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ABSTRACT
We describe a study conducted at a large public university
campus in the United States which shows the efficacy of net-
work log information for digital contact tracing and predic-
tion of COVID-19 cases. Over the period of January 18, 2021
to May 7, 2021, more than 216 million client-access-point
associations were logged across more than 11,000 wireless
access points (APs). The association information was used to
find potential contacts for approximately 30,000 individuals.
Contacts are determined using an AP colocation algorithm,
which supposes contact when two individuals connect to the
sameWiFi AP at approximately the same time. The approach
was validated with a truth set of 350 positive COVID-19 cases
inferred from the network log data by observing associations
with APs in isolation residence halls reserved for individuals
with a confirmed (clinical) positive COVID-19 test result.
The network log data and AP-colocation have a predictive
value of greater than 10%; more precisely, the contacts of
an individual with a confirmed positive COVID-19 test have
greater than a 10% chance of testing positive in the follow-
ing 7 days (compared with a 0.79% chance when chosen at
random, a relative risk ratio of 12.6). Moreover, a cumulative
exposure score is computed to account for exposure to mul-
tiple individuals that test positive. Over the duration of the
study, the cumulative exposure score predicts positive cases
with a true positive rate of 16.5% and missed detection rate
of 79% at a specified operating point.
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Figure 1: Network-based digital contact tracing. Two
WiFi APs (denoted X and Y) are shown. Two users (de-
noted A and B) connect simultaneously (i.e, colocate)
to access point X, supposing epidemiological contact.

1 INTRODUCTION
Digital contact tracing – the use of digital devices such as
mobile phones to establish potential epidemiological con-
tacts – has received significant attention as a potential tool
in the COVID-19 pandemic. Most proposed digital contact
tracing approaches require installation of a mobile app or
operating system level access which can be significant hur-
dles in countries where high public compliance is expected
[29, 37] and a fatal flaw elsewhere [14, 29].
Conversely, network-side approaches to digital contact

tracing do not require installation of a mobile application,
operating system customization (i.e, Google and Apple’s ex-
posure notification system[13]), or any information collected
on a client device. Instead, they rely on network-side infor-
mation such as connection logs to trace potential contacts.
As network-side approaches can be enabled by network op-
erators without burden on end-users, they are attractive for
large-scale, automated contact tracing.

Access point (AP) colocation is the co-occurrence of users
on the same WiFi access point (AP) at the same time. As
WiFi APs have limited range, AP-colocation is a proxy for
physical colocation, which supposes epidemiological con-
tact. Like physical colocation, prolonged AP-colocation with
an infected individual may correlate with increased risk of
contracting the infectious disease. To infer contacts and pre-
dict future infections, we present an AP-colocation algorithm.
The algorithm generates a confidence score between two
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individuals that increases as the duration and number of AP-
colocations increase. More precisely, with an input corpus
of connection logs, the algorithm outputs a time-varying
weighted contact graph. The nodes in the graph correspond
to individuals (or proxies for individuals, such as digital de-
vices), and edges in the graph represent contacts between
individuals. The weights of the edges are the confidence
scores, which depend on the number of times two individuals
colocate on a single AP and the number of other individuals
connected to that AP. The approach also assigns a cumula-
tive exposure score to individuals, which increases as multiple
neighboring nodes in the contact graph test positive.

While approaches for digital contact tracing based on colo-
cation have been proposed in the past [25, 43, 44], the pri-
mary contribution of this paper is a study of AP-colocation
for digital contact tracing of COVID-19 at a large public uni-
versity campus in the United States. The campus wireless
network consists of more than 11,000 WiFi APs covering
approximately one square mile and under normal circum-
stances serves around 50,000 students, employees, and visi-
tors on a typical day. The APs are located primarily inside
residence halls, classroom buildings, libraries, dining halls,
research and administrative buildings, shared outdoor spaces,
and other spaces typical of a large university campus. As
students and employees move throughout the campus, their
mobile devices connect and disconnect from the APs. The
APs log connections and disconnections, creating a record of
the approximate location of the user and others in their prox-
imity. We apply the AP-colocation algorithm to a dataset of
over 216 million WiFi association records collected over the
duration of the Spring 2021 semester. The resulting contact
graph exhibits immense scale, and we report on its statistics.

To validate our approach, a truth set of positive (350) and
negative (6,101) COVID-19 cases is inferred from the WiFi
association dataset. Positive cases are inferred by observing
client-AP associations in dormitories reserved for COVID-19
isolation of individuals with a confirmed clinical positive.
Likewise, negative cases are inferred from associations in
residence halls not reserved for isolation, which require a
twice-a-week negative test result. The ground truth dataset
enables validation of the utility of the contact graph and the
exposure scores for prediction of positive COVID-19 cases.

Results indicate that the use of network log data and AP-
colocation has a predictive value of greater than 10% over
the course of the study (above 16% under some parame-
ter choices resulting in limited scale). More precisely, when
tuned to return 2 contacts per positive case (on average), the
returned contacts have greater than 10% chance of having a
confirmed positive COVID-19 result in the following 7 days.
This is contrasted with the 0.79% chance of a positive result
in the next 7-days when a contact is selected at random. To
exploit when an individual is exposed to multiple positive

cases, an exposure score is described and computed for each
individual in the study. For particular algorithm parameters,
the cumulative exposure score predicts positive cases with a
true positive rate of 16.5% and missed detection rate of 79%.
While the approach shows promise in settings such as a

university or large corporate campus, there are significant
shortcomings to using WiFi log data for digital contact trac-
ing. First, individuals must carry on their person a digital
device that associates with the network. Estimation of the
percentage of individuals on the campus that do not asso-
ciate with the enterprise WiFi was outside the scope of this
study. Second, it is possible and likely common for individ-
uals that connect to the same AP to never come within a
distance that supposes disease transmission. As such, there
are inevitable false positives (and missed detections), and the
approach is best suited to establishing contacts associated
with repeated and long term interaction between individu-
als. As with any digital contact tracing, there are significant
privacy considerations that must be addressed, and potential
privacy risk must be contrasted with the benefit of such a
system. We discuss these trade-offs and note this study is
meant to be a starting point for further conversation. In light
of these limitations, while the study suggests that digital con-
tact tracing using network-side information can be effective,
we recommend that it augment traditional contact tracing.

Lastly, although this study was conducted at a large uni-
versity campus, the ideas and techniques can be extrapolated
to other settings in which network log data is collected. In
particular, both cellular network operators and entities in
the digital advertising ecosystem collect the information re-
quired to implement network-side digital contact tracing in
some form. We refer the reader to [25].
In summary, this paper proposes an approach for digital

contact tracing based on network log data and describes a
study conducted at a large public university campus in the
United States. To the best of our knowledge, this is the first
study in which ground truth COVID-19 cases are used for
validation of network-side contact tracing.

2 DATA
Data was collected at a large university campus in the United
States during the Spring 2021 semester from January 18th
2021 through May 7th, 2021. The data was collected from
11,964 physical Wi-Fi APs and 16 Aruba Networks enterprise
network controllers. Automated log files containing associ-
ation and disassociation event notifications were collected
from the network controllers on a nightly basis. On average,
a single day’s log files contain 2,390,087 association events
and 1,252,451 disassociation events during February 2021
(the first full month of the study in which students were
present on campus and classes were in session).
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Our study relies on the association records, which take
the form (anonymized MAC address 𝑖 , AP ID 𝑘 , timestamp 𝑡 ),
approximately localizing a user’s device at a specific time.
Associations are only logged if the user also successfully
authenticates with the network. This excludes records corre-
sponding to randomized MAC addresses (i.e, those present
in datasets collected from sniffing WiFi traffic such as probe
requests outside an enterprise network). For security and
auditing purposes, the network also records logs of authen-
tication events. A sanitized dataset comprising 1-to-many
mappings of securely hashed user IDs to MAC addresses was
collected. Using the authentication dataset, we are able to
group devices owned by the same user, which is crucial to
interpreting our results. The anonymized mapping was used
to convert the association records to the form (anonymized
user ID 𝑖 , AP ID 𝑘 , timestamp 𝑡 ).
One limitation of the logging of the Aruba Network con-

trollers is that approximately half of all recorded WiFi ses-
sions endedwithout an explicit disassociationmessage, likely
due to client devices roaming out of the AP’s range. The ab-
sence of a clear session duration makes it challenging to
implement contact tracing based on a precise calculation
of the duration of AP colocation. Instead, in a method that
also facilitates faster calculation, we discretize time into 15-
minute epochs and record instances of (anonymized user ID
𝑖 , AP ID 𝑘 , epoch timestamp 𝑡 ). Repeated associations during
an epoch are merged into a single record, and disassociation
events are disregarded for this study.
Despite the scale and complexity, the data pipeline was

remarkably reliable. Nonetheless, some level of attrition in
collection was experienced, as software issues gradually pre-
vented a subset of APs from reporting log messages. On three
separate occasions, the APs from entire buildings were re-
moved from our collection pool permanently as summarized
in the table below. Affected buildings included dormitories,
teaching spaces, and dining halls, but none of the isolation
dorms were impacted. Visibility into 66% of the campus was
retained through the end of the Spring semester.

Date APs Reporting Buildings Included
January 18, 2021 11,964 (100%) 207 (100%)
March 24, 2021 10,011 (84%) 174 (84%)
April 9, 2021 8,066 (67%) 170 (82%)
April 25, 2021 7,927 (66%) 164 (79%)

Table 1: APs and buildings during the study duration.

2.1 Truth Set
A truth set of positive and negative COVID-19 cases of resi-
dents of on-campus housing was inferred from the network

traffic. In the Spring 2021 semester, on-campus students were
required to take twice-weekly rapid saliva-based COVID-19
tests. Students who tested positive (and were residents of
university housing) were required to move into one of five
designated isolation dormitories. Since all campus dormito-
ries including the isolation dorms are covered by campus
WiFi infrastructure, this allowed inference of positive cases
based on extended and repeated observation of MAC address
association to WiFi APs in the isolation dormitories.

Likewise, an assumed negative was inferred by extended
observation of a MAC address in campus residence halls
not reserved for isolation. Since students were tested twice
weekly and positive cases were quickly moved to the iso-
lation dormitories, an individual in a residence hall not re-
served for isolation was an assumed negative. Full details of
the approach are included in the Appendix.

Ultimately, the inferred ground truth data-set consisted of
anonymized user IDs, an indicator if the user had an inferred
positive test, and if so, the date and time at which they were
observed to connect to an AP in the isolation dorm.

3 METHODOLOGY
In this section we discuss the methodology used to predict
potential exposure to infected individuals. The approach
requires first constructing a contact graph followed by using
the graph to predict contacts and ultimately new positive
cases.

3.1 Contact Graph
To analyze and predict future cases from the WiFi associa-
tion data, we construct a weighted, undirected, time-varying
graph 𝐺 (𝑡). Following standard notation, a graph (or net-
work) consists of a set of nodes 𝑉 and set of edges 𝐸. An
edge 𝑒 (𝑡) ∈ 𝐸 is a two element subset of the node set with
an associated weight, 𝑒 (𝑡) = (𝑖, 𝑗,𝑤) ∈ 𝑉 ×𝑉 × R.
In an epidemiological contact graph, nodes correspond

to an individuals (or surrogate for an individual, such as
device identifier or a MAC address). An edge represents a
potential epidemiological contact between two individuals.
To control precision and recall, confidence scores – denoted
𝑤𝑖, 𝑗 – are assigned to edges. Larger weights represent a high
potential for epidemiological exposure and higher likelihood
for disease transmission. In the presentation of the algorithm
we assume time has been discretized into epochs 𝑡 = 1, 2, . . . .
The algorithm is described as follows.

Algorithm 1 takes client-AP associations as input, and
computes a weighted (undirected) graph, similar to the ap-
proach proposed in [25]. The algorithm has two parameters:
an optional scaling parameter 𝛼 ≥ 0, and a look-back du-
ration 𝜏𝑔. Colocation between IDs prior to time 𝑡 − 𝜏𝑔 are
excluded from the contact graph 𝐺 (𝑡). 𝜏𝑔 is chosen to be
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Algorithm 1 AP Colocation Contact Graph
1: parameters: look-back duration 𝜏𝑔 > 0, scaling param-

eter 𝛼 ≥ 0 (default 𝜏𝑔 = 7 days, 𝛼 = 1)
2: input: AP associations: (device/user ID 𝑖 , AP ID 𝑘 , epoch

𝑡 ′ ≤ 𝑡 )
3: 𝑉 = set of unique device/user IDs
4: for each AP 𝑘 , each epoch 𝑡 ′ ∈ [𝑡 − 𝜏𝑔, 𝑡]
5: 𝑁𝑘,𝑡 ′ = number of IDs on AP 𝑘 on epoch 𝑡 ′

6: for all pairs of IDs (𝑖, 𝑗) on AP 𝑘

7: 𝑤𝑖, 𝑗,𝑘,𝑡 ′ =
1

𝑁𝛼
𝑘,𝑡′

8: 𝑤𝑖, 𝑗 =
∑

𝑘,𝑡 ′ 𝑤𝑖, 𝑗,𝑘,𝑡 ′ for all (𝑖, 𝑗)
9: 𝐸 = {(𝑖, 𝑗,𝑤𝑖, 𝑗 )}
10: return 𝐺 (𝑡) = (𝑉 , 𝐸)

longer than the incubation period for the disease, and ex-
cludes contacts that happened sufficiently far into the past.
The parameter 𝛼 captures how the confidence score scales
with number of devices connected to a common AP. If 𝛼 = 1,
the score is inversely proportional with the number of de-
vices on the AP, while when 𝛼 = 0, the edge weight between
two users is the count of epochs and APs for which the users
colocated. A large value of 𝛼 dilutes the effect of high volume
APs, such as those found in dining halls.

Alg. 1 assumes that time has been discretized into epochs.
The algorithm proceeds as follows: for each epoch 𝑡 ′ and
access point 𝑘 , the algorithm computes a corresponding
weight between all IDs colocated on the AP. Two users colo-
cate on an AP if they both associate during a single epoch.
Weights are summed over valid epochs and APs to create
edge weights. The pairs of users that colocate on at least one
epoch and their associated weights define the (time varying)
graph 𝐺 (𝑡).

3.2 Predicting Positive Cases
After construction of the contact graph, positive cases can be
predicted. If user 𝑖 has a (clinical) positive result, all neighbors
of user 𝑖 (at the time of the positive result) with an edge
weight above 𝛾 are returned as predicted positives.

When a disease is highly prevalent in a population, multi-
ple contacts of an individual may test positive, increasing the
chances of transmission to that individual. In general, this is
not captured by traditional contact tracing, as the contacts
of each positive case are identified independently.
To capture the potential predictive power of knowledge

that multiple contacts have tested positive, we introduce the
notion of an exposure score. The exposure score is cumula-
tive: for a single individual, the confidence scores associated
with all positive contacts are summed. More precisely, let
𝑡 𝑗 be the time at which user 𝑗 tests positive. The exposure

score for user 𝑖 is defined as

𝑠𝑖 (𝑡) =
∑︁

𝑗 ∈𝑁𝑝 :𝑡 ∈[𝑡 𝑗 ,𝑡 𝑗+𝜏𝑠 ]
𝑤𝑖, 𝑗 (𝑡 𝑗 )

where 𝑁𝑝 is the set of nodes that test positive during the
study. Since𝑤𝑖, 𝑗 = 0 for non-neighboring nodes, the sum is
taken over neighbors of node 𝑖 that have a clinical positive
test result.

4 RESULTS AND VALIDATION
4.1 AP-Colocation Graph
The methodology of Sec. 3 was applied to a campus-wide
dataset of more than 216 million client-AP associations over
the duration of the study. As the graph is time-varying, we
first report on the characteristics of the contact graph with
𝜏𝑔 = 7 during the time period February 1, 2021 through
February 8, 2021. We note that since a mapping between a
MAC address and a user was only available for a subset of
this data, the campus-wide contact graph was generated such
that each node corresponds to a MAC address as opposed to
an individual.

Campus-wide contact graph count
client-AP associations 16,124,734
nodes, |𝑉 (𝑡) | 47,415
edge count, |𝐸 (𝑡) | 2,242,934
average degree (𝑤𝑖, 𝑗 > 0) 94.6

Table 2: Statistics of the campus-wide contact graph
𝐺 (𝑡), 𝜏𝑔 = 7 days, 𝑡 = February 8, 2021.

4.2 Validation
While themethodologywas applied to a campus-wide dataset,
only a subset of these associations correspond to individuals
for which ground truth data was available. The subset of data
corresponding to these individuals was used to create a la-
beled contact graph. The labeled contact graph𝐺 consists of
6, 451 nodes (individuals), of which 350 have a ground truth
positive result during the course of the study. The remaining
6, 101 individuals are assumed to be negative as described
in Sec. 2 and the Appendix, for a positivity rate of 5.7% over
the duration of the study.

For each individual that tests positive in the labeled dataset,
the graph𝐺 (𝑡𝑖 )was used to predict contacts, where 𝑡𝑖 denotes
the time at which the individual tests positive. A predicted
positive contact is a neighbor of 𝑖 with a confidence score
above a threshold 𝛾 ; i.e, a predicted positive contact is a node
𝑗 such that𝑤𝑖, 𝑗 (𝑡𝑖 ) ≥ 𝛾 . If such a neighbor tests positive in
the following 𝜏𝑝 ∈ {7, 28} days, a true positive (TP) event is
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recorded. If such a neighbor does not test positive, a false
positive (FP) event is recorded.
Let 𝑃 denote the set of individuals with a ground truth

positive over the course of the study and𝑉 (𝑡) denote the set
of individuals in the study at time 𝑡 (an individual is excluded
from the study after testing positive). The positive predictive
value (PPV) is defined as

PPV =
TP

TP + FP (1)

=

∑
𝑖∈𝑃

∑
𝑗 ∈𝑃 I{𝑤𝑖, 𝑗 (𝑡𝑖 ) ≥ 𝛾 ∩ 𝑡𝑖 < 𝑡 𝑗 ≤ 𝑡𝑖 + 𝜏𝑝 }∑

𝑖∈𝑃
∑

𝑗 ∈𝑉 (𝑡𝑖 ) I{𝑤𝑖, 𝑗 (𝑡𝑖 ) ≥ 𝛾} .

where TP and FP represent the count of false positives and
true positives over the duration of the study, and I{·} is the
indicator function.

Validation Set count
individuals (nodes) at start, |𝑉 (0) | 6, 451
individuals (nodes) at end, |𝑉 (𝑡𝑒 ) | 6, 101
positive cases (nodes), |𝑃 | 350

Table 3: Statistics of the validation set.

For comparison, the positive predictive value of contacts
chosen at random was calculated. Again let 𝑖 and 𝑗 index the
individuals (nodes), and 𝑡𝑖 , 𝑡 𝑗 denote the respective time at
which the individual tests positive, then

PPVrand =
1

|𝑃 |
∑︁
𝑖∈𝑃

∑
𝑗 ∈𝑃 I{𝑡𝑖 < 𝑡 𝑗 ≤ 𝑡𝑖 + 𝜏𝑝 }

|𝑉 (𝑡𝑖 ) |
.

parameters (days) PPV scale
Alg. 1 𝜏𝑝 = 7, 𝜏𝑔 = 7 5.0% 5.2
Alg. 1 𝜏𝑝 = 7, 𝜏𝑔 = 7 10.0% 1.7
Alg. 1 𝜏𝑝 = 7, 𝜏𝑔 = 7 12.5% 0.9
Alg. 1 𝜏𝑝 = 28, 𝜏𝑔 = 7 5.0% 8.4
Alg. 1 𝜏𝑝 = 28, 𝜏𝑔 = 7 10.0% 2.1
Alg. 1 𝜏𝑝 = 28, 𝜏𝑔 = 7 12.5% 1.1
PPVrand 𝜏𝑝 = 7 0.79% NA
PPVrand 𝜏𝑝 = 28 2.12% NA

Table 4: Validation results at various operating points,
compared with predicted contacts chosen at random.

Scale is defined as the average number of contacts that are
returned for a given contact score threshold. More specifi-
cally,

scale = TP + FP
|𝑃 | =

∑
𝑖∈𝑃

∑
𝑗 ∈𝑉 (𝑡𝑖 ) I{𝑤𝑖, 𝑗 (𝑡𝑖 ) ≥ 𝛾}

|𝑃 | .

Scale and PPV are shown in Fig. 2 and Fig. 3 for the fol-
lowing parameter settings: 𝛼 = 1, 𝛾 ∈ [0, 20], 𝜏𝑔 ∈ {7, 28}
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Figure 2: Percent of predicted contacts that test pos-
itive in the 𝜏𝑝-days (𝜏𝑝 ∈ {7, 28}) after a positive case
as a function of the threshold 𝛾 , denoted PPV. Contact
graph with 𝜏𝑔 ∈ {7, 28}. 𝛼 = 1.
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Figure 3: Scale (average number of predicted contacts)
vs. positive predictive value for 𝜏𝑝 ∈ {7, 28} and 𝜏𝑔 ∈
{7, 28}. 𝛼 = 1.

days, 𝜏𝑝 ∈ {7, 28} days. Additional results for a variety of
parameter choices are shown in Fig. 7 through Fig. 9.

Fig. 10 show analysis of the sensitivity to participation in
the study. In particular, of the 6, 451 individuals, 25% and
50% were excluded at random, and positive predictive value
and scale analysis was repeated. This resulted in a study size
of 4, 840 users and 256 positives for 75% participation, and
3, 226 users and 159 for 50% participation (contrasted with
6, 454 and 350 for full participation). The positive predictive
value does not change significantly since both the numer-
ator and denominator of (1) are reduced by approximately
the same amount. The scale (average returned contacts per
positive) decreases proportional to the number of devices in
the study.

Fig. 4 shows a histogram of the number of plausible trans-
missions, denoted 𝑅. A plausible transmission is the number
of contacts of a positive case (with edge weight𝑤 ≥ 𝛾 ) that
test positive in the following 𝜏𝑝 days. More precisely, let 𝑖
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Figure 4: Histogram showing the number of plausible
transmissions from each positive case. The 𝑥-axis in-
dicates number of contacts with an edge weight𝑤 ≥ 𝛾

and a confirmed positive in the following 𝜏𝑝 = 7 days,
and the 𝑦-axis shows the count of occurrences out of
the 350 positive cases. 𝜏𝑔 = 7 and 𝛼 = 1.

index a user with a confirmed positive at time 𝑡𝑖 . Then the
plausible transmissions for case 𝑖 is given as

𝑅𝑖 =
∑︁
𝑗 ∈𝑃
I{𝑤𝑖, 𝑗 (𝑡𝑖 ) ≥ 𝛾 ∩ 𝑡𝑖 < 𝑡 𝑗 ≤ 𝑡𝑖 + 𝜏𝑝 }.

Fig. 4 shows histogram of 𝑅𝑖 over the 350 positive cases.
In addition to the validation of the confidence score pro-

duced by the graph, the exposure score as a predictor of
a future positive COVID-19 test was validated. The expo-
sure score aims to capture the potential predictive power
of knowledge that multiple contacts of an individual have
tested positive. The exposure score 𝑠𝑖 (𝑡) of ten individuals
(chosen randomly) over the course of the study are shown
in Fig. 5. The left figure in Fig. 5 shows the score correspond-
ing to individuals that test positive. The date of the positive
test is shown on the plot. In all cases, the exposure score
is elevated prior to positive result. The right figure shows
example traces of individuals that do not test positive. Note
that the y-axis is scaled for each subplot.
The cumulative exposure score was also used to predict

positive cases. For each individual, a positive prediction was
declared at the first time the exposure score exceeded a
threshold𝛾 . If the time of the prediction was after the individ-
ual had a ground truth positive, the individual was excluded.
If the time of the prediction preceded a ground truth positive
test by less than 𝜏𝑝 days, a true positive (TP) was recorded; if
the time of the prediction preceded a ground truth positive
test by more than 𝜏𝑝 days, or the individual did not have a
ground truth positive over the course of the study, a false
positive (FP) was recorded. Likewise, if the confidence score

of the individual was below 𝛾 for the duration of the study
and the individual did not test positive, a true negative (TN)
was recorded. If the confidence score of the individual was
below the threshold for the duration of the study and the
individual tested positive, a false negative (FN) was recorded.
The true positive rate is:

true positive rate = TP
TP + FP .

Likewise, the missed detection rate is the percentage of total
positive cases that are not predicted

missed detection rate = FN
TP + FN .

Fig. 6 show the true positive rate and missed detection rate
for a number of values of 𝛾 over the duration of the study.
Note that 𝛾 can be used to select an appropriate operating
point: the approach can operate with a true positive rate
of 16.5% and missed detection rate of less than 80%, or, for
example, a missed detection rate below 20% and true positive
rate above 5%.

Fig. 11 and Fig. 12 show the true positive rate, missed de-
tection rate, and risk ratio when positive cases are predicted
by an exposure score that exceeds a threshold 𝛾 for a variety
of algorithm parameters, as a function of time during the
study. Note that Fig. 11 and Fig. 12 show results on a per
individual basis. In other words, the figures show the percent
of the predicted individuals that later test positive. This is in
contrast to Fig. 2 and Fig. 3, which show the average number
of contacts of individuals who test positive.

For reference, Fig. 13 show the count of new positive cases
in the 𝜏𝑝 ∈ {7, 28} days following the date on the x-axis.

Lastly, we highlight the power of the dataset with a table
that shows potential ‘high-spread’ events. Table 5 shows the
top (AP, hour) pairs when sorted by the highest percentage
of positive users in the following 14 days. We stress that the
table does not imply that transmission occurred during these
events.

5 DISCUSSION
The results indicate that the use of network log data and
the AP-colocation algorithm has a positive predictive value
of greater than 10% (and above 16% under some parameter
choices resulting in limited scale). More specifically, at a
scale of 1.7 contacts per positive case (on average), those
returned contacts have greater than a 10% chance of having
a clinical positive COVID-19 result in the following 7 days. At
a higher scale, of 5.2 predicted contacts per positive case, the
predicted contacts have a 5.0% chance of a clinical positive in
the following 7 days (see Table 4 and Fig. 3). This is contrasted
with the 0.79% chance of a positive result in the next 7-days
when contacts are selected at random from the ground truth
dataset. Comparing the 10% predictive value of Alg. 1 to
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Figure 5: Exposure scores 𝑠𝑖 (𝑡) of five users that test positive (Figure a) and negative (Figure b) during the course
of the study. The date of the positive test result is indicated by an ‘x’. Note the scale of the y-axis is different for
each sub-plot. 𝜏𝑠 = 7 days.

AP AP location date and time total users positive users positive users
𝜏𝑝 = 7 days 𝜏𝑝 = 14 days

A residence hall 2021-02-05, 20:00 - 21:00 14 8 10
B residence hall 2021-02-10, 02:00 - 03:00 10 5 6
C residence hall 2021-02-11, 12:00 - 13:00 13 7 7
D residence hall 2021-02-11, 09:00 - 10:00 12 4 6
E residence hall 2021-02-10, 13:00 - 14:00 11 3 5
F dining hall 2021-02-02, 19:00 - 20:00 499 17 25
G residence hall 2021-02-04, 19:00 - 20:00 165 6 20
H dining hall 2021-02-02, 19:00 - 20:00 361 12 20
I residence hall 2021-02-07, 20:00 - 21:00 69 1 13
J residence hall 2021-02-01, 19:00 - 20:00 53 8 12

Table 5: Potential high-spread events, February 2021. Rows A-E, top (AP, hour) pairs with 10 or more users, sorted
by highest percentage of users that test positive in the following 𝜏𝑝 = 14 days. Rows F-J, top (AP, hour) sorted by
largest number of positive users in following 𝜏𝑝 = 14 days. Each AP is only listed once.

contacts chosen at random, the WiFi colocation contacts
have a more than 12-fold increase in chances of a clinical
positive test results in the following 7 days.
To account for exposure to multiple individuals that test

positive, the exposure score can be employed, providing a
stronger predictive power. Note that the false positive rate
and false negative rates associated with a fixed threshold
vary as the prevalence of the disease in the population varies.
Depending on the overall prevalence of the disease, users
with an exposure score above a threshold exhibit a more than
five-fold increase in odds of testing positive for COVID-19
over those with a score below the threshold (see Fig. 11).

6 ETHICAL CONSIDERATIONS
With the collection of any network data there are natural
privacy concerns, and there must be effort to balance the
tradeoffs between these concerns and any potential benefit

of such a system to the community. During a global pan-
demic, the potential benefits of better contact tracing are
extremely high. Positive cases of reportable medical diseases
(such as COVID-19) must be reported to public health of-
ficials, who have broad authority to collect data related to
contact tracing, whether those records are provided through
oral history or electronically. Outside a pandemic, it is un-
likely the risk/benefit to such a system is viable. During a
pandemic, the specific risk/benefit depends on the prevalence
of the disease, the severity of the disease, and the efficacy of
other contact tracing approaches. All factors must be consid-
ered to establish if such a system is within an acceptable risk
tolerance as it pertains to privacy, and we reference work
that focuses on the privacy aspects of digital contact tracing
[2, 5, 17–19, 21, 31, 36, 39–41].
Graph datasets are attractive from a privacy perspective

as their edges capture pair-wise relationships between in-
dividuals, and do not disclose the location (i.e, the AP or
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Figure 6: Receiver operating characteristic curve for
the exposure score 𝑠𝑖 (𝑡) over the duration of the study.
The true positive rate plotted againstmissed the detec-
tion rate for values of 𝛾 ∈ [1, 200], for 𝜏𝑝 = {7, 28} days.
𝜏𝑔 = 7, 𝜏𝑠 = 7.

physical location). Even if a contact graph is constructed
from information that may be considered sensitive (i.e, phys-
ical location), it can be stored and analyzed without any of
the sensitive information. Specific to our study, additional
measures were taken to mitigate any disclosure of sensitive
information. All identifiers – MAC addresses, authentication
information, AP identifiers – were anonymized via a one
way hash before analysis was completed, and the authors of
the study never had access to plain text user identifiers.
Lastly, this work has been determined by the Minimal

Risk IRB at the University of Wisconsin as not research in-
volving human subjects as defined by the United States De-
partment of Health and Human Services (DHHS) and Unites
States Food and Drug Administration (FDA). We reference
the Menlo Report [10] as it establishes ethical principles and
provides context for these principles in computing and com-
munication research. The Menlo Report provides guidance
with respect to Institutional Review Board (IRB) and self
evaluation.

7 RELATEDWORK
Digital contact tracing has received a surge of attention since
the start of the COVID-19 pandemic. Many of the initial ap-
proaches required installation of a mobile application for
data collection and rely on location services (i.e, GPS) or
proximity sensing using technologies such as Bluetooth low
energy (BLE). Similar to app-based approaches, operating
system level approaches use the operating system (OS) to

collect data after a user ‘opts-in’, but in both cases, data is col-
lected on the client device. Notably, in a joint venture, Google
and Apple developed and released contact tracing technol-
ogy known as GAEN (Google/Apple Exposure Notification)
[13], which relies on a BLE protocol to sense surrounding de-
vices. Both app-based and OS based technologies have been
adopted by governments with varying degrees of success.
In some instances, where state level governments highly
recommended contact tracing applications, installation was
noted to be under 3% of adults [14]. Furthermore, while the
relatively short range of Bluetooth would initially seem an
advantage in identifying close contacts, growing evidence
of aerosol transmission of SARS-CoV-2 at distances of up to
60 feet [6], which more closely matches indoor WiFi trans-
mission range, suggests that tools based on WiFi would be a
useful addition to the contact tracing tool set.
In contrast to approaches based on client-side data col-

lection, network-side contact tracing, such as the approach
proposed in this paper, can be implemented without the in-
stallation of an app. Closely related to the work in this paper
is that of [44, 49]. In [44], the authors propose use of WiFi
network association logs gathered by enterprise networks to
create a graph data structure which can be used for contact
tracing. The approach (including Alg. 1 of [44]) is similar
to proposed co-location graph algorithms for other applica-
tions, including [12, 24]. The authors of [44] implement their
approach and demonstrate its efficacy with WiFi datasets
but simulated disease outbreak data, as they do not have ac-
cess to ground truth COVID test results. Other campus-wide
studies related to the COVID-19 pandemic using network
log data include [51] which studies super-spreader events
using data collected on a university campus. Many addi-
tional papers focused on cellular or WiFi networks have sur-
faced during the COVID-19 pandemic [1, 9, 11, 15, 22, 23, 26–
28, 30, 32, 42, 45–48, 50, 52] which do not include ground
truth datasets. Overview articles that explore WiFi technolo-
gies include [4, 7, 8, 33–35, 38].

Another closely related work is the approach proposed in
[25], which relies on data collected by entities in the digi-
tal advertising ecosystem, and IP-colocation (as opposed to
AP-colocation). The techniques and construction of the co-
location graph are similar. IP-colocation and AP-colocation
are likely to exhibit significant overlap. In many homes and
small businesses, WiFi users spend significant time in close
proximity and share a single public IP address through NAT.
Enterprise networks, such as the WiFi network in this study,
have more flexibility in managing their IP address space with
policy options ranging from assigning each device a unique
public address to arbitrarily distributing devices across a
pool of public addresses through NAT.
Finally, network-side contact tracing has some overlap

with the problem of WiFi localization, particularly from the
8
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vantage point of locating transmitters within a network.
Approaches based on received signal strength [3], angle of
arrival [20], and time of flight [16] all have the potential to
improve contact tracing accuracy by providing an improved
measure of physical proximity. We speculate that narrowing
the spatial resolution to the room level is likely to be of
epidemiological value. Additionally, if the wireless network
facilitates tracking of user devices with finer granularity than
association and disassociation events, it would enable a more
precise calculation of AP colocation duration despite devices
roaming without explicit disassociation messages.

8 SUMMARY
Our results suggest that network-side contact tracing can
help identify individuals at increased risk of disease plausi-
bly through exposure in a shared environment. In contexts
where available, e.g. academic and corporate campuses,Wi-Fi
networks can be effectively leveraged to help control disease
spread. The approaches discussed here can be extrapolated
to other settings in which network log data is collected.

While the confidence scores defined by algorithm 1 are pre-
dictive of positive cases, determining actionable and effective
criteria to implement interventions is a sizable outstanding
effort. In the future, more work must be done before such a
system is viable, in particular working with health and ad-
ministrative officials to determine if notification of possible
exposure to SARS-CoV-19 (or other communicable diseases)
is warranted.

APPENDIX
Ground Truth
At the start of the Spring 2021 semester, students returned to
campus housing facilities but required frequent testing with
rapid saliva-based COVID-19 tests. Students who were resi-
dents of university housing and tested positive were required
to move into one of five designated isolation dormitories or
self-isolate in off-campus housing. Access to the isolation
facilities was controlled by the university administration,
which closely monitored and recorded the daily occupancy
of each dormitory. Since all of the campus dormitories in-
cluding the isolation dorms are also covered by campus WiFi
infrastructure, we hypothesized that the WiFi logs would
offer insight into devices that moved from regular dorms
to isolation dorms without revealing personally identifiable
information about the device owner. To this end, we assessed
the validity of our hypothesis by comparing the number of
devices detected in isolation dorms with the true count of
admitted residents supplied by the university.
While visualizing device activity over time, we quickly

realized that time of day has a large impact on observedWiFi

activity. During busy hours of the day, we would overesti-
mate the number of residents by a factor of two or more
because of the presence of staff. A prior study of device type
and user behavior [43] suggests differences in the types of
devices most likely to be found at varying hours of the day.
In the early hours of the morning when dormitory residents
are likely to be present and sleeping and staff or visitors
are likely absent, we expect any devices still connected to
the WiFi network are most likely to be the personal phones
belonging to residents. Whereas phones may maintain a
network connection in order to receive updates, most other
devices such as laptops and entertainment devices are likely
to be in a low power, non-transmitting state. If true, this
tendency could not only assist us inferring residence but
could also help identify the devices most likely to be carried
with the person for contact tracing.

To test the feasibility of estimating building occupancy, we
compare the number of unique devices (anonymized MAC
addresses) detected during different times of the day with
the daily resident counts from the campus health authorities.
We frame this as an optimization problem of choosing the
best hour of the day to use WiFi device counts to predict the
number of residents in a dormitory. More specifically, we
count the number of devices detected in the five isolation
dorms during a given one hour window for each day over
the course of the study and compute the mean squared error
(MSE) against the true counts in the respective dorms. We
repeat this for each of the 24 hours of the day and find that
the one hour window of 4:00-5:00 AM minimizes the predic-
tion error, as shown in figure 16. We find that the resulting
device counts are a good approximation of the true num-
ber of residents. Figure 14 shows the five isolation dorms
with inferred and true resident counts. Compared to the gen-
eral problem of predicting a building’s occupancy from WiFi
activity, highly predictable device and user behavior make
dorm residency a relatively easier problem.

Inferring Dorm Residents
After finding a correlation between the number of devices
detected in the early morning and the number of isolation
dorm residents, we turn our attention to identifying devices
and their corresponding owners who reside in any of the
campus dormitories. Recall that for the purpose of evaluating
the effectiveness of our contact tracing approach, we must
limit our population to the users who live in campus housing
because this is the subset of users for whom we can infer
COVID-19 cases based on presence in the isolation dorms.
Although we do not have ground truth numbers for Spring
semester residents, we take the reported capacity from uni-
versity housing web pages as an estimate of the true numbers.
We find that simply considering any device detected during
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Figure 7: Percent of predicted contacts that test positive in the 𝜏𝑝 = 7 days after a positive case, as a function of
the threshold 𝛾 . 𝜏𝑔 = 7 days. A 95%-Wilson confidence interval is shown. Figure a, 𝛼 = 0. Figure b, 𝛼 = 1.
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Figure 8: Figure a. 𝛼 = 0. Percent of predicted contacts that test positive in the 𝜏𝑝-days (𝜏𝑝 ∈ {7, 28}) after a positive
case as a function of the threshold 𝛾 , denoted PPV. Contact graph with 𝜏𝑔 ∈ {7, 28}. Figure b. Average number of
predicted contacts as a function of contact score𝛾 for 𝜏𝑔 ∈ {7, 28} and 𝜏𝑝 ∈ {7, 28}. Note that the plots do not depend
on 𝜏𝑝 ; two traces are obscured.
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Figure 9: Scale (average number of predicted contacts) vs. positive predictive value for 𝜏𝑝 ∈ {7, 28} and 𝜏𝑔 ∈ {7, 28}.
Figure a, 𝛼 = 0. Figure b, 𝛼 = 1. Note that at some scale (i.e, 5), 𝛼 = 1 has a higher positive predictive value than
𝛼 = 0.

the hour of 4:00-5:00 AM as belonging to a resident leads to
a large overcount, perhaps explained in part by visitors, so
it is necessary to filter the more probable residents.

This time operating over the range of user IDs, we count
the number of days in which any device belonging to a user
is detected in a building during the hour of 4:00-5:00 AM.
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Figure 10: Sensitivity analysis when 100%, 75%, and 50% of the original 6, 451 users participate in the study. 95%-
Wilson confidence intervals are shown. Note the positive predicted value is largely unaffected by decreased par-
ticipation, but the average number of contacts (per positive case) decreases accordingly. 𝜏𝑝 = 7 and 𝜏𝑔 = 7. 𝛼 = 1.
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Figure 11: True positive rate – predicted positive individuals that test positive in 𝜏𝑝 = 7 days after date, divided by
the total number of predicted positive individuals. Missed detection rate – predicted negatives that test positive
in 𝜏𝑝 days after the date, divided by count of positive tests in 𝜏𝑝 days after the date. A predicted positive is an
individual with a cumulative exposure score above 𝛾 ∈ {4, 20}, and a predicted negative is a an individual with a
cumulative exposure score below 𝛾 ∈ {4, 20}. 𝜏𝑔 = 7, 𝜏𝑠 = 7. Figure a, 𝜏𝑝 = 7. Figure b 𝜏𝑝 = 28.
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Figure 12: Risk ratio. The risk ratio is defined as the odds of testing positive (in the following 𝜏𝑝 days) given a
cumulative exposure score above𝛾 ∈ {4, 20}, divided by the odds of testing positive (in the following 𝜏𝑝 days) given
a cumulative exposure score below 𝛾 ∈ {4, 20}. 𝜏𝑔 = 7, 𝜏𝑠 = 7. Figure a, 𝜏𝑝 = 7. Figure b 𝜏𝑝 = 28.

If multiple devices belonging to the same user are detected
on the same morning, we only attribute one detection to

that building. If the number of times the user is detected
in a given building meets or exceeds a threshold, 𝜏𝑟 , then
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Figure 13: Count of new positive cases in the 𝜏𝑝 = 7
and 𝜏𝑝 = 28 day period after date on the x-axis.

we consider the user a probable resident of that building.
For a given value of 𝜏𝑟 we count the number of inferred
residents in each building, which strictly decreases as 𝜏𝑟
increases. Iterating over 𝜏𝑟 = 0, 1, 2, ..., 30, we find that 𝜏𝑟 = 3
minimizes the MSE against reported dorm capacity numbers,
as seen in figure 16. We take the users meeting this threshold
as the population of dorm residents for the remainder of our
study and disregard non-residents. Although we are able to
compute AP colocation metrics for non-resident devices and
perform digital contact tracing, we are only able to evaluate
efficacy for contact tracing in the COVID-19 pandemic on
the subset of devices that belong to residents.
We briefly note two potential issues with this approach.

First, this choice of threshold is still expected to result in
overestimation because distancing measures and more stu-
dents choosing to live off campus likely meant that dorms
were under capacity during the semester. However, we felt
it important not to falsely exclude too many users from our
evaluation, and furthermore, overestimating the population
of residents is unlikely to bias the results in our favor. Sec-
ond, under this approach a small number of users may be
considered as probable residents of more than one building.
Since our goal is to identify the set of dorm residents, we do
not consider that a problem, but if we needed to infer a user’s
building of residence, some refinements could be made such
as selecting the building with the highest detection count.

Inferring Isolation Residents
Finally, we apply a similar approach from the previous sec-
tion to identify dorm residents who temporarily move into
one of the five isolation dorms. Using the same threshold,
𝜏𝑟 = 3, we scan the association logs for users whose device(s)
appears in an isolation dorm for at least 𝜏𝑟 mornings and la-
bel these as positive cases. Starting from the first time one of
the user’s devices is detected in isolation, we find the longest
uninterrupted length of time until any of the user’s devices is
detected in a different building, and consider that the user’s

Figure 14: Device counts detected in the earlymorning
hour of 4:00-5:00 AM compared with true number of
residents in five isolation dorms.
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Figure 16:MSE of device count at different times of the
day as a predictor of isolation dorm residents. (right).
MSE of inferred resident counts compared to reported
building capacities for 19 dormitories.

length of stay in isolation. Figure 15 shows the number of
users inferred as residents in each isolation dorm compared
to the ground truth data for the semester, which we received
from campus health authorities.
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