
sGrapp: Butterfly Approximation in Streaming Graphs
Aida Sheshbolouki

University of Waterloo

aida.sheshbolouki@uwaterloo.ca

M. Tamer Özsu

University of Waterloo

tamer.ozsu@uwaterloo.ca

ABSTRACT
We study the fundamental problem of butterfly (i.e. (2,2)-bicliques)

counting in bipartite streaming graphs. Similar to triangles in uni-

partite graphs, enumerating butterflies is crucial in understanding

the structure of bipartite graphs. This benefits many applications

where studying the cohesion in a graph shaped data is of particular

interest. Examples include investigating the structure of computa-

tional graphs or input graphs to the algorithms, as well as dynamic

phenomena and analytic tasks over complex real graphs. Butterfly

counting is computationally expensive, and known techniques do

not scale to large graphs; the problem is even harder in streaming

graphs. In this paper, following a data-driven methodology, we

first conduct an empirical analysis to uncover temporal organizing

principles of butterflies in real streaming graphs and then we intro-

duce an approximate adaptive window-based algorithm, sGrapp,

for counting butterflies as well as its optimized version sGrapp-x.

sGrapp is designed to operate efficiently and effectively over any

graph stream with any temporal behavior. Experimental studies of

sGrapp and sGrapp-x show superior performance in terms of both

accuracy and efficiency.

1 INTRODUCTION
In this paper we address the problem of counting butterfly patterns

in large, bipartite streaming graphs. A butterfly (also called (2,2)-

biclique or rectangle) is a complete bipartite subgraph with two

vertices of one type and two vertices of another type (rightmost in

Figure 1). Similar to the triangles in unipartite graphs, butterflies are

the simplest and most local form of a cycle in bipartite graphs. Enu-

merating butterflies is important in measuring graph cohesion and

clustering or community structure [1]. Clustering or community

structure is measured by the transitivity/clustering coefficient that

is computed as the fraction of three-paths (called caterpillars– left

four in Figure 1) which form a butterfly [1, 35, 62]. Graph cohesion

can be measured by the number of butterflies-per-vertex and by the

local clustering coefficient. Study of such local structural measures

unveils hidden ordering and hierarchies in graphs displaying struc-

tural deviations from uncorrelated random connections [14, 42, 46].

A recent study investigates the predictive performance of deep

neural networks by means of clustering coefficient [60]. Other ap-

plications are realistic graphmodels [1, 30] and representative graph

sampling [61]. The study of different phenomena in complex graphs

such as social collective behaviours [18], synchronization [51, 64],

information propagation [28], and epidemic spreading [45] rely

on clustering coefficient. Moreover, clustering coefficient plays an

important role in graph analytics tasks such as link prediction [26]

and community detection [62], and in general any graph process-

ing algorithm relying on counting the mutual neighbors or Jaccard

similarity. The distribution of local clustering coefficient is used

as a feature to uncover statistical differences between normal and

fraudulent data in applications such as spam detection [8].

Figure 1: Caterpillar and butterfly (rightmost) patterns.

We study the problem in the context of streaming graphs, because

the graphs that are used in many modern applications are not static

and not available to algorithms in their entirety; rather the graph

vertices and edges are streamed and the graph “emerges” over time.

These are called streaming graphs and they differ from dynamic

graphs that are fully available but undergo changes over time. A

driving example is the stream of user-product interactions in e-

commerce services. Alibaba has reported that customer purchase

activities during a heavy period in 2017 resulted in generation of

320 PB of log data in a six hour period, and it had to deal with a

high velocity stream of data that incurred a processing rate of 470

million event logs per second. Other e-commerce sites have similar

activity albeit at somewhat lower levels. Other applications such as

web recommenders, fraud detection, and social network analysis

rely on butterfly counting over streaming graphs.

Bipartite graphs that model networks with two disjoint sets of

vertices are prevalent in real applications: interaction graphs that

model the interactions (e.g. comments, reviews, purchases, ratings,

etc) between users and items, affiliation graphs that model the

membership of actors/people in groups, authorship graphs that

model the links between authors and their works, text graphs that

model the occurrence of words in documents, and feature graphs

that model the assignment of features to entities. In particular,

user-product graphs are currently recognized as the most com-

mon graphs in industry that require attention. It is important to

study the underlying patterns and structures of bipartite graphs,

and in this paper we focus on butterfly patterns. A natural ques-

tion that arises is why the bipartite graph cannot be projected

into a unipartite graph on which the existing approaches to count

the triangles are used? The answer is that the projected graph is

misleading and counting on it is inefficient. First, the projected uni-

partite graph loses fine-grained pattern information [32, 49], since

the one-to-many relationship information are projected to pairwise

relationships and the projection is not bijective. Second, the pro-

jected unipartite graph will have significantly more edges than the

bipartite graph since each 𝑖 − (𝑗−)vertex 𝑣 with degree 𝑑𝑣 produces

𝑑𝑣 (𝑑𝑣 − 1)/2 homogeneous edges. That is, the number of edges in

the original bipartite graph is Σ𝑣𝑑𝑣 while in the projected graph it

is Σ𝑣
(𝑑𝑣
2

)
. It has been shown that projection can lead to an edge

inflation of 200× [32]. In the case of streaming bipartite graphs that

already have a high number of edges, the projection will exacer-

bate the computational footprint. Finally, the patterns that emerge

in the projected unipartite graph are not reliable signals of the

ar
X

iv
:2

10
1.

12
33

4v
3

 [
cs

.D
B

]
 3

 F
eb

 2
02

1

Aida Sheshbolouki and M. Tamer Özsu

original bipartite graph since the edge inflation artificially changes

the patterns. For instance, it has been shown that the clustering

coefficient is high in the projected mode [19, 43] and unipartite

projection misleads the community detection analysis [7, 20]. Due

to these issues, it is important to devise techniques to directly study

bipartite graphs.

Exact butterfly counting is feasible only when the entire graph

is available to the processing algorithm. As noted earlier, this

is not possible in streaming graphs (and even in massive static

graphs [37]). The alternative is approximating. One such approach

is to use random sampling/sparsification [12, 47], which requires

determining the sampling probability, reservoir size, and scaling

factor. The sampling process is done several times and can be a

potential overhead lowering the processing throughput. Another

approach in streaming graphs is to batch the incoming graph ver-

tices and edges into a window and process them when the window

moves; this is what we follow. Most existing streaming propos-

als [5, 12, 13] assume that (a) all the edges incident to a vertex

arrive together (i.e. incidence streams) and (b) vertex degrees are

bounded. Neither of these are likely to hold in real-life streaming

graphs. We propose a butterfly counting algorithm that can effi-

ciently return an accurate answer over any graph stream without

these unrealistic assumptions. It has been shown that the space

lower bound for an approximate butterfly count that bounds the

relative error to 0 < 𝛿 < 0.01 is 𝑂 (𝑛2) where 𝑛 is the number of

vertices [48]. This is not feasible in streaming systems. We analyze

the computational and error bounds of our proposed algorithm. We

also validate our algorithm’s accuracy and efficiency empirically.

We follow a data-driven approach to algorithm design: we con-

duct a deep empirical analysis of a number of real graphs with

varying temporal/structural characteristics to determine the tem-

poral occurrence of connectivities. We formulate this as a power

law (Section 3) that grounds our algorithm, sGrapp, to exploit these
patterns. Data-driven approach has previously been used to design

a graph generator/model preserving the mined patterns in a set of

unipartite real graphs [34]. However, to the best of our knowledge,

this is the first time this approach is followed for designing a graph

processing algorithm. sGrapp is a streaming graph approximation

algorithm for butterfly counting in bipartite graphs (Section 4) and

is based on (a) our novel stream processing framework, which uses

time-based windows that can adapt to the temporal distribution of

the stream (Section 4.1) and (b) our algorithm for exact butterfly

counting in streaming graph snapshots (Section 3.2). Our experi-

mental analysis (Section 5) shows that sGrapp achieves 160× higher
throughput and 0.02× lower estimation error than baselines and

can process 1.5 × 106 edges-per-second. It can achieve an average

window error of less than 0.05 in graph streams with almost uni-

form temporal distribution. We introduce optimizations that lower

the average window error to less than 0.14 in graph streams with

non-uniform temporal distribution without affecting the through-

put. sGrapp handles graph streams with both high number of edges

and high average degree with a sublinear memory footprint, which

is lower than that of the baselines. Empirical analysis shows that

the performance of sGrapp is independent of its input data, hence

can be applied to any real graph stream.

2 BACKGROUND
2.1 Preliminaries
We define a graph 𝐺 as a pair of vertex and edge sets 𝐺 = (𝑉 , 𝐸).
Since 𝐺 is a bipartite graph, 𝑉 = 𝑉𝑖 ∪𝑉𝑗 and 𝑉𝑖 ∩𝑉𝑗 = ∅. We use

user-item bipartite graphs in which 𝑉𝑖 (called i-vertices) represents

users and 𝑉𝑗 (called j-vertices) represents items.

Definition 2.1 (StreamingGraph Record). A streaming graph record

(sgr) 𝑟 = (𝜏, 𝑝) is a pair where 𝜏 is the event (application) timestamp

of the record assigned by the data source, and payload 𝑝 = ⟨𝑒/𝑣, 𝑜𝑝⟩
indicates an edge 𝑒 ∈ 𝐸 or a vertex 𝑣 ∈ 𝑉 of the [property] graph

𝐺 , and an operation 𝑜𝑝 ∈ {𝑖𝑛𝑠𝑒𝑟𝑡, 𝑑𝑒𝑙𝑒𝑡𝑒,𝑢𝑝𝑑𝑎𝑡𝑒} that defines the
type of the record.

In this paper, the operations are limited to edge insertion. If there

are duplicate edge arrivals, the algorithm ignores the duplicates.

Definition 2.2 (Streaming Graph). A streaming graph 𝑆 is an

unbounded sequence of streaming graph records 𝑆 = ⟨𝑟1, 𝑟2, · · · ⟩
in which each record 𝑟𝑚 arrives at a particular time 𝑡𝑚 (𝑡𝑚 ≤ 𝑡𝑛
for𝑚 < 𝑛).

Definition 2.3 (Time-based Window). A time-based window𝑊

over a streaming graph 𝑆 is denoted by time interval [𝑊 𝑏 ,𝑊 𝑒)
where𝑊 𝑏

and𝑊 𝑒
are the beginning and end times of window𝑊

and𝑊𝑒 −𝑊𝑏 = |𝑊 |. The window contents is the multiset of sgrs

where the timestamp 𝜏𝑖 of each record 𝑟 𝑖 is in the window interval.

Definition 2.4 (Time-based Sliding Window). A time-based sliding

window𝑊 with a slide interval 𝛽 is a time-based window that

progresses every 𝛽 time units. At any time point 𝜏 , a time-based

sliding window𝑊 with a slide interval 𝛽 defines a time interval

(𝑊 𝑏 ,𝑊 𝑒] where𝑊 𝑒 = ⌊𝜏/𝛽⌋ · 𝛽 and𝑊 𝑏 =𝑊 𝑒 − |𝑊 |.
Definition 2.5 (Time-based Tumbling Window). A tumbling win-

dow is a time-based window where, for two subsequent windows

𝑊𝑖 and𝑊𝑖+1,𝑊 𝑏
𝑖+1 =𝑊 𝑒

𝑖
and𝑊 𝑒

𝑖+1 =𝑊 𝑏
𝑖+1 + |𝑊𝑖+1 |. Simply, when

subsequent sliding windows are disjoint, they are called tumbling

windows.

Definition 2.6 (Time-based Landmark Window). A landmark win-

dow is a constantly expanding time-based window denoted by

a pair ⟨𝑊 𝑏 , |𝑊 |⟩ where,𝑊 𝑏
is the fixed beginning time and |𝑊 |

is the expansion size. For two subsequent windows𝑊𝑖 and𝑊𝑖+1,
𝑊 𝑏
𝑖+1 =𝑊 𝑏

𝑖
and𝑊 𝑒

𝑖+1 =𝑊 𝑒
𝑖
+ |𝑊𝑖+1 |. Simply, when the beginning

border is fixed and the end border moves forward, the window is

called landmark.

Definition 2.7 (Streaming Graph Snapshot). A streaming graph
snapshot 𝐺𝑊,𝑡 is the graph formed by the records in the time-based

window𝑊 at time 𝑡 .

Table 1 lists the notations used in the paper.

2.2 Related Work
he existing works in butterfly counting can be classified along

three dimensions: graph characteristic (bipartite/unipartite), data

location (disk-resident/in-memory) and graph availability (static/

dynamic/streaming). Detailed coverage of each design point is be-

yond the scope of this paper; we focus on two particular design

points that are most relevant to our work: static bipartite graphs

and streaming bipartite graphs.

sGrapp: Butterfly Approximation in Streaming Graphs

Table 1: Frequent notations. Similar notations stand for j-vertices where applicable.

Notation Description

𝑟𝑚 = (𝜏, 𝑝) A streaming graph record (sgr) with timestamp 𝜏 , payload 𝑝 , and arrival time 𝑡𝑚

𝜏 sgr timestamp (real time-label)

𝑡 Computational time point or time of sgr arrival at the computational system

R Average stream rate

𝑝 = ⟨𝑒/𝑣, 𝑜𝑝⟩ An edge 𝑒 ∈ 𝐸 or a vertex 𝑣 ∈ 𝑉 , and an operation 𝑜𝑝 ∈ {𝑖𝑛𝑠𝑒𝑟𝑡, 𝑑𝑒𝑙𝑒𝑡𝑒,𝑢𝑝𝑑𝑎𝑡𝑒}
𝑊𝑖 := [𝑊 𝑏

𝑖
,𝑊 𝑒

𝑖
) 𝑖th time-based window𝑊 as an interval of width |𝑊 |

𝛽 Slide size for a sliding window

𝐺𝑊,𝑡 = (𝑉 (𝑡), 𝐸 (𝑡)) A graph snapshot formed by window𝑊 at time 𝑡

𝑑𝑒𝑔(𝑖) Degree of vertex 𝑖

𝑁𝑖 Neighborhood of vertex 𝑖

𝑃/𝛾/𝑀 FLEET’s sampling probability/subsampling probability/reservoir capacity

𝐾𝑖 Average degree of i-vertices

[/𝛼 Butterfly densification power law exponent for all/inter-window butterflies

𝑁ℎ𝑢𝑏 (𝑡) Number of hubs at time 𝑡

𝑁𝑡 Number of unique timestamps in data stream

𝐵(𝑡) The number of butterflies since the initial time point until 𝑡

𝐵𝑖 Butterfly support of vertex 𝑖

𝐵𝑊𝑘 Number of butterflies introduced by at least one vertex in the window𝑊𝑘

𝐵(𝑡 =𝑊 𝑒
𝑘
) = 𝐵𝑘 Estimation of number of butterflies at time 𝑡 =𝑊 𝑒

𝑘

𝐵
𝑊𝑘
𝐺

Number of butterflies in graph corresponding to window𝑊𝑘

𝐵𝑖𝑛𝑡𝑒𝑟𝑊& 𝐵𝑖𝑛𝑡𝑒𝑟𝑊 Number of inter-window butterflies & its estimate

𝑁𝑤𝑡 Number of unique timestamps per window

𝐾𝑖,𝑊𝑘 the lower bound of degree of i(j)-vertices in window𝑊𝑘

𝑉𝑖,𝑊𝑘 /𝐸𝑊𝑘 Set of i-vertices/edges in the interval [𝑊 𝑏
𝑘
,𝑊 𝑒

𝑘
)

𝐸𝑘 Set of edges in the interval [𝑊 𝑏
0 ,𝑊

𝑒
𝑘
)

𝑃𝑟 (𝑁 𝑡
𝑖𝐻𝑢𝑏

≥ 1) Probability of having at least one i-hub in the butterflies at time 𝑡

2.2.1 Counting in Static Bipartite Graphs. The literature on count-

ing (bi)cliques in static bipartite graphs [47, 49, 53, 54] and static

unipartite graphs [22, 56] is quite rich. A major challenge in this

context is the massive size of these graphs. Some studies have

focused on disk-resident data and optimized I/O access patterns

for counting the exact number of cliques [8, 17, 22–24, 44]. Other

studies consider in-memory algorithms and use random sampling

so that the induced graph can fit in main memory for estimating

the number of (bi)cliques [12, 47]. There are studies that propose

scaling out computation by parallelization [3, 29].

Butterfly counting algorithms in bipartite graphs follow either

vertex-centric or edge-centric processing. One straightforward

edge-centric approach is to take each pair of disjoint edges (𝑒𝑖1, 𝑗1 , 𝑒𝑖2, 𝑗2)
in the graph (Figure 2a) and check for the existence of the two other

edges that complete the butterfly pattern. The complexity of this

approach is O(|𝐸 |2) which is too expensive for graphs with a high

number of edges. Another edge-centric approach [16] takes an edge

𝑒𝑖1, 𝑗1 and examines the existence of the three complementary edges.

That is, the algorithm checks the connections between neighbors

of 𝑖1 and neighbors of 𝑗1 denoted as 𝑗2 and 𝑖2, respectively to see

whether they are connected by an edge 𝑒𝑖2, 𝑗2 (Figure 2b). This ap-

proach can be implemented with an algorithm that has complexity

O(∑⟨𝑖1, 𝑗1 ⟩∈𝐸 𝑀𝑖𝑛(𝑑𝑒𝑔(𝑖1), 𝑑𝑒𝑔(𝑗1))), which is not appropriate for

dense graphs with high number of edges and high average degrees.

(a) (b) (c) (d)

Figure 2: Butterfly counting methods.

The state-of-the-art approach [47, 53, 54] is vertex-centric that

takes a vertex 𝑣𝑖 and traverses all two-hop neighbors to identify

triples ⟨𝑖1, 𝑗1, 𝑖2⟩ and ⟨𝑖1, 𝑗2, 𝑖2⟩. That is, it finds all triples (i.e. two-
paths) with common end vertices (i.e. the same two-hop neighbor)

and then combines them to get the number of all butterflies (Figure

2c). The complexity of this approach is O(∑𝑖1∈𝑉𝑖 ∑𝑗1∈𝑁𝑖1 𝑑𝑒𝑔(𝑗1)),
which is challenging for graphs with high average i- and j-degrees

as a result of traversing two hop neighbors [54].

2.2.2 Counting in Streaming Bipartite Graphs. In the streaming

graph context, the literature is also rich for counting in unipartite

graphs [5, 8, 9, 11–13, 56, 57]. However, to the best of our knowledge,

the only butterfly counting study over bipartite streaming graphs is

FLEET [48], which introduces a suite of algorithms. FLEET1 samples

the edges of a window with probability 𝑃 into a reservoir with fixed

capacity 𝑀 to bound the memory consumption and increments

Aida Sheshbolouki and M. Tamer Özsu

the butterfly count by the number of incident butterflies for each

sampled edge. When the size of reservoir exceeds𝑀 , the edges are

sub-sampled with probability 𝛾 and the butterfly count is set to the

exact number of butterflies in the reservoir. The sampling probabil-

ity is then multiplied by 𝛾 for the following edges. FLEET2 avoids

re-computing the exact number of butterflies in the reservoir during

the sub-sampling iterations. FLEET3 avoids re-computation and

also updates the estimate before sampling the edges into the reser-

voir. FLEETSSW uses count-based sliding windows with limited

graph size in each window, and FLEETTSW uses time-based sliding

windows with fixed window length across windows. To overcome

the variable number of edges inside each window, FLEETTSW as-

sumes an upper-bound for the number of edges in a window on

top of a FIFO-based sampling scheme. As we discuss in Section 4,

there exist a number of inter-window butterflies in the stream that

are missed by the FLEET algorithms. Moreover, FLEET requires

determining a sub-sampling probability and a normalization factor

to scale-up the estimation computed over the sampled edges, and

the specification of a time when the result is ready to be returned.

FLEET requires a sufficiently large amount of memory to guarantee

a desired level of accuracy.

3 ANALYSIS OF GRAPH CHARACTERISTICS
In this section, we present our investigations into the emergence of

butterfly patterns in graph streams and on the underlying contribu-

tors to these patterns. We use the insights provided by this analysis

to introduce an approximation algorithm for butterfly counting in

streaming graphs in Section 4. The analysis results themselves are

also important as they expose how butterfly patterns exist in real

world graphs.

3.1 Graph stream data
We study a set of real world graphs and make use of a set of syn-

thetic graphs to explore additional features. Table 2 provides the

statistics about the graphs we study; these graphs are also used in

the experiments discussed in Section 5.

Real-world graphs – In this study, we use six real world

graphs: four rating graphs including Epinions, MovieLens100k,

MovieLens1m, MovieLens10m, and twoWikipedia edit networks in

Englishand Frenchobtained from the KONECT repository [31]. All

of these networks include information generated from interaction

of a set of users with a set of items (products, movies, or wikipedia

pages). These datasets cover graphs with different edge density

levels and are suitable for deep analysis and evaluations.

Synthetic graphs – In addition to the real world graphs, we

use six synthetic random graphs in this study to bolster the analy-

sis of real world graphs. In fact synthetic graphs are configurable

and have known structural properties that ease the understanding

of their patterns. We use these synthetic graphs to better under-

stand and explain what is happening in real world graphs through

the comparisons and contradictory case investigations. These syn-

thetic graphs are generated with respect to the three real world

graphs (Epinions, MovieLens100k, and MovieLense1m) in that the

the synthetic graphs and the corresponding real world graphs have

(roughly) same structural statistics. We use the Barabasi-Albert

(BA) model [6] to generate the structure of random graphs as the

baseline for analyzing real world graphs. We chose this model be-

cause it is a popular and widely adopted model for generating scale

free graphs [10, 15, 21, 25, 27, 33, 36, 38, 41, 52, 59]. Given the total

number of vertices 𝑁 , the initial number of vertices𝑚0 and the

number of connections of new vertices𝑚 (𝑚 ≤ 𝑚0) as inputs, the

BA graph model applies the rich-get-richer preferential attachment

rule to generate a unipartite scale-free random graph. Precisely, this

graph model creates an initial complete graph with𝑚0 vertices and

keeps adding 𝑁 −𝑚0 new vertices to this initial graph. The new

vertices are connected to𝑚 existing vertices with higher probability

of attachment dictated by the attachment rule. The BA preferential

attachment rule states that the probability is determined based on

the degree of the vertex, therefore the higher the degree (i.e. the

older the vertex), the higher the probability of attachment. The

original BA model produces growing unipartite graphs with no

timestamps. Therefore, we extended the model to generate bipartite

and temporal graphs with respect to a given real graph such that

the structure is dynamic but the timestamps are static. We introduce

a three-step procedure to create a bipartite and temporal scale-free

BA graph as a baseline for a given real-world graph:

Figure 3: Projecting a bipartite graph to two unipartite
graphs. There is a link between two vertices in unipartite
mode if they have any common neighbors in the bipartite
mode. Edge labels in the unipartite graph reflect the com-
mon neighbors.

(1) Create Unipartite BA graph – The input parameters to

the BA model (i.e. 𝑁 , 𝑚, and 𝑚0) should be set such that

the average degree of i-vertices and the number of total

edges (|𝐸 |) in real-world and synthetic graphs are (roughly)

the same. That is because of the edge-centric nature of our

intended analysis. Therefore, we set the parameters𝑚 =𝑚0

equal to the average degree of i-vertices (i.e. users) in the

real-world graph and determine the value of 𝑁 in a way that

it satisfies the equation for the number of edges in BA graph,

that is𝑚0 (𝑚0 − 1)/2 + (𝑁 −𝑚0)𝑚 = |𝐸 | . Given the input

parameters, the edge list of the scale-free unipartite directed

graph is generated.

(2) Project the graph to bipartite mode – A common ap-

proach to project a bipartite graph 𝐵𝐺 = (𝑉 , 𝐸𝑖 𝑗 , Σ,𝜓, 𝜙) to
unipartitemodes𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 , Σ,𝜓, 𝜙) and𝐺 𝑗 = (𝑉𝑗 , 𝐸 𝑗 , Σ,𝜓, 𝜙)
is to connect a pair of vertices if they have a common neigh-

bor (Figure 3). That is, (𝑖𝑚, 𝑖𝑛) ∈ 𝐸𝑖 if ∃ 𝑗 ∈ 𝑉𝑗 : (𝑖𝑚, 𝑗) ∈
𝐸𝑖 𝑗 & (𝑖𝑛, 𝑗) ∈ 𝐸𝑖 𝑗 and the same connection rule for j-

vertices. Accordingly, we propose a reverse-engineering

sGrapp: Butterfly Approximation in Streaming Graphs

Table 2: Bipartite and temporal graph datasets used. ⟨𝑘𝑖 ⟩ and ⟨𝑘 𝑗 ⟩ denote the average degree of i-vertices and j-vertices, respec-
tively. 𝑁 and𝑚 =𝑚0 are parameters of BA graphs and refer to the total number of vertices and average degree in the unipartite
BA graph, respectively. 𝑁𝑡 denotes the number of unique timestamps. 𝐵𝐺 denotes the number of butterflies in the graph.

Graph dataset |𝑉𝑖 | |𝑉𝑗 | |𝐸 | ⟨𝑘𝑖 ⟩ ⟨𝑘 𝑗 ⟩ 𝑁 𝑚 =𝑚0 𝑁𝑡 𝐵𝐺

Epinions

BA+Epinions stamps

BA+random stamps

22, 164

22, 514

22, 514

296, 277

21, 455

21, 455

922, 267

922, 254

922, 254

41

41

41

3

43

43

22, 515

22, 515

41

41

4, 318

4, 318

921, 159

170, 303, 771, 005

MovieLens1m

BA+ML1m stamps

BA+random stamps

6, 040
6, 106

6, 106

3, 706
6, 022

6, 022

1, 000, 210
999, 901

999, 901

166
164

164

270
166

166
6, 107

6, 107

166

166

458, 455
458, 312

994, 467

16, 671, 201, 295

MovieLens100k

BA+ML100k stamps

BA+random stamps

943

995

995

1, 682

982

982

100, 000

99, 905

99, 905

106

100

100

59

100

100

966

966

106

106

49, 282

49, 254

996, 555

220, 548, 028

MovieLens10m 69,878 10,677 10,000,054 143 937 7,096,905 1,197,019,065,804

edit-frwiki 288,275 3,992,426 46,168,355 160 11 39,190,059 601.2 × 109
edit-enwiki 262,373,039 266,665,865 266,769,613 70 12 134,075,025 2 × 1012

Table 3: 𝑅2 and RMSE of ten fitting functions for the temporal evolution of butterfly frequency in three real-world graph
streams. Filled cells decode increasing function and best fits are highlighted in gray cells.

𝑅2

RMSE

Linear Quadratic Cubic

4th degree

polynomial

Quintic

6th degree

polynomial

7th degree

polynomial

8th degree

polynomial

9th degree

polynomial

10th degree

polynomial

Epinions

0.9947
1.481𝑒4

0.9951
1.435𝑒4

0.9951
1.432𝑒4

0.9975
1.028𝑒4

0.9977
9751

0.9977
9716

0.9978
9598

0.9984
8130

0.9987
7409

0.9987
7386

ML100k

0.931
2.31𝑒6

0.9977
4.18𝑒5

0.9978
4.167𝑒5

0.9978
4.126𝑒5

0.9983
3.673𝑒5

0.9983
3.584𝑒5

0.9993
2.286𝒆5

0.9993
2.286𝒆5

0.9997
1.552𝑒5

0.9997
1.552𝑒5

ML1m

0.8751

2.119𝑒6
0.9951

4.196𝑒5
0.9953

4.111𝑒5
0.9977

2.895𝑒5
0.9989

1.976𝑒5
0.9989

1.961𝑒5
0.999

1.94𝑒5
0.999

1.937𝑒5
0.999

1.933𝑒5
0.999

1.933𝒆5

ML10m

0.8943

3.223𝑒6
0.9983

4.034𝑒5
0.999

3.149𝑒5
0.9992

2.841𝑒5
0.9993

2.701𝑒5
0.9993

2.699𝑒5
0.9993
2.605𝒆5

0.9994

2.493𝑒5
0.9996

1.868𝑒5
0.9997

1.781𝑒5

Edit-FrWiki

0.9228

8.09𝑒4
0.9932

2.408𝑒4
0.9932

2.397𝑒4
0.9953

1.998𝑒4
0.9966
1.693𝒆4

0.9968

1.653𝑒4
0.9979

1.319𝑒4
0.9988

1.01𝑒4
0.9988

9928

0.9989

9725

Edit-EnWiki

0.971
1990

.9879
1288

0.9879
1285

0.9903
1150

0.9918
1060

0.9928
990

0.9951
821.3

0.9957
769.9

0.9964
696.5

0.9967
671.7

technique for projecting the unipartite graphs to bi-
partite mode. Precisely, given a unipartite BA graph 𝐺𝑖
with 𝑁𝑖 vertices (assuming the vertices as i-vertices), the

bipartite mode 𝐵𝐺 is generated by the procedure below:

(a) Assign 𝑁 𝑗 labels {𝐿𝑘 |1 ≤ 𝑘 ≤ 𝑁 𝑗 } to arbitrary edges in

𝐺𝑖 .

(b) Create a set of 𝑁 𝑗 j-vertices.

(c) Project each edge (𝑖𝑚, 𝑖𝑛) ∈ 𝐸𝑖 with label 𝐿𝑘 into two

edges (𝑖𝑚, 𝑗𝑘) and (𝑖𝑛, 𝑗𝑘).
Clearly, this procedure can yield a bipartite BA graph with a

pre-specified number of i- and j-vertices. Therefore, it can

mimic the number of vertices in the real-world graph exactly.

However, the number of edges in the output bipartite BA

graph does not match that of the unipartite BA graph and

if we create a unipartite BA graph with specific number

of edges, then the number of i-vertices would be affected

accordingly. Therefore, this projection method can not yield

bipartite BA graphs that have specific number of edges and

vertices at the same time and solely adjusting the number of

edges will affect the number of vertices. On the other hand,

the intended analysis in this work is edge-centric, therefore

it is important to create synthetic bipartite graphs with the

same number of edges as the real-world graphs.

To address this problem,we follow a simple projectionmethod.

Given the list of directed edges in the unipartite BA graph,

the sources of edges are treated as i-vertices and the destina-

tions as the j-vertices. Hence, the BA graph is projected to

bipartite mode with same number of edges as that of the uni-

partite and the corresponding real-world graph. The number

of i-vertices in the projected bipartite BA graph (equal to

the 𝑁 of unipartite BA graph) is very close to that of the

real-world graph. In spite of different number of j-vertices in

the projected and real-world graphs, this projection method

is preferable as it solves the aforementioned issue. Moreover,

this method preserves the scale-free characteristic of the

uni-partite graph since the j-degree (i-degree) distribution in

bipartite graph is equivalent to the in-degree (out-degree) dis-

tribution of vertices in the unipartite graph and the j-degree

distribution is scale-free (see Figure 4).

Aida Sheshbolouki and M. Tamer Özsu

Figure 4: The j-degree distribution of Projected Bipartite BA graphs for three real-world graphs

(3) Assign timestamps to the synthetic edges – Given the

timestamps of the a real-world graph and the bipartite struc-

ture of the corresponding random graph, timestamps are

assigned to the edges in two ways:

(a) Each BA edge is randomly assigned a timestamp within

the range of timestamps of the corresponding real-world

graph and the resulting graph is called BA+random stamps.
(b) The un-ordered timestamps of the corresponding real-

world graph are assigned to arbitrary BA edges and the

resulting graph is called BA+real stamps. This method

guarantees same temporal distribution for the edges of

BA and real-world graphs and supports fair comparisons.

All the edge lists (real and synthetic) are sorted based on the

timestamps to simulate the streaming graph records in the analysis.

3.2 Butterfly Emergence Patterns
Network motifs are “patterns of interconnections occurring in com-

plex networks at numbers that are significantly higher than those

in randomized networks” [40]. Identifying the motifs helps char-

acterize the graph and also benefits graph querying systems that

are based on subgraph-centric programming model (i.e. operates

on subgraphs rather than vertices or edges) and can be optimized

by indexing the network motifs. That is, network motifs repre-

sent the regularities in the graph data and are helpful in building

indexes over frequent and regular graph structures (structural in-

dexing) [50, 58, 63]. On the other hand, the frequent butterflies in

a graph is a sign of high clustering coefficient. While butterflies

are known to be motifs in static graphs, their temporal emergence

patterns is not well studied. Therefore, we study the number of

butterflies emerging in the real-world graphs over time. Also, we

compare these with the occurrence patterns in randomized graphs

to see if the occurrence frequency is higher in real-world graphs.

This is required for a sound and complete recognition of butterflies

as temporal motifs, since motif definition requires such comparison.

For this analysis we use an exact butterfly counting algorithm for

graph snapshots (called countButterflies(G) – Algorithm 1). Given

a bipartite graph snapshot 𝐺𝑊,𝑡 = (𝑉 (𝑡), 𝐸 (𝑡)) at a time point

𝑡 , the goal is to compute 𝐵(𝑡) as the number of all quadruples

⟨𝑖1, 𝑖2, 𝑗1, 𝑗2⟩ in𝐺𝑊,𝑡 such that they form a butterfly via four edges

{𝑒𝑖1, 𝑗1 , 𝑒𝑖1, 𝑗2 , 𝑒𝑖2, 𝑗1 , 𝑒𝑖2, 𝑗2 } (Figure 1–rightmost).

Algorithm 1 follows a vertex-centric approach that does not re-

quire accessing two-hop neighbors (i.e. it is not triple-based) and

can be computed by looping over either i-vertices or j-vertices

depending on their average degree (denoted by 𝐾𝑖 and 𝐾𝑗). The

algorithm takes a vertex 𝑖1 (provided that 𝐾𝑖 ≤ 𝐾𝑗) and consid-

ering each pair of j-neighbors 𝑗1 and 𝑗2, identifies the common

i-neighbors of 𝑗1 and 𝑗2, i.e. vertices such as 𝑖2 (Figure 2.d). We use

sublists to avoid iterating over repeated j-neighbors (lines 6-8 in

Algorithm 1) and we identify the common neighbors by iterating

over the lower degree j-vertex (line 10 in Algorithm 1).

Algorithm 1: countButterflies(G)
Input: 𝐺 = ⟨𝑉𝑖 ∪𝑉𝑗 , 𝐸𝑖 𝑗 ⟩, static graph
Output: 𝐵𝐺 , The number of butterflies in G

1 𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑖𝑒𝑠 ← ∅ // An empty hashSet of quadruples

2 𝑗𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← ∅ // An empty Set

3 𝑣𝑖2𝑠 ← ∅ // An empty Set

/* loop over 𝑖1 ∈ 𝑉𝑖 if 𝐾𝑖 < 𝐾𝑗 , otherwise loop over 𝑗1 ∈ 𝑉𝑗 */

4 for 𝑖1 ∈ 𝑉𝑖 do
5 𝑗𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← 𝑁𝑖1 // j-neighbors of vertex 𝑖1

6 for 𝑖𝑛𝑑𝑒𝑥1 ∈ [1, 𝑠𝑖𝑧𝑒 (𝑗𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)] do
7 𝑗1 ← 𝑗𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 [𝑖𝑛𝑑𝑒𝑥1]
8 for 𝑖𝑛𝑑𝑒𝑥2 ∈ [𝑖𝑛𝑑𝑒𝑥1 + 1, 𝑠𝑖𝑧𝑒 (𝑗𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)] do
9 𝑗2 ← 𝑗𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 [𝑖𝑛𝑑𝑒𝑥2]

10 𝑣𝑖2𝑠 ← 𝑁 𝑗1 ∩ 𝑁 𝑗2 // common i-neighbors

11 𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑖𝑒𝑠 .𝑎𝑑𝑑 ([𝑖1, 𝑗1, 𝑖2, 𝑗2])

12 𝐵𝐺 ← 𝑠𝑖𝑧𝑒 (𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑖𝑒𝑠)

It is important to calculate the exact number of butterflies to

make sure that analysis are correct and the identified patterns are

reliable. Hence, we adopt an eager computation model where the

exact number of butterflies is computed after each edge is added

(connecting new/existing vertices) (Algorithm 1). We do this in the

time period 0 to 5000 due to the computational expenses of the

computation model. Note that the frequency distribution of edge

insertions occurring in time-intervals of variant sizes follows the

same shape. This means that the distribution with respect to scaling

across time scales is invariant (i.e. self-similar [55]). Therefore, we

can rely on the analysis on a fraction of the subsequent streaming

edges.

To compare the numbers with that of a random graph (see the

definition of network motifs), we just use the corresponding BA

graph with the same real timestamp. This enables fair comparison

of structural evolution of real-world and synthetic random graphs.

sGrapp: Butterfly Approximation in Streaming Graphs

Figure 5: [Best viewed in colored.] Temporal evolution of butterfly frequency .

Figure 6: [Best viewed in colored.] Best Fitting functions for the temporal evolution of butterfly frequency (top) and the
residual errors of the estimated fitting function (bottom).

As shown in Figure 5, real-world graphs display rapid temporal

evolution of the number of butterflies. To further investigate the

growth pattern of butterfly frequency in these graphs, we examine

ten polynomial functions of degree one to ten to fit the data points

of temporal butterfly frequency evolution (black lines in Figure

5) and picked the best fitting function (Table 3). The best fitting

function satisfies three conditions: (i) it has the lowest RMSE; (ii)

it has the highest coefficient of determination (𝑅2); and (iii) it is

a non-decreasing function. 𝑅𝑀𝑆𝐸 quantifies the estimation error,

while 𝑅2 quantifies the linear correlation between the estimated fit-

ting function and the data points. Figure 6 illustrates the best fitting

function and its estimation errors (residuals) used in calculation of

the RMSE. Note that high RMSE values are due to the increasing

function giving rise to high residuals. We do not compare the RMSE

of different graphs, instead we compare the RMSE of different fitting

functions for each graph. Therefore, the absolute value of RMSE

is not as important as its relative value for different functions. As

shown in Figure 6 all the plots are properly fitted to polynomial

Aida Sheshbolouki and M. Tamer Özsu

functions of degree above 5 (best fitted to 5th, 7th, 9th and 10th

degrees). We term this the butterfly densification power-law
(following the power-law terminology [34]): the number of but-

terflies at time point 𝑡 (i.e. 𝐵(𝑡)) follows a power law function of

the number of edges at 𝑡 (i.e. 𝐵(𝑡) ∝ 𝑓 (|𝐸 (𝑡) |[), [> 1). Moreover,

the outstanding frequency of butterflies in the real-world graphs

compared to that of random graphs suggests that butterflies are

network motifs across the time line.

3.3 Bursty Butterfly Formation
In the previous subsection we observed the densification of butter-

flies as network motifs. Now, we study how these motifs are formed

over time. To this end, we check the distribution of inter-arrival

time of a pair of edges forming a butterfly. That is, for any pair of

edges ⟨𝑒1, 𝑒2⟩ with time stamps 𝜏1 and 𝜏2 that co-exist in a butter-

fly, the inter-arrival time is |𝜏1 − 𝜏2 |. We adopt a lazy computation

model to compute the inter-arrival distribution once after adding

5000 edges to the graph (i.e. at the time point 𝑡 = 5000).
As shown in the Figures 7 and 8, the distribution of inter-arrival

values is skewed to the right. The left peaks and the heavy tail of the

distribution reveal different patterns. The leftmost peaks highlight

that many butterflies are formed by edges with close timestamps.

On the other hand, according to Figure 5, the number of butterflies

increase significantly over time. It can be inferred that butterflies
are formed in a bursty fashion.

Next, we investigate the vertices that form the butterflies to

see (a) whether the bursty butterfly generation is contributed by

hubs (i.e. vertices with degree above the average of unique vertex

degrees) or normal vertices (Subsection 3.3.1), and (b) if hubs are

the main contributors, are they young, old, or both? (Subsection

3.3.2).

3.3.1 Hubs contribution to butterfly emergence. We hypothesize

that butterflies are contributed by hubs and to test this, we study

following items:

• The probability of forming butterflies by hubs

• The correlation between degree and support of vertices

• The connection patterns of hubs

The probability of forming butterflies by hubs – We enu-

merate butterflies formed at time 𝑡 = 0 to 𝑡 = 5000 and check the

fraction of butterflies formed by zero to four hubs (Table 4) and the

fraction of butterflies formed by zero, one, or two i-/j-hubs (Table

5). It is evident that, butterflies mostly include one or, with higher

probability, two hubs which are usually i-hubs.

The correlation between degree and support of vertices
– We study the correlation between degree 𝑑𝑒𝑔(𝑖) and butterfly

support 𝐵𝑖 , where 𝐵𝑖 is defined as the number of butterflies incident

to each vertex. For computing the 𝐵𝑖 , we extend countButterflies(G)
(Algorithm 1) to obtain ButterflySupport(G) (Algorithm 2).

We refer to the correlation computed over the i-vertices and

j-vertices as i-correlation (equation 1) and j-correlation (similarly

computed), respectively. We use the Pearson correlation coefficient

at time point 𝑡 = 5000 for all the 𝑁 = |𝑉𝑖 | or |𝑉𝑗 | seen i-(j-)vertices

in the graph snapshot. It should be noted that a positive correla-

tion coefficient means 𝑑𝑒𝑔(𝑖) and 𝐵𝑖 increase or decrease together,
while a negative correlation means increasing one quantity implies

Algorithm 2: ButterflySupport(G)
Input: 𝐺 = ⟨𝑉𝑖 ∪𝑉𝑗 , 𝐸𝑖 𝑗 ⟩, static graph
Output: 𝑣𝑆𝑢𝑝𝑝𝑜𝑟𝑡 , butterfly support of vertices

1 𝑣𝑆𝑢𝑝𝑝𝑜𝑟𝑡 ← ∅ // An empty hashMap

2 𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑖𝑒𝑠 ← ∅ // An empty hashSet of quadruples

3 𝑗𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← ∅ // An empty Set

4 𝑣𝑖2𝑠 ← ∅ // An empty Set

/* loop over 𝑖1 ∈ 𝑉𝑖 if 𝐾𝑖 < 𝐾𝑗 , otherwise loop over 𝑗1 ∈ 𝑉𝑗 */

5 for 𝑣𝑖1 ∈ 𝑉𝑖 do
6 𝑗𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← 𝑁𝑖1 // j-neighbors of vertex 𝑖1

7 for 𝑖𝑛𝑑𝑒𝑥1 ∈ [1, 𝑠𝑖𝑧𝑒 (𝑗𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)] do
8 𝑗1 ← 𝑗𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 [𝑖𝑛𝑑𝑒𝑥1]
9 for 𝑖𝑛𝑑𝑒𝑥2 ∈ [𝑖𝑛𝑑𝑒𝑥1 + 1, 𝑠𝑖𝑧𝑒 (𝑗𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)] do
10 𝑗2 ← 𝑗𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 [𝑖𝑛𝑑𝑒𝑥2]
11 𝑣𝑖2𝑠 ← 𝑁 𝑗1 ∩ 𝑁 𝑗2 // common i-neighbors

12 for 𝑖2 ∈ 𝑣𝑖2𝑠 do
13 if [𝑖1, 𝑗1, 𝑖2, 𝑗2] ∉ 𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑖𝑒𝑠 then
14 𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑖𝑒𝑠 .𝑎𝑑𝑑 ([𝑖1, 𝑗1, 𝑖2, 𝑗2])
15 𝑣𝑆𝑢𝑝𝑝𝑜𝑟𝑡 .𝑝𝑢𝑡 (𝑖1, 𝑣𝑆𝑢𝑝𝑝𝑜𝑟𝑡 .𝑔𝑒𝑡 (𝑖1) + 1)
16 𝑣𝑆𝑢𝑝𝑝𝑜𝑟𝑡 .𝑝𝑢𝑡 (𝑗1, 𝑣𝑆𝑢𝑝𝑝𝑜𝑟𝑡 .𝑔𝑒𝑡 (𝑗1) + 1)
17 𝑣𝑆𝑢𝑝𝑝𝑜𝑟𝑡 .𝑝𝑢𝑡 (𝑖2, 𝑣𝑆𝑢𝑝𝑝𝑜𝑟𝑡 .𝑔𝑒𝑡 (𝑖2) + 1)
18 𝑣𝑆𝑢𝑝𝑝𝑜𝑟𝑡 .𝑝𝑢𝑡 (𝑗2, 𝑣𝑆𝑢𝑝𝑝𝑜𝑟𝑡 .𝑔𝑒𝑡 (𝑗2) + 1)

decreasing the other one. Values close to 1 demonstrate strong

correlation.

𝑁
∑
𝑖∈𝑉𝑖 𝑑𝑒𝑔 (𝑖)𝐵𝑖 −

∑
𝑖∈𝑉𝑖 𝑑𝑒𝑔 (𝑖)

∑
𝑖∈𝑉𝑖 𝐵𝑖√︃

[𝑁 ∑
𝑖∈𝑉𝑖 𝑑𝑒𝑔 (𝑖)

2 − (∑𝑖∈𝑉𝑖 𝑑𝑒𝑔 (𝑖))2] [𝑁 ∑
𝑖∈𝑉𝑖 𝐵

2
𝑖
− (∑𝑖∈𝑉𝑖 𝐵𝑖)2] (1)

As provided in Table 6, there is a strong positive correlation

between the degree and the support of vertices in real-world graphs.

i.e. the higher the degree, the higher the butterfly support and

vice versa. This highlights the impact of hubs in the emergence of

enormous number of butterflies in the real-world graphs.

The connection patterns of hubs – We quantify the extent

to which i-(j-)hubs dominate the edges over time by means of

two equivalent measures: (i) the fraction of i-(j-)hub connections

(denoted by

∑𝑁ℎ𝑢𝑏 (𝑡)
𝑖=1 (𝑑𝑒𝑔 (ℎ𝑢𝑏𝑖))

𝐸 (𝑡)) normalized over the number of

hubs at time point 𝑡 (denoted by 𝑁ℎ𝑢𝑏 (𝑡)), and (ii) the average

degree of i-(j-)hubs (denoted by

∑𝑁ℎ𝑢𝑏 (𝑡)
𝑖=1 (𝑑𝑒𝑔 (ℎ𝑢𝑏𝑖))

𝑁ℎ𝑢𝑏 (𝑡)) normalized

over the total number of edges at time point 𝑡 (denoted by |𝐸 (𝑡) |).

Both quantities are calculated by

∑𝑁ℎ𝑢𝑏 (𝑡)
𝑖=1 (𝑑𝑒𝑔 (ℎ𝑢𝑏𝑖))
𝐸 (𝑡)∗𝑁ℎ𝑢𝑏 (𝑡) at any given

time point 𝑡 . We adopt an eager computation model to compute this

value when a new edge is added. The time point 𝑡 can be interpreted

as the number of edges added to the graph since the initial time

point 𝑡 = 0.
As shown in the Figures 9 and 10, while the number of edges

added to the graph increases, the normalized fraction of i-(j-)hub

connections (average degree of i-(j-)hubs) decreases over time in

both real-world and BA graphs.

sGrapp: Butterfly Approximation in Streaming Graphs

Figure 7: Distribution of inter-arrival time of edges forming butterflies in real-world graphs.

Figure 8: Distribution of inter-arrival time of edges forming butterflies in BA+real stamps graphs.

Table 4: Fraction of butterflies including zero, one, two, three, or four hub(s) at after applying 5000 edge-insertions sgrs.

Fraction 0 hub 1 hub 2 hubs 3 hubs 4 hubs

Epinions

BA+Epinions stamps

0.09
0.11

0.29
0.44

0.55
0.39

0.07
0.06

0
0

ML100k

BA+ML100k stamps

0.07
0.24

0.35
0.28

0.48
0.28

0.09
0.15

0.01
0.05

ML1m

BA+ML1m stamps

0.07
0.01

0.38
0.33

0.48
0.6

0.07
0.06

0
0

ML10m 0.09 0.34 0.37 0.17 0.03

Edit-Frwiki 0.08 0.29 0.53 0.1 0

Edit-Enwiki 0.1 0.48 0.41 0.01 0

Table 5: Fraction of butterflies including zero, one, or two i-hub(s) or j-hub(s) at after applying 5000 edge-insertions sgrs.

Fraction 0 i-hub 1 i-hub 2 i-hubs 0 j-hub 1 j-hub 2 j-hubs

Epinions

BA+Epinions stamps

0.11
0.19

0.35
0.56

0.54
0.25

0.85
0.7

0.13
0.25

0.02
0.05

ML100k

BA+ML100k stamps

0.10
0.48

0.46
0.39

0.44
0.13

0.75
0.37

0.21
0.41

0.04
0.23

ML1m

BA+ML1m stamps

0.1
0.01

0.43
0.36

0.47
0.63

0.84
0.9

0.15
0.1

0.01
0

ML10m 0.25 0.54 0.21 0.47 0.33 0.2

Edit-Frwiki 0.11 0.35 0.54 0.81 0.18 0.01

Edit-Enwiki 0.1 0.5 0.4 0.97 0.03 0

Figures 9 and 10 also reveal that (a) unlike real-world graphs, i-

and j-hubs emerge later in the BA graphs (originated by the BA’s

preferential attachment rule), and (b) the average degree of hubs

in early time points is higher in real-world graphs than that of BA

graphs. This is due to the bursty characteristic of graph stream (i.e.

arrival of a bunch of edges with same time-stamp and same i- or j-

vertex). In summary, early in the stream, the BA graphs have lower

number of hubs with lower degrees compared to the real-world

graphs. Figure 5 also illustrates the low number of butterflies in BA

graphs earlier in the stream when there are no hubs in these graphs

or the average hub degree is low. On the other hand, real world

graphs have high number of hub connections and high number of

butterflies. These observations again verify the contribution of hubs

to the emergence of butterflies; When the number of hubs is low

and the average degree of hubs is also low, the number of butterflies

is also low (as seen in BA graphs). Also, when the number of hubs

and their average degree is high, the number of butterflies is high

(as seen in real-world graphs).

Aida Sheshbolouki and M. Tamer Özsu

Figure 9: [Best viewed in colored.] Temporal evolution of the normalized fraction of i-hub connection (average i-hub degree).

Figure 10: [Best viewed in colored.] Temporal evolution of the normalized fraction of j-hub connection (average j-hub degree).

Table 6: Correlation between the butterfly support and
the degree of i-vertices (i-correlation) and j-vertices (j-
correlation).

i-correlation j-correlation

Epinions

BA+Epinions stamps

0.86
0.56

0.73
0.72

MovieLens1m

BA+MovieLens1m stamps

0.98
0.92

0.92
0.89

MovieLens100k

BA+MovieLens100k stamps

0.95
0.63

0.93
0.88

MovieLens10m 0.83 0.93

Edit-Frwiki 0.91 0.85

Edit-Enwiki 0.89 0.62

3.3.2 Contribution of hub age to butterfly emergence. We hypothe-

size that butterflies are contributed by old hubs and to test this, we

study following items:

• The evolution of young and old hubs

• The inter-arrival of butterfly edges

The evolution of young and old hubs – To further investigate
how the age of hubs contribute to the emergence of butterflies, we

first check the evolution of young and old hubs. As mentioned

before, we define the i-(j-)hub as any i-(j-)vertex whose degree is

above the average of unique i-(j-)degrees in the graph. Accordingly,

young(old) hubs are defined as any hub whose timestamp is in

the last(first) 25% of ordered set of already seen timestamps. The

vertex timestamps are determined as the timestamp of the sgr by

which the vertex has been added to the graph for the first time. For

instance, if a vertex 𝑖 arrives via the inserting edges 𝑒1 = ⟨𝑖, 𝑗1⟩
and 𝑒2 = ⟨𝑖, 𝑗2⟩, the time stamp of vertex 𝑖 is set to the timestamp

of 𝑒1, which has arrived before 𝑒2 (assuming subscript identify

order of arrival). We adopt a lazy computation model to compute

the number of young/old i-(j-)hubs using a time-based landmark

window where the computation is done over a growing graph

generated by the edges in the append-only window following each

expansion. Window expansion lengths are set to cover 0.1 ∗ 𝑁𝑡
unique timestamps in each window in Epinions, ML100k, ML1m,

and ML10m. In the larger graph streams Edit-EnWiki and Edit-

FrWiki, this value is equal to 0.01 ∗𝑁𝑡 . 𝑁𝑡 is the number of unique

timestamps in data stream.

As shown in the Figure 11, young i-hubs and/or j-hubs are formed

in the real-world graphs over time, while in BA graphs with random

timestamps the number of young i-(j-)hubs is always zero. In BA

graphs with real timestamps, the timestamp of hubs are shuffled,

therefore the old hubs are identified as young hubs that should be

ignored. Figure 12 demonstrates that old hubs increase over time

in BA graphs, which is not always the case for real-world graphs.

Moreover the number of old hubs in real world graphs is less than

that of BA graphs.

sGrapp: Butterfly Approximation in Streaming Graphs

Figure 11: The number of young (top) i-hubs and (bottom) j-hubs after arrival of each batch of edge insertion sgrs.

Figure 12: The number of old (top) i-hubs and (bottom) j-hubs after arrival of each batch of edge insertion sgrs.

The inter-arrival of butterfly edges – Finally, we recheck the

heavy tail of the inter-arrival distribution which is over-represented

in BA graphs (Figure 8). The heavy tail is related to the butterfly

edges with high inter-arrival times. These highly frequent butterfly

edges with high inter-arrivals reflect the connection between the

young vertices and old vertices. We hypothesize that young vertices

are ordinary vertices and old ones are hubs and we prove it since (a)

we proved in the previous subsection that hubs are main contribu-

tors to butterfly emergence; and (b) the hubs forming the butterflies

cannot be young hubs as BA graphs would be contradiction; BA

graphs do not have young hubs (Figure 12), while they have many

butterfly edges with high inter-arrival(Figure 5), so butterflies can-

not originate from young hubs. Therefore, old hubs signify the

bursty butterfly emergence. Young hubs can exist, but they are not

the hubs dominating the butterflies.

3.4 Discussion
In this section, we summarize our findings in this study of the

emergence of butterflies in streaming graphs. We observed that

butterflies are network patterns across the time line of sgr arrivals

since the number of butterflies increases significantly over time in

real-world streaming bipartite graphs, and at each time point the

number of butterfly occurrences in real-world graphs are signifi-

cantly higher than random graphs. We formulated the emergence

of butterfly interconnections as the butterfly densification power

law, stating that the number of butterflies at any time point 𝑡 is a

power law function of the size of stream prefix seen until 𝑡 .

In terms of how these enormous number of butterflies emerge

over time, our studies reveal the contribution of hubs in the stream-

ing graphs. Further investigation of the impact of hubs in terms of

their age reveal that the older hubs contribute more to the densifi-

cation of butterflies.

An efficient streaming algorithm for butterfly counting can only

deal with a subset of the stream at any given point in time. Also,

a precise streaming algorithm demands taking into account all

existing butterflies regardless of how long they take to form and

how much memory is available. The statistical analysis uncover the

temporal organizing principles of butterflies that impact the iden-

tification of any potential butterfly that should be counted by the

algorithm. Specifically, our study reveal the dominant contribution

of old hubs with young neighbours on shaping butterfly structures

over time. That is, a butterfly takes a long time to form as it takes a

while before newly added vertices get connected to old hubs and the

butterfly structure completes. In window-based algorithms such as

ours, care is required in windowing as butterflies may be split across

windows, affecting the butterfly count – it is important to take into

account the butterflies that may fall between windows. Moreover,

when counting the number of multiple-window-spanning butter-

flies, it is important to take advantage of the butterfly densification

power law that quantifies the butterfly count with respect to the

Aida Sheshbolouki and M. Tamer Özsu

number of edges seen so far. The total number of received edges

is easy to track in streaming graphs. Analysis of real-world graph

streams as we have done enabled us to design a data-driven butterfly

counting algorithm discussed in next section.

4 sGrapp
The analysis results presented in the previous section, in particular

the contribution of old hubs in bursty butterfly densification (the

heavy tail of the distribution of inter-arrival values in Figure 7),

provide insights to butterfly counting in streaming graphs. In view

of these, the precise problem definition reads as follows: Given a
sequence of streaming graph records ordered by their timestamps, the
goal is to compute the total number of butterflies in emerging graph
𝐺 at time point 𝑡 – denoted as 𝐵(𝑡). In other words, the count is

over the snapshot corresponding to the prefix of the stream seen so

far. Computing 𝐵(𝑡) over a streaming graph is not feasible, since

the stream is unbounded. It is known that without knowing the

size of the streaming input data, it is not possible to determine the

memory required for processing the data [2], and unless there is

unbounded memory, it is not possible to compute exact answers

for this data stream problem [4]. Butterfly counting is an example

of streaming problems that are provably intractable if the avail-

able space is sub-linear in the number of stream elements [39].

Windowing addresses this fundamental problem by providing an

approximate result. However, as data enters and leaves the window

as the graph emerges, the result is approximate. Approximation has

been recognized as an important method for processing high speed

data streams, and windows are known as a natural approximation

method over data streams [4].

Consequently, in this section we develop an approximate but-

terfly counting algorithm called sGrapp that uses windowing. The

algorithm uses tumbling windows in order to avoid double counting

of repeated butterflies. As defined in Section 2.1, tumbling windows

do not overlap when windows move, thus avoiding the double-

counting problem. We adopt a lazy time-based tumbling window

model to compute the number of butterflies introduced by each win-

dow of disjoint edge insertions,𝑊𝑘 , at the end time of the window

denoted by 𝐵𝑊𝑘 , and increment the cumulative value accordingly:

𝐵(𝑡 =𝑊 𝑒
𝑘
) = 𝐵(𝑡 =𝑊 𝑒

𝑘−1) + 𝐵
𝑊𝑘

. This processing is incremental.

An issue that has to be addressed is that there may exist some but-

terflies that are formed by the edges with large inter-arrival times

(heavy and long tail in Figure 7). These butterflies are not captured

within one window (unless it is sufficiently large) and we refer

to these as inter-window butterflies. However, setting the window
length to a big value to cover the inter-window butterflies implies

a high computational footprint in terms of memory and time. This

conflicts with the goal of using a windowed approach to lower this

footprint by performing incremental processing over subsets of

sgrs. sGrapp addresses this issue by not requiring lengthy windows

but using tumbling windows with adaptive lengths.

sGrapp estimates the number of butterflies from the beginning

of the first window 𝑡 =𝑊 𝑏
0 until the end of 𝑘th window denoted

as 𝐵(𝑡 =𝑊 𝑒
𝑘
) = 𝐵𝑘 by counting the exact number of butterflies in

the graph corresponding to the current window𝑊𝑘 as 𝐵
𝑊𝑘
𝐺

and

approximating the number of inter-window butterflies (𝐵𝑖𝑛𝑡𝑒𝑟𝑊).

The estimated cumulative value would be 𝐵𝑘 = 𝐵𝑘−1 + 𝐵
𝑊𝑘
𝐺

+𝛿 (𝑘 ≠

0)𝐵𝑖𝑛𝑡𝑒𝑟𝑊 , where the function 𝛿 (·) returns 1 for true input and

0, otherwise. Note that the first window𝑊0 has no inter-window

butterflies and hence the corresponding term would become zero

by means of the delta function. In the following, we introduce our

adaptive window framework to perform the butterfly approxima-

tion (Subsection 4.1). Next, we explain how sGrapp approximates

the 𝐵𝑖𝑛𝑡𝑒𝑟𝑊 and consequently 𝐵𝑘 (Subsection 4.2). Afterwards, we

discuss optimizations to sGrapp (Subsection 4.3). We end this sec-

tion by analyzing the computational complexity and error bounds

of sGrapp (Subsection 4.4).

4.1 Adaptive time-based sliding windows
A main challenge with time-based windows is how to set the length
of windows? A common approach in stream processing is setting

the length of a window using a predetermined value 𝐿 (|𝑊𝑖 | =
𝐿, ∀𝑖). However, different graph streams have different temporal

distributions (frequency distribution of sgr timestamps – Figure

13) and the number of arrived sgrs is not uniform across all time

intervals. Therefore, this approach would result in windows of

sgrs that cover differing numbers of timestamps, which imposes

unbalanced loads on the processing algorithms, particularly in the

case of sgr arrivals with bursty characteristics and non-uniform

temporal distribution.

To tackle this issue, we introduce an adaptive approach to set

the window length. This approach determines the window length

according to the timestamps of the graph stream and adapts to

the temporal distribution of the stream (Algorithm 3) with no as-

sumption about the order and number of arriving sgrs per time

unit.Hence, graph streams with differing arrival rates and temporal

distributions can be accommodated. Precisely, we use a number of

time-based tumbling windows each including a variable number

of sgrs but a certain number of unique timestamps in the graph

stream, 𝑁𝑤𝑡 . For instance, in Subsection 3.3.2 we used 10 windows

each including variant number of sgrs that cover 10% of unique

timestamps (𝑁𝑤𝑡 = 0.1 ∗ 𝑁𝑡) (Figures 11 and 12). That is, given the

number of unique timestamps per window 𝑁𝑤𝑡 , we ingest sgrs to

the window (lines 8 to 11 in Algorithm 3). When 𝑁𝑤𝑡 timestamps

are seen, we close the window and perform the intended analysis

over the corresponding snapshot (lines 12 − 13 in Algorithm 3).

The outputs of the analysis are streamed out correspondingly. Next,

the window slides forward (line 14 in Algorithm 3) and the retired

edges are deleted from the computational graph (lines 15 − 16 in

Algorithm 3). In tumbling windows, all the edges are retired when

the window slides, and the graph snapshot is renewed. The time-

step is incremented and the algorithm continues until there is a sgr

(i.e. continuously in real world streams).

This may appear as a count-based window, but it is not. A count-

based window would contain a fixed number of sgrs, while we

only fix the number of unique timestamps in the window, not the

sgrs. Therefore, ours is time-based with adaptive width since the

window borders adapt to the temporal distribution of the stream. In

fact adaptive windowing would reduce to count-based windowing,

if and only if the temporal distribution of stream is uniform and

unique timestamps occur with equal frequency numbers. Therefore

our windowing mechanism is general and conforms to real streams.

sGrapp: Butterfly Approximation in Streaming Graphs

Figure 13: Temporal distribution of real-world graph streams.

Sequential adaptive windows cover the same fraction of distribu-

tion of the sgrs (load-balanced windows for efficient analysis) and

also enables comparing the analysis over different windows of a

graph stream as well as analysis over different graph streams hav-

ing different temporal distributions (time-based windows for the

accuracy of temporal analysis).

Algorithm 3: Adaptive tumbling windows

Data: {𝑟 𝑖 }, sequence of time-ordered sgrs

Input:
𝑁𝑊𝑡 , Number of unique timestamps in stream

Output: 𝑥 , Analysis output collection
1 𝐺 ← ⟨𝑉 = ∅, 𝐸 = ∅⟩ // initial empty graph

2 𝑡 ← 0 // time-step

3 𝑢𝑛𝑞𝑡 ← ∅ // an empty hashSet

4 𝑥 ← ∅ // output collection

5 𝑘 ← 0 // window number

6 𝑊 𝑏
𝑘
← 𝜏0 // begining time of 𝑘th window

7 while true do
8 𝑟𝑡 = (𝜏𝑡 , 𝑝) ← 𝑠𝑔𝑟𝐼𝑛𝑔𝑒𝑠𝑡 ()
9 if 𝑟𝑡 ≠ ∅ then
10 𝑢𝑛𝑞𝑡 .add(𝜏𝑡)

11 𝐺 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐺 (𝑟𝑡 ,𝐺)
12 if 𝑢𝑛𝑞𝑡 .𝑠𝑖𝑧𝑒 () == 𝑁𝑊𝑡 then
13 𝑥 [𝑘] ← 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 (𝐺)
14 𝑘 ← 𝑘 + 1
15 𝑊 𝑏

𝑘
← 𝜏𝑡 for 𝑒 ∈ 𝐺 : 𝑒.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ≤𝑊 𝑏

𝑘
do

16 𝐺 ← 𝐷𝑒𝑙𝑒𝑡𝑒 (𝑒,𝐺)

17 𝑡 ← 𝑡 + 1

4.2 Approximating the number of
inter-window butterflies

Algorithm 4 describes how sGrapp uses the adaptive windowing

framework (Algorithm 3) to estimate the number of butterflies in

Algorithm 4: sGrapp

Data: {𝑟 𝑖 }, sequence of time-ordered sgrs

Input:
𝑁𝑊𝑡 , Number of unique timestamps per window

𝛼 , Approximation exponent

Output: 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 − 𝐵𝑐𝑜𝑢𝑛𝑡 , Approximated number of

butterflies at the end of each window

1 𝐺 ← ⟨𝑉 = ∅, 𝐸 = ∅⟩ // initial empty graph

2 𝑡 ← 0 // time-step

3 𝑢𝑛𝑞𝑡 ← ∅ // an empty hashSet

4 𝑘 ← 0 // window number

5 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 − 𝐵𝑐𝑜𝑢𝑛𝑡 ← ∅ // an empty hashMap

6 𝐵
𝑊𝑘
𝐺
← 0 // number of butterflies in the graph of 𝑘th window

7 𝐵𝐾 ← 1 // cumulative number of butterflies until 𝑡 =𝑊 𝑒
𝑘

8 𝐸 ← 0 // total number of edges since 𝑡 = 0

9 while true do
10 𝑟𝑡 = (𝜏𝑡 , 𝑝) ← 𝑠𝑔𝑟𝐼𝑛𝑔𝑒𝑠𝑡 ()
11 if 𝑟𝑡 ≠ ∅ then
12 𝑢𝑛𝑞𝑡 .add(𝜏𝑡)

13 𝐺 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐺 (𝑟𝑡 ,𝐺)
14 𝐸 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐸 (𝑟𝑡 , 𝐸)
15 if 𝑢𝑛𝑞𝑡 .𝑠𝑖𝑧𝑒 () == 𝑁𝑊𝑡 then
16 𝐵

𝑊𝑘
𝐺
← 𝑐𝑜𝑢𝑛𝑡𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑖𝑒𝑠 (𝐺)

17 𝐵𝐾 ← 𝐵 + 𝐵𝑊𝑘
𝐺
+ 𝛿 (𝑘 ≠ 0)𝐸𝛼

18 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 − 𝐵𝑐𝑜𝑢𝑛𝑡 .𝑝𝑢𝑡 (𝑡, 𝐵𝑘) 𝑘 ← 𝑘 + 1
/* Retire all the edges in the processing graph. */

19 𝐺 ← ⟨𝑉 = ∅, 𝐸 = ∅⟩
20 𝑡 ← 𝑡 + 1

the streaming graph. Note that sGrapp uses tumbling windows,

therefore instead of checking the timestamp of windowed edges

to decide on the retirement (lines 15 − 16 of Algorithm 3), the

processing graph is renewed in sGrapp (line 19 of Algorithm 4).

As mentioned earlier in this section the total number of butterflies

Aida Sheshbolouki and M. Tamer Özsu

(line 17 of Algorithm 4) is calculated as total number of butterflies

computed at the end of previous window plus the exact number of

butterflies in the current window (computed by invoking Algorithm

1 in line 16 of Algorithm 4) plus the estimated number of inter-

window butterflies contributed by current window. According to

the butterfly densification power law discussed in the previous

subsection, the number of butterflies follows a power-law function

of the number of existing edges in the graph. Moreover, recall the

observation that butterflies are formed by hubs. Thus, we propose to

approximate the number of inter-window butterflies as 𝐵𝑖𝑛𝑡𝑒𝑟𝑊 =

|𝐸 (𝑡 =𝑊 𝑒
𝑘
) |𝛼 , where |𝐸 (𝑡 =𝑊 𝑒

𝑘
) | is the total number of edges since

𝑡 =𝑊 𝑏
0 until 𝑡 =𝑊 𝑒

𝑘
. The total number of added edges are updated

at ingestion time (line 14 Algorithm 4) as 𝐸 is increased when the

sgr is an edge insertion and decreased when sgr is an edge deletion

and 𝛼 is the approximation exponent.

4.3 Optimization
The approximation exponent used in sGrapp (Algorithm 4) is con-

stant over windows. However, as we show in the experimental

studies in Section 5, the estimated number of butterflies using static

exponent can be over or under the true value in subsequent win-

dows. The reason is that the number of edges connecting to old

hubs varies across different windows and consequently the esti-

mation should not increase linearly with respect to the number of

edges.

To address this problem, we optimize sGrapp by changing the

exponent over windows. To this end, we modify the unsupervised

algorithm of sGrapp to a semi-supervised algorithm that we call

sGrapp-x. We provide the algorithm with true value of butterflies

for an initial subset of the stream. Based on the true value, in the cor-

responding window𝑊𝐾 we compute the relative error
𝐵𝐾−𝐵𝐾
𝐵𝐾

(line

27 in Algorithm 5). If the relative error is lower than a user-specified

negative tolerance value (in the experiments we use −0.05), that
means there is an underestimation, therefore we increase the ex-

ponent by 0.005 (line 23-24 in Algorithm 5). Similarly we decrease

the exponent in case the relative error is above positive tolerance

value to avoid over-estimation in the next window (line 21-22 in

Algorithm 5). The exponent is stabilized when the error is tolerable

and after the supervised search for the exponent is finished. In

summary, the optimized version of sGrapp is an adaptive algorithm

using reinforcement learning that learns the most accurate approx-

imation exponent for any given window parameter 𝑁𝑊𝑡 in a subset

of stream and generalizes the learned exponent to the rest of stream.

sGrapp-x is semi-supervised with outstanding performance given

limited ground truth.

4.4 Analysis
Previous study of space bounds has shown that any butterfly count-

ing algorithm, either randomized or deterministic, that returns an

accurate (exact/approximate) answer (i.e. bounds the relative error

to a small value 0 < 𝛿 < 0.01 for each computation round) requires

storing the entire graph in \ (𝑛2) bits, where 𝑛 is the number of

vertices [48]. On the other hand, it is not possible to determine the

size of stream (i.e. 𝑛) in real world streaming graphs. Hence, it is not

possible to determine the memory required for processing the data

without knowing the size of data [2]. In the following we analyze

Algorithm 5: sGrapp-x

Data: {𝑟 𝑖 }, sequence of time-ordered sgrs

𝐵, ground truths

Input:
𝑁𝑊𝑡 , Number of unique timestamps per window

𝛼 , Approximation exponent

Output: 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 − 𝐵𝑐𝑜𝑢𝑛𝑡 , Approximated number of

butterflies at the end of each window

1 𝐺 ← ⟨𝑉 = ∅, 𝐸 = ∅⟩
2 𝑡 ← 0

3 𝑢𝑛𝑞𝑡 ← ∅
4 𝑘 ← 0

5 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 − 𝐵𝑐𝑜𝑢𝑛𝑡 ← ∅
6 𝐵

𝑊𝑘
𝐺
← 0

7 𝐵𝐾 ← 1

8 𝐸 ← 0

9 𝑒𝑟𝑟𝑜𝑟0 ← 0 // relative error for window 𝑊0

10 while true do
11 𝑟𝑡 = (𝜏𝑡 , 𝑝) ← 𝑠𝑔𝑟𝐼𝑛𝑔𝑒𝑠𝑡 ()
12 if 𝑟𝑡 ≠ ∅ then
13 𝑢𝑛𝑞𝑡 .add(𝜏𝑡)

14 𝐺 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐺 (𝑟𝑡 ,𝐺)
15 𝐸 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐸 (𝑟𝑡 , 𝐸)
16 if 𝑢𝑛𝑞𝑡 .𝑠𝑖𝑧𝑒 () == 𝑁𝑊𝑡 then
17 𝐵

𝑊𝑘
𝐺
← 𝑐𝑜𝑢𝑛𝑡𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑖𝑒𝑠 (𝐺)

18 if 𝑡 < 𝑠𝑖𝑧𝑒 (𝐵) & 𝑒𝑟𝑟𝑜𝑟 > 0.05 then
19 𝛼− = 0.005

20 if 𝑡 < 𝑠𝑖𝑧𝑒 (𝐵) & 𝑒𝑟𝑟𝑜𝑟 < −0.05 then
21 𝛼+ = 0.005

22 𝐵𝐾 ← 𝐵 + 𝐵𝑊𝑘
𝐺
+ 𝛿 (𝑘 ≠ 0)𝐸𝛼

23 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 − 𝐵𝑐𝑜𝑢𝑛𝑡 .𝑝𝑢𝑡 (𝑡, 𝐵𝑘)
24 if 𝑡 < 𝑠𝑖𝑧𝑒 (𝐵) then
25 𝑒𝑟𝑟𝑜𝑟 ← 𝐵𝐾−𝐵𝐾

𝐵𝐾

26 𝑘 ← 𝑘 + 1
27 𝐺 ← ⟨𝑉 = ∅, 𝐸 = ∅⟩
28 𝑡 ← 𝑡 + 1

the properties of our estimator in terms of computational and error

bounds.

4.4.1 Computational Bound.

Theorem 4.1. The upper bound of computational complexity of

sGrapp for eachwindow𝑊𝑘 isO(
𝐾𝑖,𝑊𝑘 (𝐾𝑖,𝑊𝑘 −1)

2 𝐾𝑗,𝑊𝑘R𝑁
𝑊𝑘
𝑡), where

R is the average stream rate and 𝐾𝑖,𝑊𝑘 (𝐾𝑗,𝑊𝑘) is the lower bound of
degree of i(j)-vertices in𝑊𝑘 .

Proof. sGrapp’s computations at each window are dominated

by the exact counting algorithm as calculating the number of inter-

window butterflies is negligible and we ignore it as well as the

summations. When i-vertices are the vertex set with lower average

sGrapp: Butterfly Approximation in Streaming Graphs

degree, the computational complexity of the core exact counting

algorithm is the following.

O(
∑︁
𝑖1∈𝑉𝑖

∑︁
𝑗1, 𝑗2∈𝑁𝑖1

𝑀𝑖𝑛(𝑑𝑒𝑔(𝑗1), 𝑑𝑒𝑔(𝑗2))) (2)

Let us assume that the lower bound i-degree and j-degree in

the graph snapshot corresponding to the tumbling window𝑊𝑘 are

𝐾𝑖,𝑊𝑘 and 𝐾𝑗,𝑊𝑘 , respectively. Accordingly, the computational com-

plexity for this window would be 𝑂 (𝐾𝑖,𝑊𝑘 (𝐾𝑖,𝑊𝑘 −1)2 𝐾𝑗,𝑊𝑘 |𝑉𝑖,𝑊𝑘 |),
where 𝑉𝑖,𝑊𝑘 denotes the set of i-vertices in the window𝑊𝑘 . Since

the stream can include edges connecting already existing vertices,

the total number of edges in𝑊𝑘 , denoted as 𝐸𝑊𝑘 , is greater than

equal the total number of i-vertices in 𝑊𝑘 , i.e. |𝑉𝑖,𝑊𝑘 | ≤ |𝐸𝑊𝑘 |.
Therefore,

O(
𝐾𝑖,𝑊𝑘 (𝐾𝑖,𝑊𝑘 − 1)

2
𝐾𝑗,𝑊𝑘 |𝑉𝑖,𝑊𝑘 |) ≤ O(

𝐾𝑖,𝑊𝑘 (𝐾𝑖,𝑊𝑘 − 1)
2

𝐾𝑗,𝑊𝑘 |𝐸𝑊𝑘 |)
(3)

sGrapp uses tumbling windows with adaptive lengths, therefore

|𝐸𝑊𝑘 | ≈ R𝑁
𝑊𝑘
𝑡 , where R is the average stream rate (i.e. number of

edges per timestamp) and 𝑁𝑊𝑡 is the number of unique timestamps

in𝑊𝑘 . Hence, the upper bound of computational complexity of

sGrapp for a tumblingwindow𝑊 at 𝑡 isO(𝐾𝑖,𝑊𝑘 (𝐾𝑖,𝑊𝑘 −1)2 𝐾𝑗,𝑊𝑘R𝑁
𝑊𝑘
𝑡).

Note that this stands for all sequential windows. □

Figure 14: Schematic butterfly formation. i(j)-vertices are
blue (red) in the bottom (top) .

4.4.2 Error Bound.

Theorem 4.2. The absolute error of sGrapp at the end of each
window𝑊𝑘 is bounded as Σ𝑘

𝑙=1
|𝐸𝑙 |𝛼 −

(|𝑉𝑖,𝑊𝑘 |
2

)
≤ 𝐸𝑟𝑟 ≤ Σ𝑘

𝑙=1
|𝐸𝑙 |𝛼 −

|𝐸𝑊𝑘 | + 2|𝑉𝑖,𝑊𝑘 | where 𝐸𝑘 , 𝐸𝑊𝑘 , and 𝑉𝑖,𝑊𝑘 denote the number of
edges in the interval [𝑊 𝑏

0 ,𝑊
𝑒
𝑘
), the number of edges in the interval

[𝑊 𝑏
𝑘
,𝑊 𝑒

𝑘
), and the number of i-vertices in the interval [𝑊 𝑏

𝑘
,𝑊 𝑒

𝑘
),

respectively.

Proof. sGrapp estimates the total number of butterflies at the

end of each window𝑊𝑘 , ∀𝑘 > 0, as 𝐵𝑘 = 𝐵𝑘−1 + 𝐵
𝑊𝑘
𝐺
+ |𝐸𝑘 |𝛼 with

initial term 𝐵0 = 𝐵
𝑊0

𝐺
. Expanding this recursive equation would

yield 𝐵𝑘 = Σ𝑘
𝑙=0

𝐵
𝑊𝑙
𝐺
+ Σ𝑘

𝑙=1
𝐸𝛼
𝑙
. On the other hand, according to the

lemma 4.3, the true value of the total number of butterflies at the

end of each window𝑊𝑘 , ∀𝑘 > 0, denoted as 𝐵𝑘 lies in the range

Σ𝑘
𝑙=0

𝐵
𝑊𝑙
𝐺
+ 𝐸𝑘 − 2|𝑉𝑖,𝑊𝑘 | < 𝐵𝑘 < Σ𝑘

𝑙=0
𝐵
𝑊𝑙
𝐺
+
(|𝑉𝑖,𝑊𝑘 |

2

)
, where 𝑉𝑖,𝑊𝑘

is the set of all seen i-vertices in the interval [𝑊 𝑏
𝑘
,𝑊 𝑒

𝑘
). Therefore,

the absolute error of sGrapp 𝐸𝑟𝑟 = |𝐵𝑘 − 𝐵𝑘 | falls in the range

Σ𝑘
𝑙=1
|𝐸𝑙 |𝛼 −

(|𝑉𝑖,𝑊𝑘 |
2

)
≤ 𝐸𝑟𝑟 ≤ Σ𝑘

𝑙=1
|𝐸𝑙 |𝛼 − |𝐸𝑊𝑘 | + 2|𝑉𝑖,𝑊𝑘 |. □

Lemma 4.3. The exact number of inter-window butterflies at the
end of each window𝑊𝑘 , ∀𝑘 > 0, denoted as 𝐵𝑖𝑛𝑡𝑒𝑟𝑊 is bounded as
|𝐸𝑊𝑘 | − 2|𝑉𝑖,𝑊𝑘 | ≤ 𝐵𝑖𝑛𝑡𝑒𝑟𝑊 ≤

(|𝑉𝑖,𝑊𝑘 |
2

)
, where 𝑉𝑖 is the set of all

i-vertices in the𝑊𝑘 .

Proof. The number of inter-window butterflies contributed by

window𝑊𝑘 denoted as 𝐵𝑖𝑛𝑡𝑒𝑟𝑊 , is minimum when the𝑊𝑘 ’s edges

𝐸𝑊𝑘 are uniformly distributed over vertices by connecting each

i-vertex in𝑊𝑘 to at least 2 j-neighbors in𝑊𝑘 and previous windows

forming a series of caterpillars (solid edges in Figure 14–left). In

this case, according to the pigeonhole principle, the number of

edges that complete the caterpillars (dashed edges in Figure 14–left)

will determine the number of inter-window butterflies: 𝐵𝑖𝑛𝑡𝑒𝑟𝑊 =

|𝐸𝑊𝑘 |−2|𝑉𝑖,𝑊𝑘 |.𝐵𝑖𝑛𝑡𝑒𝑟𝑊 is maximumwhen all of the𝑊𝑘 ’s i-vertices

are connected to two j-vertices such that at least one of them is

not in𝑊𝑘 (Figure 14–right). (Note, when all of j-neighbors are in

previous windows, there wouldn’t be any in-window butterfly in

𝑊𝑘). In this case, the number of inter-window butterflies reduces to

the number of ways we can choose two i-vertices from the entire

set of i-vertices: 𝐵𝑖𝑛𝑡𝑒𝑟𝑊 =
(|𝑉𝑖,𝑊𝑘 |

2

)
. Therefore, |𝐸𝑊𝑘 | − 2|𝑉𝑖,𝑊𝑘 | ≤

𝐵𝑖𝑛𝑡𝑒𝑟𝑊 ≤
(|𝑉𝑖,𝑊𝑘 |

2

)
. □

5 EXPERIMENTS
We test the effectiveness and efficiency of sGrapp and its optimized

version sGrapp-x where x is the percentage of the available ground

truth. We use x=25, 50, 75, and 100. The ground truths are obtained

by running the exact counting Algorithm 1 over the graph streams.

Due to the computational expense of Algorithm 1, we collect the

truth values over a limited number of sgrs: 72344 in Epinions,

12259 in ML100k, 21696 in ML1m, 21778 in ML10m, 75000 in

Edit-EnWiki, and 75000 in Edit-FrWiki. The data sets that we use

are described in Section 3.1.

We report the effectiveness and efficiency of sGrapp and sGrapp-

x in Sections 5.1 and 5.2, respectively. We also compare the per-

formance of our algorithms with that of baselines in Subsection

5.3. Our experiments as well as the analysis in Section 3 are con-

ducted on a machine with 15.6 GB native memory and Intel Core

𝑖7 − 6770𝐻𝑄𝐶𝑃𝑈@2.60𝐺𝐻𝑧 ∗ 8 processor. We have implemented

FLEET algorithms and sGrapp algorithms in Java (OpenJDK version

1.8.0 − 252, OpenJDK Runtime Environment build 1.8.0 − 252 −
8𝑢252 − 𝑏09 − 1 16.04 − 𝑏09).

5.1 Effectiveness Evaluation
5.1.1 sGrapp. We compute the Mean Absolute Percentage Error

(MAPE) of sGrapp for windows with variable number of unique

timestamps (𝑁𝑊𝑡 , 𝑦 axis) and different exponent values (𝛼 , 𝑥 axis).

These are shown in the Figure 16. The number of unique timestamps

per window, 𝑁𝑡 , varies in different graph streams, therefore we

set the value of 𝑁𝑊𝑡 differently for each graph stream. We cross-

validated the values of 𝛼 and 𝑁𝑊𝑡 to explore the region including

the best accuracy (lowest MAPE illustrated by the lightest color)

for sGrapp. 𝑀𝐴𝑃𝐸 = 1
𝑛 Σ
|𝐵𝑘−𝐵𝑘 |
𝐵𝑘

, where 𝐵𝑘 is the ground truth

computed over the growing graph at 𝑡 =𝑊 𝑒
𝑘
by Algorithm 1 and

𝐵𝑘 is the approximated value at 𝑡 = 𝑊 𝑒
𝑘
, and n is the number of

windows. The data tips in the figures demonstrate the pair of 𝛼 and

𝑁𝑊𝑡 yielding the lowest MAPE.

We observe that the approximation accuracy of sGrapp is not

sensitive to window length and the exponent, since there exists a

combination of approximation exponent and window length for

each graph steam that yields appropriate MAPE (Figure 16). In

Aida Sheshbolouki and M. Tamer Özsu

fact, the best MAPE of sGrapp is significantly lower than 0.1 in all

of the rating graph streams, demonstrating that sGrapp is a good

approximator of actual butterfly count.

When the approximation exponent is high and the window is

compact (bottom right corners in Figure 16), the error is high. In

this case, sGrapp overestimates the number of inter-window but-

terflies due to high exponent value. Also, when the exponent is low

and the window includes a large number of sgrs (top left corner in

Figure 16), the error is high. The reason in this case is that sGrapp

underestimates the number of inter-window butterflies. An appro-

priate parameter region to gain a reasonable accuracy is where

𝛼 and 𝑁𝑊𝑡 are both high or low (middle diameter from top right

corner to bottom left corner in Figure 16). The best accuracy is

always obtained for higher exponent values. For rating networks,

an appropriate exponent value for sGrapp is 𝛼 = 1.4.
As we investigated the contribution of hubs to the emergence of

butterflies (Section 3), we relate the value of approximation expo-

nent to the probability of having at least one i-hub (𝑃 (𝑁 𝑡
𝑖𝐻𝑢𝑏

>= 1))
plus the probability of having at least one j-hub (𝑃 (𝑁 𝑡

𝑗𝐻𝑢𝑏
>= 1)) in

the butterflies at time 𝑡 , i.e. 𝛼 = 𝑃 (𝑡) = 𝑃 (𝑁 𝑡
𝑖𝐻𝑢𝑏

= 1) + 𝑃 (𝑁 𝑡
𝑖𝐻𝑢𝑏

=

2) +𝑃 (𝑁 𝑡
𝑗𝐻𝑢𝑏

= 1) +𝑃 (𝑁 𝑡
𝑗𝐻𝑢𝑏

= 1) (Table 5). That is, the value of 𝛼
can be determined based on the probability of i- or j-hubs forming

butterflies at a certain time point 𝑡 . The time point 𝑡 is likely a tipping
point where the number of hub connections in the graph is stabilized

(Figures 9 and 10). To check this, we calculate the value of 𝑃 (𝑡) for
𝑡 ∈ {1000, 2000, .., 9000, 10000} in the Epinions graph stream. We

compute the value of MAPE for sGrapp(𝑁𝑊𝑡 , 𝛼). We set 𝛼 = 𝑃 (𝑡)
and 𝑁𝑊𝑡 ∈ {0.006𝑁𝑡 , 0.007𝑁𝑡 , 0.008𝑁𝑡 , 0.009𝑁𝑡 , 0.01𝑁𝑡 }. In Ta-

ble 7, we report the value of MAPE for the approximations with

different exponent values and different fraction of unique times-

tamp per adaptive window. We observe that, at 𝑡 = 6000, where
the exponent is equal to 𝛼 = 𝑃 (𝑡 = 6000) =∼ 1.03, the approxima-

tion error is the lowest. This time point is a tipping point where
the fraction of average hub degree is steadily low afterward and

high backward (Figures 9 and 10). Moreover, in Figure 16, we see

that the best accuracy is obtained when the exponent is equal to

𝑃 (𝑡 = 6000) = 1.03. We leave further investigation of the signifi-

cance of these values as future work.

After evaluating sGrapp in terms of the average window errors

(MAPE), we delve into its performance evolution over windows so

that we can track the origins of the accuracy gain. We pick the most

accurate 𝛼 and 𝑁𝑊𝑡 (highlighted data points in Figure 16) and plot

the signed value of relative error
|𝐵𝑘−𝐵𝑘 |
𝐵𝑘

for each window𝑊𝑘 in

the Figure 25. Depending on the value of 𝑁𝑊𝑡 , the number of win-

dows vary in different graph streams. Positive errors (depicted by

red upward triangles) reflect over-estimations and negative errors

(depicted by blue downward triangles) reflect under-estimations. In

ML10m, Edit-EnWiki and Edit-FrWiki, the approximation begins

with over-estimation and ends up with under-estimation. The un-

derlying reason is the static exponent over sequential windows with

different number of connections to the old hubs and consequently

different number of inter-window butterflies.

5.1.2 sGrapp-x. We also evaluate the accuracy of sGrapp-x in

terms of MAPE in the region that sGrapp displays lowest errors

in Figures 17 – 20. This enables a fair comparison of sGrapp with

its optimized version sGrapp-x. Note that, sGrapp-x begins with

a given exponent value and ends up with a modified value after

the supervision phase reaches an error below 0.05. Therefore we
fed sGrapp-x with same input values of 𝛼 and 𝑁𝑊𝑡 as sGrapp. The

values shown in Figures 17 – 20 reflect the inputs.

It is evident from these figures that sGrapp-x improves the accu-

racy, which can be summarized as (a) improving the minimum

MAPE (Figure 21), (b) improving the maximum MAPE (Figure

22), as well as (c) expanding the coverage of MAPE≤ 0.15 and

MAPE≤ 0.2 (Figures 23 and 24). As illustrated in Figure 21, the

minimum MAPE value in the studied parameter space is roughly

the same for both sGrapp and sGrapp-x 𝑥 = 25 − 100 in all rating

graph streams. sGrapp-x lowers the minimum MAPE with respect

to sGrapp in Edit-EnWiki graph from 0.681 to 0.376 (via 𝑥 = 25),
0.105 (via 𝑥 = 75), 0.101 (via 𝑥 = 50), and 0.097 (via 𝑥 = 100);
in Edit-FrWiki graph from 0.201 to 0.235 (via 𝑥 = 25), 0.137 (via

𝑥 = 100), 0.134 (via 𝑥 = 75), and 0.130 (via 𝑥 = 50). That is, the
minimum MAPE is lowered ranging from 44.79% to 85.76% in

Edit-EnWiki and 31.84% to 35.32% in Edit-FrWiki. As illustrated

in Figure 22,the maximum MAPE related to the over-estimations

(bottom right corners in Figures 17 – 20) is notably decreased in

all graph streams. The most significant decrease corresponds to

Edit-FrWiki stream with the highest change from 2 to 0.26 (via

𝑥 = 75, 100) and Edit-EnWiki stream with highest change from

0.715 to 0.15 (via 𝑥 = 100).
In Figures 23 and 24, we present the probability of approximation

with MAPE≤ 0.15 and MAPE≤ 0.2 (𝑃 (𝑀𝐴𝑃𝐸 ≤ 0.15(0.2))) by
calculating the fraction of approximations that satisfy MAPE≤ 0.15
and MAPE≤ 0.2. That is the relative coverage of light blue areas
in Figures 16 – 20. When the approximation MAPE is above 0.15
or 0.2 the corresponding bars are omitted in Figures 23 and 24.

Since sGrapp-100 approximates the number of butterflies in Edit-

EnWiki with highest MAPE equal to 0.15, the corresponding bar
has a height of 1. sGrapp-25 improves the accuracy of sGrapp

in MovieLens10m better than other sGrapp-x versions. For the

other graph streams, when 𝑥 ≥ 50, sGrapp-x displays fairly well

accuracy improvement as the probability of accurate approximation

(i.e. average window error below 0.15 and 0.2) is amplified. As

expected sGrapp-100 has the most improvement, however sGrapp-

75 and sGrapp-50 are reliable improvement alternatives for Edit-

FrWiki and the rest of graph streams, respectively. sGrapp-x, 𝑥 =

25, 50, 75, and 100 can achieve the 𝑃 (𝑀𝐴𝑃𝐸 ≤ 0.15(0.2)) equal to
67.13% (78.53%), 60.94% (94.55%), 79.74% (84.27%), and 99.31%
(100%). Most notably, sGrapp-50(75) increases 𝑃 (𝑀𝐴𝑃𝐸 ≤ 0.2)
from 0 to 94.55(100)% in Edit-EnWiki.

We check the evolution of the signed value of relative error

over windows for the data points with the lowest sGrapp-x MAPE.

As shown in Figures 26, 27, 28, and 29, dynamically changing the

approximation exponent heals the under/over-estimation problem;

Hence the average window error is diminished. There is always

a value of x by which sGrapp-x can yield average approximation

error less than equal 0.05 in rating graphs and 0.14 in Wikipedia

graphs.

sGrapp: Butterfly Approximation in Streaming Graphs

Table 7: Epinions - The approximation MAPE for different adaptive window lengths (columns) and different exponents calcu-
lated as the probability of one or two i-hub plus the probability of one or two j-hub at different time points (rows).

MAPE 0.006 ∗ 𝑁𝑡 0.007 ∗ 𝑁𝑡 0.008 ∗ 𝑁𝑡 0.009 ∗ 𝑁𝑡 0.01 ∗ 𝑁𝑡
𝛼 = 𝑃 (𝑡 = 1𝑘) = 1.2178 3.0036 2.5461 2.5005 2.2996 2.2602

𝛼 = 𝑃 (𝑡 = 2𝑘) = 1.077 0.4472 0.3291 0.3318 0.2359 0.2632

𝛼 = 𝑃 (𝑡 = 3𝑘) = 1.1274 1.0295 0.8281 0.8212 0.6954 0.7079

𝛼 = 𝑃 (𝑡 = 4𝑘) = 1.0806 0.4778 0.3551 0.3574 0.2597 0.2864

𝛼 = 𝑃 (𝑡 = 5𝑘) = 1.0389 0.14286 0.1016 0.0778 0.0864 0.0456

𝛼 = 𝑃 (𝑡 = 6𝑘) = 1.0296 0.0953 0.0723 0.524 0.0709 0.0315
𝛼 = 𝑃 (𝑡 = 7𝑘) = 1.0438 0.1760 0.1176 0.1054 0.1014 0.0597

𝛼 = 𝑃 (𝑡 = 8𝑘) = 1.0591 0.2897 0.1950 0.2000 0.1525 0.1446

𝛼 = 𝑃 (𝑡 = 9𝑘) = 1.0546 0.2553 0.1658 0.1713 0.1370 0.1188

𝛼 = 𝑃 (𝑡 = 10𝑘) = 1.0420 0.1639 0.1189 0.0953 0.0959 0.0508

Table 8: Throughput of different algorithms for 𝜸=0.7.

Throughput FLEET2

M=75k

FLEET3

M=75k

FLEET2

M=150k

FLEET3

M=150k

FLEET2

M=300k

FLEET3

M=300k

FLEET2

M=600k

FLEET3

M=600k

sGrapp sGrapp-100

Epinions 89 575 137 411 59 336 53 077 16 912 16 360 11 028 10 907 182 427 166 895

ML100k 3 664 5 652 4 691 4 717 3 509 3 424 4 268 4 378 8 026 8 629
ML1m 23 490 23 292 12 038 7 355 2 383 1 673 1 004 857 26 698 26 487

ML10m 147 665 72 918 62 905 23 536 16 719 5 358 4 410 2 337 234 571 228 021

Edit-FrWiki 554 741 155 343 298 019 57 477 116 917 16 856 41 051 6 240 1 000 861 985 265

Edit-EnWiki 2 564 565 719 375 1 373 708 305 347 911 170 114 806 324 183 34 283 1 085 185 1 098 382

Table 9: MAPE of different algorithms for 𝜸=0.7 and M=0.1S and same 𝑵𝑾
𝒕 .

MAPE FLEET1 FLEET2 FLEET3 sGrapp sGrapp-25 sGrapp-50 sGrapp-75 sGrapp-100

Epinions 0.058 13.789 0.336 0.022 0.022 0.028 0.028 0.028

ML100k 0.959 2.287 0.399 0.009 0.009 0.009 0.009 0.009
ML1m 0.085 5.261 0.047 0.043 0.043 0.053 0.067 0.055

ML10m 0.156 0.839 0.086 0.143 0.247 0.162 0.180 0.170

Edit-FrWiki 1.575 49.165 57.563 0.201 0.313 0.217 0.134 0.137

Edit-EnWiki 2.689 467.747 178.702 0.684 0.494 0.161 0.141 0.137

5.2 Efficiency Evaluation
We evaluate the efficiency of sGrapp and sGrapp-100 by averaging

over 50 independent cases. We do not report the efficiency metrics

for sGrapp-x for 𝑥 < 100 since their efficiency is close to that of

sGrapp-100. For each graph stream we study the performance for

the parameter settings that yield the best accuracy (highlighted

data points in Figures 16 and 20) to see the overhead of a highly

accurate approximation. Note that parameter values do not affect

the efficiency.

We check the latency of sGrapp and sGrapp-100 for each pro-

cessing window (Figures 31 and 32). We observe that the window

latency of all the graph streams (except the Epinions) is not decreas-

ing. The window latency of each graph stream follows its temporal

distribution pattern (Figure 13). Therefore, to omit the effect of

temporal distribution, we study the performance by considering

both the processing time (latency) and the number of processed

elements. To this end, at the end point of each window, we check

the window throughput (i.e. the number of processed edges in the

window divided by the elapsed time in seconds, Figures 35 and 36))

as well as the total throughput (i.e. the total number of processed

edges since the first window until the end of the current window

divided by the total elapsed time in seconds, Figures 33 and 34).

The window throughput displays fluctuations due to variant

number of sgrs in each window; however in overall it is higher in

later windows for both sGrapp and sGrapp-100. The total through-

put of both sGrapp and sGrapp-100 displays an increasing pattern.

As mentioned in previous section, the old hubs are the main con-

tributors to the butterfly formation. Since old hubs occur in the

early windows, the later windows mostly include butterfly vertices

with lower degree. That is, there are fewer windowed butterflies

in later windows than the inter-window butterflies. Therefore, the

exact counting algorithm that computes the number of windowed

butterflies finishes quicker. Also, rapid approximation of the inter-

window butterflies plays the main role in reducing the processing

time, enhancing the total throughput. An evidence is the through-

put for MovieLens100k that has almost uniform temporal distri-

bution: we observe an increasing total throughput over windows.

This is important since the number of sgrs in the windows is not

Aida Sheshbolouki and M. Tamer Özsu

decreasing while the throughput is increasing. This confirms (1)

the algorithm’s power is independent of the structural/temporal

characteristics of the input data and (2) the algorithm is efficient

particularly in dense graph streams.

5.3 Comparison with Baselines
We compare the effectiveness and efficiency of sGrapp suit and

FLEET suit. Experimental results of FLEET suit show that FLEET3,

FLEET2 and FLEET1 have the best performance (in that order), so

we use those as baselines. While sGrapp has the 𝛼 (approximation

exponent) and 𝑁𝑊𝑡 (number of unique timestamps per window)

parameters, FLEET has the𝑀 (reservoir size) and 𝛾 (sub-sampling

probability) parameters. Since the performance of FLEET algorithms

is sensitive to its parameters, we compare our algorithms against

the FLEET settings which achieve the best performance. We set the

sub-sampling probability as 𝛾 = 0.7 as suggested by FLEET authors

[48].

We observe that when the reservoir size𝑀 is greater than the en-

tire stream, latency is negatively impacted since sub-sampling does

not occur and all the edges are added to the reservoir and for each

new edge the exact butterfly counting is executed. Hence, for eval-

uating the accuracy over the prefix of a stream, we set𝑀 = 0.01𝑆 ,
where 𝑆 is the size of available stream. For evaluating the efficiency,

we also use a range of values 𝑀 ∈ {75𝑘, 150𝑘, 300𝑘, 600𝑘} to ex-

amine the throughput over the entire stream; these values are the

ones offered in the original paper [48]. We use the approximation

exponent values yielding lowest MAPE in sGrapp, which do not

necessarily yield the best MAPE in the optimized variant sGrapp-

x. Since FLEET algorithms use different window semantics than

sGrapp, we use virtual time-based adaptive windows over FLEET

algorithms to extract the estimated values at the end of virtual

windows for accuracy evaluations only (not for efficiency tests). We

use the same value of 𝑁𝑊𝑡 for sGrapp and FLEET suits to compute

MAPE: 𝑁𝑊𝑡 ∈ [42, 912, 1050, 80, 290, 500] for Epinions, ML100k,

Ml1m, Ml10m, Edit-EnWiki, and Edit-FrWiki, respectively. For effi-

ciency comparisons, we used the same value used in effectiveness

experiments since our goal is to check the efficiency cost of the

most accurate approximation. For each 𝑁𝑊𝑡 , there exists an alpha

yielding a high precision estimate. 𝑁𝑊𝑡 does not affect accuracy.

In Table 8, we report the total throughput over the entire graph

streams for sGrapp and FLEET suits. Since FLEET1’s throughput

is very low, we do not include it in this experiment. By increasing

the size of reservoir the throughput of all FLEET algorithms de-

creases since the frequency of exact butterfly counting per edge

increases. It is always the case that𝑀 = 75𝑘 and𝑀 = 600𝑘 yields

the highest and the lowest throughput, respectively. sGrapp out-

performs FLEET for every setting: minimum (maximum) ratios of

sGrapp to FLEET throughput are 1.32 (16.7), 1.5 (2.5), 1.13 (31.1),
1.58 (100.3), 1.8 (160.4), and 0.4 (32) in Epinions, ML100k, ML1m,

ML10m, Edit-FrWiki, and Edit-EnWiki, respectively. sGrapp and its

optimized version outperforms FLEET suit within a range of [1.13
160.4], with the performance improvement increasing as graph

streams become larger (i.e., Edit-FrWiki, ML10m, and Edit-Enwiki).

In Table 9, we report accuracy (in terms of MAPE) of sGrapp and

FLEET suits over the subset of streamwith available true values. We

observe that sGrapp and sGrapp-x achieve MAPE values equal to

𝛾 𝑃 𝐵

𝑀 𝐹

Figure 15: Impact of FLEET parameters on estimate.

0.022, 0.009, 0.043, 0.143, 0.134, and 0.137 in Epinions, ML100k,

ML1m, ML10m, Edit-FrWiki, and Edit-EnWiki which are signifi-

cantly lower than those of FLEET – sGrapp errors are 0.38×, 0.02×,
0.91×, 1.66×, 0.08×, and 0.05× of FLEET for these graphs. Table 9

(Table 8) shows that for ML10m, FLEET3’s accuracy (throughput)

is 0.057 better (up to 100𝑥 lower) than sGrapp explaining the high

computational cost of FLEET3 in this specific dataset. FLEET3 up-

dates the estimate for each new edge by enumerating butterflies

incident to that edge. This increases the probability of detecting

the incident butterflies by a factor of 𝑃 (i.e. sampling probability),

however the computations are much increased. This technique is

more impactful in ML10m with high butterfly density. Butterfly es-

timate 𝐵 is updated as soon as an edge arrives in FLEET3 or during

the sampling and (or) sub-sampling phase in FLEET1 (FLEET2). In

FLEET1, when 𝑃 is not high or 𝑀 is small and 𝛾 is low, 𝐵 is not

frequently updated and error goes up. In FLEET2, many butterflies

are missed due to sampling. Moreover, FLEET has poor accuracy

when the butterflies are distributed across the edges uniformly (e.g.

Edit-EnWiki with a low butterfly density of 9.1 × 10−21 accord-

ing to the statistics in [48]). The reason is that 𝐵 is updated for

some edges only. In summary, the accuracy of FLEET algorithms

highly depend on𝑀 , 𝛾 , and the frequency of updating 𝐵, because

𝐵 is updated wrt the 𝑃 ; and 𝑃 is updated as 𝑝 ← 𝑝 ∗ 𝛾 in each

sampling round, which in turn increases 𝐵 more. As depicted in

Figure 15, 𝑀 and 𝛾 (confounding variables) impact 𝑃 and 𝑃 im-

pacts 𝐵 directly through the formula and indirectly through the

frequency of updates. A high frequency of butterfly counting and

high sub-sampling come at the cost of low throughput. A large𝑀

comes at the cost of memory consumption as well as latency issues.

FLEET suit cannot guarantee both efficiency and effectiveness at

the same time. sGrapp does not suffer from the aforementioned

issues since it does not rely on exact counting and sampling; rather

it relies on counting the inter-window butterflies. sGrapp keeps the

computational footprint of exactly counting the in-window butter-

flies low by means of the load-balanced adaptive windows and then,

effectively estimates the number of inter-window butterflies which

are the dominant butterflies based on the butterfly densification

power law formalism.

6 CONCLUSION
We studied the fundamental problem of dense bi-clique counting in

streaming graphs. We introduced an effective and efficient frame-

work for approximate butterfly counting, sGrapp. Following a data

driven approach, we conducted extensive graph analysis to un-

veil the organizing principles of temporal butterflies in streaming

graphs (the butterfly densification power law). These insights shed

sGrapp: Butterfly Approximation in Streaming Graphs

Figure 16: [Best viewed in colored.] Accuracy of sGrapp for different values of 𝛼 and 𝑁𝑊𝑡

Figure 17: [Best viewed in colored.] Accuracy of sGrapp-25 for different values of 𝛼 and 𝑁𝑊𝑡 .

light on developing sGrapp algorithm. sGrapp utilizes a new ex-

act counting core and a time-based windowing technique which

adapts to the temporal distribution of the graph stream with no

assumptions on the order and rate of stream, making it applicable

to any real stream. sGrapp displays𝑀𝐴𝑃𝐸 < 0.05 in graph streams

with almost uniform temporal distribution. The optimized version,

called sGrapp-x, handles graph streams with non-uniform temporal

distribution with MAPE below 0.14. sGrapp-x lowers the minimum

and maximum MAPE of sGrapp and also increases the probability

of approximation error below 0.15 and 0.2, most notably in the

densest graph streams. sGrapp variants perform much better than

existing algorithms.

Aida Sheshbolouki and M. Tamer Özsu

Figure 18: [Best viewed in colored.] Accuracy of sGrapp-50 for different values of 𝛼 and 𝑁𝑊𝑡

Figure 19: [Best viewed in colored.] Accuracy of sGrapp-75 for different values of 𝛼 and 𝑁𝑊𝑡 .

sGrapp: Butterfly Approximation in Streaming Graphs

Figure 20: [Best viewed in colored.] Accuracy of sGrapp-100 for different values of 𝛼 and 𝑁𝑊𝑡 .

Figure 21: Minimum approximation MAPE.

Figure 22: Maximum approximation MAPE.

Figure 23: Probability of approximation with MAPE less than equal 0.15.

Figure 24: Probability of approximation with MAPE less than equal 0.2.

Aida Sheshbolouki and M. Tamer Özsu

Figure 25: Relative Error of sGrapp over windows for the best obtained MAPE.

Figure 26: Relative Error of sGrapp-25 over windows for the best obtained MAPE.

sGrapp: Butterfly Approximation in Streaming Graphs

Figure 27: Relative Error of sGrapp-50 over windows for the best obtained MAPE.

Figure 28: Relative Error of sGrapp-75 over windows for the best obtained MAPE.

Aida Sheshbolouki and M. Tamer Özsu

Figure 29: Relative Error of sGrapp-100 over windows for the best obtained MAPE.

Figure 30: MAPE of different algorithms.

Figure 31: Average window latency (s) of sGrapp.

sGrapp: Butterfly Approximation in Streaming Graphs

Figure 32: Average window latency (s) of sGrapp-100.

Figure 33: Average total throughput (edge/s) of sGrapp at the end of each window.

Aida Sheshbolouki and M. Tamer Özsu

Figure 34: Average total throughput (edge/s) of sGrapp-100 at the end of each window.

Figure 35: Average window throughput (edge/s) of sGrapp at the end of each window.

sGrapp: Butterfly Approximation in Streaming Graphs

Figure 36: Average window throughput (edge/s) of sGrapp-100 at the end of each window.

Aida Sheshbolouki and M. Tamer Özsu

REFERENCES
[1] Sinan G Aksoy, Tamara G Kolda, and Ali Pinar. Measuring and modeling bipartite

graphs with community structure. Journal of Complex Networks, 5(4):581–603,
2017.

[2] Arvind Arasu, Brian Babcock, Shivnath Babu, Jon McAlister, and Jennifer Widom.

Characterizing memory requirements for queries over continuous data streams.

ACM Trans. Database Syst., 29(1):162–194, 2004.
[3] Shaikh Arifuzzaman, Maleq Khan, and Madhav Marathe. Patric: A parallel

algorithm for counting triangles in massive networks. In Proc. 22nd ACM Int.
Conf. on Information and Knowledge Management, pages 529–538, 2013.

[4] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer

Widom. Models and issues in data stream systems. In Proc. 21st ACM SIGACT-
SIGMOD-SIGART Symp. on Principles of Database Systems, page 1–16, 2002.

[5] Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. Reductions in streaming algo-

rithms, with an application to counting triangles in graphs. In Proc. 13th annual
ACM-SIAM symposium on Discrete algorithms, pages 623–632, 2002.

[6] Albert-László Barabási and Réka Albert. Emergence of scaling in random net-

works. Science, 286(5439):509–512, 1999.
[7] Michael J Barber. Modularity and community detection in bipartite networks.

Physical Review E, 76(6):066102, 2007.
[8] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. Efficient semi-

streaming algorithms for local triangle counting in massive graphs. In Proc. 14th
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages 16–24,
2008.

[9] Suman K Bera and Amit Chakrabarti. Towards tighter space bounds for counting

triangles and other substructures in graph streams. In Proc. 34th Symposium on
Theoretical Aspects of Computer Science, 2017.

[10] Massimo Bernaschi, Alessandro Celestini, Stefano Guarino, Flavio Lombardi, and

Enrico Mastrostefano. Spiders like onions: on the network of tor hidden services.

In Proc. 28th Int. World Wide Web Conf., pages 105–115, 2019.
[11] Vladimir Braverman, Rafail Ostrovsky, and Dan Vilenchik. How hard is counting

triangles in the streamingmodel? In 40th Int. Colloquium on Automata, Languages,
and Programming, pages 244–254, 2013.

[12] Luciana S Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-

Spaccamela, and Christian Sohler. Counting triangles in data streams. In Proc.
25th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems,
pages 253–262, 2006.

[13] Luciana S Buriol, Gereon Frahling, Stefano Leonardi, and Christian Sohler. Es-

timating clustering indexes in data streams. In Proc. European Symposium on
Algorithms, pages 618–632, 2007.

[14] Guido Caldarelli, Romualdo Pastor-Satorras, and Alessandro Vespignani. Struc-

ture of cycles and local ordering in complex networks. The European Physical
Journal B, 38(2):183–186, 2004.

[15] Lijun Chang, Jeffrey Xu Yu, Lu Qin, Hong Cheng, and Miao Qiao. The exact

distance to destination in undirected world. VLDB J., 21(6):869–888, 2012.
[16] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms.

SIAM Journal on Computing, 14(1):210–223, 1985.
[17] Shumo Chu and James Cheng. Triangle listing in massive networks and its

applications. In Proc. 17th ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining, pages 672–680, 2011.

[18] Tamas David-Barrett. Herding friends in similarity-based architecture of social

networks. Scientific Reports, 10(1):1–6, 2020.
[19] Jean-Loup Guillaume and Matthieu Latapy. Bipartite structure of all complex

networks. Information processing letters, 90(5):215–221, 2004.
[20] Roger Guimerà, Marta Sales-Pardo, and Luís A Nunes Amaral. Module iden-

tification in bipartite and directed networks. Physical Review E, 76(3):036102,
2007.

[21] Ali Hadian, Sadegh Nobari, Behrooz Minaei-Bidgoli, and Qiang Qu. Roll: Fast

in-memory generation of gigantic scale-free networks. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 1829–1842, 2016.

[22] Jelle Hellings, George H.L. Fletcher, and Herman Haverkort. Efficient external-

memory bisimulation on dags. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 553–564, 2012.

[23] Xiaocheng Hu, Yufei Tao, and Chin-Wan Chung. Massive graph triangulation.

In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 325–336, 2013.
[24] Xiaocheng Hu, Yufei Tao, and Chin-Wan Chung. I/o-efficient algorithms on

triangle listing and counting. ACM Trans. Database Syst., 39(4):1–30, 2014.
[25] Jiewen Huang and Daniel J Abadi. Leopard: Lightweight edge-oriented partition-

ing and replication for dynamic graphs. Proc. VLDB Endowment, 9(7):540–551,
2016.

[26] Zan Huang. Link prediction based on graph topology: The predictive value of

generalized clustering coefficient. Available at SSRN 1634014, 2010.
[27] Ruoming Jin, Hui Hong, Haixun Wang, Ning Ruan, and Yang Xiang. Computing

label-constraint reachability in graph databases. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, pages 123–134, 2010.

[28] Hyun-Joo Kim and Jin Min Kim. Cyclic topology in complex networks. Physical
Review E, 72:036109, 2005.

[29] Jinha Kim, Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, and Hwanjo Yu. Opt:

a new framework for overlapped and parallel triangulation in large-scale graphs.

In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 637–648, 2014.
[30] Myunghwan Kim and Jure Leskovec. Multiplicative attribute graph model of

real-world networks. Internet mathematics, 8(1-2):113–160, 2012.
[31] Jérôme Kunegis. Konect: the koblenz network collection. In Proc. 22nd Int. World

Wide Web Conf., pages 1343–1350, 2013.
[32] Matthieu Latapy, Clemence Magnien, and Nathalie Del Vecchio. Basic notions

for the analysis of large affiliation networks/bipartite graphs. arXiv preprint
cond-mat/0611631, 2006.

[33] Xi Tong Lee, Arijit Khan, Sourav Sen Gupta, Yu Hann Ong, and Xuan Liu. Mea-

surements, analyses, and insights on the entire ethereum blockchain network.

In Proc. The Web Conference 2020, pages 155–166, 2020.
[34] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densifi-

cation laws, shrinking diameters and possible explanations. In Proc. 11th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages 177–187, 2005.

[35] Pedro G. Lind, Marta C. Gonzalez, and Hans J. Herrmann. Cycles and clustering

in bipartite networks. Physical Review E, 72:056127, 2005.
[36] Kun Liu and Evimaria Terzi. Towards identity anonymization on graphs. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, pages 93–106, 2008.
[37] Bingqing Lyu, Lu Qin, Xuemin Lin, Ying Zhang, Zhengping Qian, and Jin-

gren Zhou. Maximum biclique search at billion scale. Proc. VLDB Endowment,
13(9):1359–1372, 2020.

[38] ChenhaoMa, Reynold Cheng, Laks VS Lakshmanan, Tobias Grubenmann, Yixiang

Fang, and Xiaodong Li. Linc: a motif counting algorithm for uncertain graphs.

Proc. VLDB Endowment, 13(2):155–168, 2019.
[39] Andrew McGregor. Graph stream algorithms: A survey. ACM SIGMOD Record,

43(1):9–20, 2014.

[40] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,

and Uri Alon. Network motifs: simple building blocks of complex networks.

Science, 298(5594):824–827, 2002.
[41] JayantaMondal and Amol Deshpande. Managing large dynamic graphs efficiently.

In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 145–156, 2012.
[42] Mark EJ Newman. The structure and function of complex networks. SIAM Review,

45(2):167–256, 2003.

[43] Mark EJ Newman, Steven H Strogatz, and Duncan J Watts. Random graphs

with arbitrary degree distributions and their applications. Physical Review E,
64(2):026118, 2001.

[44] Rasmus Pagh and Francesco Silvestri. The input/output complexity of triangle

enumeration. In Proc. 33rd ACM SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems, pages 224–233, 2014.

[45] Thomas Petermann and Paolo De Los Rios. Role of clustering and gridlike

ordering in epidemic spreading. Physical Review E, 69, 2004.
[46] Erzsébet Ravasz and Albert-László Barabási. Hierarchical organization in complex

networks. Physical Review E, 67(2):026112, 2003.
[47] Seyed-Vahid Sanei-Mehri, Ahmet Erdem Sariyuce, and Srikanta Tirthapura. But-

terfly counting in bipartite networks. In Proc. 24th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, pages 2150–2159, 2018.

[48] Seyed-Vahid Sanei-Mehri, Yu Zhang, Ahmet Erdem Sariyüce, and Srikanta Tirtha-

pura. Fleet: Butterfly estimation from a bipartite graph stream. In Proc. 28th ACM
Int. Conf. on Information and Knowledge Management, pages 1201–1210, 2019.

[49] Ahmet Erdem Sarıyüce and Ali Pinar. Peeling bipartite networks for dense

subgraph discovery. In Proc. 11th ACM Int. Conf. Web Search and Data Mining,
pages 504–512, 2018.

[50] Yuya Sasaki, George H.L. Fletcher, and Makoto Onizuka. Structural indexing for

conjunctive path queries. arXiv preprint arXiv:2003.03079, 2020.
[51] Aida Sheshbolouki, Mina Zarei, and Hamid Sarbazi-Azad. Are feedback loops

destructive to synchronization? EPL (Europhysics Letters), 111(4):40010, 2015.
[52] Partha Pratim Talukdar, Zachary G Ives, and Fernando Pereira. Automatically

incorporating new sources in keyword search-based data integration. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 387–398, 2010.

[53] Jia Wang, Ada Wai-Chee Fu, and James Cheng. Rectangle counting in large

bipartite graphs. In Proc. 2014 IEEE Int. Congress on Big Data, pages 17–24, 2014.
[54] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. Vertex pri-

ority based butterfly counting for large-scale bipartite networks. Proc. VLDB
Endowment, 12(10):1139–1152, 2019.

[55] Mengzhi Wang, Tara Madhyastha, Ngai Hang Chan, Spiros Papadimitriou, and

Christos Faloutsos. Data mining meets performance evaluation: Fast algorithms

for modeling bursty traffic. In Proc. 18th Int. Conf. on Data Engineering, pages
507–516, 2002.

[56] NanWang, Jingbo Zhang, Kian-Lee Tan, and Anthony KHTung. On triangulation-

based dense neighborhood graph discovery. Proc. VLDB Endowment, 4(2):58–68,
2010.

[57] Pinghui Wang, Yiyan Qi, Yu Sun, Xiangliang Zhang, Jing Tao, and Xiaohong

Guan. Approximately counting triangles in large graph streams including edge

duplicates with a fixed memory usage. Proc. VLDB Endowment, 11(2):162–175,
2017.

sGrapp: Butterfly Approximation in Streaming Graphs

[58] Xifeng Yan, Philip S Yu, and Jiawei Han. Graph indexing: a frequent structure-

based approach. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
335–346, 2004.

[59] Shengqi Yang, Xifeng Yan, Bo Zong, and Arijit Khan. Towards effective partition

management for large graphs. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 517–528, 2012.

[60] Jiaxuan You, Jure Leskovec, Kaiming He, and Saining Xie. Graph structure of

neural networks. In Proc. 37th Int. Conf. on Machine Learning, pages 10881–10891,
2020.

[61] Jianpeng Zhang, Kaijie Zhu, Yulong Pei, George H.L. Fletcher, and Mykola Pech-

enizkiy. Clustering-structure representative sampling from graph streams. In

Proc. Int. Conf. Complex Networks and their Applications, pages 265–277, 2017.
[62] Peng Zhang, Jinliang Wang, Xiaojia Li, Menghui Li, Zengru Di, and Ying Fan.

Clustering coefficient and community structure of bipartite networks. Physica A:
Statistical Mechanics and its Applications, 387(27):6869–6875, 2008.

[63] Peixiang Zhao, Jeffrey Xu Yu, and S Yu Philip. Graph indexing: Tree+ delta ≥
graph. In Proc. 33rd Int. Conf. on Very Large Data Bases, volume 7, pages 938–949,

2007.

[64] Abolfazl Ziaeemehr, Mina Zarei, and Aida Sheshbolouki. Emergence of global

synchronization in directed excitatory networks of type i neurons. Scientific
Reports, 10(1):1–11, 2020.

	Abstract
	1 Introduction
	2 Background
	2.1 Preliminaries
	2.2 Related Work

	3 Analysis of Graph Characteristics
	3.1 Graph stream data
	3.2 Butterfly Emergence Patterns
	3.3 Bursty Butterfly Formation
	3.4 Discussion

	4 sGrapp
	4.1 Adaptive time-based sliding windows
	4.2 Approximating the number of inter-window butterflies
	4.3 Optimization
	4.4 Analysis

	5 Experiments
	5.1 Effectiveness Evaluation
	5.2 Efficiency Evaluation
	5.3 Comparison with Baselines

	6 Conclusion
	References

