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Graph neural networks provide a powerful toolkit for embedding real-world graphs into low-dimensional

spaces according to specific tasks. Up to now, there have been several surveys on this topic. However, they

usually lay emphasis on different angles so that the readers can not see a panorama of the graph neural

networks. This survey aims to overcome this limitation, and provide a systematic and comprehensive review

on the graph neural networks. First of all, we provide a novel taxonomy for the graph neural networks, and

then refer to up to 250 relevant literatures to show the panorama of the graph neural networks. All of them

are classified into the corresponding categories. In order to drive the graph neural networks into a new stage,

we summarize four future research directions so as to overcome the facing challenges. It is expected that more

and more scholars can understand and exploit the graph neural networks, and use them in their research

community.
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1 INTRODUCTION
Graph, as a complex data structure, consists of nodes (or vertices) and edges (or links). It can be used

to model lots of complex systems in real world, e.g. social networks, protein-protein interaction

networks, brain networks, road networks, physical interaction networks and knowledge graph etc.

Thus, Analyzing the complex networks becomes an intriguing research frontier. With the rapid

development of deep learning techniques, many scholars employ the deep learning architectures

to tackle the graphs. Graph Neural Networks (GNNs) emerge under these circumstances. Up to

now, the GNNs have evolved into a prevalent and powerful computational framework for tackling

irregular data such as graphs and manifolds.

The GNNs can learn task-specific node/edge/graph representations via hierarchical iterative

operators so that the traditional machine learning methods can be employed to perform graph-

related learning tasks, e.g. node classification, graph classification, link prediction and clustering

etc. Although the GNNs has attained substantial success over the graph-related learning tasks, they

still face great challenges. Firstly, the structural complexity of graphs incurs expensive computa-

tional cost on large graphs. Secondly, perturbing the graph structure and/or initial features incurs

sharp performance decay. Thirdly, the Wesfeiler-Leman (WL) graph isomorphism test impedes

the performance improvement of the GNNs. At last, the blackbox work mechanism of the GNNs

hinders safely deploying them to real-world applications.

In this paper, we generalize the conventional deep architectures to the non-Euclidean domains,

and summarize the architectures, extensions and applications, benchmarks and evaluation pitfalls

and future research directions of the graph neural networks. Up to now, there have been several

surveys on the GNNs. However, they usually discuss the GNNmodels from different angles and with

different emphasises. To the best of our knowledge, the first survey on the GNNs was conducted

by Michael M. Bronstein et al[124]. Peng Cui et al[249] reviewed different kinds of deep learning

models applied to graphs from three aspects: semi-supervised learning methods including graph

convolutional neural networks, unsupervised learning methods including graph auto-encoders, and

recent advancements including graph recurrent neural networks and graph reinforcement learning.

This survey laid emphasis on semi-supervised learning models, i.e. the spatial and spectral graph

convolutional neural networks, yet comparatively less emphasis on the other two aspects. Due to the

space limit, this survey only listed a few of key applications of the GNNs, but ignored the diversity of

the applications. Maosong Sun et al[81] provided a detailed review of the spectral and spatial graph

convolutional neural networks from three aspects: graph types, propagation step and training

method, and divided its applications into three scenarios: structural scenarios, non-structural

scenarios and other scenarios. However, this article did not involve the other GNN architectures

such as graph auto-encoders, graph recurrent neural networks and graph generative networks.

Philip S. Yu et al[250] conducted a comprehensive survey on the graph neural networks, and

investigated available datasets, open-source implementations and practical applications. However,

they only listed a few of core literatures on each research topic. Davide Bacciu et al[75] gives

a gentle introduction to the field of deep learning for graph data. The goal of this article is to

introduce the main concepts and building blocks to construct neural networks for graph data, and

therefore it falls short of an exposition of recent works on graph neural networks.

It is noted that all of the aforementioned surveys do not concern capability and interpretability of

GNNs, combinations of the probabilistic inference and GNNs, and adversarial attacks on graphs. In
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Fig. 1. The architecture of this paper.

this article, we provide a panorama of GNNs for readers from 4 perspectives: architectures, exten-

sions and applications, benchmarks and evaluations pitfalls, future research directions, as shown in

Fig. 1. For the architectures of GNNs, we investigate the studies on graph convolutional neural net-

works (GCNNs), graph pooling operators, graph attention mechanisms and graph recurrent neural

networks (GRNNs). The extensions and applications demonstrate some notable research topics on

the GNNs through integrating the above architectures. Specifically, this perspective includes the

capabilities and interpretability, deep graph representation learning, deep graph generative models,

combinations of the Probabilistic Inference (PI) and the GNNs, adversarial attacks for GNNs, Graph

Neural Architecture Search and graph reinforcement learning and applications. In summary, our

article provides a complete taxonomy for GNNs, and comprehensively review the current advances

and trends of the GNNs. These are our main differences from the aforementioned surveys.

Contributions. Our main contributions boils down to the following three-fold aspects.
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(1) We propose a novel taxonomy for the GNNs, which has three levels. The first includes

architectures, benchmarks and evaluation pitfalls, and applications. The architectures are

classified into 9 categories, the benchmarks and evaluation pitfalls into 2 categories, and the

applications into 10 categories. Furthermore, the graph convolutional neural networks, as a

classic GNN architecture, are again classified into 6 categories.

(2) We provide a comprehensive review of the GNNs. All of the literatures fall into the corre-

sponding categories. It is expected that the readers not only understand the panorama of the

GNNs, but also comprehend the basic principles and various computation modules of the

GNNs through reading this survey.

(3) We summarize four future research directions for the GNNs according to the current facing

challenges, most of which are not mentioned the other surveys. It is expected that the research

on the GNNs can progress into a new stage by overcoming these challenges.

Roadmap. The remainder of this paper is organized as follows. First of all, we provide some

basic notations and definitions that will be often used in the following sections. Then, we start

reviewing the GNNs from 4 aspects: architectures in section 3, extensions and applications in

section 4, benchmarks and evaluation pitfalls in section 5 and future research directions in section

6. Finally, we conclude our paper.

2 PRELIMINARIES
In this section, we introduce relevant notations so as to conveniently describe the graph neural

network models. A simple graph can be denoted by𝐺 = (𝑉 , 𝐸) where 𝑉 and 𝐸 respectively denote

the set of 𝑁 nodes (or vertices) and 𝑀 edges. Without loss of generality, let 𝑉 = {𝑣1, · · · , 𝑣𝑁 }
and 𝐸 = {𝑒1, · · · , 𝑒𝑀 }. Each edge 𝑒 𝑗 ∈ 𝐸 can be denoted by 𝑒 𝑗 =

(
𝑣𝑠 𝑗 , 𝑣𝑟 𝑗

)
where 𝑣𝑠 𝑗 , 𝑣𝑟 𝑗 ∈ 𝑉 . Let

𝐴𝐺 denote the adjacency matrix of 𝐺 where 𝐴𝐺 (𝑠, 𝑟 ) = 1 iff there is an edge between 𝑣𝑠 and

𝑣𝑟 . If 𝐺 is edge-weighted, 𝐴𝐺 (𝑠, 𝑟 ) equals the weight value of the edge (𝑣𝑠 , 𝑣𝑟 ). If 𝐺 is directed,(
𝑣𝑠 𝑗 , 𝑣𝑟 𝑗

)
≠

(
𝑣𝑟 𝑗 , 𝑣𝑠 𝑗

)
and therefore 𝐴𝐺 is asymmetric. A directed edge 𝑒 𝑗 =

(
𝑣𝑠 𝑗 , 𝑣𝑟 𝑗

)
is also called

an arch, i.e. 𝑒 𝑗 =
〈
𝑣𝑠 𝑗 , 𝑣𝑠 𝑗

〉
. Otherwise

(
𝑣𝑠 𝑗 , 𝑣𝑟 𝑗

)
=

(
𝑣𝑟 𝑗 , 𝑣𝑠 𝑗

)
and 𝐴𝐺 is symmetric. For a node

𝑣𝑠 ∈ 𝑉 , let 𝑁𝐺 (𝑣𝑠 ) denote the set of neighbors of 𝑣𝑠 , and 𝑑𝐺 (𝑣𝑠 ) denote the degree of 𝑣𝑠 . If 𝐺 is

directed, let 𝑁 +
𝐺
(𝑣𝑠 ) and 𝑁 −𝐺 (𝑣𝑠 ) respectively denote the incoming and outgoing neighbors of 𝑣𝑠 ,

and 𝑑+
𝐺
(𝑣𝑠 ) and 𝑑−𝐺 (𝑣𝑠 ) respectively denote the incoming and outgoing degree of 𝑣𝑠 . Given a vector

𝑎 = (𝑎1, · · · , 𝑎𝑁 ) ∈ R𝑁 , diag(𝑎) (or diag(𝑎1, · · · , 𝑎𝑁 )) denotes a diagonal matrix consisting of the

elements 𝑎𝑛, 𝑛 = 1, · · · , 𝑁 .

A vector 𝑥 ∈ R𝑁 is called a 1-dimensional graph signal on 𝐺 . Similarly, 𝑋 ∈ R𝑁×𝑑 is called a

𝑑-dimensiaonl graph signal on 𝐺 . In fact, 𝑋 is also called a feature matrix of nodes on 𝐺 . Without

loss of generality, let 𝑋 [ 𝑗, 𝑘] denote the ( 𝑗, 𝑘)-th entry of the matrix 𝑋 ∈ R𝑁×𝑑 , 𝑋 [ 𝑗, :] ∈ R𝑑 denote
the feature vector of the node 𝑣 𝑗 and 𝑋 [:, 𝑗] denote the 1-dimensional graph signal on 𝐺 . Let I𝑁
denote a 𝑁 ×𝑁 identity matrix. For undirected graphs, 𝐿𝐺 = 𝐷𝐺 −𝐴𝐺 is called the Laplacian matrix

of 𝐺 , where 𝐷𝐺 [𝑟, 𝑟 ] =
∑𝑁
𝑐=1

𝐴𝐺 [𝑟, 𝑐]. For a 1-dimensional graph signal 𝑥 , its smoothness 𝑠 (𝑥) is
defined as

𝑠 (𝑥) = 𝑥𝑇𝐿𝐺𝑥 =
1

2

𝑁∑︁
𝑟,𝑐=1

𝐴𝐺 (𝑟, 𝑐) (𝑥 [𝑟 ] − 𝑥 [𝑐])2 . (1)

The normalization of 𝐿𝐺 is defined by 𝐿𝐺 = I𝑁 − 𝐷
− 1

2

𝐺
𝐴𝐺𝐷

− 1

2

𝐺
. 𝐿𝐺 is a real symmetric semi-

positive definite matrix. So, it has 𝑁 ordered real non-negative eigenvalues {𝜆𝑛 : 𝑛 = 1, · · · , 𝑁 }
and corresponding orthonormal eigenvectors {𝑢𝑛 : 𝑛 = 1, · · · , 𝑁 }, namely 𝐿𝐺 = 𝑈Λ𝑈𝑇 where

Λ = diag(𝜆1, · · · , 𝜆𝑁 ) and 𝑈 = (𝑢1, · · · , 𝑢𝑁 ) denotes a orthonormomal matrix. Without loss of
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generality, 0 = 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑁 = 𝜆max. The eigenvectors 𝑢𝑛, 𝑛 = 1, · · · , 𝑁 are also called the

graph Fourier bases of𝐺 . Obviously, the graph Fourier basis are also the 1-dimensional graph signal

on 𝐺 . The graph Fourier transform[35] for a given graph signal 𝑥 can be denoted by

𝑥 ≜ F (𝑥) = 𝑈𝑇𝑥 . (2)

The inverse graph Fourier transform can be correspondingly denoted by

𝑥 ≜ F −1 (𝑥) = 𝑈𝑥. (3)

Note that the eigenvalue 𝜆𝑛 actually measures the smoothness of the graph Fourier mode 𝑢𝑛 .

Throughout this paper, let 𝜌 (·) denote an activation function, ⊲⊳ denote the concatenation of at

least two vectors, and ⟨⟩ denote the inner product of two vectors/matrices. We somewhere use the

function Concat(·) to denote the concatenation of two vectors as well.

3 ARCHITECTURES
3.1 Graph Convolutional Neural Networks (GCNNs)
The GCNNs play pivotal roles on tackling the irregular data (e.g. graph and manifold). They are

motivated by the Convolutional Neural Networks (CNNs) to learn hierarchical representations

of irregular data. There have been some efforts to generalize the CNN to graphs [120, 125, 228].

However, they are usually computationally expensive and cannot capture spectral or spatial features.

Below, we introduce the GCNNs from the next 6 aspects: spectral GCNNs, spatial GCNNs, Graph

wavelet neural networks and GCNNs on special graphs.

Singular Value Decomposition

Input

Aggregation

Activation

Fig. 2. Computational framework of the spectral GCNN.

3.1.1 Spectral Graph Convolution Operators. The spectral graph convolution operator is defined via
the graph Fourier transform. For two graph signals 𝑥 and 𝑦 on 𝐺 , their spectral graph convolution

𝑥 ∗𝐺 𝑦 is defined by

𝑥 ∗𝐺 𝑦 = F −1 (F (𝑥) ⊛ F (𝑦))

= 𝑈
(
𝑈𝑇𝑥 ⊛ 𝑈𝑇𝑦

)
= 𝑈 diag(𝑈𝑇𝑦)𝑈𝑇𝑥,

(4)

where ⊛ denotes the element-wise Hadamard product [45, 85, 125]. The spectral graph convolution

can be rewritten as

𝑥 ∗𝐺 𝑓𝜃 = 𝑈 𝑓𝜃𝑈
𝑇𝑥,

ACM Trans. Intell. Syst. Technol., Vol. 00, No. 0, Article 000. Publication date: 2020.
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where 𝑓𝜃 is a diagonal matrix consisting of the learnable parameters. That is, the signal 𝑥 is filtered

by the spectral graph filter (or graph convolution kernel) 𝑓𝜃 . For a 𝑑
(𝑙)
-dimensional graph signal

𝑋 (𝑙) on𝐺 , the output 𝑋 (𝑙+1) yielded by a graph convolution layer, namely 𝑑 (𝑙+1) -dimensional graph

signal on 𝐺 , can be written as

𝑋 (𝑙+1) [:, 𝑘] = 𝜌 ©­«
𝑑 (𝑙 )∑︁
𝑗=1

𝑈 𝑓
(𝑙)
𝜃,𝑗,𝑘

𝑈𝑇𝑋 (𝑙) [:, 𝑗]ª®¬ , (5)

where 𝑓
(𝑙)
𝜃,𝑗,𝑘

is a spectral graph filter, i.e. a 𝑁 ×𝑁 diagonal matrix consisting of learnable parameters

corresponding to the 𝑗-th graph signal at 𝑙-th layer and the 𝑘-th graph signal at (𝑙 + 1)-th layer.

The computational framework of the spectral GCNN in Eq. (5) is demonstrated in Fig. 2. It is

worth noting that the calculation of the above graph convolution layer takes 𝑂 (𝑁 3) time and

𝑂 (𝑁 2) space to perform the eigendecomposition of 𝐿𝐺 especially for large graphs. The article

[193] proposes a regularization technique, namely GraphMix, to augment the vanilla GCNN with a

parameter-sharing Fully Connected Network (FCN).

Spectral Graph Filter.Many studies [125] focus on designing different spectral graph filters.

In order to circumvent the eigendecomposition, the spectral graph filter 𝑓𝜃 can formulated as a

𝐾-localized polynomial of the eigenvalues of the normalized graph Laplacian 𝐿𝐺 [123, 160, 185], i.e.

𝑓𝜃 = 𝑓𝜃 (Λ) ≜
𝐾−1∑︁
𝑘=0

𝜃𝑘Λ
𝑘 . (6)

In practice, the 𝐾-localized Chebyshev polynomial [123] is a favorable choice of formulating the

spectral graph filter, i.e.

𝑓𝜃 (Λ) =
𝐾−1∑︁
𝑘=0

𝜃𝑘𝑇𝑘 (Λ̃),

where the Chebyshev polynomial is defined as

𝑇0 (𝑥) = 1, 𝑇1 (𝑥) = 𝑥, 𝑇𝑘 (𝑥) = 2𝑥𝑇𝑘−1 (𝑥) −𝑇𝑘−2 (𝑥) (7)

and Λ̃ = 2

𝜆max

Λ − I𝑁 . The reason why Λ̃ = 2

𝜆max

Λ − I𝑁 is because it can map eigenvalues 𝜆 ∈
[0, 𝜆max] into [−1, 1]. This filter is 𝐾-localized in the sense that it leverages information from nodes

which are at most 𝐾-hops away. In order to further decrease the computational cost, the 1st-order

Chebyshev polynomial is used to define the spectral graph filter. Specifically, it lets 𝜆max ≈ 2

(because the largest eigenvalue of 𝐿𝐺 is less than or equal to 2 [24]) and 𝜃 = 𝜃0 = −𝜃1. Moreover,

the renormalization trick is used here to mitigate the limitations of the vanishing/exploding

gradient, namely substituting 𝐷
− 1

2

𝐺
𝐴𝐺𝐷

− 1

2

𝐺
for I𝑁 + 𝐷

− 1

2

𝐺
𝐴𝐺𝐷

− 1

2

𝐺
where 𝐴𝐺 = 𝐴𝐺 + I𝑁 and 𝐷𝐺 =

diag

(∑𝑁
𝑘=1

𝐴[1, 𝑘], · · · ,∑𝑁
𝑘=1

𝐴[𝑁,𝑘]
)
. As a result, the Graph Convolutional Network (GCN) [165,

185] can be defined as

𝑋 (𝑙+1) = 𝜌
(
𝐷
− 1

2

𝐺
𝐴𝐺𝐷

− 1

2

𝐺
𝑋 (𝑙)Θ(𝑙)

)
. (8)

The Chebyshev spectral graph filter suffers from a drawback that the spectrum of 𝐿𝐺 is linearly

mapped into [−1, 1]. This drawback makes it hard to specialize in the low frequency bands. In

order to mitigate this problem, Michael M. Bronstein et al [158] proposes the Cayley spectral

graph filter via the order-𝑟 Cayley polynomial 𝑓𝑐,ℎ (𝜆) = 𝑐0 + 2Re

(∑𝑟
𝑗=0
𝑐ℎC(𝜆) 𝑗

)
with the Cayley

transform C(𝜆) = 𝜆−𝑖
𝜆+𝑖 . Moreover, there are many other spectral graph filters, e.g. [6, 18, 48, 72, 121,
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153, 160, 166, 187, 239]. In addition, some studies employ the capsule network [167] to construct

capsule-inspired GNNs [115, 168, 216].

Overcoming Time and Memory Challenges. A chief challenge for GCNNs is that their

training cost is strikingly expensive, especially on huge and sparse graphs. The reason is that the

GCNNs require full expansion of neighborhoods for the feed-forward computation of each node,

and large memory space for storing intermediate results and outputs. In general, two approaches,

namely sampling [64, 73, 80, 201] and decomposition [200, 215], can be employed to mitigate the

time and memory challenges for the spectral GCNNs.

Depth Trap of Spectral GCNNs. A bottleneck of GCNNs is that their performance maybe

decease with ever-increasing number of layer. This decay is often attributed to three factors: (1) over-

fitting resulting from the ever-increasing number of parameters; (2) gradient vanishing/explosion

during training; (3) oversmoothing making vertices from different clusters more and more indistin-

guishable. The reason for oversmoothing is that performing the Laplacian smoothing many times

forces the features of vertices within the same connected component to stuck in stationary points

[150]. There are some available approaches, e.g. [2, 112, 161, 221, 231], to circumvent the depth

trap of the spectral GCNNs.

3.1.2 Spatial Graph Convolution Operators. Original spatial GCNNs [52, 53, 55, 194] constitutes a
transition function, which must be a contraction map in order to ensure the uniqueness of states,

and an update function. In the following, we firstly introduce a generic framework of the spatial

GCNN, and then investigate its variants.

Graph networks (GNs) as generic architectures with relational inductive bias [149] provide an

elegant interface for learning entities, relations and structured knowledge. Specifically, GNs are

composed of GN blocks in a sequential, encode-process-decode or recurrent manner. GN blocks

contain three kinds of update functions, namely 𝜙𝑒 (·), 𝜙𝑣 (·), 𝜙𝑢 (·), and three kinds of aggregation

functions, namely𝜓𝑒→𝑣 (·),𝜓𝑒→𝑢 (·),𝜓 𝑣→𝑢 (·). The iterations are described as follows.

𝑒 ′
𝑘
= 𝜙𝑒

(
𝑒𝑘 , 𝑣𝑟𝑘 , 𝑣𝑠𝑘 , 𝑢

)
, 𝑒 ′𝑖 = 𝜓

𝑒→𝑣 (
𝐸 ′𝑖

)
, 𝑣 ′𝑖 = 𝜙

𝑣
(
𝑣𝑖 , 𝑒

′
𝑖 , 𝑢

)
,

𝑒 ′ = 𝜓𝑒→𝑢 (𝐸 ′) , 𝑢 ′ = 𝜙𝑢 (𝑢, 𝑒 ′, 𝑣 ′) , 𝑣 ′ = 𝜓 𝑣→𝑢 (𝑉 ′)
(9)

where 𝑒𝑘 is an arch from 𝑣𝑠𝑘 to 𝑣𝑟𝑘 , 𝐸
′
𝑖 =

{
(𝑒 ′
𝑘
, 𝑠𝑘 , 𝑟𝑘 ) : 𝑟𝑘 = 𝑖, 𝑘 = 1, · · · , 𝑀

}
,𝑉 ′ =

{
𝑣 ′𝑖 : 𝑖 = 1, · · · , 𝑁

}
and 𝐸 ′ =

{
(𝑒 ′
𝑘
, 𝑠𝑘 , 𝑟𝑘 ) : 𝑘 = 1, · · · , 𝑀

}
, see Fig. 3. It is noted that the aggregation functions should

be invariant to any permutations of nodes or edges. In practice, the GN framework can be used to

implement a wide variety of architectures in accordance with three key design principles, namely

flexible representations, configuable within-block structure and flexible multi-block architectures.

Below, we introduce three prevalent variants of the GNs, namely Message Passing Neural Networks

(MPNNs) [92], Non-local Neural Networks (NLNNs) [4] and GraphSAGE [204].

Variants of GNs——MPNNs. MPNNs [92] have two phases, a message passing phase and a

readout phase. The message passing phase is defined by a message function𝑀𝑙 (playing the role of

the composition of the update function𝜓𝑒→𝑣 (·) and the update function 𝜙𝑒 (·)) and a vertex update

function𝑈𝑙 (playing the role of the update function 𝜙
𝑣 (·)). Specifically,

𝑚
(𝑙+1)
𝑣 =

∑︁
𝑢∈𝑁𝐺 (𝑣)

𝑀𝑙

(
𝑥
(𝑙)
𝑣 , 𝑥

(𝑙)
𝑢 , 𝑒𝑣,𝑢

)
, 𝑥

(𝑙+1)
𝑣 = 𝑈𝑙

(
𝑥
(𝑙)
𝑣 ,𝑚

(𝑙+1)
𝑣

)
where 𝑒𝑣,𝑢 denotes the feature vector of the edge with two endpoints 𝑣 and 𝑢. The readout phase

computes a universal feature vector for the whole graph using a readout function 𝑅(·), i.e. 𝑢 =

𝑅

({
𝑥
(𝐿)
𝑣 : 𝑣 ∈ 𝑉

})
. The readout function 𝑅(·) should be invariant to permutations of nodes. A lot

of GCNNs can be regarded as special forms of the MPNN, e.g. [34, 147, 181, 235].
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Current Edge

Update states of edges

 

Aggregate states of edges

Current Node

Update states of nodes

Aggregate states of all edges

 

 

Aggregate states of all nodes

update the global state

Fig. 3. Computational framework of the spatial GCNN.

Variants of GNs——NLNNs. NLNNs [4] give a general definition of non-local operations [8]

which is a flexible building block and can be easily integrated into convolutional/recurrent layers.

Specifically, the generic non-local operation is defined as

𝑦𝑠 =
1

C(𝑥𝑠 )
∑︁
𝑡

𝑓 (𝑥𝑠 , 𝑥𝑡 )𝑔(𝑥𝑡 ), (10)

where 𝑓 (·, ·) denotes the affinity between 𝑥𝑠 and 𝑥𝑡 , and C(𝑥𝑠 ) =
∑
𝑡 𝑓 (𝑥𝑠 , 𝑥𝑡 ) is a normalization

factor. The affinity function 𝑓 (·, ·) is of the following form

(1) Gaussian: 𝑓 (𝑥𝑠 , 𝑥𝑡 ) = 𝑒𝑥
𝑇
𝑠 𝑥𝑡 ;

(2) Embedded Gaussian: 𝑓 (𝑥𝑠 , 𝑥𝑡 ) = 𝑒𝜃 (𝑥𝑠 )
𝑇𝜂 (𝑥𝑡 )

, where 𝜃 (𝑥𝑠 ) =𝑊𝜃𝑥𝑠 and 𝜂 (𝑥𝑡 ) =𝑊𝜂𝑥𝑡 ;

(3) Dot Product: 𝑓 (𝑥𝑠 , 𝑥𝑡 ) = 𝜃 (𝑥𝑠 )𝑇𝜂 (𝑥𝑡 );
(4) Concatenation: 𝑓 (𝑥𝑠 , 𝑥𝑡 ) = ReLU(𝑤𝑇

𝑓
[𝜃 (𝑥𝑠 ), 𝜂 (𝑥𝑡 )]).

The non-local building block is defined as 𝑧𝑠 =𝑊𝑧𝑦𝑠 +𝑥𝑠 where "+𝑥𝑠 " denotes a residual connection.
It is noted that 𝑓 (·, ·) and 𝑔(·) play the role of 𝜙𝑒 (𝑒𝑘 , 𝑣𝑟𝑘 , 𝑣𝑠𝑘 , 𝑢), and the summation in Eq. (10) plays

the role of𝜓𝑒→𝑣 (𝐸 ′𝑖 ).
Variants of GNs——GraphSAGE. GraphSAGE (SAmple and aggreGatE) [204] is a general

inductive framework capitalizing on node feature information to efficiently generate node embed-

ding vectors for previously unseen nodes. Specifically, GraphSAGE is composed of an aggregation

function Aggregate
(𝑙) (·) and an update function Update

(𝑙)
, i.e.

𝑥
(𝑙)
𝑁𝐺 (𝑣) = Aggregate

(𝑙)
({
𝑥
(𝑙−1)
𝑢 : 𝑢 ∈ 𝑁𝐺 (𝑣)

})
𝑥
(𝑙)
𝑣 = Update

(𝑙)
({
𝑥
(𝑙−1)
𝑣 , 𝑥

(𝑙)
𝑁𝐺 (𝑣)

})
where 𝑁𝐺 (𝑣) denotes a fixed-size set of neighbors of 𝑣 uniformly sampling from its whole neighbors.

The aggregation function is of the following form

(1) Mean Aggregator: 𝑥
(𝑙)
𝑣 = 𝜎

(
𝑊 ·Mean

({
𝑥
(𝑙−1)
𝑣

}
∪

{
𝑥
(𝑙−1)
𝑢 : 𝑢 ∈ 𝑁𝐺 (𝑣)

}))
;
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(2) LSTM Aggregator: applying the LSTM [171] to aggregate the neighbors of 𝑣 ;

(3) Pooling Aggregator: Aggregate
(𝑙) = max

({
𝜎

(
𝑊𝑥

(𝑙)
𝑢 + 𝑏

)
: 𝑢 ∈ 𝑁𝐺 (𝑣)

})
.

Note that the aggregation function and update function play the role of𝜓𝑒→𝑣 (𝐸 ′𝑖 ) and 𝜙𝑣 (𝑣𝑖 , 𝑒
′
𝑖 , 𝑢)

in formula (9) respectively.

Variants of GNs——Hyperbolic GCNNs. The Euclidean GCNNs aim to embed nodes in a graph

into a Euclidean space. This will incur a large distortion especially when embedding real-world

graphs with scale-free and hierarchical structure. Hyperbolic GCNNs pave an alternative way of

embedding with little distortion. The 𝑛-dimensional hyperbolic space [16, 155], denoted as H𝑛
𝐾
, is a

unique, complete, simply connected 𝑑-dimensional Riemannian manifold with constant negative

sectional curvature − 1

𝐾
, i.e.

H𝑛𝐾 =
{
𝑥 ∈ R𝑛+1 : ⟨𝑥, 𝑥⟩M = −𝐾, 𝑥0 > 0

}
,

where the Minkowski inner produce ⟨𝑥,𝑦⟩M = −𝑥0𝑦0 +
∑𝑑
𝑗=1
𝑥 𝑗𝑦 𝑗 ,∀𝑥,𝑦 ∈ R𝑛+1. Its tangent space

centered at point 𝑥 is denoted as T𝑥H𝑛𝐾 =
{
𝑣 ∈ R𝑛+1 : ⟨𝑥, 𝑣⟩M = 0

}
. Given 𝑥 ∈ H𝑛

𝐾
, let 𝑢 ∈ T𝑥H𝑛𝐾

be unit-speed. The unique unit-speed geodesic 𝛾𝑥→𝑢 (·) such that 𝛾𝑥→𝑢 (0) = 𝑥 and ¤𝛾𝑥→𝑢 (0) = 𝑢 is

denoted as 𝛾𝑥→𝑢 (𝑡) = cosh

(
𝑡√
𝐾

)
𝑥 +
√
𝐾 sinh

(
𝑡√
𝐾

)
, 𝑢, 𝑡 > 0. The intrinsic distance between two

points 𝑥,𝑦 ∈ H𝑛
𝐾
is then equal to

𝑑𝐾M (𝑥,𝑦) =
√
𝐾arcosh

(
− ⟨𝑥,𝑦⟩M

𝐾

)
.

Therefore, the above 𝑛-dimensional hyperbolic space with constant negative sectional curvature

− 1

𝐾
is usually denoted as

(
H𝑛
𝐾
, 𝑑𝐾M (·, ·)

)
. In particular, H𝑛

1
, i.e. 𝐾 = 1, is called the hyperboloid

model of the hyperbolic space. Hyperbolic Graph Convolutional Networks (HGCN) [68] benefit

from the expressiveness of both GCNNs and hyperbolic embedding. It employs the exponential

and logarithmic maps of the hyperboloid model, respectively denoted as exp
𝐾
𝑥 (·) and log

𝐾
𝑥 (·), to

realize the mutual transformation between Euclidean features and hyperbolic ones. Let ∥𝑣 ∥M =

⟨𝑣, 𝑣⟩M, 𝑣 ∈ T𝑥H𝑛𝐾 . The exp
𝐾
𝑥 (·) and log

𝐾
𝑥 (·) are respectively defined to be

exp
𝐾
𝑥 (𝑣) = cosh

(
∥𝑣 ∥M√
𝐾

)
𝑥 +
√
𝐾 sinh

(
∥𝑣 ∥M√
𝐾

)
𝑣
∥𝑣 ∥M

log
𝐾
𝑥 (𝑦) = 𝑑𝐾M (𝑥,𝑦)

𝑦 + 1

𝐾
⟨𝑥,𝑦⟩M𝑥

𝑦 + 1

𝐾
⟨𝑥,𝑦⟩M𝑥




M
,

where 𝑥 ∈ H𝑛
𝐾
, 𝑣 ∈ T𝑥H𝑛𝐾 and 𝑦 ∈ H𝑛

𝐾
such that 𝑦 ≠ 0 and 𝑦 ≠ 𝑥 . The HGCN architecture

is composed of three components: a Hyperbolic Feature Transform (HFT), an Attention-Based

Aggregation (ABA) and a Non-Linear Activation with Different Curvatures (NLADC). They are

respectively defined as

ℎ
𝐻,𝑙
𝑗

=

(
𝑊 (𝑙) ⊗𝐾𝑙−1 𝑥

𝐻,𝑙−1

𝑗

)
⊕𝐾𝑙−1 𝑏 (𝑙) (HFT),

𝑦
𝐻,𝑙
𝑗

= Aggregate
𝐾𝑙−1 (ℎ𝐻,𝑙 ) 𝑗 (ABA),

𝑥
𝐻,𝑙
𝑗

= exp
𝐾𝑙
𝑜

(
𝜌

(
log

𝐾𝑙−1

𝑜

(
𝑦
𝐻,𝑙
𝑗

)))
(NLADC),

where 𝑜 =

(√
𝐾, 0, · · · , 0

)
∈ H𝑛

𝐾
, the subscript 𝑗 denotes the indices of nodes, the superscript 𝑙

denotes the layer of the HGCN. The linear transform in hyperboloid manifold is defined to be𝑊 ⊗𝐾
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𝑥𝐻 = exp
𝐾
𝑜

(
𝑊 log

𝐾
𝑜 (𝑥𝐻 )

)
and 𝑥𝐻 ⊕𝐾 𝑏 = exp

𝐾

𝑥𝐻

(
𝑃𝐾
𝑜→𝑥𝐻 (𝑏)

)
, where 𝑃𝐾

𝑜→𝑥𝐻 (𝑏) is the parallel trans-
port from T𝑜H𝑛𝐾 to T𝑥𝐻H𝑛𝐾 . The attention-based aggregation is defined to be Aggregate

𝐾 (𝑥𝐻 ) 𝑗 =

exp
𝐾

𝑥𝐻
𝑗

(∑
𝑘∈𝑁𝐺 ( 𝑗) 𝜔 𝑗,𝑘 log

𝐾

𝑥𝐻
𝑗

(
𝑥𝐻
𝑘

))
, where the attentionweight𝜔 𝑗,𝑘 = Softmax𝑘∈𝑁𝐺 ( 𝑗)

(
MLP

(
log

𝐾
𝑜

(
𝑥𝐻𝑗

)
⊲⊳ log

𝐾
𝑜

(
𝑥𝐻
𝑘

)))
.

Higher-Order Spatial GCNNs. the aforementioned GCNN architectures are constructed from

the microscopic perspective. They only consider nodes and edges, yet overlook the higher-order

substructures and their connections, i.e subgraphs consisting of at least 3 nodes. Here, we intro-

duce the studies on the 𝑘-dimensional GCNNs [21]. Specifically, they take higher-order graph

structures at multiple scales into consideration by leveraging the 𝑘-Weisfeiler-Leman (𝑘-WL)

graph isomorphism test so that the message passing is performed directly between subgraph

structures rather than individual nodes. Let {{· · · }} denote a multiset, Hash(·) a hashing func-

tion and 𝐶
(𝑙)
𝑙,𝑘
(𝑠) the node coloring (label) of 𝑠 = (𝑠1, · · · , 𝑠𝑘 ) ∈ 𝑉 𝑘 at the 𝑙-th time. Moreover, let

𝑁
𝑗

𝐺
(𝑠) =

{
(𝑠1, · · · , 𝑠 𝑗−1, 𝑟 , 𝑠 𝑗+1, · · · , 𝑠𝑘 ) : 𝑟 ∈ 𝑉

}
. The 𝑘-WL is computed by

𝐶
(𝑙+1)
𝑙,𝑘
(𝑠) = Hash

(
𝐶
(𝑙)
𝑙,𝑘
(𝑠),

(
𝑐
(𝑙+1)
1
(𝑠), · · · , 𝑐 (𝑙+1)

𝑘
(𝑠)

))
,

where 𝑐
(𝑙+1)
𝑗

= Hash

({{
𝐶
(𝑙)
𝑙,𝑘
(𝑠 ′) : 𝑠 ′ ∈ 𝑁 𝑗

𝐺
(𝑠)

}})
. The 𝑘-GCNN computes new features of 𝑠 ∈ 𝑉 𝑘 by

multiple computational layers. Each layer is computed by

𝑋
(𝑙+1)
𝑘
[𝑠, :] = 𝜌 ©­«𝑋 (𝑙)𝑘 [𝑠, :]𝑊 (𝑙)

1
+

∑︁
𝑡 ∈𝑁𝐺 (𝑠)

𝑋
(𝑙)
𝑘
[𝑡, :]𝑊 (𝑙)

2

ª®¬ .
In practice, the local 𝑘-GCNNs is often employed to learn the hierarchical representations of nodes

in order to scale to larger graphs and mitigate the overfitting problem.

Other Variants of GNs. In addition to the aforementioned GNs and its variants, there are still

many other spatial GCNNs which is defined from other perspectives, e.g. Diffusion-Convolutional

Neural Network (DCNN) [69], Position-aware Graph Neural Network (P-GNN) [78], Memory-based

Graph Neural Network (MemGNN) and GraphMemory Network (GMN) [5], Graph Partition Neural

Network (GPNN) [152], Edge-Conditioned Convolution (ECC) [118], DEMO-Net [103], Column

network [188], Graph-CNN [47].

Invariance and Equivariance. Permutation-invariance refers to that a function 𝑓 : R𝑛
𝑘 → R

(e.g. the aggregation function) is independent of any permutations of node/edge indices [57, 136], i.e.

𝑓 (𝑃𝑇𝐴𝐺𝑃) = 𝑓 (𝐴𝐺 ) where 𝑃 is a permutation matrix and 𝐴𝐺 ∈ R𝑛
𝑘

is a 𝑘-order tensor of edges or

multi-edges in the (hyper-)graph 𝐺 . Permutation-equivariance refers to that a function 𝑓 : R𝑛
𝑘 →

R𝑛
𝑙

coincides with permutations of node/edge indices [57, 136], i.e. 𝑓 (𝑃𝑇𝐴𝐺𝑃) = 𝑃𝑇 𝑓 (𝐴𝐺 )𝑃 where

𝑃 and 𝐴𝐺 are defined as similarly as the permutation-invariance. For permutation-invariant aggre-

gation functions, a straightforward choice is to take sum/max/average/concatenation as heuristic

aggregation schemes [136]. Nevertheless, these aggregation functions treat all the neighbors of

a vertex equivalently so that they cannot precisely distinguish the structural effects of different

neighbors to the target vertex. That is, the aggregation functions should extract and filter graph

signals aggregated from neighbors of different hops away and different importance. GeniePath

[248] proposes a scalable approach for learning adaptive receptive fields of GCNNs. It is composed

of two complementary functions, namely adaptive breadth function and adaptive depth function.

The former learns the importance of different sized neighborhoods, whereas the latter extracts

and filters graph signals aggregated from neighbors of different hops away. More specifically, the
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adaptive breadth function is defined as follows.

ℎ
temp

𝑣𝑗 = tanh

©­«(𝑊 (𝑡 ) )𝑇
∑︁

𝑣𝑘 ∈𝑁𝐺 (𝑣𝑗 )∪{𝑣𝑗 }
𝛼 (ℎ (𝑡 )𝑣𝑗 , ℎ

(𝑡 )
𝑣𝑘 ) · ℎ

(𝑡 )
𝑣𝑘

ª®¬ ,
where 𝛼 (𝑥,𝑦) = Softmax𝑦

(
𝛼𝑇 tanh

(
𝑊𝑇
𝑥 𝑥 +𝑊𝑇

𝑦 𝑦

))
. The adaptive depth function is defined as a

LSTM [171], i.e.

𝑖𝑣𝑗 = 𝜎

((
𝑊
(𝑡 )
𝑖

)𝑇
ℎ
temp

𝑣𝑗

)
𝑓𝑣𝑗 = 𝜎

((
𝑊
(𝑡 )
𝑓

)𝑇
ℎ
temp

𝑣𝑗

)
𝑜𝑣𝑗 = 𝜎

((
𝑊
(𝑡 )
𝑜

)𝑇
ℎ
𝑡𝑒𝑚𝑝
𝑣𝑗

)
𝐶𝑣𝑗 = tanh

((
𝑊
(𝑡 )
𝑐

)𝑇
ℎ
(𝑡𝑒𝑚𝑝)
𝑣𝑗

)
𝐶
(𝑡+1)
𝑣𝑗 = 𝑓𝑣𝑗 ⊛ 𝐶

(𝑡 )
𝑣𝑗 + 𝑖𝑣𝑗 ⊛ 𝐶𝑣𝑗 ℎ

(𝑡+1)
𝑣𝑗 = 𝑜𝑣𝑗 ⊛ tanh

(
𝐶
(𝑡+1)
𝑣𝑗

)
.

(11)

Geom-GCN [61] proposes a novel permutation-invariant geometric aggregation scheme consist-

ing of three modules, namely node embedding, structural neighborhood, and bi-level aggregation.

This aggregation scheme does not lose structural information of nodes and fail to capture long-range

dependencies in disassortative graphs. For the permutation-invariant graph representations, PiNet

[148] proposes an end-to-end spatial GCNN architecture that utilizes the permutation equivariance

of graph convolutions. It is composed of a pair of double-stacked message passing layers, namely

attention-oriented message passing layers and feature-oriented message passing layers.

Depth Trap of Spatial GCNNs. Similar to the spectral GCNNs, the spatial GCNNs is also

confronted with the depth trap. As stated previously, the depth trap results from oversmoothing,

overfitting and gradient vanishing/explosion. In order to escape from the depth trap, some studies

propose some available strategies, e.g. DeepGCN [56] and Jumping Knowledge Network [99].

The jumping knowledge networks [99] adopt neighborhood aggregation with skip connections to

integrate information from different layers. The DeepGCN [56] apply the residual/dense connections

[54, 94] and dilated aggreagation [50] in the CNNs to construct the spatial GCNN architecture.

They has three instantiations, namely ResGCN, DenseGCN and dilated graph convolution. ResGCN

is inspired by the ResNet [94], which is defined to be

𝐺 (𝑙+1) ≜ H(𝐺 (𝑙) ,Θ(𝑙) )

= F (𝐺 (𝑙) ,Θ(𝑙) ) +𝐺 (𝑙) ,

where F (·, ·) can be computed by spectral or spatial GCNNs. DenseGCN collectively exploit

information from different GCNN layers like the DenseNet [54], which is defined to be

𝐺 (𝑙+1) ≜ H(𝐺 (𝑙) ,Θ(𝑙) )

= Concat

(
F (𝐺 (𝑙) ,Θ(𝑙) ),𝐺 (𝑙)

)
= Concat

(
F (𝐺 (𝑙) ,Θ(𝑙) ), · · · , F (𝐺 (0) ,Θ(0) ),𝐺 (0)

)
.

The dilated aggregation [50] can magnify the receptive field of spatial GCNNs by a dilation rate

𝑑 . More specifically, let 𝑁
(𝑘,𝑑)
𝐺
(𝑣) denote the set of 𝑘 𝑑-dilated neighbors of vertex 𝑣 in 𝐺 . If

(𝑢1, 𝑢2, · · · , 𝑢𝑘×𝑑 ) are the first sorted𝑘×𝑑 nearest neighbors, then𝑁 (𝑘,𝑑)𝐺
(𝑣) =

{
𝑢1, 𝑢1+𝑑 , · · · , 𝑢1+(𝑘−1)𝑑

}
.

Thereby, we can construct a new graph 𝐺 (𝑘,𝑑) =
(
𝑉 (𝑘,𝑑) , 𝐸 (𝑘,𝑑)

)
where 𝑉 (𝑘,𝑑) = 𝑉 and 𝐸 (𝑘,𝑑) ={

⟨𝑣,𝑢⟩ : 𝑣 ∈ 𝑉 ,𝑢 ∈ 𝑁 (𝑘,𝑑)
𝐺

}
. The dilated graph convolution layer can be obtained by running the

spatial GCNNs over 𝐺 (𝑘,𝑑) .
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3.1.3 Graph Wavelet Neural Networks. As stated previously, the spectral and spatial GCNNs are

respectively inspired by the graph Fourier transform and message-passing mechanism. Here, we

introduce a new GCNN architecture from the perspective of the Spectral Graph Wavelet Transform

(SGWT) [36]. First of all, the SGWT is determined by a graphwavelet generating kernel𝑔 : R+ → R+
with the property 𝑔(0) = 0, 𝑔(+∞) = lim𝑥→∞ 𝑔(𝑥) = 0. A feasible instance of 𝑔(·) is parameterized

by two integers 𝛼 and 𝛽 , and two positive real numbers 𝑥1 and 𝑥2 determining the transition regions,

i.e.

𝑔(𝑥 ;𝛼, 𝛽, 𝑥1, 𝑥2) =

𝑥−𝛼

1
𝑥𝛼 𝑥 < 𝑥1

𝑠 (𝑥) 𝑥1 ≤ 𝑥 ≤ 𝑥2

𝑥−𝛽𝑥
𝛽

2
𝑥 > 𝑥2,

where 𝑠 (𝑥) is a cubic polynomial whose coefficients can be determined by the continuity constraints

𝑠 (𝑥1) = 𝑠 (𝑥2) = 1, 𝑠 ′(𝑥1) = 𝛼
𝑥1

and 𝑠 ′(𝑥2) = − 𝛽

𝑥2

. Given the graph wavelet generating kernel 𝑔(·) and
a scaling parameter 𝑠 ∈ R+, the spectral graph wavelet operator Ψ𝑠𝑔 is defined to be Ψ

𝑠
𝑔 = 𝑈𝑔(𝑠Λ)𝑈𝑇

where 𝑔(𝑠Λ) = 𝑔 (diag (𝑠𝜆1, · · · , 𝑠𝜆𝑁 )). A graph signal 𝑥 ∈ R𝑁 on 𝐺 can thereby be filtered by the

spectral graph wavelet operator, i.e.W𝑥
𝑔,𝑠 = Ψ𝑠𝑔𝑥 ∈ R𝑁 . The literature [39] utilizes a special instance

of the graph wavelet operator Ψ𝑠𝑔 to construct a graph scattering network, and proves its covariance

and approximate invariance to permutations and stability to graph operations.

Graph Wavelet Neural Networks. The above spectral graph wavelet operator Ψ𝑠𝑔 can be

employed to construct a Graph Wavelet Neural Network (GWNN) [14]. Let Ψ−𝑠𝑔 ≜
(
Ψ𝑠𝑔

)−1

. The

graph wavelet based convolution is defined to be

𝑥 ∗𝐺 𝑦 = Ψ−𝑠𝑔

(
Ψ𝑠𝑔𝑥 ⊛ Ψ𝑠𝑔𝑦

)
.

The GWNN is composed of multiple layers of the graph wavelet based convolution. The structure

of the 𝑙-th layer is defined as

𝑋 (𝑙+1) [:, 𝑗] = 𝜌 ©­«
𝑑 (𝑙 )∑︁
𝑘=1

Ψ−𝑠𝑔 Θ(𝑙)
𝑗,𝑘
Ψ𝑠𝑔𝑋

(𝑙) [:, 𝑘]ª®¬ , (12)

where Θ(𝑙)
𝑗,𝑘

is a diagonal filter matrix learned in spectral domain. Eq. (12) can be rewritten as a

matrix form, i.e. 𝑋 (𝑙+1) = 𝜌
(
Ψ−𝑠𝑔 ΘΨ𝑠𝑔𝑋

(𝑙)𝑊 (𝑙)
)
. The learnable filter matrix Θ can be replaced with

the 𝐾-localized Chebyshev Polynomial so as to eschew the time-consuming eigendecomposition of

𝐿𝐺 .

3.1.4 Summary. The aforementioned GCNN architectures provide available ingredients of con-

structing the GNNs. In practice, we can construct our own GCNNs by assembling different modules

introduced above. Additionally, some scholars also study the GCNNs from some novel perspectives,

e.g. the parallel computing framework of the GCNNs [111], the hierarchical covariant compositional

networks [157], the transfer active learning for GCNNs [174] and quantum walk based subgraph

convolutional neural network [242]. They are closely related to the GCNNs, yet fairly different

from the ones introduced above.

3.2 Graph Pooling Operators
Graph pooling operators are very important and useful modules of the GCNNs, especially for

graph-level tasks such as the graph classification. There are two kinds of graph pooling operators,

namely global graph pooling operators and hierarchical graph pooling operators. The former aims
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to obtain the universal representations of input graphs, and the latter aims to capture adequate

structural information for node representations.

3.2.1 Global Graph Pooling Operators. Global graph pooling operators pool all of representations

of nodes into a universal graph representation. Many literatures [90, 148, 160] apply some sim-

ple global graph pooling operators, e.g. max/average/concatenate graph pooling, to performing

graph-level classification tasks. Here, we introduce some more sophisticated global graph pooling

operators in contrast to the simple ones. Relational pooling (RP) [162] provides a novel framework

for graph representation with maximal representation power. Specifically, all node embeddings

can be aggregated via a learnable function to form a global embedding of 𝐺 . Let 𝑋 (𝑣) ∈ R𝑁×𝑑𝑣
and 𝑋 (𝑒) ∈ N𝑁×𝑁×𝑑𝑒 respectively denote node feature matrix and edge feature tensor. Tensor

𝐴
𝐺
∈ R𝑁×𝑁×(1+𝑑𝑒 ) combines the adjacency matrix 𝐴𝐺 of 𝐺 with its edge feature tensor 𝑋 (𝑒) , i.e.

𝐴
𝐺
[𝑢, 𝑣, :] = I(𝑢,𝑣) ∈𝐸𝐺 ⊲⊳ 𝑋 (𝑒) [𝑢, 𝑣, :]. After performing a permutation on𝑉𝐺 , the edge feature tensor

𝐴
(𝜋,𝜋 )
𝐺

[𝜋 (𝑟 ), 𝜋 (𝑐), 𝑑] = 𝐴
𝐺
[𝑟, 𝑐, 𝑑] and the node feature matrix 𝑋

(𝑣)
𝜋 [𝜋 (𝑟 ), 𝑐] = 𝑋 (𝑣) [𝑟, 𝑐]. The joint

RP permutation-invariant function for directed or undirected graphs is defined as

¯̄𝑓 (𝐺) = 1

𝑁 !

∑︁
𝜋 ∈Π |𝑉 |

−→
𝑓 (𝐴𝜋,𝜋

𝐺
, 𝑋
(𝑣)
𝜋 ),

where Π |𝑉 | is the set of all distinct permutations on 𝑉𝐺 and

−→
𝑓 (·, ·) is an arbitrary (possibly

permutation-sensitive) vector-valued function. Specifically,

−→
𝑓 (·, ·) can be denoted as Multi-Layer

Perceptrons (MLPs), Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs)

or Graph Neural Networks (GNNs). The literature [162] proves that
¯̄𝑓 (𝐺) has the most expressive

representation of𝐺 under some mild conditions, and provides approximation approaches to making

RP computationally tractable. In addition, there are some other available global graph pooling

operators, e.g. SortPooling [130] and function space pooling [141].

3.2.2 Hierarchical Graph Pooling Operators. Hierarchical graph pooling operators group a set of

proximal nodes into a super-node via graph clustering methods. Consequently, the original graph is

coarsened to a new graph with coarse granularity. In practice, the hierarchical graph pooling oper-

ators are interleaved with the vanilla GCNN layers. In general, there are three kinds of approaches

to performing the graph coarsening operations, namely invoking the existing graph clustering

algorithms (e.g. spectral clustering [85] and Graclus [67]), learning a soft cluster assignment and

selecting the first 𝑘 top-rank nodes.

Invoking existing graph clustering algorithms. The graph clustering aims to assign proxi-

mal nodes to the same cluster and in-proximal nodes to different clusters. The coarsened graph

regards the resulting clusters as super-nodes and connections between two clusters as super-edges.

The hierarchical graph pooling operators aggregate the representations of nodes in super-nodes

via aggregation functions such as max pooling and average pooling [182] to compute the represen-

tations of the super-nodes. The literature [219] proposes the EigenPooling method and presents

the relationship between the original and coarsened graph. In order to construct a coarsened

graph of 𝐺 , a graph clustering method is employed to partition 𝐺 into 𝐾 disjoint clusters, namely

{𝐺𝑘 : 𝑘 = 1, · · · , 𝐾}. Suppose each cluster 𝐺𝑘 has 𝑁𝑘 nodes, namely

{
𝑣𝑘,1, · · · , 𝑣𝑘,𝑁𝑘

}
, and its adja-

cency matrix is denoted as 𝐴𝐺𝑘
. The coarsened graph𝐺coar of 𝐺 can be constructed by regarding

the clusters 𝐺𝑘 , 𝑘 = 1, · · · , 𝐾 as super-nodes and connections between two super-nodes as edges.

For 𝐺𝑘 , its sampling matrix 𝐶𝑘 of size (𝑁 × 𝑁𝑘 ) is defined by

𝐶𝑘 (𝑠, 𝑡) =
{

1 if node 𝑣𝑘,𝑠 in 𝐺𝑘 is identical to vertex 𝑣𝑡 in 𝐺

0 otherwise
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On one hand, 𝐶𝑘 can be used to down-sample a 1-dimensional graph signal 𝑥 on 𝐺 to obtain an

contracted graph signal 𝑥𝐺𝑘
on 𝐺𝑘 , i.e. 𝑥𝐺𝑘

= 𝐶𝑇
𝑘
𝑥 . On the other hand, 𝐶𝑘 can also be used to

up-sample a graph signal 𝑥𝐺𝑘
on 𝐺𝑘 to obtain a dilated graph 𝐺 , i.e. 𝑥 = 𝐶𝑘𝑥𝐺𝑘

. Furthermore, the

adjacency matrix 𝐴𝐺𝑘
of 𝐺𝑘 can be computed by

𝐴𝐺𝑘
= 𝐶𝑇

𝑘
𝐴𝐺𝐶𝑘 .

The intra-subgraph adjacency matrix of 𝐺 is computed by 𝐴intra =
∑𝐾
𝑘=1

𝐶𝑘𝐴𝐺𝑘
𝐶𝑇
𝑘
. Thereby, the

inter-subgraph adjacency matrix of 𝐺 can be computed by 𝐴inter = 𝐴𝐺 −𝐴intra. Let𝑀coar ∈ R𝑁×𝐾
denote the assignment matrix from 𝐺 to 𝐺coar. Its ( 𝑗, 𝑘)-th entry is defined as

𝑀coar [ 𝑗, 𝑘] =
{

1 if 𝑣 𝑗 in 𝐺 is grouped into 𝐺𝑘 in 𝐺coar

0 otherwise

As a result, the adjacency matrix 𝐴coar of the coarsened graph 𝐺coar is computed by 𝐴coar =

𝑀𝑇
coar

𝐴inter𝑀coar. In fact,𝐴coar can be written as𝐴coar = 𝑓
(
𝑀𝑇

coar
𝐴𝐺𝑀coar

)
as well, where 𝑓 (𝑎𝑖, 𝑗 ) = 1

if 𝑎𝑖, 𝑗 > 0 and 𝑓 (𝑎𝑖, 𝑗 ) = 0 otherwise. As stated previously, 𝑋 is a 𝑑-dimensional graph signal on 𝐺 .

Then, a𝑑-dimensional graph signal𝑋coar on𝐺coar can be computed by𝑋coar = 𝑀
𝑇
coar

𝑋 . EigenPooling

[219] employs spectral clustering to obtain the coarsened graph, and then up-sample the Fourier

basis of subgraphs 𝐺𝑘 , 𝑘 = 1, · · · , 𝐾 . These Fourier basis are then organized into pooling operators

with regard to ascending eigenvalues. Consequently, the pooled node feature matrix is obtained

via concatenating the pooled results. The literature [49] proposes a novel Hierarchical Graph

Convolutional Network (H-GCN) consisting of graph coarsening layers and graph refining layers.

The former employs structural equivalence grouping and structural similarity grouping to construct

the coarsened graph, and the latter restores the original topological structure of the corresponding

graph.

Learning a soft cluster assignment. StructPool [59], as a structured graph pooling technique,
regards the graph pooling as a graph clustering problem so as to learn a cluster assignment matrix

via the feature matrix 𝑋 and adjacency matrix 𝐴𝐺 . Learning the cluster assignment matrix can

formulated as a Conditional Random Field (CRF) [89] based probabilistic inference. Specifically,

the input feature matrix 𝑋 is treated as global observation, and 𝑌 = {𝑌1, · · · , 𝑌𝑁 } is a random field

where 𝑌𝑖 ∈ {1, · · · , 𝐾} is a random variable indicating which clusters the node 𝑣𝑖 is assigned to. As

a result, (𝑌,𝑋 ) can be characterized by a CRF model, i.e.

P(𝑌 |𝑋 ) =
1

𝑍 (𝑋 ) exp (−E(𝑌 |𝑋 ))

=
1

𝑍 (𝑋 ) exp

( ∑︁
𝐶∈C𝐺

𝜓𝐶 (𝑌𝐶 |𝑋 )
)

where E(𝑌 |𝑋 ) = −∑
𝐶∈C𝐺 𝜓𝐶 (𝑌𝐶 |𝑋 ) is called an energy function, C𝐺 is a set of cliques,𝜓𝐶 (𝑌𝐶 |𝑋 )

is a potential function and 𝑍 (𝑋 ) is a partition function. The energy function E(𝑌 |𝑋 ) can be

characterized by an unary energy𝜓𝑢 (·) and a pairwise energy𝜓𝑝 (·, ·), i.e.

E(𝑌 |𝑋 ) =
𝑁∑︁
𝑠=1

𝜓𝑢 (𝑦𝑠 |𝑋 ) +
∑︁
𝑠≠𝑡

𝜓𝑝 (𝑦𝑠 , 𝑦𝑡 |𝑋 )𝑎𝑙𝑠,𝑡 ,

where 𝑎𝑙𝑠,𝑡 denotes the (𝑠, 𝑡)-th entry of the 𝑙-hop adjacency matrix 𝐴𝑙
𝐺
. The unary energy matrix

Ψ𝑢 = (𝜓𝑢 (𝑦𝑠 |𝑋 ))𝑁×𝐾 can be obtained by a GCNN taking the global observation𝑋 and the adjacency
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𝐴𝐺 as input. The pairwise energy matrix Ψ𝑝 =
(
𝜓𝑝 (𝑦𝑠 , 𝑦𝑡 |𝑋 )

)
𝐾×𝐾 can be obtained by

𝜓𝑝 (𝑦𝑠 , 𝑦𝑡 |𝑋 ) = 𝜇 (𝑦𝑠 , 𝑦𝑡 )
𝑥𝑇𝑠 𝑥𝑡∑
𝑗≠𝑠 𝑥

𝑇
𝑠 𝑠 𝑗

,

where 𝜇 (𝑦𝑠 , 𝑦𝑡 ) is a learnable compatibility function. Minimizing the energy function E(𝑌 |𝑋 ) via
mean-field approximation results in the most probable cluster assignment matrix𝑀 for a give graph

𝐺 . As a result, we obtain a new graph 𝐴coar = 𝑓
(
𝑀𝑇𝐴𝐺𝑀

)
and 𝑋coar = 𝑀

𝑇𝑋 . DiffPool [154] is a

differentiable graph pooling operator which can generate hierarchical representations of graphs and

can be incorporated into various GCNNs in an end-to-end fashion. It maps an adjacencymatrix𝐴𝐺 (𝑙 )

and embeddingmatrix𝑍 (𝑙) at the 𝑙-th layer to a new adjacencymatrix𝐴𝐺 (𝑙+1) and a coarsened feature

matrix 𝑋 (𝑙+1) , i.e.
(
𝐴𝐺 (𝑙+1) , 𝑋

(𝑙+1) ) = DiffPool

(
𝐴𝐺 (𝑙 ) , 𝑍

(𝑙) )
. More specifically, 𝑋 (𝑙+1) =

(
𝑀 (𝑙)

)𝑇
𝑍 (𝑙) ,

𝐴𝐺 (𝑙+1) =
(
𝑀 (𝑙)

)𝑇
𝐴𝐺 (𝑙 )𝑀

(𝑙)
. Note that the assignment matrix𝑀 (𝑙) and embedding matrix 𝑍 (𝑙) are

respectively computed by two separate GCNNs, namely embedding GCNN and pooling GCNN, i.e.

𝑍 (𝑙) = GCNNembed

(
𝐴𝐺 (𝑙 ) , 𝑋

(𝑙) )
,𝑀 (𝑙) = Softmax

(
GCNNpool

(
𝐴𝐺 (𝑙 ) , 𝑋

(𝑙) ) )
.

Selecting the first 𝑘 top-rank nodes. The literature [91] proposes a novel Self-Attention Graph
Pooling operator (abbreviated as SAGPool). Specifically, SAGPool firstly employs the GCN [185] to

calculate the self-attention scores, and then invokes the top-rank function to select the top ⌈𝑘𝑁 ⌉
node indices, i.e.

𝑍 = 𝜌

(
𝐷
− 1

2

𝐺
𝐴𝐺𝐷

− 1

2

𝐺
𝑋Θ

)
, idx = top-rank (𝑍, ⌈𝑘𝑁 ⌉) , 𝑍mask = 𝑍idx

𝑋 ′ = 𝑋idx, 𝑋out = 𝑋
′ ⊛ 𝑍mask, 𝐴out = 𝐴idx,idx.

As a result, the selected top-⌈𝑘𝑁 ⌉ node indices are employed to extract the output adjacency

matrix 𝐴out and feature matrix 𝑋out. In order to exploit the expressive power of an encoder-decoder

architecture like U-Net [138], the literature [63] proposes a novel graph pooling (gPool) layer and a

graph unpooling (gUnpool) layer. The gPool adaptively selects top-𝑘 ranked node indices by the

down-sampling technique to form a coarsened graph (𝐴coar ∈ R𝑁×𝑁 and 𝑋coar ∈ R𝑁×𝑑 ) based on

scalar projection values on a learnable projection vector, i.e.

𝑦 =
𝑋𝑝

∥𝑝 ∥ , idx = top-rank(𝑦, 𝑘), 𝑦 = tanh(𝑦idx)
𝑋coar = 𝑋idx,:, 𝐴coar = 𝐴idx,idx, 𝑋coar = 𝑋coar ⊛ (𝑦1𝑇𝐶 ),

where 𝑦 ∈ R𝑑 . The gUnpool performs the inverse operation of the gPool layer so as to restore the

coarsened graph into its original structure. To this end, gUnpool records the locations of nodes

selected in the corresponding gPool layer, and then restores the selected nodes to their original

positions in the graph. Specifically, let 𝑋refine = Distribute(0𝑁×𝑑 , 𝑋coar, idx), where the function
Distribute(·, ·, ·) distributes row vectors in 𝑋coar into 0𝑁×𝑑 feature matrix according to the indices

idx. Note that row vectors of 𝑋refine with indices in 𝑖𝑑𝑥 are updated by the ones in 𝑋coar, whereas

other row vectors remain zero. It is worth noting that the literature [28] adopts the similar pooling

strategy as gPool to learn the hierarchical representations of nodes.

3.3 Graph Attention Mechanisms
Attention mechanisms, firstly introduced in the deep learning community, guide deep learning

models to focus on the task-relevant part of its inputs so as to make precise predictions or inferences

[11, 40, 195]. Recently, applying the attention mechanisms to GCNNs has gained considerable

attentions so that various attention techniques have been proposed. Below, we summarize the

graph attention mechanisms on graphs from the next 4 perspectives [87], namely softmax-based

graph attention, similarity-based graph attention, spectral graph attention and attention-guided
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walk. Without loss of generality, the neighbors of a given node 𝑣0 in𝐺 are denoted as 𝑣1, · · · , 𝑣𝑑0
,

and their current feature vectors are respectively denoted as 𝑥0, 𝑥1, · · · , 𝑥𝑑0
, where 𝑑0 = 𝑑𝐺 (𝑣0).

Concat

Concat

Softmax

Cosine

Cosine

Softmax

(a) Softmax-based Attention Weights

(b) Similarity-based Attention Weights

Fig. 4. Two kinds of graph attention mechanisms.

3.3.1 Concatenation-based Graph Attention. The softmax-based graph attention is typically im-

plemented by employing a softmax with learnable weights [145, 233] to measure the relevance of

𝑣 𝑗 , 𝑗 = 1, · · · , 𝑑𝐺 (𝑣0) to 𝑣0. More specifically, the softmax-based attention weights between 𝑣0 and

𝑣 𝑗 can be defined as

𝜔0, 𝑗 = Softmax

( [
𝑒0,1, · · · , 𝑒0,𝑑𝐺 (𝑣0)

] )
=

exp

(
𝜌

(
𝑎𝑇 (𝑊𝑥0 ⊲⊳𝑊𝑥 𝑗 )

) )∑𝑑𝐺 (𝑣0)
𝑘=1

exp

(
𝜌

(
𝑎𝑇 (𝑊𝑥0 ⊲⊳𝑊𝑘 )

) ) , (13)

where 𝑒0, 𝑗 = exp

(
𝜌

(
𝑎𝑇 (𝑊𝑥0 ⊲⊳𝑊𝑥 𝑗 )

) )
, 𝑎 is a learnable attention vector and𝑊 is a learnable

weight matrix, see Fig. 4(a). As a result, the new feature vector of 𝑣0 can be updated by

𝑥 ′
0
= 𝜌

(
𝑑𝐺 (𝑣0)∑︁
𝑗=1

𝜔0, 𝑗𝑊𝑥 𝑗

)
. (14)

In practice, multi-head attention mechanisms are usually employed to stabilize the learning process

of the single-head attention [145]. For the multi-head attention, assume that the feature vector

of each head is 𝑥
(ℎ)
0

= 𝜌

(∑𝑑𝐺 (𝑣0)
𝑗=1

𝜔
(ℎ)
0, 𝑗
𝑊 (ℎ)𝑥 𝑗

)
. The concatenation based multi-head attention is
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computed by 𝑥 ′
0
=⊲⊳𝐻

ℎ=1
𝑥
(ℎ)
0

=⊲⊳𝐻
ℎ=1

𝜌

(∑𝑑𝐺 (𝑣0)
𝑗=1

𝜔
(ℎ)
0, 𝑗
𝑊 (ℎ)𝑥 𝑗

)
. The average basedmulti-head attention

is computed by 𝑥 ′
0
= 𝜌

(
1

𝐻

∑𝐻
ℎ=1

∑𝑑𝐺 (𝑣0)
𝑗=1

𝜔
(ℎ)
0, 𝑗
𝑊 (ℎ)𝑥 𝑗

)
.

The conventional multi-head attention mechanism treats all the attention heads equally so that

feeding the output of an attention that captures a useless representation maybe mislead the final

prediction of the model. The literature [74] computes an additional soft gate to assign different

weights to heads, and gets the formulation of the gated multi-head attention mechanism. The

Graph Transformer (GTR) [233] can capture long-range dependencies of dynamic graphs with

softmax-based attention mechanism by propagating features within the same graph structure via an

intra-graph message passing. The Graph-BERT [75] is essentially a pre-training method only based

on the graph attention mechanism without any graph convolution or aggregation operators. Its

key component is called a graph transformer based encoder, i.e. 𝑋 (𝑙+1) = Softmax

(
𝑄𝐾𝑇√
𝑑ℎ

)
𝑉 , where

𝑄 = 𝑋 (𝑙)𝑊 (𝑙+1)
𝑄

, 𝐾 = 𝑋 (𝑙)𝑊 (𝑙+1)
𝐾

and 𝑉 = 𝑋 (𝑙)𝑊 (𝑙+1)
𝑉

. The Graph2Seq [105] is a general end-to-end

graph-to-sequence neural encoder-decoder model converting an input graph to a sequence of

vectors with the attention based LSTM model. It is composed of a graph encoder, a sequence

decoder and a node attention mechanism. The sequence decoder takes outputs (node and graph

representations) of the graph encoder as input, and employs the softmax-based attention to compute

the context vector sequence.

3.3.2 Similarity-based Graph Attention. The similarity-based graph attention depends on the

cosine similarities of the given node 𝑣0 and its neighbors 𝑣 𝑗 , 𝑗 = 1, · · · , 𝑑𝐺 (𝑣0). More specifically,

the similarity-based attention weights are computed by

𝜔0, 𝑗 =
exp

(
𝛽 · cos

(
𝑊𝑥0,𝑊𝑥 𝑗

) )∑𝑑𝐺 (𝑣0)
𝑘=1

exp (𝛽 · cos (𝑊𝑥0,𝑊𝑥𝑘 ))
, (15)

where 𝛽 is learnable bias and𝑊 is a learnable weight matrix, see Fig. 4(b). It is well known that

cos (𝑥,𝑦) = ⟨𝑥,𝑦⟩
∥𝑥 ∥2 ∥𝑦 ∥2 . Attention-based Graph Neural Network (AGNN) [104] adopts the similarity-

based attention to construct the propagation matrix 𝑃 (𝑙) capturing the relevance of 𝑣 𝑗 to 𝑣𝑖 . As a
result, the output hidden representation 𝑋 (𝑙+1) at the (𝑙 + 1)-th layer is computed by

𝑋 (𝑙+1) = 𝜌
(
𝑃 (𝑙)𝑋 (𝑙)𝑊 (𝑙)

)
,

where 𝑃 (𝑙) (𝑖, 𝑗) ≜ 𝜔𝑖, 𝑗 is defined in formula (15).

3.3.3 Spectral Graph Attention. The Spectral Graph Attention Networks (SpGAT) aims to learn

representations for different frequency components [60]. The eigenvalues of the normalized graph

Laplacian 𝐿𝐺 can be treated as frequencies on the graph 𝐺 . As stated in the Preliminary section,

0 = 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑁 = 𝜆max. The SpGAT firstly extracts the low-frequency component

𝐵𝐿 = {𝑢1, · · · , 𝑢𝑛} and the high-frequency component 𝐵𝐻 = {𝑢𝑁−𝑛+1, · · · , 𝑢𝑁 } from the graph

Fourier bases {𝑢1, 𝑢2, · · · , 𝑢𝑁 }. So, we have
𝑋𝐿 = 𝑋 (𝑙)Θ𝐿, 𝑋𝐻 = 𝑋 (𝑙)Θ𝐻
𝑋 (𝑙+1) = 𝜌

(
Aggregate

(
𝐵𝐿𝐹𝐿𝐵

𝑇
𝐿
𝑋𝐿, 𝐵𝐻𝐹𝐻𝐵

𝑇
𝐻
𝑋𝐻

) )
,

(16)

where 𝐹𝐿 and 𝐹𝐻 respectively measure the importance of the low- and high-frequency. In prac-

tice, we exploit a re-parameterization trick to accelerate the training. More specifically, we re-

place 𝐹𝐿 and 𝐹𝐻 respectively with the learnable attention weights Ω𝐿 = diag (𝜔𝐿, · · · , 𝜔𝐿) and
Ω𝐻 = diag (𝜔𝐻 , · · · , 𝜔𝐻 ) so as to reduce the number of learnable parameters. To ensure that

𝜔𝐿 and 𝜔𝐻 are positive and comparable, we normalize them by the softmax function, i.e. 𝜔𝐿 =
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exp(𝜔𝐿)
exp(𝜔𝐿)+exp(𝜔𝐻 ) , 𝜔𝐻 =

exp(𝜔𝐻 )
exp(𝜔𝐿)+exp(𝜔𝐻 ) . In addition to the attention weights, another important

issue is how to choose the low- and high-frequency components 𝐵𝐿 and 𝐵𝐻 . A natural choice is to

use the graph Fourier bases, yet the literatures [14, 26] conclude that utilizing the spectral graph

wavelet operators can achieve better embedding results than the graph Fourier bases. Therefore,

we substitute 𝐵𝐿 and 𝐵𝐻 in Eq. (16) for the spectral graph wavelet operator Ψ𝑠
𝐿,𝑔

and Ψ𝑠
𝐻,𝑔

, i.e.

𝑋 (𝑙+1) = 𝜌

(
Aggregate

((
Ψ𝑠𝐿,𝑔

)
𝐹𝐿

(
Ψ𝑠𝐿,𝑔

)−1

𝑋𝐿,

(
Ψ𝑠𝐻,𝑔

)
𝐹𝐻

(
Ψ𝑠𝐻,𝑔

)−1

𝑋𝐻

))
.

3.3.4 Attention-guided Walk. The two aforementioned kinds of attention mechanisms focus on

incorporating task-relevant information from the neighbors of a given node into the updated

representations of the pivot. Here, we introduce a new attention mechanism, namely attention-

guided walk [88], which has different purpose from the softmax- and similarity-based attention

mechanisms. Suppose a walker walks along the edges of the graph𝐺 and he currently locates at

the node 𝑣𝑡 . The hidden representation 𝑥 (𝑡 ) of 𝑣𝑡 is computed by a recurrent neural network 𝑓𝑥 (·)
taking the step embedding 𝑠 (𝑡 ) and internal representation of the historical information from the

previous step 𝑥 (𝑡−1)
as input, i.e.

𝑥 (𝑡 ) = 𝑓𝑥
(
𝑠 (𝑡 ) , 𝑥 (𝑡−1)

;Θ𝑥
)
.

The step embedding 𝑠 (𝑡 ) is computed by a step network 𝑓𝑠
(
𝑟 (𝑡−1) , 𝑥𝑣𝑡 ;Θ𝑠

)
taking the ranking vector

𝑟 (𝑡−1)
and the input feature vector 𝑥𝑣𝑡 of the top-priority node 𝑣𝑡 as input, i.e.

𝑠 (𝑡 ) = 𝑓𝑠
(
𝑟 (𝑡−1) , 𝑥𝑣𝑡 ;Θ𝑠

)
.

The hidden representation 𝑥 (𝑡 ) is then feeded into a ranking network 𝑓𝑟
(
𝑥 (𝑡 ) ;Θ𝑟

)
and a predicting

network 𝑓𝑝
(
𝑥 (𝑡 ) ;Θ𝑝

)
, i.e.

𝑟 (𝑡 ) = 𝑓𝑟
(
𝑥 (𝑡 ) ;Θ𝑟

)
, ˆ𝑙 (𝑡 ) = 𝑓𝑝

(
𝑥 (𝑡 ) ;Θ𝑝

)
.

The ranking network 𝑓𝑟
(
𝑥 (𝑡 ) ;Θ𝑟

)
determines which neighbors of 𝑣𝑡 should be prioritized in the

next step, and the predicting network 𝑓𝑝
(
𝑥 (𝑡 ) ;Θ𝑝

)
makes a prediction on graph labels. Now, 𝑥 (𝑡 )

and 𝑟 (𝑡 ) are feeded into the next node to compute its hidden representations. Fig. 5 shows the

computational framework of the attention-guided walk.

3.4 Graph Recurrent Neural Networks
The Graph Recurrent Neural Networks (GRNNs) generalize the Recurrent Neural Networks

(RNNs) to process the graph-structured data. In general, the GRNN can be formulated as ℎ
(𝑙+1)
𝑣𝑗 =

GRNN

(
𝑥
(𝑙)
𝑣𝑗 ,

{
ℎ
(𝑙)
𝑣𝑘 : 𝑣𝑘 ∈ 𝑁𝐺 (𝑣 𝑗 ) ∪

{
𝑣 𝑗

}})
. Below, we introduce some available GRNN architectures.

3.4.1 Graph LSTM. The Graph Long Short TermMemroy (Graph LSTM) [93, 133, 190, 206, 213, 230,

234] generalizes the vanilla LSTM for the sequential data to the ones for general graph-structured

data. Specifically, the graph LSTM updates the hidden states and cell states of nodes by the following
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Fig. 5. The computational framework of the attention-guided walk.

formula,

𝑖
(𝑙+1)
𝑣𝑗 = 𝜎

(
𝑊𝑖𝑥

(𝑙)
𝑣𝑗 +

∑
𝑣𝑘 ∈𝑁𝐺 (𝑣𝑗 )∪{𝑣𝑗 }𝑈𝑖ℎ

(𝑙)
𝑣𝑘 + 𝑏𝑖

)
,

𝑜
(𝑙+1)
𝑣𝑗 = 𝜎

(
𝑊𝑜𝑥

(𝑙)
𝑣𝑗 +

∑
𝑣𝑘 ∈𝑁𝐺 (𝑣𝑗 )∪{𝑣𝑗 }𝑈𝑜ℎ

(𝑙)
𝑣𝑘 + 𝑏𝑜

)
𝑐̃
(𝑙+1)
𝑣𝑗 = tanh

(
𝑊𝑐𝑥

(𝑙)
𝑣𝑗 +

∑
𝑣𝑘 ∈𝑁𝐺 (𝑣𝑗 )∪{𝑣𝑗 }𝑈𝑐ℎ

(𝑙)
𝑣𝑘 + 𝑏𝑐

)
,

𝑓
(𝑙+1)
𝑣𝑗 ,𝑣𝑘 = 𝜎

(
𝑊𝑓 𝑥

(𝑙)
𝑣𝑗 +𝑈𝑓 ℎ

(𝑙)
𝑣𝑘 + 𝑏 𝑓

)
𝑐
(𝑙+1)
𝑣𝑗 = 𝑖

(𝑙+1)
𝑣𝑗 ⊛ 𝑐̃ (𝑙+1)𝑣𝑗 +∑

𝑣𝑘 ∈𝑁𝐺 𝑣𝑗∪{𝑣𝑗 } 𝑓
(𝑙+1)
𝑣𝑗 ,𝑣𝑘 ⊛ 𝑐

(𝑙)
𝑣𝑘 ,

ℎ
(𝑙+1)
𝑣𝑗 = 𝑜

(𝑙+1)
𝑣𝑗 ⊛ tanh(𝑐 (𝑙+1)𝑣𝑗 ).

see the Fig. 6. The literature [212] develops a general framework, named structure-evolving LSTM,

for learning interpretable data representations via the graph LSTM. It progressively evolves the

multi-level node representations by stochastically merging two adjacent nodes with high com-

patibilities estimated by the adaptive forget gate of the graph LSTM. As a result, the new graph

is produced with a Metropolis-Hastings sampling method. The Gated Graph Sequence Neural

Networks (GGS-NNs) [235] employs the Gated Recurrent Unit (GRU) [106] to modify the vanilla

GCNNs so that it can be extended to process the sequential data.

3.4.2 GRNNs for Dynamic Graphs. A dynamic graph is the one whose structure (i.e. adding a node,

removing a node, adding an edge, removing an edge) or features on nodes/edges evolve over time.

The GRNNs are a straightforward approach to tackling dynamic graphs. Below, we introduce some

studies on the GRNNs for dynamic graphs.

The literature [220] proposes a Dynamic Graph Neural Network (DGNN) concerning the dynamic

graph only with nodes or edges adding. More specifically, the DGNN is composed of two key

components: an update component and a propagation component. Suppose an edge (𝑣𝑠 , 𝑣𝑔, 𝑡) is
added to the input dynamic graph at time 𝑡 . Let 𝑡− denotes a time before the time 𝑡 . The update
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Fig. 6. Computational framework of the Graph LSTM.

component consists of three sequential units: the interacting unit, the S- or G-update unit and the

merging unit. The interacting unit takes the source and target representations before the time 𝑡 as

input, and outputs the joint representation of the interaction, i.e. 𝑥
(𝑡 )
𝑒 = 𝜌

(
𝑊𝑠𝑥

(𝑡−)
𝑠 +𝑊𝑔𝑥

(𝑡−)
𝑔 + 𝑏𝑒

)
.

The S- and G-update units employ the LSTM [171] to respectively update the cell states and hidden

states of the source and target, i.e.(
𝐶
(𝑡 )
𝑣𝑠 , ℎ

(𝑡 )
𝑣𝑠

)
= LSTM𝑠

(
𝐶
(𝑡−)
𝑣𝑠 , ℎ

(𝑡−)
𝑣𝑠 ,Δ𝑡𝑠

)
,

(
𝐶
(𝑡 )
𝑣𝑔 , ℎ

(𝑡 )
𝑣𝑔

)
= LSTM𝑔

(
𝐶
(𝑡−)
𝑣𝑔 , ℎ

(𝑡−)
𝑣𝑔 ,Δ𝑡𝑔

)
.

The merging unit adopts the similar functions to the interacting unit to respectively merge ℎ
(𝑡 )
𝑣𝑠 and

ℎ𝑡−𝑣𝑠 , and ℎ
(𝑡 )
𝑣𝑔 and ℎ𝑡−𝑣𝑔 . The propagation component can propagate information from two interacting

nodes (𝑣𝑠 and 𝑣𝑔) to influenced nodes (i.e. their neighbors). It also consists of three units: the

interacting unit, the propagation unit and the merge unit, which are defined similarly to the update

component except that they have different learnable parameters. The literature [51] addresses the

vertex- and graph-focused prediction tasks on dynamic graphs with a fixed node set by combining

GCNs, LSTMs and fully connected layers. The Variational Graph Recurrent Neural Networks

(VGRNNs) [42] is essentially a variational graph auto-encoder whose encoder integrates the GCN

and RNN into a graph RNN (GRNN) framework and decoder is a joint probability distribution

of a multi-variate Gaussian distribution and Bernoulli Distribution. The semi-implicit variational

inference is employed to approximate the posterior so as to generate the node embedding.

3.4.3 GRNNs based on Vanilla RNNs. The GRNNs based on vanilla RNNs firstly employ random

walk techniques or traversal methods, e.g. Breadth-First Search (BFS) and Depth-First Search

(DFS), to obtain a collection of node sequences, and then leverage a RNN, e.g. LSTM and GRU,

to capture long short-term dependencies. The literature [208] performs joint random walks on

attributed networks, and utilizes them to boost the deep node representation learning. The proposed

GraphRNA in [208] consists of two key components, namely a collaborative walking mechanism
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AttriWalk and a tailored deep embedding architecture for joint random walks GRN. Suppose A𝐺
denotes the node-attribute matrix of size 𝑁 ×𝑀 . The AtriWalk admits the transition matrix of size

R
(𝑁+𝑀)×(𝑁+𝑀)
+ which is written as

T =

[
𝛼𝐴𝐺 (1 − 𝛼)A𝐺

(1 − 𝛼)A𝑇
𝐺

0

]
.

After obtaining the sequences via the collaborative random walk, the bi-directional GRU [106] and

pooling operator are employed to learn the global representations of sequences. The literature [41]

leverages the BFS node ordering and truncation strategy to obtain a collection of node representation

sequences, and then uses the GRU model and variational auto-regression regularization to perform

the graph classification.

4 EXTENSIONS AND APPLICATIONS
The aforementioned architectures essentially provide ingredients of constructing the GNNs for us.

Below, we investigate the extensions of the GNNs from the next 8 aspects: GCNNs on spectral graphs,

capability and interpretability, deep graph representation learning, deep graph generative models,

combinations of the PI and GNNs, adversarial attacks for the GNNs, graph neural architecture

search and graph reinforcement learning, and briefly summarize the applications of the GNNs at

last.

4.1 GCNNs on Special Graphs
The vanilla GCNNs aims at learning the representations of input graphs (directed or undirected,

weighted or unweighted). The real-world graphs may have more additional characteristics, e.g.

spatial-temporal graphs, heterogeneous graphs, hyper-graphs, signed graphs and so all. The GCNN

for signed graphs [189] leverage the balance theory to aggregate and propagate information through

positive and negative links.

4.1.1 Heterogeneous Graphs. Heterogeneous Graphs are composed of nodes and edges of different

types, and each type of edges is called a relation between two types of nodes. For example, a

bibliographic information network contains at least 4 types of nodes, namely Author, Paper, Venue

and Term, and at least 3 types of edges, namely Author-Paper, Term-Paper and Venue-Paper

[232]. The heterogeneity and rich semantic information brings great challenges for designing

heterogeneous graph convolutional neural networks. In general, a heterogeneous graph can be

denoted as 𝐻 = (𝑉 , 𝐸, 𝜈, 𝜁 ), where 𝜈 (𝑣) denotes the type of node 𝑣 ∈ 𝑉 and 𝜁 (𝑒) denotes the type
of edge 𝑒 ∈ 𝐸. Let T 𝑣 and T 𝑒 respectively denote the set of node types and edge types. Below, we

summarize the vanilla heterogeneous GCNNs, namely HetGNNs [25].

Vanilla Heterogeneous GCNNs. The Heterogeneous Graph Neural Networks (HetGNNs) [25]

aims to resolve the issue of jointly considering heterogeneous structural information as well as

heterogeneous content information of nodes. It firstly samples a fixed size of strongly correlated

heterogeneous neighbors for each node via a Random Walk with Restart (RWR) and groups them

into different node types. Then, it aggregates feature information of those sampled neighboring

nodes via a bi-directional Long Short Term Memory (LSTM) and attention mechanism. Running

RWR with a restart probability 𝑝 from node 𝑣 will yield a collection of a fixed number of nodes,

denoted as RWR(𝑣). For each node type 𝑡 , the 𝑡-type neighbors 𝑁 𝑡
𝐺
(𝑣) of node 𝑣 denotes the set of

top-𝑘𝑡 nodes from RWR(𝑣) with regard to frequency. Let C𝑣 denote the heterogeneous contents of
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node 𝑣 , which can be encoded as a fixed size embedding via a function 𝑓1 (𝑣), i.e.

𝑓1 (𝑣) =

∑
𝑗 ∈C𝑣

[−−−−→
LSTM

(
FC𝜃𝑥 (𝑥 𝑗 )

)
⊲⊳
←−−−−
LSTM

(
FC𝜃𝑥 (𝑥 𝑗 )

) ]
|C𝑣 |

,

where FC𝜃𝑥 (·) denotes feature transformer, e.g. identity or fully connected neural networks with

parameter 𝜃𝑥 , and
−−−−→
LSTM (·) and←−−−−LSTM (.) is defined by the Eq. (11). The content embedding of the

𝑡-type neighbors of node 𝑣 can be aggregated as follows,

𝑓 𝑡
2
(𝑣) = Aggregate

𝑇
({
𝑓1 (𝑣 ′) : 𝑣 ′ ∈ 𝑁 𝑡

𝐺
(𝑣)

})
=

∑
𝑣′∈𝑁 𝑡

𝐺
(𝑣)

[−−−−→
LSTM(𝑓1 (𝑣 ′)) ⊲⊳

←−−−−
LSTM(𝑓1 (𝑣 ′))

]
|𝑁 𝑡
𝐺
(𝑣) | .

Let F (𝑣) = {𝑓1 (𝑣)} ∪ {𝑓 𝑡2 (𝑣) : 𝑡 ∈ T 𝑣}. As a result, the output embedding of node 𝑣 can be

obtained via the attention mechanism, i.e. E𝑣 =
∑
𝑓𝑗 (𝑣) ∈F(𝑣) 𝜔𝑣,𝑗 𝑓𝑗 (𝑣), where the attention weights

is computed by 𝜔𝑣,𝑗 =
exp

(
𝜌

(
𝑢𝑡

[
𝑓𝑗 (𝑣) ⊲⊳ 𝑓1 (𝑣)

] ) )∑
𝑓𝑗 (𝑣) ∈F(𝑣) exp

(
𝜌

(
𝑢𝑡

[
𝑓𝑗 (𝑣) ⊲⊳ 𝑓1 (𝑣)

] ) ) . In addition, the GraphInception

[20] can be employed to learn the hierarchical relational features on heterogeneous graphs by

converting the input graph into a multi-channel graph (each meta path as a channel) [227].

Heterogeneous Graph Attention Mechanism. The literature [210] firstly proposes a hierar-

chical attention based heterogeneous GCNNs consisting of node-level and semantic-level attentions.

The node-level attention aims to learn the attention weights of a node and its meta-path-based

neighbors, and the semantic-level attention aims to learn the importance of different meta-paths.

More specifically, given a meta path Φ, the node-level attention weight of a node 𝑣𝑖 and its meta-

path-based neighbors 𝑣 𝑗 ∈ 𝑁Φ
𝐺
(𝑣𝑖 ) is defined to be

𝜔Φ
𝑗,𝑘

=

exp

(
𝜌

(
𝑎𝑇Φ (𝑀𝜈 (𝑣𝑗 )𝑥 𝑗 ⊲⊳ 𝑀𝜈 (𝑣𝑘 )𝑥𝑘 )

))
∑
𝑣𝑘 ∈𝑁 Φ

𝐺
(𝑣𝑗 ) exp

(
𝜌

(
𝑎𝑇Φ (𝑀𝜈 (𝑣𝑗 )𝑥 𝑗 ⊲⊳ 𝑀𝜈 (𝑣𝑘 )𝑥𝑘 )

)) ,
where𝑀𝜈 (𝑣𝑗 ) transforms the feature vectors of nodes of type 𝜈 (𝑣 𝑗 ) in different vector spaces into a

unified vector space. The embedding of node 𝑣𝑖 under the meta path Φ can be computed by

𝑥
Φ,𝑙+1
𝑗

=⊲⊳𝐾
𝑘=1

𝜌
©­«

∑︁
𝑘∈𝑁 Φ

𝐺
(𝑣𝑗 )

𝜔Φ
𝑗,𝑘
𝑀𝜈 (𝑣𝑘 )𝑥

Φ,𝑙
𝑘

ª®¬ .
Given a meta-path set {Φ0, · · · ,Φ𝑃 }, performing the node-level attention layers under each meta

path will yield a set of semantic-specific node representations, namely

{
𝑋Φ0 , · · · , 𝑋Φ𝑃

}
. The

semantic-level attention weight of the meta path Φ𝑗 is defined as

𝛽Φ𝑗 =
exp

(
𝜔Φ𝑗

)∑𝑃
𝑝=1

exp

(
𝜔Φ𝑝

) ,
where 𝜔Φ𝑝 = 1

|𝑉 |
∑
𝑣𝑘 ∈𝑉 𝑞

𝑇
tanh

(
𝑊𝑥

Φ𝑝

𝑘
+ 𝑏

)
. As a result, the embedding matrix 𝑋 =

∑𝑃
𝑝=1

𝛽Φ𝑝𝑋Φ𝑝
.

In addition, there are some available studies on the GCNNs for multi-relational graphs [17, 30, 218]

and the transformer for dynamic heterogeneous graphs [170, 247].
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4.1.2 Spatio-Temporal Graphs. Spatio-temporal graphs can be used to model traffic networks

[13, 175] and skeleton networks [178, 237]. In general, a spatio-temporal graph is denoted as

𝐺𝑆𝑇 = (𝑉𝑆𝑇 , 𝐸𝑆𝑇 ) where𝑉𝑆𝑇 = {𝑣𝑡, 𝑗 : 𝑡 = 1, · · · ,𝑇 , 𝑗 = 1, · · · , 𝑁𝑆𝑇 }. The edge set 𝐸𝑆𝑇 is composed of

two types of edges, namely spatial edges and temporal edges. All spatial edges (𝑣𝑡, 𝑗 , 𝑣𝑡,𝑘 ) ∈ 𝐸𝑆𝑇 are

collected in the intra-frame edge set 𝐸𝑆 , and all temporal edges (𝑣𝑡, 𝑗 , 𝑣𝑡+1, 𝑗 ) ∈ 𝐸𝑆𝑇 are collected in

the inter-frame edge set 𝐸𝑇 . The literature [13] proposes a novel deep learning framework, namely

Spatio-Temporal Graph Convolutional Networks (STGCN), to tackle the traffic forecasting problem.

Specifically, STGCN consists of several layers of spatio-temporal convolutional blocks, each of

which has a "sandwich" structure with two temporal gated convolution layers (abbreviated as

Temporal Gated-Conv) and a spatial graph convolution layer in between (abbreviated as Spatial

Graph-Conv). The Spatial Graph-Conv exploits the conventional GCNNs to extract the spatial

features, whereas the Temporal Gated-Conv the temporal gated convolution operator to extract

temporal features. Suppose that the input of the temporal gated convolution for each node is a

length-𝑀 sequence with 𝐶in channels, i.e. 𝑋 ∈ R𝑀×𝐶in
. The temporal gated convolution kernel

Γ ∈ R𝐾×𝐶in×2𝐶out
is used to filter the input 𝑌 , i.e.

Γ ∗𝑇 𝑌 = 𝑃 ⊛ 𝜎 (𝑄) ∈ R(𝑀−𝐾+1)×𝐶out ,

to yield an output 𝑃 ⊲⊳ 𝑄 ∈ R(𝑀−𝐾+1)×(2𝐶out)
. The Spatial Graph-Conv takes a tensor 𝑋 (𝑙) ∈

R𝑀×𝑁𝑆𝑇 ×𝐶 (𝑙 )
as input, and outputs a tensor 𝑋 (𝑙+1) ∈ R(𝑀−2(𝐾−1))×𝑁𝑆𝑇 ×𝐶 (𝑙+1)

, i.e.

𝑋 (𝑙+1) = Γ (𝑙)
1
∗𝑇 𝜌

(
Θ(𝑙) ∗𝐺

(
Γ (𝑙)

0
∗𝑇 𝑋 (𝑙)

))
,

where Γ (𝑙)
0
, Γ (𝑙)

1
are the upper and lower temporal kernel and Θ(𝑙) is the spectral kernel of the graph

convolution. In addition, some other studies pay attention to the GCNNs on the spatio-temporal

graphs from other perspectives, e.g. Structural-RNN [10] via a factor graph representation of the

spatio-temporal graph and GCRNN [114, 229] combining the vanilla GCNN and RNN.

4.1.3 Hypergraphs. The aforementioned GCNN architectures are concerned with the conventional

graphs consisting of pairwise connectivity between two nodes. However, there could be even

more complicated connections between nodes beyond the pairwise connectivity, e.g. co-authorship

networks. Under such circumstances, a hypergraph, as a generalization to the convectional graph,

provides a flexible and elegant modeling tools to represent these complicated connections between

nodes. A hypergraph is usually denoted as G = (V, E, 𝜔), where V = {𝑣1, · · · , 𝑣𝑁 } like the

conventional graph, E = {𝑒1, · · · , 𝑒𝑀 } is a set of𝑀 hyperedges.𝜔 (𝑒𝑘 ) denote weights of hyperedges
𝑒𝑘 ∈ E. A non-trivial hyperedge is a subset of V with at least 2 nodes. In particular, a trivial

hyperedge, called a self-loop, is composed of a single node. The hypergraph G can also be denoted

by an incidence matrixHG ∈ R𝑁×𝑀 , i.e.

HG [ 𝑗, 𝑘] =
{

0, 𝑣 𝑗 ∉ 𝑒𝑘
1, 𝑣 𝑗 ∈ 𝑒𝑘 .

For a node 𝑣 𝑗 ∈ V , its degree degV (𝑣 𝑗 ) =
∑
𝑒𝑘 ∈E 𝜔 (𝑒𝑘 )HG [ 𝑗, 𝑘]. For a hyperedge 𝑒𝑘 ∈ E, its degree

degE (𝑒𝑘 ) =
∑
𝑣𝑗 ∈𝑒𝑘 HG [ 𝑗, 𝑘]. LetDV = diag

(
degV (𝑣1), · · · , degV (𝑣𝑁 )

)
,DE = diag

(
degE (𝑒1), · · · , degE (𝑒𝑀 )

)
,

andWG = diag (𝜔 (𝑒1), · · · , 𝜔 (𝑒𝑀 )). The hypergraph Laplacian [224] LG of G is defined to be

LG = I𝑁 − D
− 1

2

V HGWGD
−1

E H
𝑇
GD

− 1

2

V .

It can also be factorized by the eigendecomposition, i.e. LG = UΛU𝑇
. The spectral hypergraph

convolution operator, the Chebyshev hypergraph convolutional neural network and the hypergraph

convolutional network can be defined in analogy to the Eqs (4,6,8). The HyperGraph Neural Network
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(HGNN) architecture proposed in the literature [224] is composed ofmultiple layers of the hyperedge

convolution, and each layer is defined as

𝑋 (𝑙+1) = 𝜌
(
D−

1

2

V HGWGD
−1

E H
𝑇
GD

− 1

2

V 𝑋 (𝑙)Θ(𝑙)
)
.

In essence, the HGNN essentially views each hyperedge as a complete graph so that the hypergraph

is converted into a conventional graph. Treating each hyperedge as a complete graph obviously

incurs expensive computational cost. Hence, some studies [131, 132] propose various approaches

to approximate the hyperedges. The HNHN [225] interleaves updating the node representations

with the hyperedge representations by the following formulas,

X (𝑙+1)V = 𝜌

(
D−1

VHGX
(𝑙)
E Θ(𝑙)V

)
, X (𝑙+1)E = 𝜌

(
D−1

E H
𝑇
GX
(𝑙)
V Θ(𝑙)E

)
.

4.2 Capability and Interpretability
The GCNNs have achieved tremendous empirical successes over the supervised, semi-supervised

and unsupervised learning on graphs. Recently, many studies start to put their eyes on the capability

and interpretability of the GCNNs.

4.2.1 Capability. The capability of the GCNNs refers to their expressive power. If two graphs are

isomorphic, they will obviously output the same representations of nodes/edges/graph. Otherwise,

they should output different representations. However, two non-isomorphic graphs maybe output

the same representations in practice. This is the theoretical limitations of the GCNNs. As described in

the literatures [21, 101, 163], The 1-hop spatial GCNNs (1-GCNNs) have the same expressive power

as the 1-dimensional Weisfeiler-Leman (1-WL) graph isomorphism test in terms of distinguishing

non-isomorphic graphs. The 1-WL iteratively update the colors of nodes according to the following

formula

𝐶
(𝑙+1)
𝑙
(𝑣) = Hash

(
𝐶
(𝑙)
𝑙
(𝑣),

{{
𝐶
(𝑙)
𝑙
(𝑢) : 𝑢 ∈ 𝑁𝐺 (𝑣)

}})
.

According to the literatures [21, 101], we have that the 1-GCNN architectures do not have more

power in terms of distinguishing two non-isomorphic graphs than the 1-WL heuristic. Nevertheless,

they have equivalent power if the aggregation and update functions are injective. In order to over-

come the theoretical limitations of the GCNNs, the literature [101] proposes a Graph Isomorphism

Network (GIN) architecture, i.e.

𝐴
(𝑙+1)
𝑣 = Aggregate

(𝑙+1) ({{𝑋 (𝑙) [𝑢, :] : 𝑢 ∈ 𝑁𝐺 (𝑣)
}})

≜
∑
𝑢∈𝑁𝐺 (𝑣) 𝑋

(𝑙) [𝑢, :]

𝑋 (𝑙+1) [𝑣, :] = Update
(𝑙+1)

(
𝑋 (𝑙) [𝑣, :], 𝐴 (𝑙+1)𝑣

)
≜ MLP

(
(1 + 𝜖 (𝑙+1) )𝑋 (𝑙) [𝑣, :] +𝐴 (𝑙+1)𝑣

)
,

where 𝜖 (𝑙) is a scalar parameter. The literature [7] studies the expressive power of the spatial

GCNNs, and presents two results: (1) The spatial GCNNs are shown to be a universal approximator

under sufficient conditions on their depth, width, initial node features and layer expressiveness; (2)

The power of the spatial GCNNs is limited when their depth and width is restricted. In addition,

there are some other studies on the capability of the GCNNs from different perspectives, e.g. the

first order logic [140], 𝑝-order graph moments [137], algorithmic alignment with the dynamic

programming [100], generalization and representational limits of the GNNs [192].
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4.2.2 Interpretability. Interpretability plays a vital role in constructing a reliable and intelligent

learning systems. Although some studies have started to explore the interpretability of the con-

ventional deep learning models, few of studies put their eyes on the interpretability of the GNs

[149]. The literature [44] bridges the gap between the empirical success of the GNs and lack of

theoretical interpretations. More specifically, it considers two classes of techniques: (1) gradient

based explanations, e.g. sensitivity analysis and guided back-propagation; (2) decomposition based

explanations, e.g. layer-wise relevance propagation and Taylor decomposition. The GNNExplainer

[246] is a general and model-agnostic approach for providing interpretable explanations for any

spatial GCNN based model in terms of graph machine learning tasks. Given a trained spatial GCNN

model Φ and a set of predictions, the GNNExplainer will generate a single-instance explanation by

identifying a subgraph of the computation graph and a subset of initial node features, which are

the most vital for the prediction of the model Φ. In general, the GNNExplainer can be formulated

as an optimization problem

max

𝐺𝑆 ,𝑋
𝐹
𝑆

𝐼

(
𝑌, (𝐺𝑆 , 𝑋 𝐹𝑆 )

)
= 𝐻 (𝑌 ) − 𝐻

(
𝑌 |𝐺 = 𝐺𝑆 , 𝑋 = 𝑋 𝐹𝑆

)
, (17)

where 𝐼 (·, ·) denotes the mutual information of two random variables,𝐺𝑆 is a small subgraph of the

computation graph and 𝑋 𝐹
𝑆
is a small subset of node features

{
𝑋 𝐹 [ 𝑗, :] : 𝑣 𝑗 ∈ 𝐺𝑆

}
. The entropy term

𝐻 (𝑌 ) is constant because the spatial GCNNmodel Φ is fixed. In order to improve the tractability and

computational efficiency of the GNNExplainer, the final optimization framework is reformulated as

min

𝑀,𝐹
−

𝐶∑︁
𝑐=1

I[𝑦 = 𝑐] log 𝑃Φ

(
𝑌 = 𝑦 |𝐺 = 𝐴𝐺 ⊛ 𝜎 (𝑀), 𝑋 = 𝑋 𝐹𝑆

)
.

In addition, the GNNExplainer also provides multi-instances explanations based on graph align-

ments and prototypes so as to answer questions like "How did a GCNN predict that a given set of

nodes all have label 𝑐?".

4.3 Deep Graph Representation Learning
Graph representation learning (or called network embedding) is a paradigm of unsupervised

learning on graphs. It gains a large amount of popularity since the DeepWalk [15]. Subsequently,

many studies exploit deep learning techniques to learn low-dimensional representations of nodes

[203]. In general, the network embedding via the vanilla deep learning techniques learn low-

dimensional feature vectors of nodes by utilizing either stacked auto-encoders to reconstruct the

adjacent or positive point-wise mutual information features [29, 38, 97, 142, 173, 209] or RNNs to

capture long and short-term dependencies of node sequences yielded by random walks [98, 202].

In the following, we introduce the network embedding approaches based on GNNs.

4.3.1 Network Embedding based on GNNs. In essence, the GNNs provides an elegant and powerful

framework for learning node/edge/graph representations. The majority of the GCNNs and GRNNs

are concerned with semi-supervised learning (i.e. node-focused tasks) or supervised learning (i.e.

graph-focused) tasks. Here, we review the GNN based unsupervised learning on graphs. In general,

the network embedding based on GNNs firstly utilize the GCNNs and variational auto-encoder to

generate gaussian-distributed hidden states of nodes, and then reconstruct the adjacency matrix

and/or the feature matrix of the input graph [23, 169, 176, 184, 241, 243]. A representative approach

among these ones is the Variational Graph Auto-Encoder (VGAE) [184] consisting of a GCN based
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encoder and an inner product decoder. The GCN based encoder is defined to be

𝑞(𝑍 |𝑋,𝐴𝐺 ) =
𝑁∏
𝑗=1

𝑞(𝑍 [ 𝑗, :] |𝑋,𝐴𝐺 ) =
𝑁∏
𝑗=1

N
(
𝑍 [ 𝑗, :] |𝜇 𝑗 , diag(𝜎2

𝑗 )
)
,

where 𝜇 𝑗 = GCN𝜇 (𝑋,𝐴𝐺 ) and log𝜎 𝑗 = GCN𝜎 (𝑋,𝐴𝐺 ). The inner product decoder is defined to be

𝑝 (𝐴𝐺 |𝑍 ) =
𝑁∏
𝑗=1

𝑁∏
𝑘=1

𝑝 (𝐴𝐺 [ 𝑗, 𝑘] |𝑍 [ 𝑗, :], 𝑍 [𝑘, :]) =
𝑁∏
𝑗=1

𝑁∏
𝑘=1

𝜎

(
𝑍 [ 𝑗, :]𝑍 [𝑘, :]𝑇

)
.

They adopt the evidence lower bound [37] as their objective function. The adversarially regularized

(variational) graph autoencoder [176] extends the VGAE by adding an adversarial regularization

term to the evidence lower bound. The literature [84] proposes a symmetric graph convolutional

autoencoder which produces a low-dimensional latent nodes representations. Its encoder employs

the Laplacian smoothing [150] to jointly encode the structural and attributed information, and its

decoder is designed based on Laplacian sharpening as the counterpart of the Laplacian smoothing

of the encoder. The Laplacian sharpening is defined to be 𝑋 (𝑙+1) = (1 + 𝛾)𝑋 (𝑙) − 𝛾𝐷−1𝐴𝑋 (𝑙) =
𝑋 (𝑙) + 𝛾 (I𝑁 − 𝐷−1𝐴)𝑋 (𝑙) , which allows utilizing the graph structure in the whole processes of

the proposed autoencoder architecture. In addition, there are some other methods to perform

the unsupervised learning on graphs, which do not rely on the reconstruction of the adjacency

and/or feature matrix, e.g. the graph auto-encoder on directed acyclic graphs [240], pre-training

GNNs via context prediction and attribute masking strategies [198], and deep graph Infomax using

a noise-contrastive type objective with a standard binary cross-entropy loss between positive

examples and negative examples [146].

4.4 Deep Graph Generative Models
The aforementioned work concentrates on embedding an input graph into a low-dimensional vector

space so as to perform semi-supervised/supervised/unsupervised learning tasks on graphs. This

subsection introduces deep graph generative models aiming to mimic real-world complex graphs.

Generating complex graphs from latent representations is confronted with great challenges due to

high nonlinearity and arbitrary connectivity of graphs. Note that graph translation [214] is akin

to graph generation. However, their difference lies in that the former takes two graphs, i.e. input

graph and target graph, as input, and the latter only takes a single graph as input. The NetGAN

[15] utilizes the generative adversarial network [66] to mimic the input real-world graphs. More

specifically, it is composed of two components, i.e. a generator 𝐺 and a discriminator 𝐷 , as well.

The discriminator 𝐷 is modeled as a LSTM in order to distinguish real node sequences, which are

yielded by the second-order random walks scheme node2vec [1], from faked ones. The generator𝐺

aims to generate faked node sequences via another LSTM, whose generating process is as follows.

𝑣0 = 0, 𝑧 ∼ 𝑁𝑚 (0, I𝑚), (𝐶0, ℎ0) = 𝑔𝜃 ′ (𝑧),

(𝐶 𝑗 , ℎ 𝑗 , 𝑜 𝑗 ) = LSTM𝐺 (𝐶 𝑗−1, ℎ 𝑗−1, 𝑣 𝑗−1), 𝑣 𝑗 ∼ Cat

(
Softmax(𝑜 𝑗 )

)
.

The motif-targeted GAN [9] generalizes random walk based architecture of the NetGAN to charac-

terize mesoscopic context of nodes. Different from [9, 15], the GraphVAE [119] adopts a probabilistic

graph decoder to generate a probabilistic fully-connected graph, and then employs approximate

graph matching to reconstruct the input graph. Its reconstruction loss is the cross entropy between

the input and reconstructed graphs. The literature [236] defines a sequential decision-making

process to add a node/edge via the graph network [149], readout operator and softmax function.

The GraphRNN [77] is a deep autoregressive model, which generates graphs by training on a
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representative set of graphs and decomposes the graph generation process into a sequence of node

and edge formations conditioned on the current generated graph.

4.5 Combinations of the PI and GNNs
The GNNs and PI are two different learning paradigms for complicated real-world data. The former

specializes in learning hierarchical representations based on local and global structural information,

and the latter learning the dependencies between random variables. This subsection provides a

summarization of studies of combining these two paradigms.

4.5.1 Conditional Random Field Layer Preserving Similarities between Nodes. The literature [62]
proposes a CRF layer for the GCNNs to enforce hidden layers to preserve similarities between

nodes. Specifically, the input 𝑋 (𝑙) to (𝑙 + 1)-th layer is a random vector around the output 𝐵 (𝑙) =
GCNN(𝑋 (𝑙−1) , 𝐴𝐺 , 𝑋 ) of the (𝑙 − 1)-th layer. The objective function for the GCNN with a CRF layer

can be reformulated as

𝐽 (𝑊 ;𝑋,𝐴𝐺 , 𝑌 ) = L
(
𝑌 ;𝐵 (𝐿)

)
+
𝐿−1∑︁
𝑙=1

(𝛾
2

∥𝑋 (𝑙) − 𝐵 (𝑙) ∥2𝐹 + R(𝑋 (𝑙) )
)
,

where the first term after "=" is the conventional loss function for semi-supervised node classification

problem, and the last term is a regularization one implementing similarity constraint. The similarity

constraint R(𝑋 (𝑙) ) is modeled as a CRF, i.e. 𝑝
(
𝑋 (𝑙) |𝐵 (𝑙)

)
= 1

𝑍 (𝐵 (𝑙 ) ) exp

(
−𝐸

(
𝑋 (𝑙) |𝐵 (𝑙)

) )
where the

energy function 𝐸
(
𝑋 (𝑙) |𝐵 (𝑙)

)
is formulated as

𝐸
(
𝑋 (𝑙) |𝐵 (𝑙)

)
=

∑︁
𝑣∈𝑉

𝜑𝑣 (𝑋 (𝑙) [𝑣, :], 𝐵 (𝑙) [𝑣, :]) +
∑︁
(𝑢,𝑣) ∈𝐸

𝜑𝑢,𝑣

(
𝑋 (𝑙) [𝑢, :], 𝑋 (𝑙) [𝑣, :], 𝐵 (𝑙) [𝑢, :], 𝐵 (𝑙) [𝑣, :]

)
.

Let 𝑠𝑢,𝑣 denote the similarity between 𝑢 and 𝑣 . The unary energy component 𝜑𝑣 (·, ·) and pair-

wise energy component 𝜑𝑢,𝑣 (·, ·, ·, ·) for implementing the similarity constraint are respectively

formulated as

𝜑𝑣
(
𝑋 (𝑙) [𝑣, :], 𝐵 (𝑙) [𝑣, :]

)
= ∥𝑋 (𝑙) [𝑣, :] − 𝐵 (𝑙) [𝑣, :] ∥2

2
,

𝜑𝑢,𝑣
(
𝑋 (𝑙) [𝑢, :], 𝑋 (𝑙) [𝑣, :], 𝐵 (𝑙) [𝑢, :], 𝐵 (𝑙) [𝑣, :]

)
= 𝑠𝑢,𝑣 ∥𝑋 (𝑙) [𝑢, :] − 𝑋 (𝑙) [𝑣, :] ∥22.

Themean-field variational Bayesian inference is employed to approximate the posterior 𝑝 (𝐵 (𝑙) |𝑋 (𝑙) ).
Consequently, the CRF layer is defined as(

𝑋 (𝑙) [𝑣, :]
) (𝑘+1)

=
𝛼𝐵 (𝑙) [𝑣, :] + 𝛽∑

𝑢∈𝑁𝐺 (𝑣) 𝑠𝑢,𝑣
(
𝑋 (𝑙) [𝑢, :]

) (𝑘)
𝛼 + 𝛽∑

𝑢∈𝑁𝐺 (𝑣) 𝑠𝑢,𝑣
.

4.5.2 Conditional GCNNs for Semi-supervised Node Classification. The conditional GCNNs incorpo-
rate the Conditional Random Field (CRF) into the conventional GCNNs so that the semi-supervised

node classification can be enhanced by both the powerful node representations and the dependencies

of node labels. The GMNN [122] performs the semi-supervised node classification by incorporating

the GCNN into the Statistical Relational Learning (SRL). Specifically, the SRL usually models the con-

ditional probability 𝑝 (𝑌𝑉 |𝑋𝑉 ) with the CRF, i.e. 𝑝 (𝑌𝑉 |𝑋𝑉 ) = 1

𝑍 (𝑋𝑉 )
∏
(𝑖, 𝑗) ∈𝐸 𝜑𝑖, 𝑗

(
𝑦𝑖 , 𝑦 𝑗 , 𝑋𝑉

)
, where

𝑦∗ = 𝑌𝑉 [∗, :], ∗ = 𝑖, 𝑗 . Note that 𝑌𝑉 is composed of the observed node labels 𝑌𝐿 and hidden node

labels 𝑌𝑈 . The variational Bayesian inference is employed to estimate the posterior 𝑝 (𝑌𝑈 |𝑌𝐿, 𝑋𝑉 ).
The objective function is defined as

ELBO

(
𝑞𝜃𝑣 (𝑌𝑈 |𝑋𝑉 )

)
= E𝑞𝜃𝑣 (𝑌𝑈 |𝑋𝑉 )

[
log

(
𝑝𝜃𝑙 (𝑌𝐿, 𝑌𝑈 |𝑋𝑉 )

)
− log

(
𝑞𝜃𝑣 (𝑌𝑈 |𝑋𝑉 )

) ]
.
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This objective can be optimized by the variational Bayesian EM algorithm [151], which iteratively

updates the variational distribution 𝑞𝜃𝑣 (𝑌𝑈 |𝑋𝑉 ) and the likelihood 𝑝𝜃𝑙 (𝑌𝑈 |𝑌𝐿, 𝑋𝑉 ). In the VBE stage,

𝑞𝜃𝑣 (𝑌𝑈 |𝑋𝑉 ) =
∏
𝑣∈𝑈 𝑞𝜃𝑣 (𝑦𝑣 |𝑋𝑉 ), and 𝑞𝜃𝑣 (𝑦𝑣 |𝑋𝑉 ) is approximated by a GCNN. In the VBM stage,

the pseudo-likelihood is employed to approximate

E𝑞𝜃𝑣 (𝑌𝑈 |𝑋𝑉 )

[∑︁
𝑣∈𝑉

log𝑝𝜃𝑙
(
𝑦𝑛 |𝑌𝑉 \𝑣, 𝑋𝑉

) ]
= E𝑞𝜃𝑣 (𝑌𝑈 |𝑋𝑉 )

[∑︁
𝑣∈𝑉

log𝑝𝜃𝑙
(
𝑦𝑛 |𝑌𝑁𝐺 (𝑣) , 𝑋𝑉

) ]
,

and 𝑝𝜃𝑙
(
𝑦𝑛 |𝑌𝑁𝐺 (𝑣) , 𝑋𝑉

)
is approximated by another GCNN. The literature [183] adopts the similar

idea to the GMNN. Its posterior is modeled as a CRF with unary energy components and pairwise

energy components whose condition is the outputs of the prescribed GCNN. The maximum

likelihood estimation employed to estimate the model parameters.

4.5.3 GCNN-based Gaussian Process Inference. A Gaussian Process (GP) defines a distribution over

a function space and assumes any finite collection of marginal distributions follows a multivariate

Gaussian distribution. A function 𝑓 : R𝑑 → R follows a Gaussian Process GP(𝑚(·), 𝜅 (·, ·)) iff
(𝑓 (𝑋1), · · · , 𝑓 (𝑋𝑁 ))𝑇 for any 𝑁 𝑑-dimensional random vectors. follows a 𝑁 -dimensional Gauss-

ian distribution N𝑁 (𝜇, Σ), where 𝜇 = (𝑚(𝑋1), · · · ,𝑚(𝑋𝑁 ))𝑇 and Σ =
[
𝜅 (𝑋 𝑗 , 𝑋𝑘 )

]
𝑁×𝑁 , For two

𝑑-dimensional random vectors 𝑋 and 𝑋 ′, we have E [𝑓 (𝑋 )] = 𝑚(𝑋 ) and Cov(𝑓 (𝑋 ), 𝑓 (𝑋 ′)) =
𝜅 (𝑋,𝑋 ′). Given a collection of 𝑁 samples D =

{
(𝑋 𝑗 , 𝑦 𝑗 ) : 𝑗 = 1, · · ·𝑁

}
, the GP inference aims to

calculate the probability 𝑝 (𝑦 |𝑋 ) for predictions, i.e.
𝑓 ∼ GP(0(·), 𝜅 (·, ·)), 𝑦 𝑗 ∼ DIST(𝜆(𝑓 (𝑋 𝑗 ))),

where 𝜆(·) is a link function and DIST(·) denotes an arbitrary feasible noise distribution. To this

end, the posterior 𝑝 (𝑓 |D) needs to be calculated out firstly. The literature [110] employs amortized

variational Bayesian inference to approximate 𝑝 (𝑓 |D), i.e. 𝑓 = 𝜇 + 𝐿𝜖 , and the GCNNs to estimate

𝜇 and 𝐿.

4.5.4 Other GCNN-based Probabilistic Inference. The literature [113] combines the GCNNs and

variational Bayesian inference to infer the input graph structure. The literature [102] infers marginal

probabilities in probabilistic graphical models by incorporating the GCNNs to the conventional

message-passing inference algorithm. The literature [238] approximates the posterior in Markov

logic networks with the GCNN-enhanced variational Bayesian inference.

4.6 Adversarial Attacks for the GNNs
In many circumstances where classifiers are deployed, adversaries deliberately contaminate data in

order to fake the classifiers [66, 197]. This is the so-called adversarial attacks for the classification

problems. As stated previously, the GNNs can solve semi-supervised node classification problems

and supervised graph classification tasks. Therefore, it is inevitable to study the adversarial attacks

for GNNs and defense [108].

4.6.1 Adversarial Attacks on Graphs. The literature [58] firstly proposes a reinforcement learning

based attack method, which can learn a generalizable attack policy, on graphs. This paper provides

a definition for a graph adversarial attacker. Given a sample (𝐺, 𝑐,𝑦) ∈ {(𝐺 𝑗 , 𝑐 𝑗 , 𝑦 𝑗 ) : 𝑗 = 1, · · · , 𝑀}
and a classifier 𝑓 ∈ F , the graph adversarial attacker 𝑔 : F × G → G attempts to modify a graph

𝐺 = (𝑉 , 𝐸) into 𝐺 = (𝑉 , 𝐸), such that

max𝑔 I(𝑓 (𝐺, 𝑐) ≠ 𝑦)
s.t. 𝐺 = 𝑔(𝑓 , (𝐺, 𝑐,𝑦)),

I(𝐺,𝐺, 𝑐) = 1,
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where I : G × G × 𝑉 → {0, 1}, named an equivalence indicator, checks whether two graph 𝐺

and 𝐺 are equivalent under the classification semantics. The equivalence indicator are usually

defined in two fashions, namely explicit semantics and small modifications. The explicit semantics

are defined as I
(
𝐺,𝐺, 𝑐

)
= I

(
𝑓 ∗ (𝐺, 𝑐) = 𝑓 ∗ (𝐺, 𝑐)

)
where 𝑓 ∗ is a gold standard classifier, and the

small modifications are defined asI
(
𝐺,𝐺, 𝑐

)
= I

(
| (𝐸 − 𝐸) ∪ (𝐸 − 𝐸) | < 𝑚

)
·I

(
𝐸 ⊆ 𝑁 (𝐺,𝑏)

)
where

𝑁 (𝐺,𝑏) = {(𝑢, 𝑣) : 𝑢, 𝑣 ∈ 𝑉 ,𝑑𝐺 (𝑢, 𝑣) <= 𝑏}. In order to learn an attack policy, the attack procedure

is modeled as a finite horizon Markov Decision Process (MDP)M𝑚 (𝑓 ,𝐺, 𝑐,𝑦) and is therefore

optimized by Q-learning with a hierarchical Q-function. For the MDPM𝑚 (𝑓 ,𝐺, 𝑐,𝑦), its action
𝑎𝑡 ∈ A ⊆ 𝑉 ×𝑉 at time step 𝑡 is defined to add or delete edges in the graph, its state (𝐺𝑡 , 𝑐) at time

step 𝑡 is a partially modified graph with some of the edges added/deleted from 𝐺 , and the reward

function is defined as

𝑅

(
𝐺, 𝑐

)
=

{
1 𝑓 (𝐺, 𝑐) ≠ 𝑦

−1 𝑓 (𝐺, 𝑐) = 𝑦.
Note that the GCNNs are employed to parameterize the Q-function. The Nettack [251] considers

attacker nodes in A to satisfy a feature attack constraint 𝑋 ′𝑢,𝑗 ≠ 𝑋
(0)
𝑢,𝑗

=⇒ 𝑢 ∈ A, a structure

attack constraint 𝐴′𝑢,𝑣 ≠ 𝐴
(0)
𝑢,𝑣 =⇒ 𝑢 ∈ A ∨ 𝑣 ∈ A and an equivalence indicator constraint∑

𝑢

∑
𝑗 |𝑋

(0)
𝑢,𝑗
−𝑋 ′𝑢,𝑗 |+

∑
𝑢<𝑣 |𝐴

(0)
𝑢,𝑣−𝐴′𝑢,𝑣 | ≤ Δ, where𝐺 ′ is derived by perturbing𝐺 (0) . Let P𝐺0

Δ,A denote

the set of all perturbed graphs 𝐺 ′ satisfying these three constraints. The goal is to find a perturbed

graph 𝐺 ′ = (𝐴′, 𝑋 ′) that classifies a target node 𝑣0 as 𝑐new and maximizes the log-probability/logit

to 𝑐old, i.e. max(𝐴′,𝑋 ′) ∈P𝐺0

𝛿,A
max𝑐new≠𝑐old log𝑍 ∗𝑣0,𝑐new

− log𝑍 ∗𝑣0,𝑐old
where 𝑍 ∗ = 𝑓𝜃 ∗ (𝐴′, 𝑋 ′) with 𝜃 ∗ =

arg min𝜃 L(𝜃 ;𝐴′, 𝑋 ′). The Nettack employs the GCNNs to model the classifier. The literature [32]

adopts the similar equivalence indicator, and poisoning attacks are mathematically formulated as a

bilevel optimization problem, i.e.

min
𝐺
Lattack

(
𝑓𝜃 ∗

(
𝐺

))
𝑠 .𝑡 . 𝐺 ∈ P𝐺0

Δ,A

𝜃 ∗ = arg min𝜃 Ltrain

(
𝑓𝜃

(
𝐺

))
.

(18)

This bilevel optimization problem in formula (18) is then tackled using meta-gradients, whose core

idea is to treat the adjacency matrix of the input graph as a hyperparameter.

4.6.2 Defense against the Adversarial Attacks. A robust GCNN requires that it is invulnerable

to perturbations of the input graph. The robust GCN (RGCN) [96] can fortify the GCNs against

adversarial attacks. More specifically, it adopts Gaussian distributions as the hidden representations

of nodes, i.e.

𝑋 (𝑙+1) [ 𝑗, :] ∼ 𝑁
(
𝜇
(𝑙+1)
𝑗

, diag(𝜎 (𝑙+1)
𝑗
)
)
,

in each graph convolution layer so that the effects of adversarial attacks can be absorbed into the

variances of the Gaussian distributions. The Gaussian based graph convolution is defined as

𝜇
(𝑙+1)
𝑗

= 𝜌
©­­«

∑︁
𝑣𝑘 ∈𝑁𝐺 (𝑣𝑗 )

𝜇
(𝑙)
𝑘
⊛ 𝛼 (𝑙)

𝑘√︃
𝐷 𝑗, 𝑗𝐷𝑘,𝑘

𝑊
(𝑙)
𝜇

ª®®¬ , 𝜎
(𝑙+1)
𝑗

= 𝜌
©­«

∑︁
𝑣𝑘 ∈𝑁𝐺 (𝑣𝑗 )

𝜎
(𝑙)
𝑘
⊛ 𝛼 (𝑙)

𝑘
⊛ 𝛼 (𝑙)

𝑘

𝐷 𝑗, 𝑗𝐷𝑘,𝑘
𝑊
(𝑙)
𝜎

ª®¬ ,
where 𝛼

(𝑘)
𝑗

are attention weights. Finally, the overall loss function is defined as regularized cross-

entropy. The literature [245] presents a batch virtual adversarial training method which appends a
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novel regularization term to the conventional objective function of the GCNNs, i.e.

L = L0 + 𝛼 ·
1

𝑁

∑︁
𝑢∈𝑉

𝐸 (𝑝 (𝑦 |𝑋𝑢,𝑊 )) + 𝛽 · R𝑣𝑎𝑑𝑣 (𝑉 ,𝑊 ),

where L0 is an average cross-entropy loss of all labelled nodes, 𝐸 (·) is the conditional entropy
of a distribution, and Rvadv (𝑉 ,𝑊 ) is the average Local Distributional Smoothness (LDS) loss for

all nodes. Specifically, Rvadv (𝑉 ,𝑊 ) = 1

𝑁

∑
𝑢∈𝑉 LDS(𝑋 [𝑢, :],𝑊 , 𝑟vadv,𝑢) where LDS(𝑥,𝑤, 𝑟vadv) =

𝐷𝐾𝐿

(
𝑝 (𝑦 |𝑥,𝑊 ) | |𝑝 (𝑦 |𝑥 + 𝑟vadv,𝑊 )

)
and 𝑟vadv is the virtual adversarial perturbation. Additionally,

there are some other studies aiming at verifying certifiable (non-)robustness to structure and

feature perturbations for the GCNNs and developing robust training algorithm [3, 33]. The lit-

erature [96] proposes to improve GCN generalization by minimizing the expected loss under

small perturbations of the input graph. Its basic assumption is that the adjacency matrix 𝐴𝐺 is

perturbed by some random noises. Under this assumption, the objective function is defined as

min𝑊

∫
𝑞(𝜖 |𝛼)L(𝑋,𝑌,𝐴𝐺 (𝜖),𝑊 )𝑑𝜖 , where 𝐴𝐺 (𝜖) denotes the perturbed adjacency matrix of 𝐺

and 𝑞(𝜖 |𝛼) is a zero-centered density of the noise 𝜖 so that the learned GCN is robust to these

noises and generalizes well.

4.7 Graph Neural Architecture Search
Neural Architecture Search (NAS) [196] has achieved tremendous success in discovering the

optimal neural network architecture for image and language learning tasks. However, existing

NAS algorithms cannot be directly generalized to find the optimal GNN architecture. Fortunately,

there have been some studies to bridge this gap. The graph neural architecture search [95, 217]

aims to search for an optimal GNN architecture within a designed search space. It usually exploits

a reinforcement learning based controller, which is a RNN, to greedily validate the generated

architecture, and then the validation results are fed back to the controller. The literature [19]

proposes a Graph HyperNetwork (GHN) to amortize the search cost of training thousands of

different networks, which is trained to minimize the training loss of the sampled network with the

weights generated by a GCNN.

4.8 Graph Reinforcement Learning
The GNNs can also be combined with the reinforcement learning so as to solve sequential decision-

making problems on graphs. The literature [223] learns to walk over a graph from a source node

towards a target node for a given query via reinforcement learning. The proposed agent M-Walk

is composed of a deep RNN and Monte Carlo Tree Search (MCTS). The former maps a hidden

vector representation ℎ𝑡 , yielded by a special RNN encoding the state 𝑠𝑡 at time 𝑡 , to a policy and

Q-values, and the latter is employed to generate trajectories yielding more positive rewards. The

NerveNet [186] propagates information over the underlying graph of an agent via a GCNN, and then

predicts actions for different parts of the agent. The literature [143] combines the GNNs and Deep

Reinforcement Learning (DRL), named DRL+GNN, to learn, operate and generalize over arbitrary

network topologies. The DRL+GNN agent employs a GCNN to model the Q-value function.

4.9 Applications
In this subsection, we introduce the applications of the GNNs. Due to the space limitation, we

only list the application fields, including complex network analysis [83, 86, 129], combinatorial

optimization [76, 116, 164, 205], knowledge graph [12, 82, 109], bioinformatics [43, 117, 144],

chemistry [27, 65, 135], brain network analysis [70, 179], physical system [4, 134, 222], source
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code analysis [71, 79, 126], intelligent traffic [22, 159, 180], recommender systems [177, 207, 211],

computer vision [46, 172, 177, 211, 226] and natural language processing [31, 107, 127, 156, 244].

5 BENCHMARKS AND EVALUATION PITFALLS
In this section, we briefly introduce benchmarks and evaluation Pitfalls. The benchmarks provide

ground truth for various GNN architectures so that different GNNs can be compared fairly, the

evaluation pitfalls empirically show that the existing evaluation criterion have potential pitfalls.

5.0.1 Benchmarks. Graph neural networks have become a powerful toolkit for mining complex

graphs. It becomes more and more critical to evaluate the effectiveness of new GNN architectures

and compare different GNN models under a standardized benchmark with consistent experimental

settings and large datasets. A feasible benchmark for the GNNs should include appropriate graph

datasets, robust coding interfaces and experimental settings so that different GNN architectures

can be compared in the same settings. The literature [191] makes a pioneering effort to construct

a reproducible GNN benchmarking framework in order to facilitate researchers to gauge the

effectiveness of different GNN architectures. Specifically, it releases an open-source benchmark

infrastructures for GNNs, hosted on GitHub based on PyTorch and DGL libraries [128], introduces

medium-scale graph datasets with 12k-70k graphs of variable sizes 9-500 nodes, and identifies

important building blocks of GNNs (graph convolutions, anistropic diffusion, residual connections

and normalization layers) with the proposed benchmark infrastructures. The literature [199]

presents an Open Graph Benchmark (OGB) including challenging, real-world and large-scale

benchmark graph datasets, encompassing multiple important graph deep learning tasks ranging

from social and information networks to biological networks, molecular graphs and knowledge

graphs, to facilitate scalable, robust and reproducible deep learning research on graphs. The OGB

datasets, which provide a unified evaluation protocol using application-specific train/validation/test

dataset splits and evaluation metrics, releases an end-to-end graph processing pipeline including

graph data loading, experimental settings and model evaluations.

5.0.2 Evaluation Pitfalls. The literature [139] compares four typical GCNN architectures: GCN

[185], MoNet [45], GAT [145] and GraphSAGE using three aggregation strategies [204] against

4 baseline models: logistic regression, multi-layer perceptron, label propagation and normalized

laplacian label propagation, and uses a standardized training and hyper-parameter tuning procedure

for all these models so as to perform a more fair comparison. The experimental results show that

different train/validation/test splits of datasets lead to dramatically different rankings of models. In

addition, their findings also demonstrate that simpler GCNN architectures can outperform more

sophisticated ones only if the hyper-parameters and training procedures are tuned fairly for all

models.

6 FUTURE RESEARCH DIRECTIONS
Although the GNNs have achieved tremendous success in many fields, there still exists some open

problems. This section summarizes the future research directions of the GNNs.

6.0.1 Highly Scalable GNNs. The real-world graphs usually contain hundreds of millions of nodes

and edges, and have dynamically evolving characteristics. It turns out that it is difficult for the

existing GNN architectures to scale up to the huge real-world graphs. This motivates us to design

highly scalable GNN architectures which can efficiently and effectively learn node/edge/graph

representations for the huge dynamically-evolving graphs.

6.0.2 Robust GNNs. The existing GNN architectures are vulnerable to adversarial attacks. That is,

the performance of the GNN models will sharply drop once the structure and/or initial features
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of the input graph are attacked by adversaries. Therefore, we should incorporate the attack-and-

defense mechanism into the GNN architectures, i.e. constructing robust GNN architecture, so as to

reinforce them against adversarial attacks.

6.0.3 GNNs Going Beyond WL Test. The capabilities of the spatial GCNNs are limited by the 1-WL

test, and the higher-order WL test is computationally expensive. Consequently, two non-isomorphic

graphs will produce the same node/edge/graph representations under appropriate conditions. This

motivates us to develop a novel GNN framework going beyond WL test, or design an elegant

higher-order GNN architectures corresponding to the higher-order WL test.

6.0.4 Interpretable GNNs. The existing GNNs work in a black box. We do not understand why they

achieve state-of-the-art performance in terms of the node classification task, graph classification

task and graph embedding task etc. Interpretability has become a major obstacle to apply the GNNs

to real-world issues. Although there have been some studies to interpret some specific GNN models,

they cannot interpret general GNN models. This motivates us to construct a unified interpretable

framework for the GNNs.

7 CONCLUSIONS
This paper aims to provide a taxonomy, advances and trends for the GNNs. We expand the content

of this paper from 4 dimensions: architectures, extensions and applications, benchmarks and

evaluation pitfalls, and future research directions. The GNN architectures are expanded from

4 perspectives: graph convolutional neural networks, graph pooling operators, graph attention

mechanisms and graph recurrent neural networks. The extensions are expanded from 8 perspectives:

GCNNS on special graphs, capability and interpretability, deep graph representation learning, deep

graph generative models, combinations of the PI and GNNs adversarial attachks for the GNNs,

graph neural architecture search and graph reinforcement. In the future directions, we propose 4

prospective topics on the GNNs: highly scalable GNNs, robust GNNs, GNNs going beyond WL test

and interpretable GNNs. We expect that the relevant scholars can understand the computational

principles of the GNNs, consolidate the foundations of the GNNs and apply them to more and more

real-world issues, through reading this review.
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