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Figure 1: Cross-views of Cityscape [Left] and GTA V [Right] texturings using Pix2PixHD.

ABSTRACT
We explore the possibility of producing photo-realistic and stylized
videos from semantically segmented image sequences drawn from
a procedurally generated interactive 3D environment. We evaluate
our environment using the Cityscape and ACDC weather dataset
to obtain swappable daytime, nighttime, and various weather tex-
turings from our city. We further use the GTA V image dataset to
showcase its feasibility on large interactive scenes for 3D animation
and game texturing, demonstrating the ability to repurpose existing
video game textures when generating our city. Our algorithm can be
used to support video games by autonomizing both the environment
generation process, as well as supporting researchers by provid-
ing a semantic testing environment for many city style-transfer
algorithms. Video documentation at: https://tinyurl.com/vb63k87x
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1 INTRODUCTION
Texturing 3D environments is a laborious process requiring thou-
sands of artist hours when creating large environments. The pro-
duction of large scale video games such as GTA V had more than 49
map artists and 37 environment artists working full time [9], and
the more recent Red Dead Redemption 2 hired more than 178 full
time artists to create its wild west culture [10]. Other titles such as
NoMan’s Sky [8] tried to avoid the high cost of hand-made environ-
ment development by procedurally generating planets for a unique
gameplay experience, but still relied on artist-crafted designs and
textures to populate these worlds with color and detail.

To help with the development of 3D scenes for video games
and animations, we produced a procedurally generated 3D city
autonomously style transfered to give both life and color to our
environment without the need for human environment modeling or
texturing. Our work is the first of its kind to create a rich interactive
3D scene modeled after the segmentation data used in training city
style-transfer algorithms. We demonstrate its effects on various
style-transfer programs and datasets to providing a unique interac-
tive environment experience to users every time without the need
for any human intervention.

2 RELATEDWORKS
Procedurally generating city geometry can be achieved using perlin
or fractal noise [13], with the goal of achieving some form of tiling
structure similar to a voronoi diagram. City generation can also be
modeled after the L-systems form of biological development [16]
[26] or after a 2D overhead image input[22] [2]. We consider an
input-less generation strategy, allowing us to procedurally generate
a new city each time for the user. We defer texturing to using style
transfer as we focus on building a city with semantic colorings
only.

Early style-transfer models would extract features from a styl-
ized image and apply these features onto a target image, minimizing
the stylistic-loss from the style image and content loss from the
target image [4, 12, 29]. Such models can be used to create [15] and
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argument [28] stylized scenes from real-life images, leading to a
new wave of creative imagery. Style-transfer is both sensitive to ad-
justments in the target image [23] while also being computationally
expensive [6], leading to the exploration of temporally consistent
style-transfer among video frames by predicting the optical flow
trajectory of elements in the scene [20, 24, 27]. When applying
style transfer to our environment, we aim to maintain temporal
consistency in both lighting and content.

Many style-transfer algorithms can be used to help create rich
semantic segmentations from real-life scenes [11, 25], providing
vision applications with a color-coded vocabulary of the world
[5]. Such tools can also be used the other way around to gener-
ate real-life scenes from segmentations [14] and to help augment
semantic details to create new images [3]. We aim to create a se-
mantic segmented 3D environment given that drawing semantic
segmentations is simpler than drawing real-life images [17]. This
way, we can use style transfer to go from our minimally-colored
environment to full realistic textures.

Style-transfer research has been used before in 3D game devel-
opment. Nvidia’s generative driving environment [24] can be used
to recreate existing video footage as a segmented 3D city that can
further be style-transferred and moved around in, but it generates
the same scene and texturing each time without interactive ele-
ments. We aim to extend their results by providing a algorithm for
procedurally generating unique segmented 3D cities with interac-
tive elements such as driving cars and walking pedestrians with
swappable texturings. The more recent [18] leverages semantic
segmentations in their model, but focuses on style transferring the
existing city in GTA rather than making a novel environment to
interact in. Google’s Stadia uses real-time shaders with stylistic
parameters sent from a video style-transfer algorithm to redraw
video frames in different styles [7]. Their approach learns features
from a single image, and recolors the entire target video game frame
equally. We instead aim to texture frames based on the semantics
of the objects in view, providing a more comprehensive texturing
mechanism where buildings would get separate texturings from
trees and so forth.

3 METHOD
Our work is comprised of two parts: the first part involves procedu-
rally generating a unique color-coded representation of a 3D inter-
active city, while the second part involves applying a style-transfer
model of a target dataset to image sequences from interacting in
the environment.

3.1 Procedural City Generation
3.1.1 Splitting Blocks. We consider the whole map as a single large
polygon and recursively subdivide polygons by connecting lines
between two points on the edge of a previous polygon. We make
a cut passing through the mid-points of the two longest borders
of the largest polygon, helping to minimize the the variance in
polygon sizes. To reproduce the curved shape of roads in real life,
we apply a perlin noise filter to offset points along a straight line.

3.1.2 Planting Buildings. We divide city blocks into buildings on
the left of Figure 2. A grid is laid upon the block of interest with
a random rotation, where all squares on the grid that lays outside

Figure 2: Results of our [Left] building-planning algorithm
with [Right] extruding. [Bottom] shows pre-made assets.

the block are deleted. Remaining squares are randomly combined
to make larger rectangles, providing variance in building size. The
maximum and minimum size of the buildings depends on both the
area of the block and the granularity of the grid cells.

We can extrude the shapes of the roads and buildings to create a
3D representation of our city in themiddle of Figure 2. The buildings
near the center of the map are made skinnier and taller to represent
downtown, and buildings near edge of the map are made larger
and flatter to represent suburban areas. Roads generated by the
first couple recursive iterations are drawn wider to represent main
streets, while roads generated by the last few recursions are drawn
narrower to represent local roads.

3.1.3 Populating the City. Simple miscellaneous structures such
as street lights, traffic lights and street signs on the right of Figure
2 are generated using groups of cubes with some variation on the
height and thickness. We place these structures adjacent to the
roads.

Most trees in the segmentation datasets are illustrated as blob-
like structures where the leaves are coalesced into one blob shape.
To be consistent with the segmentations, we write a procedural
blob generator which applies some noise to a triangulated sphere.
Each vertex on the sphere is randomly offset using perlin noise
from the center. We stitch together several of these blobs to create
trees. The same blob method is also used to generate an abstract
mesh for humans, where we use one blob for the head and one blob
for the body. We generate cars and busses as a few rectangles and
spheres stitched together.

3.1.4 Animation. We animate vehicles across roads and humans
adjacent to roads. Humans are allowed to cross intersections when
multiple roads meet. Entities spawn in a random location and are
given a target location across the map. Upon reaching their des-
tination, a new target location is selected. At each time step, the
entity can either move forward or backward along the road, or turn
into another road if it is at a crossroad. The decision is informed by
its desire to reach the destination. If two entities bump into each
other, one of them will be stunned for a couple seconds, allowing
the other to pass. To simplify intersections, all traffic keeps to the
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Figure 3: Generated city wireframe scene populated with in-
teractive vehicles and people that users can walk and drive
around.

right. Intersections alternate between allowing vehicles to pass and
allowing pedestrians to cross.

We permit the user to move and fly around the city, allowing the
user to capture interesting overhead shots of buildings and vehicles.
The user is also allowed to take control and drive around vehicles
as in an actual video game.

3.1.5 Coloring. Each object is given a unique solid coloring de-
pending on the class of object it is. An example coloring is given
in Figure 3. We match the segmentation colorings to that of the
dataset trained on. Shadows and edges are removed from objects so
as not to interfere with the style transfer, as it uses the color-coded
semantics to determine the object class and texturing required.

3.2 Style Transfer
3.2.1 Model. We evaluate our environment on several GAN-based
style-transfer methods, including Pix2Pix, Pix2PixHD in Figure 4
and Vid2Vid in Figure 5. We configured these models to use a UNet
generator and a convolutional discriminator with 4 downsample
layers and 9 residual blocks with out generator outputting frames
of size 1024x512. Modifying the number of generator filters varied
the model complexity the most, so we used an evolutionary search
strategy to identify the best number of generator filters to maximize
both inference speeds and quality for each dataset. We grid-search
over several configs of generator filters from 16 to 128. After each
50 epochs, we ask 3 participants to score the visual quality of the
models on a validation set. We subtract from this model score a
value proportional to the number of parameters of the model as
a means of regularizing the scores to promote models with lower
complexity. We continue training the upper half of scored models
using an evolutionary search strategy. Table 1 lists the ideal configs
for each model and dataset that maximizes on inference runtimes
and quality.

3.2.2 Datasets. We used the Cityscapes dataset [1] of 5,000 images
for training. When training for approximately 40 epochs, we found
the most saturated image yielded far too fake of an image. The
original training set is based on footage from various German cities,
resulting in a rather dim, downcast image set that was too gray and
monotone for enjoyable results. To fix this, we trained on a color
corrected version of the Cityscapes dataset that ended up increas-
ing the brightness and contrast of the results, providing clearer
texturing details. We further trained on the ACDC city weather

dataset [21] with around 500 images per weather condition, provid-
ing us with 4 distinct weather configurations, including snow, rain,
fog, and night. We trained additional models on the GTA V dataset
[19] comprised of 25,000 images, aiming for a more creative and
stylized video-game look with these models. We trained additional
instances on only a tenth of the GTA V images for more epochs to
experiment with a smaller model. We also extracted the night-time
images from the GTA V dataset and trained separately on those,
producing a nighttime video game texture mode.

3.2.3 Testing. The input image sequence from our environment is
a set of RGB frame segmentations such as in Figure 3. The colors
are compressed by the video encoder, leading to color offsets in
some pixels. To fix this, we store the most popular colors and their
corresponding ID’s in a data structure, binning stray colors to their
closest popular color to recalibrate outlier pixels. We can capture
the instance map from our generated city and use that during the
evaluation stage for models such as Vid2Vid. By loading in multiple
model weights at startup, we can switch between different dataset
weights on demand, providing us with a way of shifting between
different weathering looks and styles on the fly.

4 RESULTS
We trained several models on varying datasets in Table 1 using
GTX 980 Ti’s. To test the texturing capabilities, we had users in-
teract with their own unique procedurally generated color-coded
city to collect an image sequence of segmentations. We ran these
seqences through our style transfer algorithm to generate auto-
matic texturings for each user’s environment. We evaluated both
the procedurally-generated city and our style transfer algorithm on
a GTX 3060 Ti in order to identify FPS on a consumer-level device,
reporting the rate at which each pretrained model could output styl-
ized frames in Table 1. We include additional video documentation
here: https://tinyurl.com/vb63k87x

5 DISCUSSION
We are able to achieve populated, diverse scenes with each proce-
dural generation of our map in Figure 1 where no two cities are
the same due to the random noise we use. The results of our city
animations is an amusing primitive form of traffic system. While
many traffic accidents are effectively prevented and where vehicles
and people generally get to go where they intend to go, traffic jams
and serial car accidents sometimes occur at busy crossroads. In
these cases, they run into a Klotski puzzle situation, and the road
becomes so blocked that nobody can pass through, accumulating
more and more stuck cars over time. A potential solution could be
to use a third-party AI-assisted driving mechanism provided by
most game engines to help resolve collisions in vehicle and human
interactions.

The ACDC Weather results in Figure 6 suffer from a collage-like
look, given that we are trying to map photo-realistic textures to
low-poly geometry. The GTA V dataset provides a more cartoon-
like look that matches the more simplistic geometry from our city,
giving it more of a video game feel. This, coupled with how the
GTA V dataset had 5x more images than Cityscapes and 50x more
images than ACDC made it more robust to various views provided
by our city.
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Figure 4: Comparing Pix2Pix against Pix2PixHD. Models were trained with 64 generator features on the full 25,000 images,
while a smaller Pix2PixHDmodel was trained on 2,500 images for more epochs. The Pix2Pix model suffered from rapid color
flickering while the Pix2PixHD model was able to learn a more consistent lighting representation.

Figure 5: Vid2Vid trained with 128 generator features on Cityscapes dataset. Frames are temporally consistent, minimizing
flickering while also learning a more cohesive global illumination of the scene.

Table 1: Performance Benchmarks

Model Config
Model Dataset Size Epochs GenFilters EvalFPS
Pix2Pix Cityscape 5K 80 48 24.6
Pix2Pix Cityscape (clr) 5K 260 48 24.6
Pix2Pix GTA V 25K 200 64 18.5

Pix2PixHD Cityscape 5K 200 48 21.4
Pix2PixHD GTA V 25K 120 64 15.3
Pix2PixHD GTA V (tiny) 2.5K 200 48 21.4
Pix2PixHD GTA V (dark) 600 200 40 24.8
Pix2PixHD ACDC (night) 506 200 32 31.5
Pix2PixHD ACDC (rain) 500 200 32 31.5
Pix2PixHD ACDC (fog) 500 200 32 31.5
Pix2PixHD ACDC (snow) 485 200 32 31.5
Vid2Vid Cityscape 5K 200 128 6.7

aEvalFPS processed on a GTX 3060 Ti. clr = re-colored.
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Figure 6: Pix2PixHD trained on the ACDC Weather dataset
for 200 epochs. Each dataset contained roughly 500 images.

Given the processing speeds of the style transfer algorithms in
Table 1, consumer-grade GPUs could handle real-time support for
most of these texturings. When optimizing the generator size for in-
ference speeds, we found a correlation between the dataset size and
the generator complexity needed to accurately retain styling capa-
bilities. Smaller datasets such as ACDC did not require as complex
a model for inference and could run at a higher FPS than Cityscape.
GTA being the largest of the datasets required the highest model
complexity to retain its higher-quality results, leading it to run the
slowest. The Vid2Vid Cityscape model performed at a substantially
lower framerate compared to the other models primarily because
it computed the optical flow between images, adding substantially
to the feature complexity and creating frame dependencies in the
inferencing scheme. For more demanding inference models such
as Vid2Vid, developers could instead attempt to host the game and
style transfer over the server with higher-throughput devices and
stream frames back to the user’s device for faster frame rates, es-
pecially as cloud gaming such as Google Stadia [7] become more
popular.

6 CONCLUSION
Our approach is able to generate artistic renderings of a completely
procedurally generated city without any human intervention when
generating and texturing the scene. We demonstrate that our se-
mantic city can be used by research scientists to help evaluate their
city-based style transfer algorithms on novel scenes, and by game
developers looking to create automatically generated and textured
environments. Users can also swap between different styles at will,
finding a style that is right for them. Similar to the GTA V dataset,
individuals can intercept the video card to retrieve frames and
other meta-data needed to easily segment data from different video
games, adding to the library of video-game inspired textures. As
these technologies advance, the generated imagery will become
more realistic as well, allowing animators and game designers a
chance at creating unique procedural environments every time.
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