

Delft University of Technology

The Hierarchical Subspace Iteration Method for Laplace–Beltrami Eigenproblems

Nasikun, A.; Hildebrandt, K.A.

DOI
10.1145/3495208
Publication date
2022
Document Version
Final published version
Published in
ACM Transactions on Graphics

Citation (APA)
Nasikun, A., & Hildebrandt, K. A. (2022). The Hierarchical Subspace Iteration Method for Laplace–Beltrami
Eigenproblems. ACM Transactions on Graphics, 41(2), 1-14. Article 17. https://doi.org/10.1145/3495208

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3495208
https://doi.org/10.1145/3495208

17

The Hierarchical Subspace Iteration Method for
Laplace–Beltrami Eigenproblems

AHMAD NASIKUN, Delft University of Technology, The Netherlands and Universitas Gadjah Mada, Indonesia

KLAUS HILDEBRANDT, Delft University of Technology, The Netherlands

Fig. 1. The novel Hierarchical Subspace Iteration Method (HSIM) can efficiently solve eigenvalue problems, such as the computation of the p lowest modes

of the discrete Laplace–Beltrami operator on a surface mesh (a). HSIM constructs a set of nested subspaces of the spaces of functions on the mesh by

building a vertex hierarchy (b) and prolongation operators between the levels of the hierarchy. HSIM is initialized by solving a dense eigenproblem on the

coarsest level, an example of a resulting eigenfunction is shown in (c). Then, the eigenproblem is solved on each level, from coarse to fine, using subspace

iterations initialized with the result from the previous level to finally produce the sought eigenpairs. An example of an eigenfunction is shown in (d).

Sparse eigenproblems are important for various applications in computer

graphics. The spectrum and eigenfunctions of the Laplace–Beltrami

operator, for example, are fundamental for methods in shape analysis and

mesh processing. The Subspace Iteration Method is a robust solver for

these problems. In practice, however, Lanczos schemes are often faster. In

this article, we introduce the Hierarchical Subspace Iteration Method

(HSIM), a novel solver for sparse eigenproblems that operates on a hierar-

chy of nested vector spaces. The hierarchy is constructed such that on the

coarsest space all eigenpairs can be computed with a dense eigensolver.

HSIM uses these eigenpairs as initialization and iterates from coarse to fine

over the hierarchy. On each level, subspace iterations, initialized with the

solution from the previous level, are used to approximate the eigenpairs.

This approach substantially reduces the number of iterations needed on the

finest grid compared to the non-hierarchical Subspace Iteration Method.

This project is partly supported by the Indonesia Endowment Fund for Education
(LPDP) through a doctoral scholarship for Ahmad Nasikun.
Authors’ addresses: A. Nasikun, Departemen Teknik Elektro dan Teknologi Informasi,
Fakultas Teknik, Universitas Gadjah Mada, Jl. Grafika No. 2 Kampus UGM, Yogyakarta
55281, Indonesia; email: ahmad.nasikun@ugm.ac.id; K. Hildebrandt, Delft University
of Technology, Department of Intelligent Systems, Van Mourik Broekmanweg 6, 2628
XE Delft, The Netherlands; email: K.A.Hildebrandt@tudelft.nl.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0730-0301/2022/01-ART17 $15.00
https://doi.org/10.1145/3495208

Our experiments show that HSIM can solve Laplace–Beltrami eigenprob-

lems on meshes faster than state-of-the-art methods based on Lanczos

iterations, preconditioned conjugate gradients, and subspace iterations.

CCS Concepts: • Computing methodologies→ Shape analysis;

Additional Key Words and Phrases: Laplace–Beltrami operator, Laplace

matrix, spectral methods, multigrid, eigensolver, subspace iteration

method

ACM Reference format:

Ahmad Nasikun and Klaus Hildebrandt. 2022. The Hierarchical Subspace

Iteration Method for Laplace–Beltrami Eigenproblems. ACM Trans. Graph.

41, 2, Article 17 (January 2022), 14 pages.

https://doi.org/10.1145/3495208

1 INTRODUCTION

Large-scale sparse eigenvalue problems arise in many applications

of computer graphics. An important example is the computation

of the low and medium frequency spectrum and the correspond-

ing eigenfunctions of the Laplace–Beltrami operator of a surface.

These are used in a range of applications in shape analysis

and mesh processing. Commonly used methods for solving

Laplace–Beltrami eigenproblems are based on Lanczos iterations.

These are highly efficient solvers for sparse eigenvalue problems.

However, to be efficient, they combine various extensions of the

basic Lanczos iterations, which makes the algorithms complex

and introduces parameters that need to be set. One problem

is that Lanczos iterations are inherently unstable, which can

ACM Transactions on Graphics, Vol. 41, No. 2, Article 17. Publication date: January 2022.

mailto:permissions@acm.org
https://doi.org/10.1145/3495208
https://doi.org/10.1145/3495208

17:2 • A. Nasikun and K. Hildebrandt

be counteracted by re-starting strategies. Another issue is that

Lanczos iterations lead to orthogonal eigenvectors only if the

arithmetic is exact. Due to rounding errors, re-orthogonalization

strategies are required. An alternative to Lanczos schemes is the

Subspace Iteration Method (SIM). This method does not suffer

from instabilities and is therefore easier to analyze and implement.

However, the SIM is often slower than Lanczos schemes.

In this article, we introduce the Hierarchical Subspace Itera-

tion Method (HSIM). This method is suitable for computing the

eigenpairs in the low and mid frequency part of the spectrum of an

operator defined on a mesh, such as the discrete Laplace–Beltrami

operator. Our goal is to maintain the benefits of the SIM while re-

ducing the computational cost significantly. One reason why the

SIM is expensive is that many iterations are needed before the

method converges. Our idea is to take advantage of the fact that

low and mid frequency eigenfunctions can be approximated on

coarser grids. Instead of working only on the finest grid, we shift

iterations to coarser grids. This enables us to perform effective sub-

space iterations with little computational effort on coarse grids and

substantially reduce the number of iterations needed on the finest

grid.

We design the hierarchical solver so it starts on the coarsest grid.

The complexity of this grid is chosen such that the relevant matri-

ces can be represented as dense matrices and all eigenfunctions

on the coarsest grid can be efficiently computed with a standard

dense eigensolver. Then, the hierarchy is traversed from coarse to

fine, whereby the eigenproblem on each grid is solved to the de-

sired accuracy by subspace iterations and the solution on the pre-

vious grid is used as an initialization for the subspace iterations. To

make the subspace iterations more efficient, we use the eigenval-

ues computed on one grid to determine a value by which we shift

the matrix on the next grid. To construct the hierarchy, we use ver-

tex sampling to create a vertex hierarchy and build prolongation

operators based on the geodesic vicinity of the samples. The pro-

longation operators are used to define a hierarchy of nested func-

tion spaces on the mesh whose degrees of freedom are associated

with the vertex hierarchy. The advantage of the resulting hierar-

chy over alternatives, such as mesh coarsening-based hierarchies,

is that we obtain a hierarchy of nested spaces. This is of benefit

for our purposes, because the prolongation to the finer grids then

preserves properties of a subspace basis, like its orthonormality.

We evaluate our HSIM scheme on the computation of the low-

est p eigenpairs of the Laplace–Beltrami operator, where p ranges

from 50 to 5,000. Our experiments show that HSIM significantly re-

duces the number of iterations needed on the finest grid and thus

accelerates the SIM method. HSIM has also outperformed three

state-of-the-art Lanzcos solvers and the Locally Optimal Block

Preconditioned Conjugate Gradient Method in our experiments.

HSIM was consistently faster than the fastest of the three Lanc-

zos solvers over a range of computations on a variety of meshes

and different numbers of eigenpairs to be computed. In particular,

for challenging settings, in which more than a thousand eigenpairs

needed to be computed, HSIM was up to six times faster than the

fastest Lanczos solver.

We expect that applications that need to compute low and

medium frequency eigenfunctions of the Laplace-Beltrami opera-

tor will benefit from the properties of HSIM, in particular, methods

that need to continuously solve new eigenproblems, for example,

in the context of isospectralization [Cosmo et al. 2019; Rampini

et al. 2019] and geometric deep learning [Bronstein et al. 2017],

and methods that need to compute a larger number of eigenfunc-

tions, for example, for shape compression [Karni and Gotsman

2000; Váša et al. 2014], filtering [Vallet and Lévy 2008], and shape

signatures [Sun et al. 2009].1

2 RELATED WORK

Spectral shape analysis and processing. The eigenfunctions of

the Laplace–Beltrami operator on a surface have many proper-

ties that make them useful for applications. First, the eigenfunc-

tions form an orthonormal basis of the space of functions on the

surface, which generalizes the Fourier basis of planar domains to

curved surfaces. With the help of the spectrum and the eigenfunc-

tions, a frequency representation can be associated to functions

on a surface and spectral methods from signal and image process-

ing can be generalized to methods for the processing of surfaces.

Examples of mesh processing applications that use the Laplace–

Beltrami spectrum and eigenfunctions are surface filtering

[Vallet and Lévy 2008], mesh and animation compression [Karni

and Gotsman 2000; Váša et al. 2014], quad meshing [Dong et al.

2006; Huang et al. 2008; Ling et al. 2014], surface segmentation

[Huang et al. 2009; Sharma et al. 2009], vector field processing

[Azencot et al. 2013; Brandt et al. 2017], mesh saliency [Song et al.

2014], and shape optimization [Musialski et al. 2015]. Further prop-

erties of the Laplace–Beltrami eigenfunctions are that they are in-

variant under isometric surface deformation and that they reflect

the symmetries of a surface. These properties make them a pow-

erful tool for non-rigid shape analysis. For example, they are used

to efficiently compute shape descriptors, such as the the Diffusion

Distance [Nadler et al. 2005], the Shape-DNA [Reuter et al. 2005,

2006], the Global Point Signature [Rustamov 2007], the Heat Ker-

nel Signature [Sun et al. 2009], the Auto Diffusion Function [Gebal

et al. 2009], and the Wave Kernel Signature [Aubry et al. 2011].

Moreover, the eigenfunctions are the basis for Functional Maps

[Kovnatsky et al. 2013; Litany et al. 2017; Ovsjanikov et al. 2012,

2016; Rodolà et al. 2017; Rustamov et al. 2013], isospectralization

[Cosmo et al. 2019; Rampini et al. 2019], and spectral methods

in Geometric Deep Learning [Boscaini et al. 2015; Bronstein et al.

2017; Bruna et al. 2014; Sharp et al. 2020].

Krylov schemes. Krylov methods, such as Lanczos schemes for

symmetric and Arnoldi schemes for general matrices, are effective

solvers for large scale eigenproblems. For a comprehensive intro-

duction to Krylov schemes, we refer to the textbook by Saad [2011].

One way to apply Lanczos schemes to generalized eigenproblems,

such as the Laplace–Beltrami problem we consider, is to convert

them to ordinary eigenproblems by a change of coordinates. In

particular, if the scalar product is given by a diagonal mass ma-

trix, then the change of coordinates is not costly [Vallet and Lévy

2008]. For non-diagonal matrices, the coordinate transformation

can be done using a Cholesky decomposition of the mass matrix

1In the supplementary material, we demonstrate that projections into subspaces
spanned by Laplace–Beltrami eigenfunctions, and, at the example of the heat ker-
nel signature, that shape signatures can benefit from using a larger number of
eigenfunctions.

ACM Transactions on Graphics, Vol. 41, No. 2, Article 17. Publication date: January 2022.

The Hierarchical Subspace Iteration Method for Laplace–Beltrami Eigenproblems • 17:3

[Saad 2011]. Arpack [Lehoucq et al. 1998] provides implementa-

tions of the Implicitly Restarted Lanczos Method for symmetric

eigenproblems and the Implicitly Restarted Arnoldi Method for

non-symmetric eigenproblems. Arpack is so widely used that it

can be considered to provide reference implementations of the Im-

plicitly Restarted Lanczos and Arnoldi Methods. For example, Mat-

lab’s sparse eigensolver eigs interfaces Arpack. SpectrA [Qiu

2015] is a library offering a C++ implementation of an Implicitly

Restarted Lanczos Method build on top of the Eigen matrix li-

brary [Guennebaud et al. 2010]. An alternative to the implicitly

restarted Lanczos method is the band-by-band, shift-and-invert

Lanczos solver for Laplace–Beltrami eigenproblems on surfaces

that was introduced in Vallet and Lévy [2008].

Subspace iterations. An alternative to Krylov schemes is the Sub-

space Iteration Method (SIM). It is a robust method for solving

generalized sparse eigenproblems and is well-suited for paralleliza-

tion [Bathe 2013]. A comprehensive introduction to the SIM can

be found in the textbook by Bathe [2014]. Matrix shifting is impor-

tant to make the subspace iterations effective. Different heuristics

have been proposed, ranging from conservative choices [Bathe and

Ramaswamy 1980; Gong et al. 2005] to more aggressive shifting

strategies [Zhao et al. 2007]. A recent development is the concept

of turning vectors [Kim and Bathe 2017] and its extension that in-

cludes the turning of turning vectors [Wilkins 2019].

Preconditioned Eigensolvers. The lowest eigenpairs of a matrix

can be computed by minimizing the Rayleigh coefficient. The

Locally Optimal Block Preconditioned Conjugate Gradient

Method (LOBPCG) [Knyazev 2001] uses a preconditioned con-

jugate gradient solver for this minimization. A property of the

method is that it does not need to explicitly access the matrix

but only needs to evaluate matrix-vector products, which can be

of benefit when dealing with large matrices. In recent work by

Duersch et al. [2018], an improved basis selection strategy is pro-

posed that improves the robustness of the method when larger

numbers of eigenpairs are computed. LOBPCG was used for solv-

ing Steklov eigenproblems in Wang et al. [2019]. A method that

uses hierarchical preconditioning to approximate a few of the low-

est eigenpairs was presented in Krishnan et al. [2013]. While

LOBPCG is reported to be effective for different eigenproblems,

our experiments (see Section 6) indicate that for the Laplace–

Beltrami eigenproblems we consider, HSIM is more efficient.

Approximation schemes. Schemes for the approximate solution

of eigenproblems are static condensation [Bathe 2014] in engi-

neering and the Nyström method [Williams and Seeger 2001] and

random projections [Halko et al. 2011] in machine learning. Ap-

proximation schemes for the Laplace–Beltrami eigenproblem on

surfaces have been introduced in Chuang et al. [2009], Lescoat et al.

[2020], Liu et al. [2019], and Nasikun et al. [2018]. In contrast to the

eigensolvers we consider in this work, these schemes do not pro-

vide any guarantee on the approximation quality of the eigenpairs.

Multigrids on surfaces. The multigrid hierarchy we need is

challenging, since we are working with an irregular mesh on

a curved surface. One way to build a multigrid hierarchy for a

surface mesh is to use mesh coarsening algorithms [Aksoylu et al.

2005; Hoppe 1996]. This is, however, not ideal for our setting,

because the resulting spaces are not nested, as each space is

defined on a different surface. Another possibility is to build

hierarchical grids on ambient space and then restrict the functions

to the surface [Chuang et al. 2009]. The function spaces generated

by this approach, however, do not resemble the linear Lagrange

finite elements on the mesh that we want to work with. Algebraic

multigrids [Stüben 2001] are an alternative that would fit our set-

ting. However, unlike the proposed hierarchy, algebraic multigrids

only use the operator to build the hierarchy, while we also use the

geometry of the surface. A multi-level approach for the compu-

tation of the heat kernels on surfaces was introduced in Vaxman

et al. [2010]. In recent work, an intrinsic prolongation operator

based on mesh coarsening has been proposed [Liu et al. 2021].

Multilevel eigensolvers. A traditional multigrid approach to

eigenproblems is to treat them as a nonlinear equation and to ap-

ply nonlinear multigrid solver to the equation [Brandt et al. 1983;

Hackbusch 1979]. These methods have the advantage that they can

be extended or even applied directly to nonlinear eigenproblems.

For linear eigenvalue problems, however, this technique is not al-

ways efficient, because the specific properties of eigenvalue prob-

lems are not used when a general nonlinear solver is used.

Another approach is to integrate a multigrid scheme for solv-

ing linear systems into an eigensolver [Arbenz et al. 2005; Bank

1982; Martikainen et al. 2001; McCormick 1981]. A solver for linear

eigenproblems that needs to solve linear systems in every iteration,

such as Krylov and subspace iteration methods, is used as an outer

iteration. In every outer iteration, the linear systems are solved in

an inner multigrid loop. For our HSIM solver, we use sparse direct

solvers for the linear systems, as these are more efficient in our set-

ting than multigrid solvers, see Botsch et al. [2005]. In a different

application context, however, it could be useful to use a multigrid

linear solver.

An approach in which also the outer iterations operate on two

different grids was proposed in Xu and Zhou [2001]. In this method,

the lowest eigenpair of an elliptic operator is approximated by first

computing the eigenpair on the coarse grid and then correcting it

by a boundary value problem on the fine grid. This two-grid correc-

tion scheme was accelerated in Hu and Cheng [2011] and extended

to include matrix shifting in Yang and Bi [2011]. A multigrid exten-

sion of the scheme was introduced in Chen et al. [2016] and Lin

and Xie [2015], and later integrated with wavelet bases [Xie et al.

2019] and algebraic multigrid procedures [Zhang et al. 2015]. The

multigrid correction scheme has been used for the computation

of Laplace spectra on planar domains [Hu and Cheng 2011] and

parametrized surfaces [Brannick and Cao 2015]. A key difference

to HSIM is that HSIM provides users with explicit control of the

residual of the resulting eigenpairs. In contrast, the multigrid cor-

rection schemes do not provide control over the residual. Instead,

the resulting residual depends on the approximation quality of the

grids in the hierarchy. We include a discussion and comparison in

Section 6.

3 BACKGROUND

In this section, we first briefly review the Laplace–Beltrami eigen-

problem, which we use for evaluating the proposed eigensolver.

ACM Transactions on Graphics, Vol. 41, No. 2, Article 17. Publication date: January 2022.

17:4 • A. Nasikun and K. Hildebrandt

Then, we describe the Subspace Iteration Method, which will be

the basis of the novel Hierarchical Subspace Iteration Method.

3.1 Laplace–Beltrami Eigenproblem

In the continuous case, we consider a compact and smooth surface

Σ in R3. A function ϕ is an eigenfunction of the Laplace–Beltrami

operator Δ on Σ with eigenvalue λ ∈ R if

−Δϕ = λϕ (1)

holds. For discretization, the weak form of Equation (1) is helpful.

This can be obtained by multiplying both sides of the equation with

a continuously differentiable function f and integrating∫
Σ

gradϕ · grad f dA = λ

∫
Σ
ϕ f dA. (2)

On the left-hand side of the equation, we applied integration by

parts. A function ϕ is a solution of Equation (1) with eigenvalue λ
if and only if Equation (2) holds for all continuously differentiable

functions f . A benefit of the weak form is that evaluating both

integrals in Equation (2) only requires functions to be weakly dif-

ferentiable (with square-integrable weak derivative) and does not

involve differentials of the surface’s metric tensor.

In the discrete case, Σ is a triangle mesh and we consider a

finite-dimensional space of functions defined on the mesh, usually

the space F of continuous functions that are linear polynomials

over every triangle. Then, for functions ϕ, f ∈ F , the integrals

in Equation (2) can be evaluated and ϕ is an eigenfunction of the

discrete Laplace–Beltrami operator if there is a λ ∈ R such that

Equation (2) holds for any f ∈ F .

Any function in F is uniquely determined by its function values

at the vertices of the mesh. The nodal representation of a function

in F is a vector Φ ∈ Rn that lists the function values at all vertices.

If a nodal vector Φ is given, then the corresponding function in F
can be constructed by linear interpolation of the function values at

the three vertices in every triangle. Let φi ∈ F be the function that

takes the value one at vertex i and vanishes at all other vertices.

Then, the stiffness, or cotangent, matrix S, and the mass matrix M
are given by

Si j =

∫
Σ

gradφi · gradφ j dA and Mi j =

∫
Σ
φiφ j dA. (3)

Explicit formulas for Si j and Mi j can be found in Vallet and Lévy

[2008] and Wardetzky et al. [2007]. The eigenfunctions Φ and

eigenvalue λ can be computed as the solution to the eigenvalue

problem

S Φ = λM Φ. (4)

This is a sparse, generalized eigenvalue problem where M is sym-

metric and positive definite and S is symmetric. We refer to Crane

et al. [2013a] and Hildebrandt et al. [2006] for more background on

the discretization of the Laplace–Beltrami operator on surfaces.

3.2 Subspace Iteration Method

The subspace iteration method (SIM) is an approach for

computing eigenpairs of generalized eigenvalue problems such

as Equation (4). We outline SIM in Algorithm 1. The input to the

method are the stiffness and mass matrices S,M ∈ Rn×n , a matrix

Φ ∈ Rn×q that specifies an initial subspace basis, the number of

desired eigenpairs p, a tolerance ε , and a shifting value μ. The di-

mension q of the subspace needs to be larger or equal to p. We will

first discuss the subspace iterations without shifting, i.e., assum-

ing μ = 0, and then discuss choices of convergence test, subspace

dimension, initial subspace basis, shifting value, and linear solver.

SIM iteratively modifies the initial basis, which consists of q vec-

tors Φi , such that it more and more becomes the desired eigenbasis.

In each iteration, first an inverse iteration is applied to all q vectors

(Algorithm 1, line 4), thereby increasing the low-frequency compo-

nents in the vectors. For this, q linear systems of the form

(S − μM)Ψi = MΦi (5)

need to be solved. The second step in each iteration is to solve the

eigenproblem restricted to the subspace spanned by the vectors Ψi

(Algorithm 1, lines 5–7). For this, the reduced stiffness and mass

matrices are computed and the q-dimensional dense eigenproblem

is solved using a dense eigensolver, e.g., based on a QR factoriza-

tion. The third step is to replace the current subspace basis with

the eigenbasis (Algorithm 1, line 8). The inverse iterations amplify

the low frequencies in the subspace basis. The second and third

steps are needed to prevent the vectors from becoming linearly de-

pendent. Without these steps, the vectors would all converge to

the lowest eigenvector.

ALGORITHM 1: Subspace Iteration Method

Input: Stiffness matrix S ∈ Rn×n , mass matrix M ∈ Rn×n , initial

vectors Φ ∈ Rn×q , number of eigenpairs p , tolerance ε ,

shifting value μ

Output: Matrix Λ̄ with lowest eigenvalues of Equation (4) on

diagonal and Φ listing eigenvectors as columns. First p pairs

converged.

1 Function SIM(S, M, Φ, p, ε, μ):

2 Compute sparse factorization: LDLT = S − μM

3 repeat

4 Solve using factorization: (S − μM)Ψ = MΦ

5 Compute reduced stiffness matrix: S̄ ← ΨT SΨ

6 Compute reduced mass matrix: M̄ ← ΨT MΨ

7 Solve dense eigenproblem: S̄ Φ̄ = M̄ Φ̄Λ̄

8 Update vectors: Φ← ΨΦ̄

9 until pairs (Λ̄ii , Φi) pass convergence test Equation (6) for all

i ≤ p

10 return Λ̄ and Φ

11 End Function

Convergence test. The final step of each iteration is the conver-

gence check, which tests whether or not the first p eigenvectors

have converged. For each eigenpair Φi and λi , the relative M−1-

norm2 of the residual of Equation (4) is computed

‖SΦi − λiMΦi ‖M−1

‖SΦi ‖M−1
< ε (6)

2The M−1-norm is given by ‖SΦ‖M−1 =
√

(SΦ)T M−1SΦ. The reason we use the

M−1-norm is that SΦ is an integrated quantity and M−1SΦ is the correspond-

ing function (pointwise quantity). The M -norm, which is the discrete L2-norm, of

the pointwise quantity is the same as the M−1-norm of the integrated quantity,

‖SΦ‖M−1 =
√

(SΦ)T M−1SΦ =
√

(M−1SΦ)T MM−1SΦ= ‖M−1SΦ‖M . For more

background, we refer to Wardetzky et al. [2007].

ACM Transactions on Graphics, Vol. 41, No. 2, Article 17. Publication date: January 2022.

The Hierarchical Subspace Iteration Method for Laplace–Beltrami Eigenproblems • 17:5

and the test is passed if it is below the threshold ε . The choice of

the value for the convergence tolerance depends on the application

context. In most of our experiments, we used ε = 10−2, which

based on our experiments (see Section 5), we consider appropriate

for applications in shape analysis and spectral mesh processing.

Subspace dimension. The choice of the dimension q affects the

computational cost per iteration and the number of iterations

needed for convergence. A larger subspace size increases the com-

putational cost per iteration as more linear systems have to be

solved (line 4 of Algorithm 1) and the dimension of the dense

eigenproblem (line 7) increases. However, the algorithm termi-

nates when the subspace contains (good enough approximations

of) the lowest p eigenvectors. This is easier to achieve if the sub-

space is larger. Therefore, with a larger subspace, fewer iterations

may be needed. It is suggested to set q = max{2p,p + 8} in Bathe

[2013]. In our experiments, we found q = max{1.5p,p + 8} to be

more efficient for the eigenproblems we consider.

Initialization. The subspace basis Φ can be initialized with a

random matrix. An alternative is to use information extracted

from the matrices for initialization, which can help to reduce

the required number of subspace iterations. One heuristic from

Bathe [2014] is to use the diagonal of the mass matrix M as the

first column of the matrix representing initial vectors, random

entries for the last column, and unit vectors ei with entry +1 at

the degree of freedom with the smallest ratio of kii/mii for the

remaining q − 2 columns.

Shifting. One way to make the subspace iterations more effec-

tive is to shift the matrix S , which means to replace it with the

shifted matrix S − μM . The shifted matrix keeps the same eigen-

vectors while the eigenvalues are shifted by −μ. As a consequence,

the inverse iteration, line 4 of Algorithm 1, focuses on enhancing

the frequencies around μ instead of around zero. This can help to

reduce the number of iterations required for convergence. Differ-

ent heuristics for setting the shifting value have been proposed.

A conservative choice is to set μ to the average of the last two

converged eigenvalues [Bathe and Ramaswamy 1980]. Alternative

shifting strategies are to set μ to the average of the last converged

and the first non-converged eigenvalue [Wilson and Itoh 1983] or

to the average of the first two non-converged eigenvalues [Gong

et al. 2005]. An aggressive shifting technique that places μ further

into the range of the non-converged eigenvalues is shown to accel-

erate the SIM in Zhao et al. [2007].

Direct solver. For the inverse iterations of the subspace basis,

line 4 of Algorithm 1, q linear systems with the same matrix S−μM
need to be solved. It can be effective to use a direct solver for this

task, since a factorization once computed can be used to solve all

the systems. Since the shifted matrix is not positive definite, we

use a sparse symmetric indefinite decomposition LDLT = S − μM .

4 HIERARCHICAL SUBSPACE ITERATION METHOD

In this section, we introduce the Hierarchical Subspace Itera-

tion Method (HSIM). We first describe the construction of the

hierarchy of function spaces on a mesh. Then, we detail the multi-

level eigensolver that operates on the hierarchy.

4.1 Hierarchy Construction

Important goals for the construction of the hierarchy are that the

construction is fast, since the hierarchy must be built as part of the

HSIM algorithm, that the basis functions are locally supported and

the prolongation and restriction operators are sparse, and that the

functions spaces are nested. Moreover, the function spaces need to

be able to approximate low and mid frequency functions well.

We describe the construction of the subspaces in three steps.

First, we describe the construction of a hierarchy on the set of ver-

tices of the mesh. Then, we define prolongation and restriction op-

erators that act between the levels of the vertex hierarchy. Finally,

we explain how the vertex hierarchy and the operators can be used

to obtain the hierarchy of nested function spaces.

ALGORITHM 2: Construction of the vertex hierarchy

Input: Surface mesh Σ, number of levels T , number of vertices per

level n1, n2, . . . , nT−1

Output: Sets of vertex indices V 1, V 2, . . . , V T−1

1 V T ← {Random number from {0, 1, . . . , |VΣ | − 1} }
2 τ ← T − 1

3 repeat

4 V τ ← V τ+1

5 repeat

6 V τ ← V τ ∪ {Index of vertex farthest away from V τ }
7 until |V τ | = nτ

8 τ ← τ − 1

9 until τ = 0

10 return V 1, V 2, . . . , V T−1

Vertex hierarchy. We consider a hierarchy withT levels ranging

from 0 to T − 1, where 0 is the finest level. We denote by V τ the

set of vertices in level τ and by nτ the number of vertices in V τ .

The setsV τ are nested,V τ ⊂ V τ−1, andV 0 is the set of all vertices

of the mesh. Since we will solve a dense eigenproblem to get all

eigenpairs at the coarsest level, we want to control the number

nT−1 of vertices in VT−1, which we set to

nT−1 = max{⌈1.5p⌉ , 1, 000}. (7)

The numbers of vertices in the other levels are determined by the

growth rate μ

nτ = μ nτ+1, (8)

where μ is given by

μ =
T

√
n0

nT−1
. (9)

The tradeoff for the choice of the number of levels is that a larger

number of levels helps to reduce the required number of iterations

on the finest level. However, each level adds computational cost,

e.g., for computing the reduced matrices Sτ and Mτ . In our exper-

iments, we found HSIM to be most effective with a low number of

levels. We used three levels in most cases and opted for two levels

when only a small number of eigenpairs, i.e. , p ≤ 200, needs to be

computed.

To form the sets V τ , we use a scheme based on farthest point

sampling [Eldar et al. 1997]. The set VT−1 is initialized to con-

tain one random vertex. Then, iteratively the vertex farthest away

ACM Transactions on Graphics, Vol. 41, No. 2, Article 17. Publication date: January 2022.

17:6 • A. Nasikun and K. Hildebrandt

Fig. 2. Illustration of a vertex hierarchy with three sets V 2 ⊂ V 1 ⊂ V 0.

The coarsest set V 2 consists of the red vertices, V 1 of the blue and the red

vertices, and V 0 of all vertices of the mesh. The light red and light blue

regions are geodesic disks of radii ρ2 and ρ1 around the highlighted red

and blue vertices in the centers of the regions and illustrate the support

regions of the highlighted vertices.

from all the vertices that are already in VT−1 is added to VT−1

until the desired number of vertices is reached. The sets VT−2 to

V 1 are created in a similar manner. The scheme is summarized in

Algorithm 2. Most expensive in this algorithm is the repeated com-

putation of the farthest points (line 6). These computations can

be accelerated by maintaining a distance field that stores for each

vertex of the mesh the distance to the closest vertex in the cur-

rent set V τ . Since the vertices are inserted one after another, in

each iteration the distance field only needs to be updated locally

around the newly inserted vertex, and the maximum of the field

has to be computed. We compute the distances between vertices

using Dijkstra’s algorithm on the edge graph with weights corre-

sponding to the length of the edges. We found Dijkstra’s distance a

sufficient approximation of the geodesic distance for our purposes

in our experiments. Alternatively, the Short-Term Vector Dijk-

stra (STVD) algorithm [Campen et al. 2013] could be used, which

computes a more accurate approximation of the geodesic distance

while still keeping computations localized. The supplementary ma-

terial includes examples that illustrate that farthest point sampling

generates hierarchies that are suitable for our purposes.

Prolongation and restriction. A function on level τ is represented

by a vector f τ ∈ Rnτ
. We will first describe the prolongation and

restriction operators and show in the next paragraph how the pro-

longation operator can be used to construct the piecewise linear

polynomial corresponding to a vector f τ . The τ th prolongation

operator is given by a matrix U τ ∈ Rnτ ×nτ+1
that maps vectors

f τ+1 ∈ Rnτ+1
representing functions on level τ + 1 to vectors

f τ ∈ Rnτ
representing functions on the finer level τ . The restric-

tion operator maps from level τ to the coarser level τ + 1 and is

given by the transpose U τT of the prolongation matrix. This rela-

tionship of the prolongation and restriction operators ensures that

the restricted matrices Sτ and Mτ (see lines 4 and 5 of Algorithm 3

for a definition of the matrices) on all levels are symmetric.

The ith row of U τ describes how the value associated with

the ith vertex of level τ + 1 is distributed among the vertices

on level τ . This means that the entry U τ
i j is a weight describing

how strongly the vertex j on level τ is influenced by the vertex

i on level τ + 1 during the prolongation. This weight decreases

with increasing geodesic distance of the vertices. To obtain sparse

operators, the weight vanishes when the distance of the vertices

reaches a threshold ρτ , which differs per level. We set ρτ to be

ρτ =

√
σA

nτ π
, (10)

where A is the area of the surface and σ is a control parameter.

This choice of ρτ yields matrices U τ that have about σ non-zero

entries per row. For our experiments, we choose σ = 7. The rea-

soning behind Equation (10) is that we want the sum of the areas

of the geodesics disks of radius ρτ around all the vertices of level

τ to be σ times the area of the surface. To make this idea easily

computable, we replace the combined areas of all the geodesic

disks by nτ times the area of the Euclidean disk of radius ρτ .

To construct the matricesU τ , we first construct preliminary ma-

trices Ũ τ ∈ Rnτ ×nτ+1
that have the entries

Ũ τ
i j =

⎧⎪⎪⎨
⎪⎪
⎩

1 −
d
(
vτ+1

i ,vτ
j

)
ρτ for d

(
vτ+1

i ,vτ
j

)
≤ ρτ

0 for d
(
vτ+1

i ,vτ
j

)
> ρτ

, (11)

whered (vτ+1
i ,vτ

j) is the geodesic distance of the ith vertex ofV τ+1

to the jth vertex ofV τ . The matrixU τ is then obtained by normal-

izing the rows of Ũ τ

U τ
i j =

1∑nτ

j=1 Ũ
τ
i j

Ũ τ
i j . (12)

The normalization ensures that all function spaces will include

the constant functions. This is of benefit for our purposes, as the

constant functions make up the kernel of the Laplace–Beltrami

operator. Another property is that the set of functions on each

level forms a partition of unity. As for the sampling scheme, we

use Dijkstra’s distance on the weighted edge graph of the mesh

in our experiments to approximate the geodesic distance. A dis-

cussion of two alternatives, the Short-Term Vector Dijkstra algo-

rithm [Campen et al. 2013] and the Heat Method [Crane et al.

2013b], is included in the supplementary material.

Function spaces. So far, we have considered abstract vectors

f τ ∈ Rnτ
. Now, we describe how the continuous piecewise lin-

ear polynomial corresponding to f τ can be constructed. On the

finest level, any f 0 ∈ Rn0
is the nodal vector, which lists the func-

tion values of the continuous, piecewise linear polynomial at the

vertices. To get the continuous, piecewise linear polynomial that

corresponds to a f τ ∈ Rnτ
for any τ , we use the prolongation

operators to lift f τ to the finest level. The resulting vector

U 0U 1...U τ−1 f τ (13)

is the nodal vector of the continuous, piecewise linear polynomial

corresponding to f τ . By construction, the resulting function

spaces are nested and the functions are locally supported. The

HSIM algorithm does not need to lift the functions using Equa-

tion (13). Instead, the reduced stiffness and mass matrices Sτ and

Mτ are directly computed for each level.

ACM Transactions on Graphics, Vol. 41, No. 2, Article 17. Publication date: January 2022.

The Hierarchical Subspace Iteration Method for Laplace–Beltrami Eigenproblems • 17:7

4.2 Hierarchical Solver

The HSIM is outlined in Algorithm 3. The algorithm starts with

preparing the multilevel subspace iterations. First, the number of

levels, the vertex hierarchy, and the prolongation matricesU τ are

computed. Then the reduced stiffness and mass matrices, Sτ and

Mτ , for all levels are constructed from fine to coarse starting with

level 1. In this computation, we benefit from the fact that the pro-

longation matricesU τ are highly sparse. The next step is to deter-

mine the dimensionq of the subspace that is used. Our experiments

indicate that values between q = 1.5p and q = 2p are suitable. Fol-

lowing Bathe [2013], we set q = p + 8 for small values of p

q = max{⌈1.5p⌉ ,p + 8}. (14)

The last step before the multilevel iterations start is the compu-

tation of an initial subspace. This is done by solving the eigen-

problem on the coarsest level of the hierarchy completely using

a dense eigensolver. The dimension of the coarsest space is chosen

(see Equation (7)) such that the dense eigenproblem can be solved

efficiently.

ALGORITHM 3: Hierarchical Subspace Iteration Method

Input: Stiffness and mass matrices of finest level S0, M0 ∈ Rn×n ,

number of eigenpairs p , number of levels T , tolerance ε

Output: p lowest eigenpairs of the generalized eigenproblem (4)

1 Function HSIM(S0, M0, p, T , ε):

2 Compute vertex hierarchy (Section 4.1)

3 Build matrices U τ for τ = 0, 1, . . . , T − 2 (Section 4.1)

4 for τ ← 1 to T − 1 do

5 Build level τ stiffness matrix: Sτ ← (U τ−1)T Sτ−1U τ−1

6 Build level τ mass matrix: Mτ ← (U τ−1)T Mτ−1U τ−1

7 end

8 Set size of subspace: q ← max(
⌈
1.5p
⌉
, p + 8)

9 Compute first q eigenpairs of ST−1ΦT−1 = ΛT−1MT−1ΦT−1

10 for τ ← (T − 2) to 0 do

11 Prolongation of subspace basis: Φτ ← U τ Φτ+1

12 Set shifting parameter: μ ← Λτ+1
j j with j = 	 p

10

13 (Λτ , Φτ) ← SIM(Sτ , Mτ , Φτ , p, ε, μ)

14 end

15 return First p diagonal entries of Λ0 and first p columns of Φ0

16 End Function

The multilevel iterations traverse the hierarchy from coarse to

fine starting with the second coarsest level. At each level, the eigen-

problem is solved up to the tolerance by subspace iterations. The

subspace iterations are initialized with the eigenvectors computed

at the coarser level. To make the subspace iteration more effec-

tive, we use the approximate eigenvalues computed on the previ-

ous level to specify a shifting parameter for the iterations on the

current level. We employ an aggressive shifting strategy, which

sets the shifting value to be the estimated eigenvalue with index⌊
p/10
⌋
. The shifting value is set only once for each level and used

for all subspace iterations on this level. Then, only one sparse fac-

torization of the shifted stiffness matrix Sτ − μτ Mτ has to be com-

puted per level. This way, we achieve that, on the one hand, the

shifting value is regularly updated, while, on the other hand, no

additional factorizations have to be computed.

Fig. 3. The 10th eigenfunction of the Laplace-Beltrami operator of the

models listed in Table 1.

To further accelerate the subspace iterations, we do not perform

additional inverse iterations (step 4 of the Algorithm 1) on the

lowest r vectors that are already converged. However, to avoid er-

ror accumulation, we stop the iteration of vectors only after their

residual (Equation (6)) has reached one-tenth of the specified tol-

erance ε . A further acceleration is achieved by performing two in-

verse iterations before orthonormalizing the vectors. Thus, we ex-

ecute step 4 of Algorithm 1 twice before we continue with step 5.

The subspace iteration method converges quickly when the de-

sired eigenspace is close to the initial subspace. Our hierarchical

method makes use of this property by providing the subspace iter-

ations on each level with the solution from the coarser level. As a

result, only few iterations are needed on each level. In particular,

the multilevel strategy substantially reduces the necessary number

of iterations on the finest level compared to SIM. The price to pay

is that the hierarchy has to be built and iterations on the coarse

levels are needed. Nevertheless, HSIM is about 4–8 times faster

than SIM in our experiments. The highest acceleration is achieved

in the difficult case that a large number of eigenvectors must be

computed.

5 EXPERIMENTS

Implementation. Our implementation of HSIM uses Eigen

[Guennebaud et al. 2010] for linear algebra functionalities and

LibIGL [Jacobson et al. 2016] for geometry processing tasks.

OpenMP is used to solve the linear systems in each subspace

iteration (step 4 of Algorithm 1) in parallel and to compute the

prolongation and projection matrices in parallel during hierarchy

construction. Moreover, we solve the low-dimensional eigenprob-

lems at the coarsest level of the hierarchy (step 9 of Algorithm 3)

and in each subspace iteration (step 7 of Algorithm 1) on the GPU

using a direct solver for dense generalized eigenproblems from

CUDA’s cuSolver library. For our experiments, we used an Alien-

ware Area-51 R3 home desktop with a AMD Ryzen Threadripper

1950x (16 core) processor and 24 GB of RAM, equipped with

NVIDIA GeForce GTX 1080 Ti graphics card with 11 GB memory.

Timings. Table 1 lists timings of our HSIM implementation for

the computation of the p lowest eigenpairs of the discrete Laplace–

Beltrami operator (Equation (4)) for meshes with different sizes

and values of p. Individual timings for hierarchy construction and

solving the eigenproblems using the hierarchy are listed. More-

over, iteration counts for subspace iterations on the individual

levels are provided. For the coarsest level, a dense solver is used

instead of the subspace iteration; therefore, the table lists F ’s in-

stead of a number for the coarsest level. The solver’s convergence

tolerance is set to 10−2 for all examples. In all cases, the required

number of iterations on the finest level is reduced to one by the

ACM Transactions on Graphics, Vol. 41, No. 2, Article 17. Publication date: January 2022.

17:8 • A. Nasikun and K. Hildebrandt

Table 1. Timings of HSIM for the Computation of the Lowest

Eigenpairs of the Laplace–Beltrami Operator on Surface

Meshes with Different Numbers of Vertices

Model
(#Verts) #Eigs #Iters

Timings of HSIM

Hier. Solver Total

50 F|1 1.9 6.2 8.1

250 F|1|1 3.7 28.4 32.1
Kitten
(137k)

1,000 F|2|1 4.3 118.9 123.2

50 F|1 3.2 5.3 8.5

250 F|2|1 7.3 41.2 48.5
Vase-Lion
(200k)

1,000 F|3|1 9.2 188.0 197.2

50 F|1 9.9 28.4 38.3

250 F|2|1 29.1 131.0 160.1
Knot-Stars
(450k)

1,000 F|3|1 36.3 505.7 542.0

50 F|1 9.2 31.9 41.1

250 F|2|1 31.6 122.6 154.2
Oilpump

(570k)
1,000 F|3|1 40.3 650.6 690.9

50 F|1 10.2 65.5 75.7

250 F|2|1 40.6 199.3 239.9
Red-Circular
(700k)

1,000 F|4|1 55.0 1,061.2 1116.2

The error tolerance ε is set to 10−2. Individual timings for
constructing the hierarchy and for solving the eigenproblem using the
hierarchy are listed (in seconds). Meshes are shown in Figure 3.

Fig. 4. Analysis of timings of the HSIM for the Laplace–Beltrami eigen-

problem. Distribution of the runtimes to the three levels (a), split of the

time spent at the finest level between the prolongation of the solution from

level 1 and the subspace iterations at the finest level (b), and distribution

of the time of the subspace iteration to the individual steps in Algorithm 1.

The 200 lowest eigenpairs are computed on the Dragon mesh with 150K

vertices.

hierarchical approach. Figure 4 provides more details for one

example, the computation of the lowest 200 eigenpairs on a dragon

model with 150K vertices using a hierarchy with three levels. The

figure shows (a) how the runtimes split over the different levels

of the hierarchy, (b) for the finest level the division between pro-

longation of the solution for the second finest level and subspace

iterations, and (c) the breakdown of the timings of the individual

steps of the subspace iterations (Algorithm 1) on the finest level.

The figure illustrates that, when three levels are used, most of the

runtime is spent on the finest level, almost 80% for the shown ex-

ample, and that the restrictions of the stiffness and mass matrices

and solving the linear systems are the most costly steps of HSIM.

Figure 5 lists runtimes for different numbers of eigenpairs to be

computed. In our experiments, we found that the runtime grows

linearly even when computing several thousand eigenpairs. This

Fig. 5. Plot listing the runtime of HSIM over the number of Laplace–

Beltrami eigenpairs to be computed on the Rocker Arm model with 270K

vertices.

Fig. 6. The plot of the required computation time for different error toler-

ances when computing the first 100 eigenpairs of Laplace–Beltrami oper-

ator on the Chinese Dragon (127K vertices) and on the Blade model (200K

vertices).

is illustrated by the timings listed in the figure. We expect this

linear trend to continue as long as the runtime is dominated by

the time needed for the solving of the linear systems (step 4 of

Algorithm 1). At some point, solving the dense eigenproblems (step

7 of Algorithm 1), which does not scale linearly with the number

of eigenpairs, will be the most expensive step and the trend will

no longer be linear.

For most experiments, we set the convergence tolerance (ϵ in

Algorithm 3) to 10−2. Figure 6 lists runtimes over the convergence

tolerance for the computation of 100 eigenpairs on two differ-

ent meshes: the Blade model with 200K vertices and the Chinese

Dragon with 127K vertices. The figure illustrates that low toler-

ances such as 10−9 can be achieved and that the time grows pro-

portional with the relative residual. Roughly speaking, we observe

in our experiments that the number of iterations that are needed

on the finest grid grows by two for a decrease of one order of mag-

nitude in the relative residual.

Termination criterion. To test for convergence (see line 9 of

Algorithm 1), we use the criterion stated in Equation (6). This

test ensures the convergence of the eigenvalues as well as the

convergence of the eigenvectors. To determine a suitable value for

the convergence tolerance ε , we performed several experiments.

We discuss two experiments in this paragraph; the supplementary

material includes additional experiments. Based on the results

of these experiments, we used a tolerance of ε = 10−2 for the

ACM Transactions on Graphics, Vol. 41, No. 2, Article 17. Publication date: January 2022.

The Hierarchical Subspace Iteration Method for Laplace–Beltrami Eigenproblems • 17:9

Table 2. Comparison of HSIM to the (Non-hierarchical) SIM, Different Lanczos Solvers, and LOBPCG

SIM par. SIM HSIM Lanczos methods Prec. Solver
Model (#Vert) #Eigs

#Iters Time Time #Iters Time Matlab MH SpectrA LOBPCG

50 7 49.4 23.8 F|1 11.7 16.2 27.2 24.4 48.0

250 7 274.5 155.7 F|2|1 51.3 94.3 285.3 124.8 268.3

1,000 7 1,088.0 642.2 F|2|1 165.6 921.8 1,132.2 1,235.5 2,601.1

2,500 7 3,228.2 1,930.7 F|2|1 529.8 7,784.5 2,987.1 7,552.7 Mem. bound

Sphere

(160K)

4,000 8 10,687.8 8,913.0 F|2|1 1431.2 11,745.1 5,836.1 13,100.1 Mem. bound

50 8 74.9 42.2 F|1 14.6 18.6 26.4 25.8 126.5

250 8 541.7 300.1 F|2|1 79.6 130.3 178.7 185.3 711.5

1,000 8 2,118.9 1,228.0 F|2|1 342.1 1,549.0 696.4 1,359.4 4,014.5

Rocker Arm

(270K)

2,500 8 10,278.5 8,658.4 F|2|1 1108.1 13,018.3 1,798.9 9,543.0 Mem. bound

50 7 212.5 102.5 F|1 57.9 62.7 100.1 77.7 384.2

250 7 1,308.8 664.4 F|2|1 206.6 362.5 773.3 675.4 1,885.2
Rolling stage

(660K)
1,000 7 8,058.2 5,358.9 F|3|1 937.8 4,072.6 3,034.5 8,396.0 Mem. bound

Runtimes are listed in seconds.

Fig. 7. Relative difference of numerical approximations of the eigenvalues

of the unit sphere to the analytic solutions are shown.

evaluation of HSIM. In the first experiment, we consider three

different discretizations of the unit sphere with regular meshes

(having 10K, 100K, and 1M vertices) and measure the difference

between the computed eigenvalues for different tolerances

(ε = 10−1, 10−2, 10−4, 10−6) and the analytical solution. The results

are shown in Figure 7. For all three discretizations, the difference

between the numerical solutions for different tolerances is small

compared to the approximation error, that is, the difference to the

analytical solution. We would like to note that the convergence

test establishes an upper bound on the convergence of the

eigenpairs. In particular, for the lowest tolerance, ε = 10−1, the so-

lutions computed by HSIM are often already more accurate when

the process terminates. One reason for this is that the method

terminates only after all eigenpairs pass the convergence test. We

therefore conducted an additional experiment using the inverse

power method to compute the eigenpairs one-by-one and stop the

iteration for each eigenpair when the convergence tolerance is

reached. The results are shown in Figure 7(d). In this experiment,

differences in accuracy occur between the numerical solution for

Fig. 8. Comparison of the relative difference of the eigenvalues and the

eigenvectors between two meshes that approximate the same surface (blue

graph) and solutions for different convergence tolerance on one of the

meshes (red graph).

ε = 10−1 and the other solutions (ε = 10−2, 10−4, 10−6), which

indicates that a tolerance of ε = 10−1 is not sufficient.

In a second experiment, we compute eigenpairs for two different

meshes approximating the same surface. The second mesh was cre-

ated by flipping edges of the first mesh. For both meshes, we com-

pute the lowest eigenpairs for the tolerance ε = 10−2 and as refer-

ence for ε = 10−8. Since the two meshes have the same vertices, we

can compare both the eigenvalues and the eigenvectors. Figure 8

shows the difference between the reference solutions (ε = 10−8) on

both meshes (blue graph) and for one mesh, the difference between

the solutions for ε = 10−2 and ε = 10−8 (red graph). To measure

the difference of eigenvectors the relative L2-norm is used. It can

be seen that the difference between the reference solutions on the

two meshes is more than three orders of magnitude larger than the

difference between the solutions for different tolerances.

We want to note that the convergence test (6) does not directly

measure the deviation from the exact solution. In our experiments

ACM Transactions on Graphics, Vol. 41, No. 2, Article 17. Publication date: January 2022.

17:10 • A. Nasikun and K. Hildebrandt

Table 3. Performance of HSIM with Different Numbers of Levels

Model

(#Verts)
#Eigs Tol

Level = 2 Level = 3 Level = 4 Level = 5

#Iters Time #Iters Time #Iters Time #Iters Time

Rocker

Arm

(270K)

50
1e-2 F|1 17.2 F|1|1 31.1 F|1|1|1 66.0 F|1|1|1|1 123.8

1e-4 F|3 26.0 F|3|2 38.2 F|2|2|3 76.8 F|2|2|2|2 135.3

2,000
1e-2 F|3 1,078.6 F|2|1 650.7 F|1|1|1 885.3 F|1|1|1|1 1,412.0

1e-4 F|8 2,595.4 F|7|4 2,137.1 F|6|4|4 2,967.8 F|5|3|3|4 3,586.4

Ramses

(820K)

50

1e-2

F|1 45.3 F|1|1 101.0 F|1|1|1 244.0 F|1|1|1|1 495.0

300 F|2 246.4 F|2|1 234.5 F|2|1|1 417.6 F|1|1|1|1 700.6

750 F|2 969.6 F|2|1 657.5 F|2|1|2 1,521.1 F|2|1|1|1 1,607.0

Table 4. Runtimes and Iteration Counts for Different Values of the

Parameter σ that Determines the Supports of the Functions

2.5 5 7 10 20
Model (#Verts) #Eigs

#Iters Time #Iters Time #Iters Time #Iters Time #Iters Time

100 F|2 15.9 F|2 17.0 F|1 12.2 F|1 13.4 F|2 23.6

400 F|3|2 78.3 F|3|1 60.4 F|3|1 69.6 F|2|1 74.3 F|2|1 110.4
Vase-Lion

(200K)
750 F|4|2 175.4 F|3|2 174.8 F|3|1 138.9 F|3|2 219.5 F|3|2 301.5

100 F|2 55.7 F|1 42.2 F|1 43.0 F|2 65.3 F|2 71.7

400 F|2|3 273.6 F|2|2 231.9 F|2|1 169.8 F|4|1 207.2 F|4|1 292.7
Eros

(475K)
750 F|3|4 710.2 F|2|3 580.5 F|4|1 465.5 F|4|2 567.8 F|5|2 758.7

(for example, in Figure 8), we see that the relative difference be-

tween the solution for a tolerance of ε = 10−2 and the reference

solution, which is computed with ε = 10−8, is usually much smaller

than 10−2. In Figure 8, and also in Figure 12, one can observe that

the errors generated by HSIM are smaller for the eigenvalue pairs

whose index is about one-third of the total number of computed

eigenvalues than for the others. This is due to our shifting strategy,

which makes these eigenpairs converge faster.

When evaluating the convergence criterion, Equation (6), the

standard norm of Rn , is commonly used to replace the M−1-norm.

The reason is that the evaluation of the M−1 norm can be costly.

For our experiments, we used the M−1-norm at the finest level as

the M matrices are diagonal, and, therefore, can be easily inverted.

At the coarser levels, however, the restricted matrices Mτ (see line

6 of Algorithm 3) are no longer easy to invert. To save the effort

of computing a factorization of the Mτ matrices, we replace the

M−1-norm by the standard norm for the convergence check on all

but the finest level. We want to emphasize that, since on the finest

level we use theM−1-norm, the error tolerances are respected. The

simplification could only lead to more or fewer iterations on the

coarser levels. Since the convergence check uses the relative norm,

a global scaling factor to better match the standard norm and the

M−1-norm is not needed. We did not observe differences in the

numbers of iterations, when using the standard norm instead of

the M−1-norm for the convergence test on the coarser levels in

our experiments.

Number of levels. A parameter HSIM needs as user input is the

number of levels of the hierarchy (see Algorithm 3). By increas-

ing the number of levels, one can reduce the number of iterations

required on the finest grid. However, increasing the number of lev-

els leads to additional computational costs on the levels below the

finest level. Table 3 lists computation times and iteration counts

for the individual levels for computations with different meshes

sizes, number of eigenpairs, and convergence tolerances. For most

of these examples, three levels yield the shortest runtime.

Support region. For the construction of the prolongation matri-

ces U τ , the radius of its domain of influence, ρτ , must be defined

Table 5. Iteration Counts for Different Choices of Shifting

Values Are Shown

#Eigs Residue
Shift ratio

No shift 0.1 0.2 0.25 1/3 0.4 0.45

50

1e-2

F|1 F|1 F|1 F|1 F|1 F|2 F|2

250 F|2|1 F|2|1 F|2|1 F|2|1 F|2|1 F|2|1 F|2|1

1,000 F|3|1 F|2|1 F|2|1 F|2|1 F|2|1 F|3|2 F|4|2

50

1e-4

F|5 F|5 F|4 F|4 F|4 F|4 F|5

250 F|6|4 F|6|4 F|5|4 F|5|3 F|5|3 F|4|3 F|5|4

1,000 F|8|4 F|8|4 F|7|4 F|7|4 F|6|3 F|6|4 F|7|5

Computations are done using the Gargoyle model with 85K vertices.

Table 6. Timings and Iteration Counts for Solving Eigenproblems

with Boundary Conditions on the Julius Caesar Model

with 370K Vertices

Boundary #Eigs #Iters
Timing

Hier. Solve Total

Dirichlet
50 F|2 5.8 30.0 35.8

250 F|2|1 19.3 93.7 113.0

Neumann
50 F|2 5.7 29.8 35.4

250 F|2|1 18.9 94.9 113.3

individually for each level. We use Equation (10), which allows us

to set the radii on all levels by means of a control parameter σ .

This value is the average expected

number of non-zero entries per

row of the matrices U τ . The inset

figure shows the areas of influence

around one point for different val-

ues σ . A smaller value for σ re-

sults in matricesU τ with less non-

zero entries and thus less compu-

tational effort per iteration. How-

ever, a too-small value for σ can increase the number of iterations

needed on each level.

In our experiments, we have identified a value of σ = 7 as a

good tradeoff. This means that in each level, each vertex of V τ

in average is coupled to six neighbor vertices, which agrees with

the average valence in a triangle mesh. Table 4 shows iteration

counts and runtimes for different values of σ for eigenproblems on

two meshes with 200K and 475K vertices and different numbers of

eigenpairs to be computed. The value σ = 7 reaches in all cases

either the lowest runtime or a time close to the lowest runtime.

Shifting strategy. Matrix shifting can reduce the number of re-

quired subspace iterations on all levels. In our experiments, we

use a heuristic, which is described in Step 12 of Algorithm 3, to

automatically determine the shifting parameter μ. This heuristic is

based on the aggressive shifting technique from Zhao et al. [2007].

We set μ equal to the current approximate eigenvalue Λj j with in-

dex j = 	αp
. Here, α should take a value between 0 and 0.5. In

Algorithm 3, we set α = 0.1. Table 5 lists iteration counts for dif-

ferent values of α . Results for different numbers of eigenpairs and

error margins are shown. We used values between 0.1 and 1/3 for

α in our experiments.

ACM Transactions on Graphics, Vol. 41, No. 2, Article 17. Publication date: January 2022.

The Hierarchical Subspace Iteration Method for Laplace–Beltrami Eigenproblems • 17:11

Fig. 9. The lowest 250 Laplace–Beltrami eigenvalues computed with HSIM and three different Lanczos solvers on a discrete sphere with 160K vertices (left)

and a surface with many symmetries and 90K vertices (right). For the sphere, the analytic solution is shown as a reference.

Fig. 10. The first (left) and tenth (right) eigenfunction of the Laplace–

Beltrami operator on a surface with boundary using Dirichlet and Neu-

mann boundary conditions are shown.

Surface with boundary. We applied HSIM to the computation of

Laplace–Beltrami eigenproblems on surfaces with boundary. We

experimented with Dirichlet and Neumann boundary conditions

and used the same hierarchy and basis construction as for sur-

faces without boundary. Examples of eigenfunctions on surfaces

with boundary are shown in Figure 10. Table 6 shows for an ex-

ample mesh the runtimes and iteration counts for Dirichlet and

Neumann boundary conditions. The runtimes are comparable to

the runtimes we observe for meshes without boundary and a com-

parable number of vertices.

6 COMPARISONS

In this section, we discuss comparisons of HSIM to alternative

methods. Laplace–Beltrami eigenproblems are commonly solved

in graphics applications using Lanczos methods [Vallet and Lévy

2008]. Therefore, we begin this section with the comparison

to Lanczos solvers. An alternative to Lanczos schemes is the

SIM [Bathe 2013]. Since HSIM is based on SIM, this comparison

provides a basis to quantify the gains resulting from our hierarchy.

The third solver to which we compare HSIM is the Locally Optimal

Block Preconditioned Conjugate Gradient Method [Knyazev 2001].

Last, we compare HSIM to the multilevel correction scheme that

was introduced in Chen et al. [2016] and Lin and Xie [2015]. In our

comparisons, we use the same convergence test Equation (6) for

all methods and set the tolerance to ε = 10−2, which is the value

we determined in our experiments (see Section 5). To implement

this for the methods we compare to, we check for convergence

after every iteration and stop when the convergence test is passed.

Once the required number of iterations is known, we re-run the

computation without convergence test and record the timings.

Lanczos schemes. Schemes based on Lanczos iterations are

commonly used for solving large-scale, sparse, symmetric eigen-

problems. These methods have been studied and improved over

decades. Arpack’s implementation of the Implicitly Restarted

Lanczos Method is well-established [Lehoucq et al. 1998]. We

compare HSIM with Matlab’s eigs (Matlab 9.8, R2020a) that

interfaces Arpack and with SpectrA [Qiu 2015] that offers an

alternative implementation of the Implicitly Restarted Lanczos

Method. In addition to that, we compare to the authors’ implemen-

tation of the band-by-band, shift-and-invert Lanczos solver that

was introduced in Vallet and Lévy [2008]. We denote this solver

by Manifold Harmonics (MH). If a diagonal, or lumped, mass

matrix is used in Equation (4), the generalized eigenproblem can

easily be transformed to an “ordinary” eigenproblem as described

in Vallet and Lévy [2008]. We have tested all three Lanczos solvers

on the “ordinary” eigenproblem.

The runtimes for meshes of different complexity and with differ-

ent numbers of eigenpairs are given in Table 2. The listed runtimes

for HSIM also include the construction of the hierarchy and pro-

longation operators. In our experiments, HSIM was consistently

faster than all three Lanczos schemes. This is also reflected in the

table where HSIM is the fastest method for all combinations of

mesh complexity and numbers of eigenpairs. In particular, for the

difficult cases where a larger number of eigenpairs is computed,

HSIM is significantly faster.

Figure 9 shows plots of the lowest eigenvalues for two surfaces

computed with different solvers. On the left side of the figure,

ACM Transactions on Graphics, Vol. 41, No. 2, Article 17. Publication date: January 2022.

17:12 • A. Nasikun and K. Hildebrandt

Fig. 11. Plot of the maximum residual and the numbers of iterations for

SIM and HSIM are shown. For HSIM the number of iterations on the finest

level is used.

numerical approximations of the eigenvalues of the unit sphere

computed with the different solvers on a mesh with 320K triangles

approximating the sphere are shown. For reference, the analytical

solution is included to the plot. On the right side of the figure,

results for a surface that exhibits different symmetries are shown.

SpectrA and Matlab applied to the ordinary eigenproblem

provided accurate results in our experiments that for the sphere

example well-approximate the analytic solution. The results

obtained with HSIM match the accuracy of SpectrA and Matlab.

The band-by-band, shift-and-invert solver [Vallet and Lévy 2008]

meets the convergence tolerance for the individual eigenpairs,

but some eigenpairs are skipped. This seems to happen at the

transitions between the bands and we have observed it in our

experiments consistently for different bandwidths.

SIM. In addition to the runtimes for Lanczos schemes, Table 2

also lists times and iteration counts for the (non-hierarchical) SIM.

If one compares the number of iterations required by HSIM on the

finest level with the number of iterations required by SIM, then one

sees that HSIM effectively reduces the number of iterations from

7–8 to 1. Accordingly, we observe that HSIM is 4–8 times faster

than SIM. The table lists additional runtimes for an optimized SIM

implementation in which the linear systems in step 4 of Algo-

rithm 1 are solved in parallel using OpenMP and the dense eigen-

problems (step 7 of Algorithm 1) are solved on the GPU using

CUDA’s cuSolver library. Figure 11 shows for two examples how

the number of iterations changes if a lower convergence tolerance

is requested. It can be seen that the increase of iterations is lower

for HSIM than for SIM.

LOBPCG. The last column of Table 2 lists timings for the Locally

Optimal Block Preconditioned Conjugate Gradient Method

(LOBPCG). To generate the timings, we used the author’s imple-

mentation [Knyazev et al. 2007]. We experimented with Jacobi pre-

conditioners, incomplete Cholesky factorizations and the precon-

ditioner S − νId , which is suggested in Knyazev [2001]. The latter

produced the best results, which we report. Here, S is the stiffness

matrix (of the transformed ordinary eigenvalue problem that we

also used for the Lanczos solvers), ν ∈ R is approximately in the

middle of the first 10 eigenvalues [Knyazev 2001], and Id is the

identity matrix. The results demonstrate that HSIM can solve the

eigenproblems faster than LOBPCG with the preconditioners we

tested.

Fig. 12. Plot of the residuals of MCS and our novel HSIM eigensolver. Not

only HSIM is substantially more accurate, it also has explicit control on

the accuracy of the eigenvalues and corresponding eigenvectors. (Dragon

model, 150K vertices.)

Multilevel correction scheme. We compare with the multilevel

correction scheme (MCS) from Chen et al. [2016]; Lin and Xie

[2015], which is an extension of the two-grid scheme from Hu

and Cheng [2011]. This method has in common with our HSIM

method that for initialization, an eigenvalue problem on the

coarsest grid is solved. However, the multilevel iterations differ

substantially from HSIM. In their method, the coarse space is used

in all levels and it is enriched by vectors that are computed in the

multilevel iterations. An essential difference to HSIM is that HSIM

reduces the error on each level to the desired tolerance margin,

while MCS does not offer direct control over the accuracy of the

solution. The accuracy depends on the approximation quality of

the coarse grid and the growth rate between the grids. Therefore,

an aggressive growth rate, which is essential to the performance

of our scheme, would lead to an increase in approximation

error. Another substantial difference is that MCS is focused on

computing only one or a few eigenpairs. This contrasts this work

from our setting in which we compute more than a thousand

eigenpairs. In Figure 12, we show a plot of the accuracy of the

eigenpairs computed with MCS and HSIM with convergence

tolerance 10−2 and 10−4. The error produced by MCS is orders

of magnitude higher than that produced by HSIM. Moreover, the

plot on the right shows that the error increases with the index of

the eigenvalue. This illustrates the point that MCS is focused on

the computation of a few of the lowest eigenpairs. Since the MCS

scheme is formulated for regular grids, we use our hierarchy with

three levels in the comparisons for both schemes, MCS and HSIM.

7 CONCLUSION

We introduce HSIM, a hierarchical solver for sparse eigenvalue

problems and evaluate HSIM on the computation of the lowest p
eigenpairs of the discrete Laplace–Beltrami operator on triangle

surface meshes. HSIM first constructs a hierarchy of nested sub-

spaces of the space functions on the mesh. Then, it iterates from

coarse to fine over the hierarchy solving the eigenproblem on all

levels to the desired accuracy. HSIM is initialized with the solution

of the eigenproblem on the coarsest level, which is computed by

solving a low-dimensional dense eigenproblem. Our comparisons

show that HSIM outperforms state-of-the-art Lanczos solvers and

demonstrate the advantages of the hierarchical approach over the

plain SIM.

ACM Transactions on Graphics, Vol. 41, No. 2, Article 17. Publication date: January 2022.

The Hierarchical Subspace Iteration Method for Laplace–Beltrami Eigenproblems • 17:13

We think that the benefits of HSIM over Lanczos and SIM solvers

make HSIM attractive for methods in shape analysis and mesh

processing. Therefore, we plan to release our implementation of

HSIM.

Future work. One direction of future work is to explore alter-

native hierarchies, e.g., operator-dependent bases or wavelets

on surfaces. This could improve the performance of HSIM for

certain types of operators, such as strongly anisotropic operators.

Another direction could be to extend the method such that

not only the lowest but arbitrary eigenpairs can be efficiently

computed. Moreover, the method could be improved by further

exploring the possibilities of parallelization of the method and by

integrating out-of-core techniques for the computation of large

eigenbases. Another aspect is that for a certain complexity of

the meshes, the direct solvers will no longer be the most efficient

solvers. Then, hierarchical solvers could to be used for the linear

systems that need to be solved in every iteration. For such an

approach, it could be interesting to combine the hierarchies used

for HSIM and for the linear solves.

A benefit of HSIM is that it directly works for generalized

eigenvalue problems, such as Equation (4), and does not require

to transform these to ordinary eigenvalue problems. This could

be helpful when using the method for solving eigenproblems in

which the mass matrix M is not a diagonal matrix, such as the

discretization of the Laplace–Beltrami operator with higher-order

elements [Reuter et al. 2006].

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive feed-

back. For our experiments, we used models from the Aim@Shape

repository, the Stanford Computer Graphics Laboratory (Stanford

3D Scanning Repository), Turbosquid, Al-Badri’s and Nelles’ Ne-

fertiti, and INRIA.

REFERENCES
Burak Aksoylu, Andrei Khodakovsky, and Peter Schröder. 2005. Multilevel solvers for

unstructured surface meshes. SIAM J. Sci. Comput. 26, 4 (2005), 1146–1165.
Peter Arbenz, Ulrich L. Hetmaniuk, Richard B. Lehoucq, and Raymond S. Tuminaro.

2005. A comparison of eigensolvers for large-scale 3D modal analysis using AMG-
preconditioned iterative methods. Int. J. Numer. Meth. Eng. 64, 2 (2005), 204–236.

M. Aubry, U. Schlickewei, and D. Cremers. 2011. The wave kernel signature: A quan-
tum mechanical approach to shape analysis. In ICCV. 1626–1633.

Omri Azencot, Mirela Ben-Chen, Frédéric Chazal, and Maks Ovsjanikov. 2013. An
operator approach to tangent vector field processing. Comput. Graph. Forum 32,
5 (2013), 73–82.

Randolph E. Bank. 1982. Analysis of a multilevel inverse iteration procedure for eigen-
value problems. SIAM J. Numer. Anal. 19, 5 (1982), 886–898.

Klaus-Jürgen Bathe. 2013. The subspace iteration method–Revisited. Comput. Struct.
126 (2013), 177–183.

Klaus-Jürgen Bathe. 2014. Finite Element Procedures (2nd ed.). Prentice Hall.
Klaus-Jürgen Bathe and Seshadri Ramaswamy. 1980. An accelerated subspace itera-

tion method. Comput. Meth. Appl. Mech. Eng. 23, 3 (1980), 313–331.
D. Boscaini, J. Masci, S. Melzi, M. M. Bronstein, U. Castellani, and P. Vandergheynst.

2015. Learning class-specific descriptors for deformable shapes using localized
spectral convolutional networks. Comput. Graph. Forum 34, 5 (2015), 13–23.

Mario Botsch, David Bommes, and Leif Kobbelt. 2005. Efficient linear system solvers
for mesh processing. In Mathematics of Surfaces (Lecture Notes in Computer Sci-
ence, Vol. 3604), Ralph R. Martin, Helmut E. Bez, and Malcolm A. Sabin (Eds.).
Springer, 62–83.

A. Brandt, S. McCormick, and J. Ruge. 1983. Multigrid methods for differential eigen-
problems. SIAM J. Sci. Stat. Comput. 4, 2 (June 1983), 244–260.

Christopher Brandt, Leonardo Scandolo, Elmar Eisemann, and Klaus Hildebrandt.
2017. Spectral processing of tangential vector fields. Comput. Graph. Forum 36,
6 (2017), 338–353.

James Brannick and Shuhao Cao. 2015. Bootstrap Multigrid for the Shifted Laplace-
Beltrami Eigenvalue Problem. arXiv preprint arXiv:1511.07042.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. 2017. Geometric deep learning: Going beyond Euclidean data. IEEE
Sig. Process. Mag. 34, 4 (2017), 18–42.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral net-
works and locally connected networks on graphs. In ICLR.

Marcel Campen, Martin Heistermann, and Leif Kobbelt. 2013. Practical anisotropic
geodesy. Comput. Graph. Forum 32, 5 (2013), 63–71.

Hongtao Chen, Hehu Xie, and Fei Xu. 2016. A full multigrid method for eigenvalue
problems. J. Comput. Phys. 322 (2016), 747–759.

Ming Chuang, Linjie Luo, Benedict J. Brown, Szymon Rusinkiewicz, and Michael
Kazhdan. 2009. Estimating the Laplace–Beltrami operator by restricting 3D func-
tions. Comput. Graph. Forum 28, 5 (2009), 1475–1484.

Luca Cosmo, Mikhail Panine, Arianna Rampini, Maks Ovsjanikov, Michael M. Bron-
stein, and Emanuele Rodolà. 2019. Isospectralization, or how to hear shape, style,
and correspondence. In IEEE CVPR. 7529–7538.

Keenan Crane, Fernando de Goes, Mathieu Desbrun, and Peter Schröder. 2013a. Dig-
ital geometry processing with discrete exterior calculus. In ACM SIGGRAPH
Courses (SIGGRAPH’13).

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013b. Geodesics in heat: A
new approach to computing distance based on heat flow. ACM Trans. Graph. 32,
5 (2013), 1–11.

Shen Dong, Peer-Timo Bremer, Michael Garland, Valerio Pascucci, and John C.
Hart. 2006. Spectral surface quadrangulation. ACM Trans. Graph. 25, 3 (2006),
1057–1066.

Jed A. Duersch, Meiyue Shao, Chao Yang, and Ming Gu. 2018. A robust and efficient
implementation of LOBPCG. SIAM J. Sci. Comput. 40, 5 (2018), C655–C676.

Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi. 1997. The farthest point strategy
for progressive image sampling. Trans. Image Process. 6, 9 (1997), 1305–1315.

Katarzyna Gebal, Jakob Andreas Bærentzen, Henrik Aanæs, and Rasmus Larsen. 2009.
Shape analysis using the auto diffusion function. Comput. Graph. Forum 28, 5
(2009), 1405–1413.

Yu-Cai Gong, Hong-Wei Zhou, Pu Chen, and Ming-Wu Yuan. 2005. Comparison of
subspace iteration, iterative Ritz vector method and iterative Lanczos method. J.
Vibrat. Eng. 18, 02 (2005), 227–232.

Gaël Guennebaud, Benoît Jacob et al. 2010. Eigen v3. Retrieved from http://eigen.
tuxfamily.org.

W. Hackbusch. 1979. On the computation of approximate eigenvalues and eigenfunc-
tions of elliptic operators by means of a multi-grid method. SIAM J. Numer. Anal.
16, 2 (1979), 201–215.

N. Halko, P. G. Martinsson, and J. A. Tropp. 2011. Finding structure with random-
ness: Probabilistic algorithms for constructing approximate matrix decomposi-
tions. SIAM Rev. 53, 2 (2011), 217–288.

Klaus Hildebrandt, Konrad Polthier, and Max Wardetzky. 2006. On the convergence
of metric and geometric properties of polyhedral surfaces. Geometricae Dedicata
123 (2006), 89–112.

Hugues Hoppe. 1996. Progressive meshes. In ACM SIGGRAPH. 99–108.
Xiaozhe Hu and Xiaoliang Cheng. 2011. Acceleration of a two-grid method for eigen-

value problems. Math. Comput. 80, 275 (2011), 1287–1301.
Jin Huang, Muyang Zhang, Jin Ma, Xinguo Liu, Leif Kobbelt, and Hujun Bao. 2008.

Spectral quadrangulation with orientation and alignment control. ACM Trans.
Graph. 27, 5 (2008), 1–9.

Qixing Huang, Martin Wicke, Bart Adams, and Leo Guibas. 2009. Shape decomposi-
tion using modal analysis. Comput. Graph. Forum 28, 2 (2009), 407–416.

Alec Jacobson, Daniele Panozzo et al. 2016. libigl: A simple C++ geometry processing
library. Retrieved from http://libigl.github.io/libigl/.

Zachi Karni and Craig Gotsman. 2000. Spectral compression of mesh geometry. In
ACM SIGGRAPH. 279–286.

Ki-Tae Kim and Klaus-Jürgen Bathe. 2017. The Bathe subspace iteration method en-
riched by turning vectors. Comput. Struct. 186 (2017), 11–21.

Andrew V. Knyazev. 2001. Toward the optimal preconditioned eigensolver: Locally
optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput.
23, 2 (2001), 517–541.

Andrew V. Knyazev, Merico E. Argentati, Ilya Lashuk, and Evgueni E.
Ovtchinnikov. 2007. Block locally optimal preconditioned eigenvalue xolvers
(BLOPEX) in Hypre and PETSc. SIAM J. Sci. Comput. 29, 5 (2007), 2224–2239.

Artiom Kovnatsky, Michael M. Bronstein, Alexander M. Bronstein, Klaus Glashoff,
and Ron Kimmel. 2013. Coupled quasi-harmonic bases. Comput. Graph. Forum 32,
2 (2013), 439–448.

Dilip Krishnan, Raanan Fattal, and Richard Szeliski. 2013. Efficient preconditioning of
Laplacian matrices for computer graphics. ACM Trans. Graph. 32, 4 (2013), 142:1–
142:15. DOI:https://doi.org/10.1145/2461912.2461992

R. Lehoucq, D. C. Sorensen, and C. Yang. 1998. ARPACK Users’ Guide: Solution of Large-
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM.

Thibault Lescoat, Hsueh-Ti Derek Liu, Jean-Marc Thiery, Alec Jacobson, Tamy
Boubekeur, and Maks Ovsjanikov. 2020. Spectral mesh simplification. Comput.
Graph. Forum 39, 2 (2020), 315–324.

ACM Transactions on Graphics, Vol. 41, No. 2, Article 17. Publication date: January 2022.

http://eigen.tuxfamily.org
http://libigl.github.io/libigl/
https://doi.org/10.1145/2461912.2461992

17:14 • A. Nasikun and K. Hildebrandt

Qun Lin and Hehu Xie. 2015. A multi-level correction scheme for eigenvalue problems.
Math. Comput. 84 (2015), 71–88.

Ruotian Ling, Jin Huang, Bert Jüttler, Feng Sun, Hujun Bao, and Wenping Wang. 2014.
Spectral quadrangulation with feature curve alignment and element size control.
ACM Trans. Graph. 34, 1 (2014), 11:1–11:11.

Or Litany, Emanuele Rodolà, Alexander M. Bronstein, and Michael M. Bronstein.
2017. Fully spectral partial shape matching. Computut. Graph. Forum 36, 2 (2017),
247–258.

Hsueh-Ti Derek Liu, Alec Jacobson, and Maks Ovsjanikov. 2019. Spectral coarsening
of geometric operators. ACM Trans. Graph. 38, 4 (2019), 105:1–105:13.

Hsueh-Ti Derek Liu, Jiayi Eris Zhang, Mirela Ben-Chen, and Alec Jacobson. 2021. Sur-
face multigrid via intrinsic prolongation. ACM Trans. Graph. 40, 4.

Janne Martikainen, Tuomo Rossi, and Jari Toivanen. 2001. Computation of a few small-
est eigenvalues of elliptic operators using fast elliptic solvers. Commun. Numer.
Meth. Eng. 17, 8 (2001), 521–527.

Stephen F. McCormick. 1981. A mesh refinement method for Ax = λBx . Math. Com-
put. 36, 154 (1981), 485–498.

Przemyslaw Musialski, Thomas Auzinger, Michael Birsak, Michael Wimmer, and
Leif Kobbelt. 2015. Reduced-order shape optimization using offset surfaces. ACM
Trans. Graph. 34, 4 (2015), 102:1–102:9.

Boaz Nadler, Stéphane Lafon, Ronald R. Coifman, and Ioannis G. Kevrekidis. 2005. Dif-
fusion maps, spectral clustering and eigenfunctions of Fokker–Planck operators.
In NIPS. 955–962.

Ahmad Nasikun, Christopher Brandt, and Klaus Hildebrandt. 2018. Fast approxima-
tion of Laplace–Beltrami eigenproblems. Comput. Graph. Forum 37, 5.

Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas
Guibas. 2012. Functional maps: A flexible representation of maps between shapes.
ACM Trans. Graph. 31, 4 (2012), 30:1–30:11.

Maks Ovsjanikov, Etienne Corman, Michael Bronstein, Emanuele Rodolà, Mirela
Ben-Chen, Leonidas Guibas, Frederic Chazal, and Alex Bronstein. 2016. Comput-
ing and processing correspondences with functional maps. In SIGGRAPH ASIA
Courses. ACM, 9:1–9:60.

Yixuan Qiu. 2015. SpectrA: C++ Library for Large Scale Eigenvalue Problems.
Retrieved from https://spectralib.org/.

Arianna Rampini, Irene Tallini, Maks Ovsjanikov, Alexander M. Bronstein, and
Emanuele Rodolà. 2019. Correspondence-free region localization for partial
shape similarity via Hamiltonian spectrum alignment. In IEEE 3D Vision.
37–46.

Martin Reuter, Franz-Erich Wolter, and Niklas Peinecke. 2005. Laplace-Spectra as fin-
gerprints for shape matching. In SPM. 101–106.

Martin Reuter, Franz-Erich Wolter, and Niklas Peinecke. 2006. Laplace-Beltrami
spectra as “Shape-DNA” of surfaces and solids. Comput.-aid. Des. 38, 4 (2006),
342–366.

Emanuele Rodolà, Luca Cosmo, Michael M. Bronstein, Andrea Torsello, and Daniel
Cremers. 2017. Partial functional correspondence. Comput. Graph. Forum 36, 1
(2017), 222–236.

Raif M. Rustamov. 2007. Laplace–Beltrami eigenfunctions for deformation invariant
shape representation. In SGP. 225–233.

Raif M. Rustamov, Maks Ovsjanikov, Omri Azencot, Mirela Ben-Chen, Frédéric
Chazal, and Leonidas Guibas. 2013. Map-based exploration of intrinsic shape dif-
ferences and variability. ACM Trans. Graph. 32, 4 (2013), 72:1–72:12.

Yousef Saad. 2011. Numerical Methods for Large Eigenvalue Problems: Revised Edition.
Vol. 66. SIAM.

Avinash Sharma, Radu Patrice Horaud, David Knossow, and Etienne von Lavante.
2009. Mesh segmentation using Laplacian eigenvectors and Gaussian mixtures.
In Manifold Learning and Its Applications. AAAI Press.

Nicholas Sharp, Souhaib Attaiki, Keenan Crane, and Maks Ovsjanikov. 2020. Diffusion
is all you need for learning on surfaces. CoRR abs/2012.00888.

Ran Song, Yonghuai Liu, Ralph R. Martin, and Paul L. Rosin. 2014. Mesh saliency via
spectral processing. ACM Trans. Graph. 33, 1 (2014), 6:1–6:17.

Klaus Stüben. 2001. A review of algebraic multigrid. J. Comput. Appl. Math. 128, 1
(2001), 281–309.

Jian Sun, Maks Ovsjanikov, and Leonidas J. Guibas. 2009. A concise and provably
informative multi-scale signature based on heat diffusion. Comput. Graph. Forum
28, 5 (2009), 1383–1392.

Bruno Vallet and Bruno Lévy. 2008. Spectral geometry processing with manifold har-
monics. Comput. Graph. Forum 27, 2 (2008), 251–260.

Libor Váša, Stefano Marras, Kai Hormann, and Guido Brunnett. 2014. Compressing
dynamic meshes with geometric Laplacians. Comput. Graph. Forum 33, 2 (2014),
145–154.

Amir Vaxman, Mirela Ben-Chen, and Craig Gotsman. 2010. A multi-resolution ap-
proach to heat kernels on discrete surfaces. ACM Trans. Graph. 29, 4 (2010),
121:1–121:10.

Yu Wang, Mirela Ben-Chen, Iosif Polterovich, and Justin Solomon. 2019. Steklov
spectral geometry for extrinsic shape analysis. ACM Trans. Graph. 38, 1 (2019),
7:1–7:21.

Max Wardetzky, Miklós Bergou, David Harmon, Denis Zorin, and Eitan Grinspun.
2007. Discrete quadratic curvature energies. Comput-aid Geom. Des. 24, 8–9 (2007),
499–518.

Bryce Daniel Wilkins. 2019. The E2 Bathe Subspace Iteration Method. Ph. D. Disserta-
tion. Massachusetts Institute of Technology.

Christopher K. I. Williams and Matthias Seeger. 2001. Using the Nyström method to
speed up kernel machines. In Advances in Neural Information Processing Systems
13. MIT Press, 682–688.

Edward L. Wilson and Tetsuji Itoh. 1983. An eigensolution strategy for large systems.
Comput. Struct. 16, 1–4 (1983), 259–265.

Hehu Xie, Lei Zhang, and Houman Owhadi. 2019. Fast eigenpairs computation with
operator adapted wavelets and hierarchical subspace correction. SIAM J. Numer.
Anal. 57, 6 (2019), 2519–2550.

Jinchao Xu and Aihui Zhou. 2001. A two-grid discretization scheme for eigenvalue
problems. Math. Comput. 70, 233 (2001), 17–25.

Yidu Yang and Hai Bi. 2011. Two-grid finite element discretization schemes based on
shifted-inverse power method for elliptic eigenvalue problems. SIAM J. Numer.
Anal. 49, 3/4 (2011), 1602–1624.

Ning Zhang, Xiaole Han, Yunhui He, Hehu Xie, and Chunguang You. 2015. An
Algebraic Multigrid Method for Eigenvalue Problems in Some Different Cases.
arXiv:1503.08462.

Qian-Cheng Zhao, Pu Chen, Wen-Bo Peng, Yu-Cai Gong, and Ming-Wu Yuan. 2007.
Accelerated subspace iteration with aggressive shift. Comput. Struct. 85, 19–20
(2007), 1562–1578.

Received September 2020; revised September 2021; accepted November

2021

ACM Transactions on Graphics, Vol. 41, No. 2, Article 17. Publication date: January 2022.

https://spectralib.org/

