
acmqueue |september-october 2021 1

interview

K
irk McKusick sat down with Margo Seltzer and
Mike Olson to discuss the history of Berkeley DB,
for which they won the ACM Software System
Award in 2021. Kirk McKusick has spent his career
as a BSD and FreeBSD developer. Margo Seltzer

has spent her career as a professor of computer science
and as an entrepreneur of database software companies.
Mike Olson started his career as a software developer and
later started and managed several open-source software
companies. Berkeley DB is a production-quality, scalable,
NoSQL, Open Source platform for embedded transactional
data management.
Kirk McKusick Berkeley DB came out of the University
of California at Berkeley Computer Systems Research
Group’s work to create a version of Unix unencumbered by
AT&T’s ownership rights to the original version of Unix. To
do that, we needed a new kernel, written without using any
of the AT&T code. We also needed all the applications and
libraries that shipped with the operating system.
My colleague on the Berkeley BSD Project, Mike Karels,
and I were in charge of getting a clean version of the
kernel—that’s another story! But Keith Bostic took on the
task of getting all the apps and libraries done. He solicited
volunteers for much of that work. I know he worked with

The history of
Berkeley DB

1 of 18
TEXT
ONLY

A Conversation with
Margo Seltzer and Mike Olson

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3494834.3498582&domain=pdf&date_stamp=2021-11-18

acmqueue |september-october 2021 2

interview

you two on that. Why don’t you start the story there?
Margo Seltzer This started with a standard stupid grad-
student trick. I had taken Mike Stonebraker’s graduate
database course at Berkeley, and I thought Litwin’s
extensible linear hashing was really cool. Keith [Bostic],
recognizing “stupid grad-student syndrome,” said, “Hey,
how would you like to implement it? I need a replacement
for ndbm, dbm, and hsearch.” I innocently said, “Sure!”

He introduced me to Ozan Yigit, who had written
gdbm, which was specifically an ndbm replacement.
We brainstormed together and figured out a way to
have a single hash package that would support both the
persistent (n)dbm, as well as the in-memory hsearch
replacement. That became what was known as, cleverly
enough, hash.

Then, Keith’s ulterior motive kicked in, which was that
he really wanted a record package that he could put under
a replacement vi, because vi was another big piece of
userland that needed to be rewritten. He’d had it in his head
that he wanted a record manager underneath it.

This required an interface that would let him access
records by record number—that is, “I want line 59” returns
the 59th line in a database, which for his purposes was a
text file. He’d seen a Stonebraker paper with Heidi Stettner
that showed how to implement this record-number
interface on top of B-trees.2

And that’s when Mike came along.
Mike Olson I was Margo’s officemate at this point. We were
both Stonebraker students. I was on the Postgres project,
where I was responsible for a bunch of the storage code,
including B-trees.

2 of 18

acmqueue |september-october 2021 3

interview

I’d already written B-tree implementations two or three
times in my life, so when Keith began to pester me with
this project, I refused. I had written B-trees over and over
again, and it just seemed like pointless work to do it again.

At the time, I was convening a pretty regular Friday
afternoon study group for the research group, which was
code for, “Let’s go down to the local brewpub and throw
back some pints.” Keith started crashing those and really
leaning on me to do this.

Finally, to shut him up, I agreed that I would write the
B-tree code. And since Margo was doing hash, we were a
team.

I also had an ulterior motive: I was going to replace the
B-tree code in Postgres with the Berkeley DB B-tree code,
which was cleaner and better. I never got around to doing
that work. I’m sorry about that, because I think it would
have been an improvement for the Postgres code as well.
KM So, the two of you coded up a clean version of ndbm,
no AT&T code involved. That got added to the Berkeley
Software Distribution. And that’s basically Berkeley DB
today?
MS There’s another chapter. Rewind to before I went to
graduate school. I had worked at a company called Sequoia
Systems, where we were building a transactional storage
system to support C programs.

We had designed what we called Sequoia’s Transaction-
Oriented Record Manager, otherwise known as STORM.
We started building it but never finished it. Both my boss
and I left the company. So, in the back of my head, I had
always had this idea that you could build a transaction-
oriented record manager.

3 of 18

acmqueue |september-october 2021 4

interview

As another side project, I somehow convinced Mike that
once he built the B-tree, we should make it transactional.
We could take the hash and B-tree code, put them under a
common API, and have this cool transactional thing.

That became libtp, which was another paper that Mike
and I wrote.1

KM Was libtp part of the BSD releases as well? Did you ship
that code?
MS No, the libtp code was what I like to refer to as a
“graduate-student code.” Keith never brought it up to
production-code quality.
KM All right, now you have this graduate-student code that
supports transactions, and some other code shipping with
BSD. How did those two threads get woven together?
MO Let me give a little bit of background. Margo and Keith
did almost all of the work on the software, starting in 1992
and continuing into the late 1990s. Berkeley DB, the DB
1.85 library, got shipped all over the planet with Berkeley
Unix. It got used in a huge number of projects.

In particular, a group of researchers at the University
of Michigan built an LDAP (Lightweight Directory Access
Protocol) engine to look up records by key, over the
network, in a really fast way. That eventually became
OpenLDAP, and that’s a key part of a lot of authentication
systems today. They used Berkeley DB, and they did a
really good job, except the DB 1.85 code didn’t support
transactions.

God forbid two people should do something at the same
time, or your computer should go down in the middle of an
update—your database could be corrupted.

Netscape (the company) wanted a directory server as

4 of 18

acmqueue |september-october 2021 5

interview

part of its product line. It hired the entire University of
Michigan team into the company to bring along the code
and get the work done.

I wasn’t around at the time. I’ll let Margo tell it from
there.
MS The LDAP folks had seen the libtp paper, and they went
looking for the code. They contacted Keith and me, asking,
“Hey, we’re using DB 1.85; we see this libtp. Where’s the
code?”

And we said, “Uhhhhh, graduate-student code; you don’t
really want to use that for production.” And they said,
“Well, what would it take to make the libtp code real?”
Keith and I had been talking about building a production-
quality transactional library for some time. We knew it was
going to be a fair bit of work, and we had day jobs. Netscape
said, “Well, you know, we’d pay money for it.”

Keith and I thought, “Well that’s novel. Who would have
thought of that?”

We managed to structure a deal with Netscape such
that we built out the production transactional version,
Netscape would pay us for it, but we would retain the
rights to sell it to other people.

We decided that we wanted to do the work, and if all we
ever did was build this for Netscape—and they were happy
with it—that would be fine.

But once we did build it, we figured we’d hang a shingle
out. At that point that meant building a website and seeing
what happened.

What happened was that lots of organizations had
picked up the UMich LDAP server. Our first-generation
customers were all the people who picked up that LDAP

5 of 18

N
etscape
would pay
us for it,
but we
would

retain the
rights to sell it
to other people.

acmqueue |september-october 2021 6

interview

server and wanted transactions in it.
That was how Sleepycat was formed. We’re doing this

deal with Netscape, and we wanted to make sure that we
weren’t, quite literally, “betting the house.” We called a
lawyer, who said, “Form a company.”
MO Key plot point: In the middle of all this, Keith and Margo
had gotten married. So, they owned a house that they
wanted to protect.

I love this story. I always thought it was a fantastic judo
move by the two of you. Essentially, Netscape provided the
seed funding for the company. That let us create a business
without taking any external investment. That money
from Netscape was the seed funding that got the original
product built. It wasn’t a work for hire. Keith and Margo still
owned the intellectual property rights.

It meant that we weren’t dependent on Sand Hill Road
venture capital for the entire life of the business.
KM Where did the Sleepycat name come from?
MS We called the lawyer and said, “Hey we need to start
a company,” and the lawyer said, “Well, you need a name.”
Fortunately, there was a cat sleeping on Keith’s lap when
he looked down.

We think that this is the same algorithm that was used
to name Spider Plant Software, but they looked up instead
of down.
MO I was off doing other things from 1993 to 1998.
Honestly, I had forgotten about the libtp work until Margo
reminded me after I quit a miserable job.

When I joined Sleepycat, my first proposal was that we
rename the company. I was soundly voted down by my two
colleagues.

6 of 18

acmqueue |september-october 2021 7

interview

KM Sleepycat used something called “dual licensing” for
Berkeley DB. Take us through that.
MS Keith was adamant from day one that we had to keep
the open-source license, because people had started using
it and we weren’t going to turn our backs on them.

To be perfectly blunt, Keith spent a ton of time working
on a dual license that would be palatable for the FSF (Free
Software Foundation), and in particular, for glibc, because
the new glibc was using Berkeley DB. We didn’t want to
lose that distribution, since that gave us literally millions of
seats.

So, it was basically Keith and the FSF figuring out a
license that would allow us to build a business and make
revenue, and allow us to be open source and continue as
infrastructure inside a huge number of other projects.
MO I think it was a really impressive intellectual feat. Dual
licensing, at least open-source dual licensing, was invented
by Keith Bostic. Others have since chosen to use that
technique to monetize open-source software.

Nobody did it, to my knowledge, before we did.
We worked very hard to stay on the good side of the

Debian software distribution, for example, the most closely
aligned with the FSF of all of the distributions. That meant
that our software was available to the entire planet. All
the Unixes and Linuxes bundled it. We had a really good
revenue source from any vendor who didn’t want to make
its software open source; it could simply pay us for a
proprietary license to use the IP (intellectual property),
because Sleepycat owned the IP, so we could license it in
both those ways.

7 of 18

acmqueue |september-october 2021 8

interview

KM How did it work? What was dual licensing, exactly?
MO It was a very short license, but it was viral in the
same way as the GPL (GNU General Public License). Our
software was free for you to use, as long as you also made
your source code available under an open-source license.
If you didn’t want to open-source your own code, you could
come to Sleepycat and pay us for a different license—one
that allowed you to distribute our software as part of your
proprietary product.

We didn’t have a separate product for paying
customers—no special features, no early access. We just
changed the terms under which you used our product:
no charge for use in open source; fee required for use in
closed-source products.

We had a very good business. We had lots of customers.
Netscape started us off, but later there were Sun
Microsystems and many others.
KM How did that adoption happen?
MS Netscape used Berkeley DB 1.85 just for its browser
bookmarks. No transactions, no big deal. You know, you
lose some bookmarks—probably not the end of the world.

But there were companies using DB 1.85 to manage
credit card data, which scared the living daylights out of
us. Those are the kinds of people for whom there was real
upsell potential.
KM Berkeley DB was open source, and Sleepycat was an
open-source company through the dot-com bust in the
early 2000s. What was that like?
MO I joined the company in 1998. Margo and Keith were
running a pretty good business off of a server in their
living room, from people downloading the software, but

8 of 18

acmqueue |september-october 2021 9

interview

they were working other jobs. Margo recruited me as the
first full-time employee, but they had been running the
company, sort of as a side hustle, for quite a while.

There were lots of dinky little companies with
embeddable databases on the market at the time. You had
them bundled with a bunch of operating systems. People
were using FileMaker Pro and ISAM (Indexed Sequential
Access Method) and all kinds of stuff.

Many of those businesses were eking out a marginal
living in the days leading up to 2001. When the bottom fell
out of the tech market, a lot of them could no longer raise
money. Without investors, they starved to death.

Because of the Netscape money that started the
business, we never got addicted to venture capital. We
were running lean. We were profitable from the very
beginning. Now, granted, Keith and Margo and I weren’t
paying ourselves very much in 1998 or 1999, but the
business was doing fine.

In 1999, we probably had 13 or 14 head-to-head
competitors. In 2002, that number was maybe four or five.
A lot of our competitors just got cleaned out.

That was fantastic news for us. All of the customers
of those other companies suddenly needed an embedded
database. We had a pretty good one.

We came through the crash not just OK, but great,
because of all the new customers we were able to take on.
MS You know, leading up to the bust was the boom.
Everybody was launching websites. Pretty much every one
of those websites needed a database behind it.

The architecture of first-generation web servers
was such that paying the extra overhead of going to a

9 of 18

acmqueue |september-october 2021 10

interview

relational database system was just too big. The demand
for the embedded market was really driven by these “Web
1.0” companies.

That was where Sleepycat really made it. We became
the back end for pretty much every first-generation web
service.
KM In that bust a huge number of people running websites
would have disappeared, so you would presumably have
lost some customers.
MO For sure, some of our customers went out of business.
But all of the companies that had bought the products of
our failed competitors needed to figure out some way to
replace what they had lost. And there were a lot more of
them.
KM So, you grew before the bust and during the bust. How
did things go after the bust? How did Berkeley DB evolve
over the years?
MS Who knew the web was going to take off? But it did, and
people started assuming data wasn’t going to go away. We
had a really great, reliable, single-node system. But if your
single node crashed, then your service was down. By the
early 2000s, that was no longer acceptable.

Our customers started asking us what we were going to
do about it.

We decided to build a high-availability product, using
replication. It was a single-writer system: All the writes go
to one node, but you could have as many read-only replicas
as necessary. This let our customers scale their web
services.

Because we were an engineering-driven company and
our customers were engineers, we had incredibly close

10 of 18

acmqueue |september-october 2021 11

interview

relationships with the people building applications on top
of Berkeley DB.

Chris Newcomb at Valve Software was using Berkeley
DB as the billing engine for the Steam gaming platform, a
high-end, distributed-server application. Chris eventually
went to Amazon and brought Berkeley DB with him there,
so we became one of the first backing stores for Amazon’s
Dynamo key-value store.

At the same time, Sharon Perl was building out Google’s
account management infrastructure and chose us as the
initial store behind Google accounts as well.

Key customers like those worked closely with us to
make sure that our high-availability product was actually
highly available.

Then we got approached by the Toronto Stock
Exchange, which wanted an XA (extended architecture)
interface for its distributed transactions. We built an XA
framework, again working very closely with its engineers.
MO I want to call out Greg Lavender, who just took the
CTO job at Intel, and the folks at Innosoft as well. They
embedded us in their messaging and directory products
very early. Sun Microsystems bought Innosoft, in my view,
to take them off the market because Sun was losing too
many deals to Greg and team. That brought us deep into
the product line at Sun.

Most of our customers used our product in pretty
conventional ways, paid us good fees, and weren’t much
trouble. But we were lucky pretty much always to have
half a dozen or so customers that just dragged us north
by our hair, pushing hard on scalability and performance
and reliability. By having those customers early who really

11 of 18

acmqueue |september-october 2021 12

interview

cooperated with us, evolving the product, we were ready
for what the market needed before the market got there.
MS There are two pieces that stick in my head. One was
conversations with Google and Amazon, when they said,
“Things that happen once in a million times happen millions
of times every day for us.” That was a new way of thinking
about what scale really meant.

And the other piece was that computerized trading
on Wall Street was becoming a thing. One of the key
applications was matching buy orders with sell orders.
Every house on Wall Street needed to do that, and they
needed to do it super efficiently. Pretty much all of them
built exactly the same application on top of Berkeley DB.

We would find ourselves in interesting situations where
customer A would want a small feature that would let
them build it faster. We’d figure out how to do that and we’d
release feature A.

Then we’d go to company B, which had the same
problem; we couldn’t tell them that their competitor
was using feature A to solve the problem. So, we would
brainstorm with them about how to design it, and
sometimes they recognized that the feature we just added
was quite helpful! Other times, they’d say, “No, no, no, we
can’t do that; we need something else.” The entire group of
Wall Street customers pushed us hard on scalability and
reliability.
KM You said that the replication product had a single write
point. Did that eventually get fixed as well?
MS For the C version of Berkeley DB, it did not. We
remained single-writer forever. But to clarify: If that writer
crashed, one of the readers took over as the writer so that

12 of 18

“T
hings
that
happen
once
in a

million times
happen millions
of times every
day for us.”

acmqueue |september-october 2021 13

interview

the system kept running.
To the best of my knowledge, the C core product has

remained single-writer. I believe that the Java product,
which is now the engine behind the Oracle NoSQL
database, supports multiple writers, but I am not 100
percent certain.
KM Replication, OK. What else got added to Berkeley DB?
MS In the early 2000s, XML was all the rage! We drank
some Kool-Aid. We had some folks who were ready, willing,
and able to build an XML database on top of Berkeley DB.
We took the plunge and did it, and there was essentially
a zero-million-dollar market in XML databases. That was
pretty much a complete bust.

Java, however, paid off. It was a Keith idea. We’d always
had a Java API. Initially, it was a really bad Java API, so we
hired someone who actually was a Java programmer. We
got a much better Java API.

Keith felt that a Java API on top of our C storage engine
was a bad technological match, and he was completely
correct. He argued that we really needed to build a native
Java product.

Linda Lee and Charlie Lamb came on board to build this
native Java product. We thought there was going to be a
big market, but that market did not materialize before the
acquisition.

Post-acquisition, inside of Oracle, that Java team has
gone on to become the Oracle NoSQL team and the Oracle
NoSQL cloud team. Berkeley DB Java Edition continues to
this day as the engine underneath the Oracle Cloud NoSQL
database.
KM Well, that very nicely takes us into the Oracle

13 of 18

acmqueue |september-october 2021 14

interview

acquisition.
MO Berkeley DB steadily improved over the entire life of
Sleepycat. We had a good product, and we were pretty
good at selling it.

It was a nice little business. Every year we would take
our profits and pay them out to ourselves as dividends
for our ownership stake, and to our employees as profit
sharing for the great work they did in building the product,
winning customers, and keeping them happy.

Everybody loved that! There is this Silicon Valley disdain
for “lifestyle businesses,” but a whole bunch of cash hitting
your bank account every year is actually a pretty nice
lifestyle.
MS It also created a very different mentality. Since every
person in the company stood to gain by every dollar of
profit the company made, the employees treated company
money like their own money. You didn’t see our sales team
spending ridiculous amounts of money or making promises
for features that engineering couldn’t deliver.
MO We’d been paying ourselves dividends and growing
the business at 30 percent pretty consistently year
on year. That was a solid performance, but we were
concerned about our ability to sustain that growth with
our presence in just the U.S. market. Expanding to Europe
or Asia was obviously going to cost us a bunch more
money.

None of us or our spouses wanted to reverse the flow of
funds from our bank accounts back to the company.

We really had two choices: We could go find a venture
capitalist to back the business, or we could sell the
company outright, taking all the risk off the table.

14 of 18

acmqueue |september-october 2021 15

interview

We realized that venture investment would really
change us. There’d be no more of that dividends-going-into-
our-bank-accounts foolishness. We were opinionated nerds
who had driven strategy on the basis of our engineering
taste. We wouldn’t be in a position to do that in the same
way with a traditional venture capitalist calling the shots in
the boardroom.

That left us with option two: Just sell the company.
We hired an investment bank, and they got us a bunch
of meetings. Turning that crank yielded a few interested
parties, of whom the most interested was Oracle.

I’m leaving out a ton of detail, but we negotiated the
acquisition and announced the deal on Valentine’s Day in
2006. A pretty good portion of the Sleepycat team is still
at Oracle.
MS Interestingly enough, a few of the original Sleepycat
engineers, led by Dr. Michael Cahill and Keith Bostic, left
Oracle around 2010 and formed the company WiredTiger
to build a new storage engine reflecting the hardware
changes since 1990. That engine is also open source. It’s
currently the underlying storage engine for MongoDB,
a major player in the distributed NoSQL database space,
including its Atlas Cloud Service.
KM From Sleepycat to WiredTiger! That’s great.
MO At Cloudera, the company I started after I left Oracle,
we hired a number of folks from the original Sleepycat
team as well. The Sleepycat experience created a pretty
close-knit crew.
KM Presumably, Berkeley DB is still out in the open-source
world.
MS For better or worse, Berkeley DB continues to be open

15 of 18

acmqueue |september-october 2021 16

interview

source. The reason I say “for better or worse” is that every
academic who wants to show how fast their database is,
builds one with 2020 technology, and then compares it to
Berkeley DB, which was built for very different hardware.
They then run it out of the box, which was designed for a
tiny embedded environment and has a microscopic cache.

So, they run it on 64-gigabyte servers, give their system
60 gigabytes of cache, and give Berkeley DB 64 kilobytes
of cache. And then they say, “Wow, we’re really fast!”
MO I want to talk a little bit about the philosophy behind
the software.

The Unix philosophy is to build a rich set of composable
tools. We wanted Berkeley DB to adhere strictly to that
philosophy. We didn’t want to encumber it with a whole
bunch of capabilities and features that weren’t really core
to its mission: reliably storing data for applications.

We used to get yelled at all the time because we didn’t
have a SQL interface. Our view was that there were plenty
of good SQL interfaces in the world, including one at
MySQL, that you could graft onto Berkeley DB. We were
a table manager for MySQL back in the day. Anybody who
wanted to add those capabilities could take our finely
crafted high-performance engine and add whatever they
liked. We didn’t want to encumber the core library with
that.

We had an exceptional technical team. Our two
founders, Keith and Margo, are world-class engineers.
One of my favorite quotes by Keith is that in every release
of the software, he wants to remove more lines of code
than he adds. That doesn’t really happen often, but that
relentless focus on simplification and streamlining

16 of 18

acmqueue |september-october 2021 17

interview

benefited Berkeley DB.
Oracle has continued to develop both the C and Java

releases, and both are available as open source. Until
I retired in 2019 I was on the mailing list, and I got the
announcements of every new release. Oracle did finally
add SQL.
KM We see that in the BSD world as well. We try to take
out or refactor a significant amount of code to keep the
overall size down. Meanwhile, the Linux Foundation touts
the fact that it’s adding a million lines of code a year to
Linux.
MO You know the old saying: So simple that there are
obviously no bugs, or so complex that there are no obvious
bugs.
MS Right.
KM Any concluding remarks?
MO I’m really proud that we won the ACM Software
System Award, and I’m proud that the Berkeley DB team
won the earlier ACM SIGMOD System Award. It’s pretty
unusual that a software artifact created 30 years ago is
still in as widespread use, and is as influential, as Berkeley
DB.

This was a really wonderful project to work on.
Sleepycat was one of the very best companies that I ever
worked for. It was fun to be with my friends. It was great to
be serving an audience that we understood well. I feel like
we did a lot of really interesting and innovative things.

�

17 of 18

acmqueue |september-october 2021 18

interview

References
1 �Seltzer, M. and Olson, M. (January 1992). LIBTP: Portable,

modular transactions for UNIX. https://dsf.berkeley.edu/
papers/ERL-M92-02.pdf

2 �Stonebraker, M., Stettner, H., Lynn, N., Kalash, J., and
Guttman, A.. 1983. Document processing in a relational
database system. (April 1983). https://dl.acm.org/
doi/10.1145/357431.357433

Copyright © 2021 held by owner/author. Publication rights licensed to ACM.

CONTENTS2

18 of 18

https://dsf.berkeley.edu/papers/ERL-M92-02.pdf
https://dsf.berkeley.edu/papers/ERL-M92-02.pdf
https://dl.acm.org/doi/10.1145/357431.357433
https://dl.acm.org/doi/10.1145/357431.357433

