partition the node and implement it as hardware/so�ware co-design. �is is followed by all
approaches except [15]. Mapping several ROS nodes to hardware is possible in [5] and ReconROS.
Full memory access for hardware accelerators and arbitrarily long ROS messages are featured
by [5] and ReconROS. A consistent hardware/so�ware programming model and the support of all
available ROS 2 communication paradigms are unique features of ReconROS.

4 RECONROS
In this section, we present the architecture of ReconROS, followed by the design �ow and an
example that shows the programming interface.

4.1 Hardware/So�ware Architecture
ReconROS inherits most of its hardware architecture from the underlying ReconOS [1, 12]. Figure 2
shows an example architecture with two hardware ROS 2 nodes (threads) and several so�ware ROS
2 nodes (threads). �e hardware threads are mapped to recon�gurable slots and are connected to
the Linux operating system kernel running on the CPU via the operating system interface (OSIF)
and to shared memory via the memory interface (MEMIF). A so-called operating system �nite state
machine (OSFSM) is a�ached to each hardware thread to serialize the thread’s operating system
interactions. On the CPU, the communication with the OSIF is handled by a ReconROS driver and
by light-weight delegate threads that serve the operating system calls for the hardware threads.
�e memory subsystem enables the hardware threads to access the whole address space of the

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

Design of Distributed Reconfigurable Robotics Systems with ReconROS 0:7

Reconfigurable Slot 1

Main Memory

Reconfigurable Slot 0
Memory

Subsystem

Arbiter

MMU

Burst
Generator

Memory Controller

Linux

Hardware
Thread 0O

SF
SM

Re
co

nR
O

S
AP

I

Hardware
Thread 1O

SF
SM

Re
co

nR
O

S
AP

I

OSIF MEMIF

OSIF MEMIF

De
le

ga
te

 1

De
le

ga
te

 0
ReconROS

StackROS2 ReconOS

Processing System Programmable Logic

Ethernet Further Peripherals

ReconROS API

Software
Thread

Fig. 2. ReconROS architecture with two hardware ROS 2 nodes (threads) and several so�ware ROS 2 nodes
(threads)

ReconROS object ROS 2 equivalent Description

rosnode node Represents a ROS 2 node (so�ware or hardware)
in the ReconROS Stack

rosmsg message Message type for communication mechanisms
publish/subscribe, service, or action

rossub subscriber Enables a rosnode to subscribe to a topic
using a speci�c rosmsg

rospub publisher Enables a rosnode to publish to a topic
using a speci�c rosmsg

rossrvs / rossrvc service server / client Extends a rosnode by the capability to act as
server or client for ROS 2 services

rosacts / rosactc action server / client Extends a rosnode by the capability to act as
server or client for ROS 2 actions

Table 2. Objects of the ReconROS stack

ReconROS application, including shared memory and memory-mapped peripherals. ReconOS
supports virtual memory and therefore includes an MMU in its memory subsystem.
To realize ReconROS, we have developed two additional components, (i) the ReconROS stack

and (ii) the ReconROS API for so�ware and hardware threads. �e ReconROS stack extends
the existing set of ReconOS objects such as semaphores or mailboxes with ROS 2-related objects.
Table 2 lists the objects of the ReconROS stack. ROS 2 nodes mapped to either so�ware or hardware
can create these objects and call corresponding methods in exactly the same way.

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

0:8 Lienen and Platzner

�e ReconROS API abstracts the standard ROS 2 API and allows ReconOS threads to access the
objects of the ReconROS stack. As indicated in Figure 2, the ReconROS API is available for both
so�ware and hardware threads. While due to the �exibility of the underlying ReconOS system any
ROS 2 function can be made available for hardware threads, the current set of provided functions
dealing with the objects listed in Table 2 is su�cient to implement ROS 2 hardware nodes that
receive data, process it, and send it back. In particular, ROS 2 hardware nodes can publish and
subscribe to topics and assume both server and client roles in ROS 2 services and actions. So�ware
threads can not only access the ReconROS API but also the standard ROS 2 API to utilize a richer
set of functions.
In contrast to most of related work, our ROS 2 hardware nodes can access shared memory and

thus implement a more e�cient ROS message handling. When hardware threads access functions
of the ReconROS API, e.g., for subscribing or publishing to topics, the OSIF and the delegate
thread mechanism are used to pass pointers between the ReconROS stack in so�ware and the
hardware threads to allow them to access the ROS message data structures in memory through their
MEMIFs. Compared to message communication via the OSIF, which corresponds roughly to the
mechanism used in most of related work, this design decision brings about two advantages: First,
the MEMIF interface provides higher data rates due to the used AXI high performance interface
of the processing system. Second, the transmission of the data can be done without using the
processing system, which leads to more potential for parallel execution of so�ware and hardware
threads.

Figure 3 exempli�es the sequence of events when a hardware ROS 2 node initiates the function
ROS SUBSCRIBER TAKE from the ReconROS API 1 . �e function call of the hardware thread
includes the command for this API function and a reference to the subscriber. �e command
is transmi�ed by the OSFSM and unblocks the corresponding delegate thread on the CPU. �e
delegate then executes the ROS 2 subscriber take function rcl take on behalf of the hardware
thread 2 . When a message for the subscribed topic becomes available, the ReconROS stack stores
it in main memory 3 and unblocks the delegate thread 4 , which in turn sends the message
pointer via the OSIF back to the hardware thread 5 . Subsequently, the hardware thread can read
the message via its MEMIF 6 .
Publishing a message from a hardware thread works analogously: First, the hardware thread

stores the message in the main memory. �en, it sends a ROS publish command and the message
pointer via the OSIF interface to its delegate thread, which executes the command.
�e ReconROS mechanism described in Figure 3 also supports the implementation of ROS 2

services and actions. ROS 2 services comprise the receiving and sending of a single message, while
the more involved ROS 2 actions combine two ROS 2 services with a publish/subscribe feedback
channel.

4.2 Design Flow
�e design �ow for a ReconROS application adapts the original ReconOS design �ow [1] and is
sketched in Figure 4. �e �ow starts with the speci�cation of a ReconROS project comprising a
project con�guration �le, the sources for so�ware and hardware threads that represent the ROS 2
nodes, and the de�nition of message types used for the application.
�e con�guration �le speci�es the used ROS 2 objects with their dependencies, the ReconOS

architecture including, in particular, the number of recon�gurable slots and themapping of hardware
threads to recon�gurable slots, and the se�ings for the build tool �ow.

�e basic element of each ReconROS application is the rosnode object, which represents a ROS 2
node in the network. A rosnode object can be extended by one ormore communication objects, which

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

Design of Distributed Reconfigurable Robotics Systems with ReconROS 0:9

HW Thread

Main
Memory

Call ReconROS API
ROS_SUBSCRIBER_TAKE

Call ROS2
function rcl_take

Return
msg pointer

ROS message
object

Write message
into main
memory

Read message from
main memory

OSIF

MEMIF

ReconROS API

OSFSM

1

2

3

4

5

6

Delegate

Linux

ReconROS
Stack

ROS2ReconOS

Return
msg pointer

Fig. 3. Sequence of events when a ROS 2 hardware node calls the ROS SUBSCRIBER TAKE function from the
ReconROS API

can be subscriber (rossub) or publisher (rospub) objects for speci�c topics in case of publish/subscribe
communication, service (rossrvs / rossrvc) objects for client-server communications, and action
(rosacts / rosactc) objects for ROS 2 actions. In addition, each of these extensions, i.e., publisher,
subscriber, service, and action, requires a reference to an instance of a ROS message rosmsg of a
speci�c type. Declarations of rosmsg objects include the communication type, a group, and the
message type. For example, a speci�c message declaration could speci�c ’Image’ as message type,
’sensor msgs’ as group, and publish/subscribe as communication type.

�reads for ROS 2 so�ware nodes can be developed in C and threads for ROS 2 hardware nodes
in C/C++ for use with high-level synthesis or, alternatively in VHDL. Importantly, we provide the
same ReconROS API for so�ware and hardware threads which greatly simpli�es the creation of
hardware-accelerated versions of so�ware threads.

Based on the con�guration �le and the sources, the ReconOS development kit (rdk) creates the
ReconROS binaries for the speci�c project. �e rdk command export msg extracts information
from the message package de�nition and creates a Colcon project, which is then compiled to the
message package by the command build msg. Colcon is a ROS 2 build tool, and the message
package comprises message-related data and scripts that are used by the ROS 2 runtime. �e rdk
command export sw creates the so�ware project based on the sources for so�ware threads and
con�guration data. �e so�ware project also includes the ReconOS delegate threads, all necessary
initialization functions for the ReconOS primitives, and the ROS 2 middleware dependencies.
Moreover, the so�ware project includes header de�nitions for the messages, which are part of
the compiled message package. Since we target Xilinx platform FPGAs of the Zynq-7000 series,
which contain ARM Cortex-A9 cores, the rdk command build sw creates binaries for the ARM
architecture.

Both commands, build sw and build msg employ an ARM-32 docker container emulated with
Qemu to build the binaries. Compared to a standard cross-compilation tool chain for the embedded
ARM cores, our setup greatly simpli�es the ROS 2 build step with all its dependencies since the
package manager within the container can be used. Finally, the rdk command export hw creates the

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

0:10 Lienen and Platzner

hardware project based on the sources for hardware threads and con�guration data. �e hardware
project contains the complete ReconROS architecture with its OSIFs, MEMIFs, and supporting
modules. �e command calls Xilinx Vivado HLS for high-level synthesis and thus also requires the
message header de�nitions. �e FPGA bitstream is then created by the rdk command build hw.

Xilinx Vivado

Docker with Qemu emulation

Ubuntu 18.04 armhf root filesystem

ROS2 GCC Additional
dependencies

Xilinx
Vivado HLS

Includes

export_sw

export_msg

export_hw

build_sw

build_msg

build_hw

Uses

ReconROS Project ReconROS Development Kit (rdk)

Message Package
Definition

Hardware
Sources

Software
Sources

Project
Configuration

ReconROS Binaries

ARM
Binaries

Message Package

FPGA
Bitstream

Software
Project

Colcon
Project

Hardware
Project

Fig. 4. ReconROS design flow

4.3 Example ROS 2 Application
As an example we elaborate on a ROS 2 application comprising four nodes, which is shown in
Figure 5. Node 1 captures images from a camera and publishes them to the topic /image raw. Node
2, the digital image processing node (DIP), subscribes to this topic, o�oads the image processing to
node 3, the Sobel �lter node (Sobel), and publishes the �ltered images to the topic /image filtered.
Node 4 reads and displays the �ltered images. �e data exchange between the Sobel and DIP nodes
is done with a ROS 2 service called sobel service. �e ReconROS application comprises nodes 2
and 3, where both are to be mapped to recon�gurable hardware and run either on a single or on
two FPGA platforms. Nodes 1 and 4 are assumed to be existing or being compiled with appropriate
ROS 2 design �ows to other target architectures, e.g., desktop PCs.

request

response

Srv: /sobel_service Node 3:
Sobel

T: /image_raw

Node 2:
DIP

T: /image_filtered

Node 1:
Camera

Node 4:
Viewer

ReconROS Application

Fig. 5. Example ROS 2 application

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

Design of Distributed Reconfigurable Robotics Systems with ReconROS 0:11

Listing 1 shows the ROS 2-related part of the con�guration �le for the nodes 2 and 3. �e
information for the ROS 2 nodes is organized into so-called resource groups. Lines 1–4 specify node
3, beginning with the de�nition of a rosnode object named ”Sobel” in line 2. In line 3, a message
object of type ROS 2 service message is de�ned with further references to a ROS 2 message package
and the communication as well as service types. Line 4 declares a ROS 2 server object for a ROS 2
service, connects it to the ROS 2 node node 3 and the message object filter service msg, assigns
the name ”sobelservice” to it, and sets the polling time for checking for new service requests to
10000 𝜇𝑠 .

Lines 6–12 specify node 2, including the rosnode object named ”DIP”, the same message object
as used by node 2, and a client object for a ROS 2 service. Additionally, node 2 is extended with
the message object image msg of a ROS 2 built-in message type and corresponding subscriber and
publisher objects for the topics /image raw and /image filtered.

Listing 1. Configuration file (ROS 2-related part) for the ReconROS application shown in Figure 5

1 [ResourceGroup(at)ResourceGroupSobel]
2 node_3 = rosnode , "Sobel"
3 filter_service_msg = rossrvmsg , application_msgs , srv , SobelSrv
4 filter_server = rossrvs , node_3 , filter_service_msg , "sobelservice", 10000
5
6 [ResourceGroup(at)ResourceGroupDIP]
7 node_2 = rosnode , "DIP"
8 filter_service_msg = rossrvmsg , application_msgs , srv , SobelSrv
9 filter_client = rossrvc , node_2 , filter_service_msg , "sobelservice", 10000
10 image_msg = rosmsg , sensor_msgs , msg , Image
11 sub = rossub , node_2 , image_msg , "/image_raw", 10000
12 pub = rospub , node_2 , image_msg , "/image_filtered"

Listing 2 presents C/C++ code for the HLS-implementation of the ”Sobel” ROS 2 node. Using the
ReconROS API, the processing loop starts in line 3 with a blocking read for a new service request.
When a request becomes available, the function ROS SERVICESERVER TAKE returns a pointer to the
service request data structure. With the help of the OFFSETOF macro, line 4 determines another
pointer to the address of the request’s payload. �e macro MEM READ is employed to �rst read the
address of the image in line 7 and then to read the image into a ram structure within the FPGA in
line 8. A�er a Sobel �lter function is executed on the image in line 10, the result is wri�en back to
main memory via the MEM WRITE macro. Finally, the node sends the �ltered data back to the node
requesting the �lter service. (ROS SERVICESERVER SEND RESPONSE). �is code example shows the
steps required to create a ReconROS application and, hence, focuses on simplicity rather than on
optimized performance. For example, overlapping processing with memory transfers using a line
bu�er approach would be a natural optimization.

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

0:12 Lienen and Platzner

Listing 2. C/C++ code (partial) for the HLS implementation of the ”Sobel” ROS 2 node

1 while (1) {
2 // Wait for service request and get pointer to payload
3 pMsg = ROS_SERVICESERVER_TAKE(resourcedip_srv , resourcedip_filter_srv_req);
4 pMsg += OFFSETOF(application_msgs__srv__SobelSrv_Request , img.data.data);
5
6 // Get pointer to image in memory and copy it to FPGA -internal memory
7 MEM_READ(pMsg , pPayloadService , 4);
8 MEM_READ(pPayloadService [0], ram , IMAGE_SIZE * 4);
9
10 SobelFilter(ram);
11
12 // Write filtered image back to memory and send service response
13 MEM_WRITE(ram , pPayloadService [0], IMAGE_SIZE * 4);
14 ROS_SERVICESERVER_SEND_RESPONSE(resourcedip_srv , resourcedip_filter_srv_res);
15 }

Listing 3 displays a similar procedure for the ”DIP” node, which is expanded with three com-
munication objects, a subscriber object for the topic /image raw, a client object for the service
/sobel service, and a publisher object for the topic /image filtered.

Listing 3. C/C++ code (partial) for the HLS implementation of the ”DIP” ROS 2 node

1 while (1) {
2 // Wait for published image and get pointer to payload
3 pMsg = ROS_SUBSCRIBER_TAKE(resourcesobel_subdata , resourcesobel_image_msg);
4 pMsg += OFFSETOF(sensor_msgs__msg__Image , data.data);
5
6 // Get pointer to image in memory and copy it to FPGA -internal memory
7 MEM_READ(pMsg , pPayloadPubSub , 4);
8 MEM_READ(pPayloadPubSub [0], ram , IMAGE_SIZE * 4);
9
10 // Request filter service , pServiceRequest is set up during initialization
11 MEM_WRITE(ram , pServiceRequest [0], IMAGE_SIZE * 4);
12 ROS_SERVICECLIENT_SEND_REQUEST(resourcesobel_srv ,resourcesobel_filter_srv_req);
13
14 // Wait for service response and get pointer to payload
15 pMsg = ROS_SERVICECLIENT_TAKE(resourcesobel_srv , resourcesobel_filter_srv_res);
16 pMsg += OFFSETOF(application_msgs__srv__SobelSrv_Response , img.data.data);
17
18 // Get pointer to payload and copy it to FPGA -internal memory
19 MEM_READ(pMsg , pPayloadService , 4);
20 MEM_READ(pPayloadService [0], ram , IMAGE_SIZE * 4);
21
22 // Write filtered image back to memory and publish it
23 MEM_WRITE(ram , pPayloadPubSub [0], IMAGE_SIZE * 4);
24 ROS_PUBLISHER_PUBLISH(resourcesobel_pubdata , resourcesobel_image_msg);
25 }

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

Design of Distributed Reconfigurable Robotics Systems with ReconROS 0:13

5 EVALUATION
In this section, we �rst describe experiments to quantify the overheads involved for mapping ROS 2
nodes to hardware, followed by a distributed mechatronics application example that demonstrates
the feasibility and �exibility of ReconROS.

Software

(a)

Hardware (PL)Software (PS)

ROS2
Node

ROS2
NodeGbE

MemoryMemory

T: /send

T: /recv

tstart

tend

ZynqPC

Software

(b)

Hardware (PL)Software (PS)

ROS2
Node

ROS2
NodeGbE

MemoryMemory

T: /send

T: /recv

tstart

tend

ZynqPC

Fig. 6. ReconROS ping-pong application

5.1 ROS 2 Hardware Node Overheads
To characterize runtime overheads when mapping ROS 2 nodes to hardware instead of so�ware,
and contrasting them to communication times within a ROS 2 network, we have implemented
a ping-pong ReconROS application with two ROS 2 nodes distributed onto a desktop PC and
a Mini-ITX 7Z100 board containing a Xilinx Zynq-7100 platform FPGA, connected via Gigabit
Ethernet (GbE) as shown in Figure 6. �e platform FPGA runs Ubuntu 18.04 and ReconROS
based on ROS 2 dashing. All ROS 2 nodes use the same C/C++ source for so�ware and hardware
implementations. So�ware implementations have been compiled with optimizations level O3, and
hardware implementations have been created with HLS without any optimizations. All reported
runtimes have been averaged over 1000 executions.
�e �rst experiment determines the basic overhead for mapping a ROS 2 node to hardware

and consists of an echo application, where the ROS 2 node on the PC publishes messages to the
topic T:/send and the ROS 2 node on the Zynq subscribes to this topic, receives messages in local
memory and publishes them to the topic T:/recv. Table 3 presents the runtimes for the echo tasks
in so�ware and hardware, 𝑡𝑝𝑝−𝑒𝑐ℎ𝑜−𝑆𝑊 and 𝑡𝑝𝑝−𝑒𝑐ℎ𝑜−𝐻𝑊 , measured as 𝑡𝑝𝑝 = 𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡 on the PC
as indicated in Figure 6, and the resulting speedup 𝑆𝑝𝑝−𝑒𝑐ℎ𝑜 .

�e echo so�ware node does actually not perform any operations except calling subscribe/publish
functions. To implement the same behavior, the echo hardware node needs ReconOS signaling to
communicate between the underlying hardware thread and the so�ware-bound delegate thread.
Since only pointers to messages and identi�ers for the topics and the message are passed, the echo
nodes exhibit a runtime independent of the message size. As Table 3 shows, for the very small

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

0:14 Lienen and Platzner

Message
size

𝑡𝑝𝑝−𝑒𝑐ℎ𝑜−𝑆𝑊
[ms]

𝑡𝑝𝑝−𝑒𝑐ℎ𝑜−𝐻𝑊
[ms]

𝑆𝑝𝑝−𝑒𝑐ℎ𝑜

4 Byte 0.81 1.2 0.68
8 KiB 10.65 10.48 1.02
1 MiB 52.21 52.16 1.01
6 MiB 363.91 363.30 1.00
10 MiB 630.37 624.02 1.01

Table 3. Runtimes and speedups for the echo ping-pong application

message size of 4 Byte there is a measurable slowdown due to the ReconOS signaling, but for larger
message sizes this overhead is completely hidden behind the communication times. It has to be
noted that mapping a ROS 2 node to hardware reduces the load on the CPU and this can become a
source for additional speedups for the overall ROS 2 applications. Such an e�ect, albeit very small,
can be observed in the echo experiment where some speedups are slightly larger than one.

�e second experiment is a copy application that evaluates the memory read/write performance
of ROS 2 hardware nodes. �e di�erence to the echo application is that the Zynq-bound ROS 2 nodes
create a copy of the message in local memory before publishing to topic T:/recv. Table 4 presents
the runtimes for the raw copy tasks in so�ware and hardware, 𝑡𝑟𝑎𝑤−𝑐𝑜𝑝𝑦−𝑆𝑊 and 𝑡𝑟𝑎𝑤−𝑐𝑜𝑝𝑦−𝐻𝑊 ,
and the resulting raw speedup 𝑆𝑟𝑎𝑤−𝑐𝑜𝑝𝑦 , as well as the runtimes for the overall copy ping-pong
application, 𝑡𝑝𝑝−𝑐𝑜𝑝𝑦−𝑆𝑊 , 𝑡𝑝𝑝−𝑐𝑜𝑝𝑦−𝐻𝑊 , and the resulting speedup 𝑆𝑝𝑝−𝑐𝑜𝑝𝑦 for di�erent message
sizes.

Message
size

𝑡𝑟𝑎𝑤−𝑐𝑜𝑝𝑦−𝑆𝑊
[ms]

𝑡𝑟𝑎𝑤−𝑐𝑜𝑝𝑦−𝐻𝑊
[ms]

𝑆𝑟𝑎𝑤−𝑐𝑜𝑝𝑦 𝑡𝑝𝑝−𝑐𝑜𝑝𝑦−𝑆𝑊
[ms]

𝑡𝑝𝑝−𝑐𝑜𝑝𝑦−𝐻𝑊
[ms]

𝑆𝑝𝑝−𝑐𝑜𝑝𝑦

4 Byte 0.01 0.01 1.00 1.69 1.71 0.99
8 KiB 0.03 0.13 0.23 11.39 10.78 1.06
1 MiB 3.59 12.81 0.28 58.71 66.25 0.89
6 MiB 18.91 76.35 0.25 381.44 438.03 0.87
10 MiB 31.54 127.19 0.25 643.47 735.30 0.86

Table 4. Runtimes for the raw copy ROS 2 nodes in so�ware and hardware and for the overall copy ping-pong
application, and corresponding speedups

Since the underlying ReconOS implementation has a lower memory bandwidth compared to the
Zynq’s ARM processor subsystem, we observe a slowdown for the raw ROS 2 hardware copy node,
which is distinct for larger message sizes and saturates at about 0.25. �us, copying a message
of 10 MiB is about 4× slower in hardware than in so�ware. While improving ReconOS’ memory
subsystem would obviously improve the situation, Table 4 also shows that for the overall copy
ping-pong application where we have to take communication into account the slowdown is less
pronounced and saturates at around 0.86. Again, due to e�ects of the underlying so�ware stacks of
Linux, ROS 2, and ReconOS, and the possible parallel execution of hardware and so�ware threads,
the speedups are not consistently decreasing and for 8 KiB the speedup is even larger than one.

Related work [20] has also reported on measured communication times between a ROS node on
a PC and a ROS so�ware node on an ARM/Zynq connected with Gigabit Ethernet. For a one-way
communication the authors determined approximately 60ms for a 1MiBmessage and approximately

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

Design of Distributed Reconfigurable Robotics Systems with ReconROS 0:15

275 ms for a 6 MiB message. Comparing with the corresponding data points of Table 3, which
are for two-way communication, we see that ReconROS achieves higher performance, albeit on a
di�erent ROS version.

In a third experiment, we have have implemented the following four smaller applications on the
platform shown in Figure 6:

Inverse kinematics: �is application computes control signals for driving a servo motor that sets
a joint angle based on a desired position and orientation of a robotic manipulation platform. �e
application is part of a larger mechatronic system [10] for controlling the movements of a Stewart
platform [?] with six degrees of freedom. �e computation involves coordinate transformations
and an iterative implementation of the arctan() function. �e ROS 2 input message is an unsigned
32 Bit integer packed with two �xed-point numbers in Q8.6 format that represent the desired
rotation angles of the platform around the x-axis and the y-axis. �e ROS 2 output messages is
also a 32 Bit unsigned integer containing a 10 Bit unsigned integer which is the pulse width coded
control signal for the motor.

Number sorting: �is application sorts an array of 32 Bit unsigned integers based on the odd-even
transposition sort algorithm [8]. �e algorithm is based on a comparator network that employs 𝑛
stages with 𝑛 comparisons each to sort 𝑛 numbers. �e ROS 2 node on the PC generates random
numbers and publishes messages comprising 2048 numbers as an array. �e Zynq-based ROS 2
node sorts the data and sends it back.

Sobel �lter: �is application implements a Sobel image �lter [6] operating on three channels
(RGB) of dimension 640× 480. �e �lter applies two �lter kernels on each channel of the image and
calculates the absolute value of the dot product as an approximation for the geometric mean. �e
ROS 2 input and output messages are of the type Image from the ROS 2 sensor message package.

MNIST classi�er: �is application classi�es handwri�en digits from the MNIST dataset by imple-
menting a neural network. �e classi�er is implemented as a ROS 2 service, which accepts input
request images of size 28 × 28 as custom ROS 2 messages and response the estimated digit. �e
classi�er consists of three convolution layers, three pooling layers and two fully connected layers.
�e achieved accuracy is about 97%.

ReconROS application Slice LUTs DSP BRAM
Inverse kinematics 4802 (1.73%) 17 (0.84%) 3 (0.40%)
Number sorting 10396 (3.75%) 0 (0.00%) 2 (0.26%)
Sobel �lter 13625 (4.91%) 0 (0.00%) 10 (1.32%)
MNIST classi�er 26071 (9.40%) 18 (0.89%) 57.5 (7.62%)

Table 5. Resource usage and utilization (in % of the Xilinx Zynq 7100) for the implemented ReconROS
applications. Resource figures are reported for look-up tables (Slice LUTs), digital signal processing blocks
(DSP), and block memory (BRAM)

Table 5 displays resource usage and FPGA utilization for the four applications, and Table 6 the
raw runtimes for the Zynq-bound ROS 2 nodes, which are either mapped to the ARM core (𝑡𝑟𝑎𝑤−𝑆𝑊)
or to recon�gurable logic (𝑡𝑟𝑎𝑤−𝐻𝑊), the resulting raw speedup 𝑆𝑟𝑎𝑤 , as well as the runtimes for
the overall applications measured in the ping-pong fashion shown in Figure 6.

�e inverse kinematics application achieves a raw ROS 2 node speedup of 6.32×, the sobel �lter
and MNIST classi�er also achieve raw speedups, but the number sorting application does not

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

0:16 Lienen and Platzner

bene�t from hardware mapping. It has to be noted that the goal of these experiments has been to
evaluate the overheads involved for ReconROS applications rather than achieving high speedups
through hardware acceleration. �ere is obviously potential to improve the raw speedups for
the hardware-mapped ROS 2 nodes, in particular for the number sorting application where more
parallelism can be exploited. Depending on the relation between communication and computation
times, the speedups for the overall ROS 2 applications are sometimes considerably lower than the
raw speedups, i.e., for inverse kinematics, sometimes slightly lower, i.e., for the sobel �lter and the
MNIST classi�er, and in the case of number sorting even slightly higher.

ReconROS
application

Message Size
In/Out

𝑡𝑟𝑎𝑤−𝑆𝑊
[ms]

𝑡𝑟𝑎𝑤−𝐻𝑊
[ms]

𝑆𝑟𝑎𝑤 𝑡𝑝𝑝−𝑆𝑊
[ms]

𝑡𝑝𝑝−𝐻𝑊
[ms]

𝑆𝑝𝑝

Inverse 4/4 Byte 1.20 0.19 6.32 7.70 6.64 1.16
Sorting 8/8 KiB 17.44 35.11 0.50 24.42 42.08 0.58
Sobel 900/900 KiB 37.53 22.28 1.68 83.39 68.54 1.22
MNIST 850/4 Byte 88.03 30.74 2.86 98.58 41.25 2.39

Table 6. Runtimes of so�ware and hardware ROS 2 nodes and for the overall applications, and corresponding
speedups. The hardware implementations are not optimized for performance

To summarize the set of experiments detailed in this section: We have shown that while there is
an overhead for mapping a ROS 2 node to hardware, the impact on an overall ROS 2 application
depends on many factors such as i) the raw speedup of the ROS 2 hardware node, ii) the message
size, iii) the overall application’s topology and involved communication pa�erns and times, and
iv) the ratio between node computation times and communication times. �e memory access
performance for ROS 2 hardware nodes is lower than for their so�ware counterparts, an aspect
that will be addressed as part of future work. Additional speedups can be realized through the
parallel execution of hardware and so�ware threads.
Finally, all hardware and so�ware versions of the ReconROS applications are semantically

identical. Creating the di�erent versions simply requires a change in the ReconROS con�guration
�le before running the functions of the ReconROS development kit. �is �exibility in generating
variants of ROS 2 hardware-accelerated applications is the main feature of ReconROS.

5.2 Mechatronics Model
To showcase the suitability of ReconROS for distributed hardware-accelerated ROS 2 applications
we present the mechatronics model [10] shown in Figure 7, that we have physically implemented.
�e model comprises three ball-on-plate stations that are able to balance a mechanical platform
such that a ball thrown onto the platform does not fall o�. To this end we employ a Stewart platform
[?] that allows the system to move an object in six degrees of freedom, including linear translations
in 𝑥 , 𝑦 and 𝑧 direction but also three rotations (pitch, roll, and yaw). Stewart platforms are perfectly
suitable for high dynamic mechatronics applications such as �ight simulators or telescopes. In our
setup, we drive six servo motors by pulse-width modulated signals to adjust corresponding angles
between the motor axes and the legs connecting to the platform, which then results in the wanted
movement. To capture the position (𝑥,𝑦) of the ball on the platform we use a resistive touchscreen
mounted on the surface of the platform. Additionally, each ball-on-plate station is equipped with a
monitor, and a camera is capturing all stations.

�e computing infrastructure includes three ZedBoards, as outlined in Figure 7. Each ZedBoard
is equipped with a Xilinx Zynq-7020 platform FPGA and runs Ubuntu 18.04 and ReconROS based

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

Design of Distributed Reconfigurable Robotics Systems with ReconROS 0:17

on ROS 2 dashing. �e servo actuators and touchscreen sensors are connected to ZedBoard-Main,
the camera is connected to ZedBoard-1 and the monitor inputs on the three ball-on-plate stations
are driven by a ZedBoard each. All compute platforms are connected in an Ethernet network.
�e overall ROS 2 application splits into two parts, the control of ball-on-plate stations and

a video processing chain. Figure 8 shows all involved ROS 2 nodes with their communication
objects. �e control loop for a ball-on-plate station comprises the four ROS 2 nodes Touch, Control,
Inverse and Servo. �e Touch node starts a new control cycle by reading the actual position of
the ball on the platform. �is information is scaled and sent to the Control node that implements a
PID controller and a Kalman �lter to determine the desired rotations for the platform with respect
to the 𝑥 and 𝑦 axes. �e subsequent Inverse node applies inverse kinematics transformations to
determine the required angle for each of the six servo motors. Finally, the Servo node converts the
angles into pulse width modulated signals to drive the motors.

�e video processing chain includes ROS 2 nodes for video input, HDMI in, processing, Filter,
and video output, HDMI out. �e HDMI interface implementation includes mechanisms for the
transport of image data from and to the main memory without processor interaction by using AXI
VDMAs (Video Direct Memory Access). All ROS 2 nodes use publish/subscribe mechanisms to
communicate with topics shown in Figure 8.

ZedBoard-1ZedBoard-Main

Servo	x	6 Touch	sensor Display

ZedBoard-2

AXI	GP0	IF

Servo	x	6 Touch	sensor Display Servo	x	6 Touch	sensor Display

Ball-on-plate	1

HDMI	
out

Ball-on-plate	2 Ball-on-plate	3

Touch
1

Touch
2

Touch
3

Inverse
2

Servo
1

Servo
2

Servo
3

HDMI
out

GbE

Inverse
1

Control
1

Control
2

HDMI
in

HDMI
out

Control
3

Inverse
3

Filter

HDMI
out

SoIware Hardware SoIware Hardware SoIware Hardware

HDMI	
in

HDMI	
out

HDMI	
in

HDMI	
out

HDMI	
in

Fig. 7. Mechatronics model based on three ball-on-plate stations with Stewart platforms

We have realized all ROS 2 nodes in so�ware and hardware. Table 7 lists the raw node runtimes.
�e hardware implementations of the inverse kinematics and the �lter nodes can exploit low-level
parallelism and achieve speedups. All other nodes are either more control-�ow intensive, exhibit
li�le computation, or are bound by the memory bandwidth and are thus be�er mapped to so�ware.

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

0:18 Lienen and Platzner

Touch
1

Servo
1

Control
1

Filter

HDMI
Out 1

HDMI
In

HDMI
Out 3

HDMI
Out 2

T: img_raw

T: img_filteredInverse
1

T: rotation_1

T: angle_1

T: ball_position_1

Touch
2

Servo
2

Control
2

Inverse
2

T: rotation_2

T: angle_2

T: ball_position_2

Touch
3

Servo
3

Control
3

Inverse
3

T: rotation_3

T: angle_3

T: ball_position_3

Fig. 8. ROS 2 application with node and communication objects for the mechatronics model shown in Figure 7

Given that both so�ware and hardware implementations for the ROS 2 nodes are available,
developers can easily distribute the nodes across the boards in the network, change the mapping of
nodes in the project con�guration �les, and re-build the system. One speci�c example for such
a mapping of nodes is indicated in Figure 7. With this mapping, the sampling time of the Touch
node and, thus, the control loop could be set to 20 ms which results in rather smooth movements
of the Stewart platforms. Table 8 lists the resources required for this speci�c mapping, including
the actual hardware-mapped nodes, the necessary ReconROS infrastructure, and the components
needed for the HDMI input and output interfaces.

ROS 2 node 𝑡𝑟𝑎𝑤−𝑛𝑜𝑑𝑒−𝑆𝑊
[ms]

𝑡𝑟𝑎𝑤−𝑛𝑜𝑑𝑒−𝐻𝑊
[ms]

𝑆𝑟𝑎𝑤−𝑛𝑜𝑑𝑒

Servo 0.001 < 0.001 ≈1
Control 0.017 0.030 0.57
Inverse 1.430 0.196 7.30
Touch 0.001 < 0.001 ≈1
HDMI In 5.160 18.460 0.28
HDMI Out 4.590 18.400 0.25
Filter 37.530 22.280 1.68

Table 7. Runtimes for the raw ROS 2 nodes of the mechatronics example in so�ware and hardware

We want to note that the implemented system is not a hard real-time system with a guaranteed
sampling period of 20 ms. Creating a hard real-time system would require to modify ReconROS
and the underlying ROS 2 and Linux layers, as well as substitute Ethernet communication with a
real-time version and is clearly out of scope for this work.

Moreover, the optimization of the mapping of nodes between hardware and so�ware and across
the FPGA board is also not addressed in this work. However, to demonstrate the trade-o�s involved

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

Design of Distributed Reconfigurable Robotics Systems with ReconROS 0:19

Board FPGA Slice LUTs DSP BRAM
Zedboard Main Zynq-7020 13467 (25.31%) 0 (0.00%) 3 (2.14%)
Zedboard 1 Zynq-7020 13235 (24.88%) 77 (35.00%) 3 (2.14%)
Zedboard 2 Zynq-7020 13031 (24.49%) 77 (35.00%) 3 (2.14%)

Table 8. Resource usage and utilization (in % of the Xilinx Zynq 7020) for the three involved FPGA-boards.
Resource figures are reported for look-up tables (Slice LUTs), digital signal processing blocks (DSP), and block
memory (BRAM)

we have created three mappings of the mechatronics application and measured the processing
times of the three control loops for 300 sampling periods. Figure 9 displays the relative frequencies
for the resulting processing times for all three control loops, i.e., for the three Stewart platforms,
(columns 1-3) and for three di�erent ROS 2 mappings (rows 1-3). �e �gure shows the processing
time frequencies from 0 to 20 ms and additionally provides the percentage of missed deadlines,
where the deadline has been set to 20 ms.

�e �rst row uses the mapping from Figure 7, that distributes the nodes over all three FPGA
boards and over so�ware and hardware. �is mapping reaches all deadlines for platform 1, misses
0.25% of the deadlines for platform 2, and 8.15% for platform 3. �e second row shows the same
distribution of nodes across the three FPGA boards but maps all nodes to so�ware. In this case,
the fraction of missed deadlines is rather low on platforms 1 and 3, and with 14.63% somewhat
higher on platform 2. Finally, the mapping of row 3 places all nodes in so�ware on Zedboard-Main
with the result that most of the deadlines are missed. �e Stewart platforms for mappings 1 and 2
move rather smoothly, but for mapping 3 the platforms show very jerky movements making the
application unusable.

HW-SW
 distributed
(Figure 7)

0 10 20
Control loop processing
time [ms] (0.00% DM)

0.0%

20.0%

Re
l.

fre
qu

en
cy

Ball-on-plate-1

0 10 20
Control loop processing
time [ms] (0.25% DM)

0.0%

20.0%

Re
l.

fre
qu

en
cy

Ball-on-plate-2

0 10 20
Control loop processing
time [ms] (8.15% DM)

0.0%

20.0%

Re
l.

fre
qu

en
cy

Ball-on-plate-3

All SW
 distributed
(Figure 7)

0 10 20
Control loop processing
time [ms] (2.66% DM)

0.0%

20.0%

Re
l.

fre
qu

en
cy

0 10 20
Control loop processing
time [ms] (14.63% DM)

0.0%

20.0%

Re
l.

fre
qu

en
cy

0 10 20
Control loop processing
time [ms] (0.80% DM)

0.0%

20.0%

Re
l.

fre
qu

en
cy

All SW
 ZedBoard Main

0 10 20
Control loop processing
time [ms] (45.95% DM)

0.0%

20.0%

Re
l.

fre
qu

en
cy

0 10 20
Control loop processing
time [ms] (76.01% DM)

0.0%

20.0%

Re
l.

fre
qu

en
cy

0 10 20
Control loop processing
time [ms] (89.19% DM)

0.0%

20.0%

Re
l.

fre
qu

en
cy

Fig. 9. Relative frequencies of measured processing times for the three control paths
(Touch→Control→Inverse→Servo) and three di�erent node mappings. (DM = Deadline Missed [%])

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

0:20 Lienen and Platzner

6 CONCLUSION AND FUTUREWORK
In this paper we have presented ReconROS, a novel approach that enables developers of ROS 2
robotics applications to leverage the performance and energy-e�ciency of FPGA implementations.
ReconROS bases on ReconOS and allows for �exible hardware acceleration of ROS 2 nodes through
an API that supports a consistent programmingmodel for ROS 2 nodes across the hardware/so�ware
boundary, while preserving the main advantages of ReconOS such as full memory access for
hardware threads or operating system like synchronization mechanisms for hardware/so�ware
co-designed applications.

Future work is planned along the following lines: First, we want to leverage partial recon�gura-
tion available with ReconOS [1] to manage the reprogrammable hardware resources more e�ciently,
for example by con�guring ROS 2 hardware nodes on demand. Second, since in distributed ROS
networks not all compute nodes might be equipped with platform FPGAs, we plan to investigate the
feasibility of a ROS 2 node o�ering acceleration-as-a-service. �ird, while programming distributed
robotics applications with FPGA acceleration is greatly supported by ReconROS, there is a demand
for simulating such systems before deployment and for adding runtime monitoring functionality
that can be used for debugging. Finally, we plan to showcase ReconROS for multi-drones [17]
which are one of the most demanding classes of distributed robotics systems.

REFERENCES
[1] Andreas Agne, Markus Happe, Ariane Keller, Enno Lübbers, Bernhard Pla�ner, Marco Platzner, and Christian Plessl.

2014. ReconOS: An Operating System Approach for Recon�gurable Computing. IEEE Micro 34, 1 (2014), 60–71.
[2] Christophe Bobda, Kevin Cheng, Felix Mühlbauer, Klaus Drechsler, Jan Schulte, Dominik Murr, and Camel Tanougast.

2009. Enabling self-organization in embedded systems with recon�gurable hardware. International Journal of
Recon�gurable Computing (2009).

[3] Christian Brugger, Lorenzo Dal’Aqua, Javier Alejandro Varela, Christian De Schryver, Mohammadsadegh Sadri,
Norbert Wehn, Martin Klein, and Michael Siegrist. 2015. A quantitative cross-architecture study of morphological
image processing on CPUs, GPUs, and FPGAs. In 2015 IEEE Symposium on Computer Applications Industrial Electronics
(ISCAIE). 201–206.

[4] Kevin Cheng, Ali Akbar Zarezadeh, Felix Muhlbauer, Camel Tanougast, and Christophe Bobda. 2010. Auto-
recon�guration on self-organized intelligent platform. In 2010 NASA/ESA Conference on Adaptive Hardware and
Systems. 309–316.

[5] Marc Eisoldt, Ste�en Hinderink, Marco Tassemeier, Marcel Flo�mann, Juri Vana, �omas Wiemann, Julian Gaal, Marc
Rothmann, and Mario Porrmann. 2021. ReconfROS: Running ROS on Recon�gurable SoCs. In Proceedings of the
2021 Drone Systems Engineering and Rapid Simulation and Performance Evaluation: Methods and Tools Proceedings.
Association for Computing Machinery, New York, NY, USA, 16–21.

[6] R.C. Gonzalez and R.E. Woods. 2018. Digital Image Processing. Pearson.
[7] C. Haubelt, D. Koch, and J. Teich. 2003. ReCoNet: modeling and implementation of fault tolerant distributed

recon�gurable hardware. In Proc. 16th Symposium on Integrated Circuits and Systems Design, 2003. SBCCI 2003. 343–
348.

[8] D.E. Knuth. 1998. �e Art of Computer Programming: Volume 3: Sorting and Searching. Pearson Education.
[9] Daniel Pinheiro Leal, Midori Sugaya, Hideharu Amano, and Takeshi Ohkawa. 2020. Automated Integration of High-

Level Synthesis FPGA Modules with ROS2 Systems. In 2020 International Conference on Field-Programmable Technology
(ICFPT). 292–293.

[10] Christian Lienen. 2019. Implementing a Real-time System on a Platform FPGA operated with ReconOS. Master’s thesis.
h�ps://ris.uni-paderborn.de/publication/15874

[11] Christian Lienen, Marco Platzner, and Bernhard Rinner. 2020. ReconROS: Flexible Hardware Acceleration for ROS2
Applications. In 2020 International Conference on Field-Programmable Technology (ICFPT). 268–276.

[12] Enno Lübbers and Marco Platzner. 2009. ReconOS: Multithreaded Programming for Recon�gurable Computers. ACM
Transactions on Embedded Computing Systems 9, 1 (2009), 8:1–8:33.

[13] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. 2016. Exploring the Performance of ROS2. In Proceedings of the 13th
International Conference on Embedded So�ware (Pi�sburgh, Pennsylvania) (EMSOFT ’16). Association for Computing
Machinery, New York, NY, USA, Article 5, 10 pages.

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

https://ris.uni-paderborn.de/publication/15874

Design of Distributed Reconfigurable Robotics Systems with ReconROS 0:21

[14] Takeshi Ohkawa, Yuhei Sugata, Harumi Watanabe, Nobuhiko Ogura, Kanemitsu Ootsu, and Takashi Yokota. 2019.
High Level Synthesis of ROS Protocol Interpretation and Communication Circuit for FPGA. In 2019 IEEE/ACM 2nd
International Workshop on Robotics So�ware Engineering (RoSE). 33–36.

[15] Ariel Podlubne and Diana Göhringer. 2019. FPGA-ROS: Methodology to Augment the Robot Operating System with
FPGA Designs. In 2019 International Conference on ReConFigurable Computing and FPGAs (ReConFig). 1–5.

[16] Murad Qasaimeh, Kristof Denolf, Jack Lo, Kees Vissers, Joseph Zambreno, and Phillip H. Jones. 2019. Comparing
Energy E�ciency of CPU, GPU and FPGA Implementations for Vision Kernels. In 2019 IEEE International Conference
on Embedded So�ware and Systems (ICESS). 1–8.

[17] Jürgen Scherer and Bernhard Rinner. 2020. Multi-Robot Persistent Surveillance With Connectivity Constraints. IEEE
Access 8 (2020), 15093–15109.

[18] D. Stewart. 1965. A Platform with Six Degrees of Freedom. Proceedings of the Institution of Mechanical Engineers 180,
1, 371–386.

[19] Beck Strohmer, Anders BØgild, Anders Stengaard SØrensen, and Leon Bonde Larsen. 2019. ROS-Enabled Hardware
Framework for Experimental Robotics. In 2019 International Conference on ReConFigurable Computing and FPGAs
(ReConFig). 1–2.

[20] Yuhei Sugata, Takeshi Ohkawa, Kanemitsu Ootsu, and Takashi Yokota. 2017. Acceleration of Publish/Subscribe
Messaging in ROS-Compliant FPGA Component. In Proc. of the 8th International Symposium on Highly E�cient
Accelerators and Recon�gurable Technologies (HEART2017) (Bochum, Germany). ACM, Article 13, 6 pages.

[21] Onur Ulusel, Christopher Picardo, Christopher B. Harris, Sherief Reda, and R. Iris Bahar. 2016. Hardware acceleration of
feature detection and description algorithms on low-power embedded platforms. In 2016 26th International Conference
on Field Programmable Logic and Applications (FPL). 1–9.

[22] Stylianos I. Venieris and Christos-Savvas Bouganis. 2019. fpgaConvNet: Mapping Regular and Irregular Convolutional
Neural Networks on FPGAs. IEEE Transactions on Neural Networks and Learning Systems 30, 2 (2019), 326–342.

[23] Kazushi Yamashina, Hitomi Kimura, Takeshi Ohkawa, Kanemitsu Ootsu, and Takashi Yokota. 2016. CReComp:
Automated Design Tool for ROS-Compliant FPGA Component. In Proc. IEEE 10th International Symposium on Embedded
Multicore/Many-Core Systems-on-Chip, MCSoC 2016. IEEE, 138–145.

[24] Kazushi Yamashina, Takeshi Ohkawa, Kanemitsu Ootsu, and Takashi Yokota. 2015. Proposal of ROS-compliant FPGA
Component for Low-Power Robotic Systems. , 62-67 pages. arXiv:1508.07123 [cs.AR] Second International Workshop
on FPGAs for So�ware Programmers (FSP 2015).

[25] Evşen Yanmaz, Saeed Yahyanejad, Bernhard Rinner, Hermann Hellwagner, and Christian Be�ste�er. 2018. Drone
networks: Communications, coordination, and sensing. Ad Hoc Networks 68 (2018), 1–15.

ACM Transactions on Recon�gurable Technology and Systems, Vol. 1, No. 1, Article 0. Publication date: October 2021.

http://arxiv.org/abs/1508.07123

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 The Robot Operating System (ROS)
	2.2 Related Approaches for ROS-FPGA Integration

	3 Design Considerations
	4 ReconROS
	4.1 Hardware/Software Architecture
	4.2 Design Flow
	4.3 Example ROS 2 Application

	5 Evaluation
	5.1 ROS 2 Hardware Node Overheads
	5.2 Mechatronics Model

	6 Conclusion and Future Work
	References

