
An Exploration of Novice Programming Errors in an
Object-Oriented Environment

Matthew Barrl, Sam Holden 1, Dave Phillips 1, Tony Greening 2
1 Basser Department of Computer Science, University of Sydney, NSW, 2006, Australia

{matt, sholden, davep}@cs.usyd.edu.au
2 SITMS, University of Ballarat, Victoria, 3353, Australia

t.greening @ ballarat.edu.au

Abstract
When studying a programming language for the first time, the majority of student errors fall into broad (and well-documented)
categories [3]. This paper aims to investigate errors made by first year students in Blue: A new, object-oriented language
specifically designed at the University of Sydney for teaching novice students [2].

These errors were investigated by a survey delivered over the World-Wide Web and consisting of multiple choice and free-
form short-answer questions. The results of the survey suggest that a student who learns with Blue is no more likely to make errors
that are commonly made by novice programmers, although is not necessarily better equipped to design and write code in an object-
oriented paradigm. More research is indicated to make statements about the latter.

Introduction
Blue is a programming language and environment developed
specifically for teaching object-oriented programming to
first-year computer science students [1,2]. As such it has
been designed to make teaching programming conceplls easy
by removing complexity from the language at the expense of
performance.

Blue was used for the first time as the first year language
at the Basser Department of Computer Science, the
University of Sydney, in 1997. It was the first time that
object orientation was taught to first-year students in the
department. In addition, the first-year programme
incorporated a radical shift in emphasis towards student-
centred, group-based education [7,8].

The general trend from procedural to object-oriented
languages in first programming courses corresponds to the
industry change from smaller, individual coding projects to
large-scale group work. Blue attempts to make the
construction of larger projects less intimidating for the
novice user by presenting a project in a graphical format, in
addition to the traditional one. Recently, the Blue graphical
environment has been adapted for use with Java.

Method
To gauge the level of understanding of the students an
informal survey was taken. This consisted of a web-based
form and was entirely voluntary for the students. We chose
the survey as a means of quickly obtaining information from
a number of students, and with little resource usage.

Of the 574 students who were enrolled in their second
semester of Blue at Basser in 1997, 58 completed the survey.
This is too small a response to make any strong conclusions,
but large enough to get some useful results on which to base
further research.

The issue of bias introduced by the type of student would
take the time to fill out a voluntary survey has been :raised.

However, the students have been learning in a problem-based
environment, so filling out a survey (and getting feedback on
their answers) would be seen as a useful resource by both the
better and poorer students. This was the way in which the
survey was portrayed to students. Judging by the comments
in the free-form answers (especially the last question which
just asked for comments on problems with Blue) a wide
range of abilities is represented in the survey.

Summary of the Survey
Syntax
The most basic aspect of learning to program is learning the
syntax of a programming language; for our students, this is
Blue. The syntax of Blue is designed to be easy to learn.
Words have been given preference over symbols for
language constructs (eg. do...end as opposed to {...}).
Wherever possible, only one way to accomplish most basic
tasks has been provided [1,2].

There were many questions in the survey that tested the
understanding of Blue syntax. The students were asked to
describe what some given code did, to choose the code that
was correct, and to comment on errors in code.

The results were encouraging. The vast majority of
students indicated that they knew the Blue syntax. The vast
majority of the students surveyed did not make many of the
errors mentioned in [3].

Use of Comments
One of the key aspects to designing and implementing a
large project is writing maintainable code. Blue features a
'comment' tag as a required syntactical element for each
fi.mction and class, and the computer science course attempts
to present the importance of writing good comments.

To test the efficiency of this teaching method, we asked
students to write what they felt were useful comments in the
midst of code that calculated a simple exponent routine.

SIGCSE Bulletin 42 December 1999 Vol 31. No. 4

http://crossmark.crossref.org/dialog/?doi=10.1145%2F349522.349392&domain=pdf&date_stamp=1999-12-01

The results were disappointing. Some students wrote
comments that mimicked, rather than explained the code.
Others wrote comments that had little or nothing to do with
the effect o f the code. Only a small percentage of students
wrote comments that were useful.

Object-Oriented Design
The crux o f object-oriented programming is object-oriented
design, so student understanding of the design stage of a
programming project is an important indicator o f their
ability to deliver software solutions. The survey included a
couple of multiple choice questions on class inheritance
(which is s impl i f ied in Blue to support only single
inheritance). The questions consisted o f selecting the best
inheritance tree for a set o f classes. Blue's graphical
environment was designed to assist in the understanding of
such concepts.

The results were also disappointing, as many students did
not choose the best option. They did, however, generally
choose options that indicated an understanding of the ' i s -a '
relationship o f inheritance. These results may also be partly
explained by the fact that the students were not formally
introduced to inheritance until second semester.

Code Reading
A very important skill for programmers to develop is an
ability to read code written by other programmers. This is
especially important when working in groups and on large
projects, both of which were emphasised in the CS1 course
at Sydney University.

A number o f code fragments were presented and students
were asked to give free-form comments on the good and bad
points (in syntax, logic, and style) o f the code. The vast
majority o f students pointed out errors in syntax, noticing the
omission of a comma from a function definition for example.
They also noticed problems of style - ' shocking indentation'
was a remark from one student. However, the majority did
not notice simple logic errors; for example, one question
contained a tautological ' i f ' test that would have resulted in
error messages in all cases, but it was not picked up by most
of the students. This indicates a tendency o f the students
surveyed to read code in a superficial manner, which may
reflect a similar trend in novice programmers in general.

Sample of Questions and Results from the Survey
This section presents some of the questions used in the

survey, with a rationale for its inclusion, a summary o f the
student's answers to the question, and some thoughts based
upon those answers. Note that a study o f the Blue
environment [6] is left for future research, but as the Blue
environment is an integral part of Blue, we feel that this work
would be an important complement for this study o f the Blue
language. To the extent that the environment was designed to
support fundamental programming concepts, it plays an
implicit role in the current work.

Some o f the questions are modif ied versions of questions
found in [5], and the concepts that our survey considered
were derived f rom both [3] and [4].

Question I:

What are the final values of a and b in the

following code fragment:

var

a, b : String

do

a := "black"

b := "white"

a :- b

...

a) a contains "black", b contains "white"

b) a contains "black", b contains "black"

c) a contains "white", b contains "white"

d) a contains "white", b contains "black"

Question 1 demonstrates the student's understanding of
assignment; specifically, whether assignment is literally
assignment, or just a swap operation (a possibility mentioned
in [6]). The result was as expected - that students understood
the nature o f assignment.

Correct answer to Question 1 : (c)
Responses:

a) 0% b) 8%
c) 84% d) 0%

None: 8%

Question 6:

What is the output of the following code

section when an object is created:

class demo is

internal

var

howami : String

interface

creation is

==

do

howami := "before"

print (howami, " ")

changeme

print (howami)

end creation

routines

changeme is

:= this changes me from before to after...

vat

howami : String

do

howami := "after"

end changeme

end class

Vol 31. No. 4 December 1999 43 :~::::<~i~ SIGCSE Bulletin

Exploration (continued from page 43)

a) before before

b) before after

c) after before

d) after after

Question 6 covers variable scope. In this case, a very
popular answer was wrong. The main reason for an incorrect
perception of scoping would appear to be the encouragement
that students have had to give all variables in a class different
names; their concept of scope is incomplete because they
have yet to encounter problems in this area. This may
represent an area in which teaching has intruded upon the
learning process, by denying students (via sound advice!) the
opportunity to experience problem areas associated with
scoping and namespace.

Correct answer to Question 6: (b)
Responses:

a) 38% b) 52%
c) 0% d) 5%

None: 5%

Question 9."

var

a : NewClass

b : NewClass

do

a := create NewClass ("Learning", 40, "alpha")

b := create NewClass ("Learning", 40, "alpha")

if (a = b) then

print {"equal!")

else

print ("not equal!")

end if

...

What will happen if this code is compiled and run?

a) The code will not compile because the equality

operator is not defined in NewClass

b) a = b will give a runtime error because the

equality operator is not defined in NewClass

c) "equal!" will be printed

d) "not equal!" will be printed

The majority of the students answered this question
correctly, however, a large number of students answered
incorrectly. This suggests that the above mentioned
inconsistency in Blue is a cause of problems amongst some
students.

Correct answer to Question 9: (d)
Responses:

a) 5% b) 14%
c) 19% d) 57%

None: 5%

Question ll:

List any errors, bad style, or good style in the

following blue code:

routine doInput(inputVal : Character, a: Integer,

b: Integer, c: Integer

d: Integer, name : String, address : String)

:: comment for doInput

do

if (inputVal <> 'a') or (inputVal <> 'b') or

(inputVal <> 'c') or (inputVal <> 'd') then

print "Invalid input!In"

end if

if (inputVal : 'a') or (inputVal = 'b') then

processInput(name,a,b,c)

end

if (inputVal = 'c') or (inputVal = 'd') then

processInput(address,a,b,d)

end

end doInput

...

Most Popular Answers:

24: The routine lacks proper comments

23: "if" missing from ends

19: Bad variable names

14: Bad use of white space

13: Brackets needed around string to print

13: The keyword "is" is missing

12: There is no character type in Blue.

i0: The ifs should be replaced by a case

9: No apostrophes around a, b ,c and d

7: Replace ifs with a if - else if sequence

6: First if test is wrong (always true)

Question 9 tests an area of Blue that could be a source of
confusion. Everything is presented as an object to the
students. However, some built-in objects such as strings
behave differently from user-defined objects. Comparing
two string objects that have been initialised to the same string
results in a true, while comparing to user-defined classes
initialised with the same data results in a false.

The students noticed the syntax errors in the code. They
also noticed stylistic problems, mentioning anything that was
slightly different than the way the Blue environment formats
things (eg. they didn't like tab indents as they had used 2-
space indents). However, only a small minority noticed that
the first if test was incorrect, suggesting a superficial
approach to reading code.

SIGCSE Bulletin 44 December 1999 Vol 31. No. 4

Question 13."

is

exponent (a: Integer, b: Integer) -> (result: Integer)

== (i) add your first conm~ent

var

i : Integer

do

-- (2) add your second comment

result := 1

i := 0

loop

exit on (i = b) -- (3) add your third comment

result := result * a

i : = i + l

end loop

end exponent

...

The above function takes two numbers, and returns

the value of the first number raised to the power

of the second. Write in what you think are

appropriate comments at the numbered places.

The first routine comment was almost unanimously a
rewording o f the question. However, only a few students
mentioned that b must be non-negative. For the second
comment just under ha l f the students said "initialise
variables", or "set result to 1" or similar. The next common
option (by 6 students) was along the lines o f "compute
fimction", or "execute routine". There was a range o f
answers for the third comments, many o f which were
incorrect, and most o f which were useless. "Exit when
finished" was popular, as was "multiply a by itself b t imes"
(actually incorrect), and "multiply result by a, b times".
Overall, the comments were superficial ones, reiterating
what the code did at a low level. Commenting on the bounds
of variables was rare, as was an explanation as to why the
code worked.

Conclusion

The overall success or failure of Blue cannot be determined
from a small study such as this. However, some interesting
directions for further research have been identified. The
students surveyed on the whole have a reasonable grasp of
programming, at a level that would be expected after a
semester and a half o f programming. So, Blue does not
appear to have had a negative impact on the learning of the
students.

Students are, however, having more problems with the
higher-level object-oriented areas as opposed to syntax and
style. Since Blue is designed to enhance the teaching o f
programming in an object-oriented paradigm this may be a
cause of concern. A shift away from the stereotyped novice
obsession with low-level, syntactic issues is not evident.

It must be kept in mind that this research occurred in the

first year that object-oriented programming was taught at
Basser, and a significant shortage o f resources hindered
delivery o f the program; this has been thoroughly addressed
in the current course. Thus, the survey was conducted prior
to a period of response and evolution o f the course.

This has also been the first year of teaching using the
Prob lem-Based Learning (PBL) approach, with the
exception of a trial conducted in the previous year. It raises a
question as to the source o f problems relating to the
development of high-level conceptualisations. A principal
motivation o f PBL is to address exactly such issues,
something that was generally supported in its trial. There is
some basis for the investigation o f an interaction effect
between the use o f Blue and PBL in further research.
Problem-Based Learning encourages student independence,
and requires a degree o f student ownership of the problem
domain in order to be successful. Thus, students need a rich
set o f resources in order to explore the problem domain.
While prescribed resources work well for narrowly defined,
teacher-centred tasks, PBL feeds on diversity and may
require a larger set o f resource material. Java, for example, is
st imulating a mushrooming set o f resources readily
accessible via the Internet. The trade-off is that it may
possibly be criticised as less appropriate as a "teaching"
language, an area in which Blue was designed to excel. This
paper does not investigate nor reveal an interaction effect
between Blue and PBL. It does, however, suggest the
possibility of such. It also, therefore, raises the interesting
prospect that two pedagogical ly sound approaches to
education may be mutually diluted in their effectiveness in
the presence of each other.

Further study is required to explore the impact o f the
interaction of these new components o f the first year
programme on student learning. The study has produced
some potentially productive avenues for ongoing research.

Addendum
The first three authors completed this research as a very
small part o f their honours program in computer science. The
last author supervised a number of such projects, all o f which
- although designated as coursework - clearly required
students to engage in independent research. The reason that
only some o f the results are presented here (apart from page
limitations) is simply to showcase the work of these students
in sufficient detail to make a number o f points. The first is
that such experience is o f benefit to the students involved.
Educational research is typically o f a radically different
nature to the research undertaken during the honours year in
computer science, complementing it and building a more
diverse research skills profile. Additionally, it presents a
stimulus to reflect on their own learning over the course of
their degree; a number of students commented that this was
the first time that had been encouraged to actively do so. The
learning benefits o f such reflection are well recognised. It
also offers a sense of partnership with the department to
students who have earned a special place in the
undergraduate population. As well as benefi ts to the

Vol 31. No. 4 December 1999 45 SIGCSE Bulletin

Exploration (continued from page 45)

students, there are potential benefits to the department.
While methodological issues may be raised about the work,
it provides a great opportunity for a pilot study to identify
areas in need of further research.

The ability of senior undergraduates to offer such
contributions to improvements in teaching is a valuable
resource that is characteristically under-utilised. Honours
students taking this unit on CS education have been found to
be enthusiastic, insightful, lateral-thinkers, and free of the
inevitable biases that staff may develop towards education
and their teaching. Some of the contributions of these
students may stimulate new teaching ideas to the benefit of
staff. In addition, as such students are often involved in
casual teaching work within the department, the
improvement in their awareness of teaching and learning
issues may transfer to improvement of teaching within the
department. Finally, as well as benefits to the honours
students and to the school, there are potential benefits for
computer science education as a whole, albeit somewhat
more remote. The presence of good honours students in an
advanced unit on CS education helps promote it as a valid
sub-discipline of computer science, in terms of their own
perceptions and possibly other members of staff. Ultimately,
it may prove to be the first step in establishing computer
science education as a future research direction within the
department.

References

[1] K611ing, M., Koch, B., & Rosenberg, J. (1995). Requirements
for First Year Object-Oriented Teaching Language, SIGCSE
Bulletin, Vol 27, No. 1 Mar. 1995. pp. 173-177

[2] K611ing, M., & Rosenberg, J. (1996). Blue -A Language for
Teaching Object-Oriented Programming, Proceedings of the
27th SIGCSE Technical Symposium on Computer Science
Education, Mar. 1996, pp. 190-194

[3] Pane, J.E, & Myers, B.A. Usability Issues in the Design of
Novice Programming Systems, School of Computer Science
Technical Report, Carnegie Mellon Unversitty, CMU-CS-96-
132

[4] Basser Department of Computer Science (1997). Computer
Science 101 Workbook: 1997, University of Sydney

[5] Basser Department of Computer Science (1997). Computer
Science 101 Supplementary Workbook: 1997, University of
Sydney

[6] K611ing, M., & Rosenberg, J. (1996). An Object-Oriented
Program Development Environment for the First
Programming Course, Proceedings of the 27th SIGCSE
Technical Symposium on Computer Science Education, Mar.
1996, pp. 83-87

[7] Greening, T., Kay, J., Kingston, J.H., & Crawford, K. (1996).
Problem-Based Learning of First-Year Computer Science,
Proceedings of the First Australasian Conference on
Computer Science Education, 1996, pp. 13-18.

[8] Greening, T., Kay, J., Kingston, J.H., & Crawford, K. (1997).
Results of a PBL Trial in First-Year Computer Science,
Proceedings of the Second Australasian Conference on
Computer Science Education, 1997, pp. 201-206.

Computers in Mathematics and Science Teaching

Special issue devoted to

Computer Science Education

Editors are Marian Pctre and Harriet Taylor

For more information see

<http://www.aace.org/pubs/j cmst/csercall.htm>

Computer Science Education Journal

For those who teach computer science and
research computer science education

Editor-in-Chief: Keith Barker, University of Connecticut

Swets & Zeitlinger Publishers

For more information see

<http://www.swets.nl/sps/j ournals/cse 1 .html>

SIGCSE Bulletin 46 December 1999 Vol 31. No. 4

