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ABSTRACT

Besides the conventional communication function, wireless sig-

nals are actively exploited for sensing purposes recently. However,

a missing component of existing wireless sensing is sensing un-

der device motions. This is challenging because device motions

can easily overwhelm target motions such as chest displacement

used for respiration sensing. This paper takes a first step in the

direction of involving device mobility into the ecosystem of wire-

less sensing. Owning to the miniaturization and low cost of ultra-

wideband (UWB) chip in recent years, we propose to integrate the

accuracy of UWB sensing with mobility to support truly ubiqui-

tous wireless sensing. We propose Mobi2Sense, a system design to

support sensing under device motions. We propose novel signal

processing schemes to remove the effect of device motions on sens-

ing and prototype Mobi2Sense using commodity UWB hardware.

Real-world applications demonstrate that even in the presence of

device motions, fine-grained Mobi2Sense is able to capture sub-

tle target motions to “hear” music, “see” human respiration, and

“recognize” multi-target gestures at a high accuracy.

CCS CONCEPTS

•Human-centered computing→Ubiquitous andmobile com-

puting systems and tools.

KEYWORDS

wireless sensing, RF sensing, ultra-wideband (UWB) sensing, inte-

gration of wireless sensing and mobility, device motion removal,

interference mitigation

1 INTRODUCTION

Recent years have witnessed the rapid progress of sensing using

various wireless signals including WiFi [3, 60, 62], RFID [22, 56],

mmWave [29, 52], ultrasound [36, 44, 67] and LoRa [18, 63, 64]. The

contact-free and sensor-free nature of wireless sensing is appealing

in many real-life scenarios. A large range of applications have been

enabled by wireless sensing including activity tracking [26, 32,

66], gesture recognition [3, 28, 53], respiration monitoring [45, 59,

73] and vibration sensing [6, 66]. While promising progress has

been achieved, one interesting observation about existing wireless
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Figure 1: Wireless sensing in the presence of device motions.

sensing systems is that the transmitter and receiver are always

static (e.g., placed on a desk or mounted on the ceiling). However,

it is noted that in some real-life scenarios, the wireless device can

be non-static. For example, as shown in Figure 1, a smartphone

can be held in hand by a user to sense a target. A moving robot

equipped with wireless sensing modules moves around to sense the

surroundings. Therefore, an important missing piece of wireless

sensing is sensing under device motions.

In this paper, we consider device mobility in wireless sensing

for the first time. To see the effect of device motions on sensing,

we conduct a range of benchmark experiments. Surprisingly, we

find that wireless sensing stops working when the wireless device

is placed on a moving robot. Even under subtle involuntary hand

movement when the device (e.g., a smartphone) is held in hand, the

sensing performance is severely degraded as shown in Figure 2.

After a thorough analysis, we realize that this is because the

fundamental principle of wireless sensing is that target movement

causes signal variation and therefore the target context (e.g., move-

ment speed and direction) can be obtained by analyzing the signal

variation. However, this fundamental principle does not hold when

a wireless device starts moving. Under device motions, the signal

reflected from target contains movement information of both target

and device. For fine-grained human respiration monitoring, even

subtle involuntary hand movement can fail sensing.

Another observation is that when wireless signals are used for

sensing, the original communication function is usually compro-

mised. TakeWiFi as the example, the packet size and packet interval

need to be precisely controlled to enable sensing [2, 48]. WiFi sens-

ing is therefore not feasible in real WiFi environment with random

back-offs and varying packet sizes. This is a big issue hindering

WiFi sensing being adopted in real life. The small frequency band-

width ofWiFi also limits the granularity ofWiFi sensing. In contrast,

UWB is used for ranging and extending its usage for sensing does

not compromise the original function of UWB.

In this paper, we employ commodity UWB hardware for sensing.

We believe UWB is a promising candidate to push wireless sensing

for real-world adoption with several unique advantages: (i) finer

sensing granularity because of a much larger frequency bandwidth;
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Figure 2: Signal of respiration under device motions.

(ii) does not compromise its original function; (iii) lower power con-

sumption which is critical for battery-powered mobile devices (e.g.,

a smartphone) owing to the pulse signal design.

With so many advantages, the reason why UWB sensing was

not popular is mainly due to the large size and high hardware

cost. Recent advancements in semiconductor technologies dramati-

cally miniaturize the hardware size and reduce the cost. UWB chip

can now be integrated into consumer electronics, much like ac-

celerometers and CMOS cameras. From 2019, UWB chip is a default

component in iPhone [10]. Samsung and Xiaomi follow this trend

to include UWB chip in their latest smartphones [8, 41]. Lenovo also

recently integrates UWB chip in their laptops [25]. For robot, UWB

has long been utilized for positioning [20]. We envision UWB to be

even more popular and available in lots of consumer electronics in

the near future.

In this paper, we involve device mobility into the ecosystem

of wireless sensing and employ UWB hardware as our sensing

platform. We ask this question: while device motion breaks the fun-

damental principle of wireless sensing, how to model the effect of

device motion on sensing and address it to enable wireless sensing?

In wireless sensing, the propagation signals are grouped as static

signal and dynamic signal. Signals reflected fromwalls and furniture

are static signals while signals reflected from a moving target are

dynamic signals. The target information is contained in the dynamic

signal. However, under device motions, there is no static signal any

more. The signals reflected from a static object (e.g., a wall) are also

dynamic due to device motions. Existing sensing models can not

be applied and traditional methods used to remove static signals

such as background subtraction [19] do not work any more. In this

paper, we seek to derive the theoretical model to quantify the effect

of device motions on sensing.

However, removing the effect of device motions is a non-trivial

task. When a device is held in hand, the motion pattern can be

quite random. For robot movements, although the moving speed

and direction can be obtained from IMU sensors, it is very difficult

to capture the finer-grained device vibrations and jitters which

still affect the sensing of subtle target motions such as respiration.

Existing sensors on robots, including cameras and Lidar, have a

strong capability to image targets. However, the micro-movement

of targets (e.g., human respiration) is difficult to be captured using

these sensors. Also, these sensors can be blocked by occlusions and

can not work in low-visibility scenarios (e.g., smoke and fog). We

envision wireless sensing can be integrated with existing sensing

modalities to achieve even more powerful sensing capabilities.

In this work, we propose a novel method which is capable of

removing random device motions to enable fine-grained sensing.

The basic idea is to employ one static object in the environment

as a reference to cancel out the effect of device movement. The

reference can be commonly-seen static objects such as a wall, a desk,

a laptop or even a water bottle. The reflection from static object

contains only the device motion. In contrast, the reflection from the

target contains both device motion and target motion. Removing

the device motion is non-trivial and we face two challenges: i)

Device motion is not a signal but just causes the signal to vary.

Traditional methods such as interference cancellation [37, 43] can

not be applied here; ii) The device motion viewed at the target and

the device motion viewed at the reference static object are different.

Therefore, the device motion can not be easily cancelled out.

In this paper, we model the effect of device motion on signal

variation. We cancel the signal variation caused by device motion

through a division operation between signal reflected from the

target and signal reflected from the static reference. To tackle the

inconsistency of viewing device motions at different locations, we

convert the signal variation caused by device motion at the refer-

ence to that at the target to make them consistent for cancellation.

We demonstrate the correctness of the proposed method both theo-

retically and experimentally.

We implement the proposed sensing system Mobi2Sense using

commodity UWB hardware and conduct comprehensive experi-

ments in two typical mobility scenarios, i.e., hand-held mobility

scenario and robot-carried mobility scenario. We further showcase

three applications of different target motion scales: i) employing the

proposed system to sense sub-millimeter level vibration of a speaker

to “hear” the music in the presence of device motions; ii) holding the

UWB device in hand to accurately monitor the patient’s millimeter

level respiration (rate and depth) in a real hospital environment; and

iii) placing the UWB device on a moving robot to simultaneously

recognize gestures of multiple targets. For all three applications, our

system achieves highly accurate sensing performance. The demo

video can be found at https://youtu.be/ATOmMkGwIUw. The main

contributions of our work are summarized as follows.

• We involve device mobility into the ecosystem of wireless

sensing.

• We establish a theoretical model to quantify the effect of de-

vice motion on signal variation and accordingly on sensing.

• We propose a novel signal processing scheme to cancel out

the device motion induced signal variation to enable sensing

in the presence of device motions. The proposed method can

be applied to other wideband wireless signals such as FMCW

radar signal and acoustic chirp signal.

• We implement Mobi2Sense on commodity UWB hardware

and comprehensively evaluate the system performance. We

showcase three applications with outstanding performance

to demonstrate the effectiveness of our system.

2 PRELIMINARY OF ULTRA-WIDEBAND

In this section, we first introduce the basics of UWB signal and then

present traditional sensing model for static transceivers. We then

empirically study the effect of device motions on existing wireless

sensing applications.
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2.1 UWB Primer

The basic concept of UWB transmission is shown in Figure 3. UWB

transmitter generates Gaussian pulses 𝑝 (𝜏) modulated on a carrier

frequency 𝑓𝑐
1 and the pulse amplitude is𝑉𝐺 . The transmitted signal

𝑥 (𝜏) can be represented as:

𝑥 (𝜏) = 𝑉𝐺 · 𝑝 (𝜏) · 𝑐𝑜𝑠 (2𝜋 𝑓𝑐𝜏). (1)

Figure 3: The generation of UWB signal 𝑥 (𝜏).

The transmitted pulse gets reflected back from an object at a

time delay of 𝜏 = 2𝑟
𝑐 , where 𝑟 is the distance between the object

and the transceivers, and 𝑐 is the signal propagation speed in the

air. Note that UWB transceivers are co-located. At the receiver

side, the received signal is demodulated to the baseband. The pulse

signal can get reflected from objects at different distances. These

reflections from multiple objects induced by the same pulse form a

frame. The pulses are transmitted one by one with a certain time

interval in between. The frames are ordered in time, forming a

2D-matrix as shown in Figure 4. The X-axis indicates the range bins

for one frame and Y-axis indicates time-ordered frames. The X-axis

represents the fast time (𝜏) information and Y-axis represents the

slow time (𝑡 ) information. The fast time information can be used

to calculate the distance between the object and the UWB device.

Therefore, the matrix is also called range profile. The reflection

signal from one object can be represented as:

𝑦 (𝑡) = 𝐴 · 𝑒 𝑗 ·2𝜋 ·𝑓𝑐 ·𝜏𝑖𝑛𝑖 . (2)

Here, 𝜏𝑖𝑛𝑖 is the time delay of the reflection signal and 𝐴 is the

signal amplitude. If the object is moving, causing an extra time

delay of Δ𝜏𝑡𝑚𝑜𝑣 (𝑡), the reflection signal can be represented as:

𝑦 (𝑡) = 𝐴 · 𝑒 𝑗 ·2𝜋 ·𝑓𝑐 · (𝜏𝑖𝑛𝑖+Δ𝜏𝑡𝑚𝑜𝑣 (𝑡 )) . (3)

We present a range profile example in Figure 5. If a frame has an

obvious peak (bright color), it means that there is an object which

reflects signal back. The location of the peak at X-axis represents

the time delay and accordingly the distance of the object. We divide

the X-axis distance into different range bins. The resolution of

the range bin is related to the bandwidth of the UWB signal. For

example, when the bandwidth (𝐵) is 1.5 GHz, the resolution of the

range bin is 𝑐/2𝐵 = 10 cm. In Figure 5, a static object (object 1) is

located in the 120th range bin. Another object (object 2) located

in the 60th range bin is static in the first 2500 frames (25 s) and

moves forward and backward periodically after that. Based on the

relationship between the phase change and target displacement

Δ𝜙 = 2𝜋 𝑓𝑐Δ𝜏𝑡𝑚𝑜𝑣 (𝑡), we are able to sense the target movement

information (e.g., displacement and speed) using phase readings.

1The allocated frequency bands for UWB are 3.1–10.6 GHz

Figure 4: Frame-bin matrix.

Range bins present the

distance information and

frames present the time

information.

Figure 5: Range profile. The

range bins of the moving ob-

ject change with time while

that of the static object re-

mains unchanged.

2.2 Multi-object reflections

In real environment, besides target reflection, other static objects (e.g.,

furniture and walls) also reflect signals. If we assume there are 𝑁 re-

flection paths from static objects in the environment, the reflection

path delay of the 𝑛-th object is denoted as 𝜏𝑖𝑛𝑖,𝑛 and the correspond-

ing reflection signal amplitude is denoted as 𝐴𝑖𝑛𝑖,𝑛 , the reflection
signal from this object can be written as:

𝑦𝑠,𝑛 = 𝐴𝑖𝑛𝑖,𝑛 · 𝑒 𝑗 ·2𝜋 ·𝑓𝑐 ·𝜏𝑖𝑛𝑖,𝑛 (𝑛 = 1, ..., 𝑁 ) . (4)

Note that signal reflections falling in different range bins can

be separated and do not interfere with each other. Here we only

consider the case in which the signal reflection from the static

object also falls in the same range bin as the target (e.g., the 𝑖-th
static object). The mixed signal at the target range bin can then be

expressed as:

𝑦𝑡 (𝑡) = 𝐴𝑚𝑜𝑣 · 𝑒
𝑗 ·2𝜋 ·𝑓𝑐 · (𝜏𝑖𝑛𝑖+Δ𝜏𝑡𝑚𝑜𝑣 (𝑡 ))︸����������������������������������︷︷����������������������������������︸

Dynamic component

+𝐴𝑖𝑛𝑖,𝑖 · 𝑒
𝑗 ·2𝜋 ·𝑓𝑐 ·𝜏𝑖𝑛𝑖,𝑖

︸�������������������︷︷�������������������︸
Static component

, (5)

where 𝐴𝑚𝑜𝑣 denotes the amplitude of the signal reflected from the

moving target. Note that the signal component reflected from the

static object does not change over time and is denoted as static

vector (𝐻𝑠 ) in the I-Q space. The dynamic vector (𝐻𝑑 ) indicates

the signal reflected from the moving target. The target movement

causes the signal phase to change over time. As shown in Figure 6,

when a person sits in a sofa, the reflection from the human body

and reflection from the static sofa are located in the same range

bin. The received signal 𝑦 (𝑡) is a superposition of both dynamic

and static vectors, and the dynamic vector rotates with respect to

the static vector [49]. For a displacement of half-wavelength,2 the

Figure 6: Dynamic signal vector (𝐻𝑑 ) rotates with respect to

the static signal vector (𝐻𝑠 ).

2If the central frequency of the UWB signal is 7.3 GHz, half wavelength is 2 cm.
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(a) Device is static. (b) Held in hand. (c) cm-level movement. (d) dm-level movement.
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(e) Respiration rate errors.

Figure 7: Respiration monitoring under different device movement conditions. Clear signal variation pattern corresponding to

respiration cycles can be obtained when device is static and device movement corrupts the signal variation pattern.

(a) Device is static. (b) Held in hand. (c) cm-level movement. (d) dm-level movement.
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(e) Displacement errors.

Figure 8: Gesture sensing under different device movement conditions. Clear signal variation pattern corresponding to gestures

can be obtained when device is static and device movement corrupts the signal variation pattern.

dynamic vector rotates for 360◦. For a subtle chest displacement of

0.5 cm for respiration, the dynamic vector rotates for around 87◦.

Note that for a small movement such as respiration, the amplitude

of the dynamic signal can be considered as a constant. In contrast,

the phase change is large (87◦) which can not be ignored.

2.3 Wireless sensing under device motions

Based on the analysis in Section 2.2, if an RF device is static, the

phase change induced by target movement can directly be used

to obtain the target movement information. We take two typical

sensing applications, i.e., respiration monitoring and gesture recog-

nition as the examples. As shown in Figure 7a, clear periodic signal

variation corresponds to the exhalation and inhalation of human

breathing. In Figure 8a, the user draws a “triangle” in the air five

times using his hand and we can clearly see the repeated pattern of

each drawing.

Now we study the impact of device motion on the two sensing

applications. As shown in Figure 7b, for respiration monitoring,

when the device is held in hand without any intentional move-

ments, the signal pattern is still corrupted by the subtle involuntary

hand shaking. We further increase the motion scale of the device.

In Figure 7c and 7d, centimeter and decimeter level of device mo-

tions completely corrupt the breathing pattern. In Figure 7e, we

show the average error of respiration rate estimation when the

device is static and in the presence of different scales of movements.

The ground truth is measured by a respiration monitor belt logger

sensor NUL-236 [9]. We can see that when the device is static, the

error is as low as 1.24% in terms of respiration rate. In handheld

scenario, involuntary hand movements lead to a significant increase

of estimation error from 1.24% to 41.32%. Large-scale centimeter

and decimeter movements further increase the error to 79.54% and

92.14%, respectively.

For in-air gesture recognition, the gesture movements are per-

formed with a large displacement of around 10 cm. For handheld

scenario, as shown in Figure 8b, involuntary handheld motion in-

duces a notable signal variation at the 17th second but we can still

observe the clear signal pattern of the gesture. When the hand

movement is larger, the signal pattern of gesture is seriously cor-

rupted as shown in Figure 8c and 8d. In Figure 8e, we show the

average error of displacement measurement.3 The ground truth

is captured by HTC ViVe tracking system [11]. We can see that

when the device is held in hand with involuntary shaking, the dis-

placement estimation error is 5.78%. With centimeter and decimeter

level hand movements, the displacement estimation error of gesture

increases to 43.18% and 97.23%, respectively. From these results, we

can see that device motions can severely affect the performance of

wireless sensing. Exiting wireless sensing systems do not work in

the presence of device motions.

3 UNDERSTANDING THE EFFECT OF DEVICE
MOTION ON SENSING

In this section, we first model the effect of device motion on target-

reflection signal and static signal, respectively. Then we present

the proposed scheme to cancel out the effect of device motion to

enable sensing.

3.1 Modeling target signal in the presence of
device motion

We now take device motion into consideration. Besides target move-

ment Δ𝜏𝑡𝑚𝑜𝑣 (𝑡) in Equation 5, the device movement Δ𝜏𝑑𝑚𝑜𝑣 (𝑡) is
also introduced, which can be from a hand holding the device or

a robot carrying the device. Thus, the signal reflected from the

target contains movement information of both target and device.

The received signal at the target range bin can thus be represented

3The displacement error in percentage is calculated as the ratio of the measured
displacement error and the ground truth displacement, which may exceed 100%.
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(a) Signal phase change due to target motion. (b) The effect of device motion. (c) Signal phase change in the presence of device motion.

Figure 9: Modeling the effect of device motion on signal variation and accordingly on sensing.

as:

𝑦 (𝑡) = 𝐴𝑚𝑜𝑣 · 𝑒
𝑗 ·2𝜋 ·𝑓𝑐 · (𝜏𝑖𝑛𝑖+Δ𝜏𝑑𝑚𝑜𝑣 (𝑡 )+Δ𝜏𝑡𝑚𝑜𝑣 (𝑡 ))

+𝐴𝑖𝑛𝑖,𝑖 · 𝑒
𝑗 ·2𝜋 ·𝑓𝑐 · (𝜏𝑖𝑛𝑖,𝑖+Δ𝜏𝑑𝑚𝑜𝑣 (𝑡 )) .

(6)

Both dynamic and static vectors contain 𝑒 𝑗 ·2𝜋 ·𝑓𝑐 ·Δ𝜏𝑑𝑚𝑜𝑣 (𝑡 ) , that is,

the phase shift caused by device motion. Let 𝐻𝑡 denote 𝐴𝑚𝑜𝑣 ·

𝑒 𝑗 ·2𝜋 ·𝑓𝑐 · (Δ𝜏𝑡𝑚𝑜𝑣 (𝑡 )+𝜏𝑖𝑛𝑖 ) , which is the dynamic vector induced by

target movement without device motion, and 𝐻𝑠,𝑖 denote 𝐴𝑖𝑛𝑖,𝑖 ·

𝑒 𝑗 ·2𝜋 ·𝑓𝑐 ·𝜏𝑖𝑛𝑖,𝑖 , which is the static vector induced by the 𝑖-th static

object in the same range bin without device motion. We extract the

common term related to device motion out and the formula can be

rewritten as:

𝑦 (𝑡) = 𝑒 𝑗 ·2𝜋 ·𝑓𝑐 ·Δ𝜏𝑑𝑚𝑜𝑣 (𝑡 ) · (𝐻𝑡 + 𝐻𝑠,𝑖 ). (7)

The term 𝑒 𝑗 ·2𝜋 ·𝑓𝑐 ·Δ𝜏𝑑𝑚𝑜𝑣 (𝑡 ) represents the effect of device motion

on signal. It rotates the original static and dynamic vectors on the

complex I-Q plane together by a phase of 2𝜋 ·𝑓𝑐 ·Δ𝜏𝑑𝑚𝑜𝑣 (𝑡), as shown
in Figure 9b. This explains the fundamental effect of the device

motion on signal variation and accordingly on sensing. Specifically,

when the device moves, the original static vector and dynamic

vector rotate together. The device motion induced signal variation

can submerge the target motion induced signal variation, and the

overall phase variation mainly reflects the device movements as

shown in Figure 9c. Therefore, the effect of device motion is mixed

with the effect of target movement and the original phase variation

is severely distorted in the presence of device motions.

3.2 Modeling static object signals in the
presence of device motion

When an RF device moves, the signals reflected from static objects

in the environment also contain the device motion information.

Assuming there are 𝑁 static objects in the environment which

reflect signal, the extra delay introduced by device motion at the

𝑛-th reflection is denoted as Δ𝜏𝑑𝑚𝑜𝑣,𝑛 (𝑡). Note that objects exhibit
different delays due to different relative positions with respect to

the device. Signal reflection from static objects contains only device

motion information:

𝑦𝑠,𝑛 (𝑡) =𝐴𝑖𝑛𝑖,𝑛 · 𝑒 𝑗 ·2𝜋 ·𝑓𝑐 ·Δ𝜏𝑑𝑚𝑜𝑣,𝑛 (𝑡 ) · 𝑒 𝑗 ·2𝜋 ·𝑓𝑐 ·𝜏𝑖𝑛𝑖,𝑛

= 𝑒 𝑗 ·2𝜋 ·𝑓𝑐 ·Δ𝜏𝑑𝑚𝑜𝑣,𝑛 (𝑡 ) · 𝐻𝑠,𝑛 (𝑛 = 1, ..., 𝑁 ).

(8)

Here 𝐻𝑠,𝑛 = 𝐴𝑖𝑛𝑖,𝑛 · 𝑒 𝑗 ·2𝜋 ·𝑓𝑐 ·𝜏𝑖𝑛𝑖,𝑛 is used to denote the signal re-

flection from the 𝑛-th static object without the effect of device

motion.

3.3 Device motion cancellation

Now we know that target reflection contains both device and tar-

get movement information, whereas the reflections from static

objects contain only the device movement information. Intuitively,

a straightforward method to deal with device motion is to remove

the device motion effect by subtracting the static reflection signal

from the target reflection signal similar to interference cancella-

tion [37, 43]. However, we quickly realize this is not correct because

the movement effect does not bring in a new signal but just causes

the existing signal to vary. Therefore, subtracting signal does not

work and we need a more delicate scheme to remove the effect

induced by device motions.

By deeply understanding the effect of device motion which is an

extra amount of phase change4 applied to both original static signal

and dynamic signal, we propose to cancel out the effect of device

motion through a division operation between target-reflection sig-

nal and one static object-reflection signal (e.g., the reflection from

the 𝑘-th static object):

𝑦𝑛𝑒𝑤 (𝑡) =
𝑦𝑡 (𝑡)

𝑦𝑠,𝑘 (𝑡)
=

𝑒 𝑗 ·2𝜋 ·𝑓𝑐 ·Δ𝜏𝑑𝑚𝑜𝑣 (𝑡 ) · (𝐻𝑡 + 𝐻𝑠,𝑖 )

𝑒 𝑗 ·2𝜋 ·𝑓𝑐 ·Δ𝜏𝑑𝑚𝑜𝑣,𝑘 (𝑡 ) · 𝐻𝑠,𝑘

. (9)

However, the two terms Δ𝜏𝑑𝑚𝑜𝑣 (𝑡) Δ𝜏𝑑𝑚𝑜𝑣,𝑘 (𝑡) are not exactly

the same and they can not be cancelled out. This is because device

movement is a relative information related to the reflector’s location.

As the target and the static object are not located at the same

position, the movement induced signal phase changes are not the

same.We therefore need to convert themotion effect (signal change)

at the static object location to that at the target location so they can

be cancelled out. This is a non-trivial task because it requires to

know the target and static object’s precise location information. In

this work, we propose a search-based scheme to quickly identify the

correct conversion to cancel out the device motion effect without

requiring to know the physical location of the target and the static

object. We present the detailed design in Section 4.2.

4 MOBI2SENSE DESIGN

In this section, we introduce the detailed design of our system.

Figure 10 shows the workflow of Mobi2Sense, which consists of

three core modules.

• Reference selection. Our key idea is to select a static object as

the reference to cancel out the effect of device motion. There are

usually multiple static objects we can select from in the environ-

ment. Different static objects can present us different cancellation

4Note that the signal amplitude can be considered as a constant within a small time
window.
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effects and therefore we need to select the most appropriate one

for motion cancellation.

• Device motion cancellation. After the reference is selected, we

proceed to cancel out the effect of device motion. As the target

and reference object are located at different positions, effects of

device motion on them are also different. Therefore, a delicate

motion effect conversion needs to be performed before the effect

of device motion can be successfully cancelled out.

• Target movement recovery. After the effect of device motion

is cancelled out, the remaining target reflection signal contains

only the target motion. However, note that the motion cancella-

tion step only removes the effect of device motion, the reflection

signals from close-by static objects can still exist, superimposed

with target reflection in the same range bin. Although static

reflections do not change, the superimposition still alters the

phase/amplitude variation of target reflection signal and there-

fore needs to be removed before we can obtain accurate target

information.

Figure 10: Overview of Mobi2Sense.

4.1 Reference selection

In reality, there are usually multiple static objects available. To

achieve the best performance of device motion cancellation, we

need to select the one with the best signal quality as the reference.

The suitability of a static object as a reference is measured based

on the signal strength and stability. This is because more accurate

device motion information can be obtained from a strong and stable

signal. To take both factors into consideration, we use the ratio of

the signal strength and variance as the selection criterion. Note

that we keep a list of available static objects which can be used

as a reference. If the selected static object has moved, we choose

another one from the remaining static objects on the list as the

reference. Also as the device is moving, the static objects on the list

also change and our system updates the list accordingly.

4.2 Device motion cancellation

After reference selection, we proceed to eliminate device motion.

However, device motion can not be easily removed because the

effect caused by device motion at the reference is not the same as

that at the target. To understand this, we analyze the signal vari-

ation induced by device motion at the target and at the reference

respectively. As shown in Figure 11a, there are two objects in the

environment, one is a static chair and the other is a human tar-

get. The angle between the device motion direction and the two

objects’ locations are denoted as 𝜃𝑟 and 𝜃𝑡 , respectively. Assume

that in a short time interval, the device displacement is Δ𝑑 . Accord-
ingly, we can obtain the path length change of the signal from the

device to the two objects as Δ𝐿𝑟 and Δ𝐿𝑡 , respectively. Based on

simple triangle geometry, we can obtain the following relationship:

Δ𝐿𝑟 = Δ𝑑 · 𝑐𝑜𝑠𝜃𝑟 and Δ𝐿𝑡 = Δ𝑑 · 𝑐𝑜𝑠𝜃𝑡 . The device motion induced

signal phase changes at the two objects can then be calculated as

Δ𝜙𝑟 = 2𝜋 𝑓𝑐2Δ𝐿𝑟 /𝑐 and Δ𝜙𝑡 = 2𝜋 𝑓𝑐2Δ𝐿𝑡/𝑐 . When 𝜃𝑟 ≠ 𝜃𝑡 , the
phase changes are also different. In this case, the division opera-

tion between the target reflection and static object reflection in

Equation 9 can not cancel out the effect of device motion.

(a) The signal variations caused by device motions
at the target and at the reference are different. The
amount of signal variation is related to the angle
between the device motion direction and the ob-
ject’s location.

Device motion at 
reference

Target and device 
motion at target

(b) Direct division operation between
target reflection and reference reflec-
tion can not cancel out the effect of
device motion. The respiration pat-
tern can not be clearly visualized.

Device motion at 
reference

Target and device 
motion at target

(c) After applying the compensation
coefficient to make device-induced
phase variation consistent at the tar-
get and at the reference, the effect of
device motion is cancelled out.

Figure 11: The effect of applying a proper compensation

coefficient for device motion cancellation.

If the direction information of the two objects with respect to the

device (𝜃𝑟 and𝜃𝑡 ) can be obtained, we can compensate the difference

by simply multiplying the phase change induced by device motion

at the static object with Δ𝜙𝑡/Δ𝜙𝑟 to obtain the phase change at the

target. However, to achieve a clean cancellation, highly accurate

angle information is needed and a large antenna array is required.

From our empirical studies, an 8-antenna array is still far away from

achieving the required level of angle estimation accuracy. Therefore,

in this paper, we propose a search-based solution which is able to

achieve highly accurate device motion cancellation without a need

to measure accurate angle information of the reflection signals. We

define the required compensation coefficient 𝛽 which needs to be

applied for device motion cancellation below:

𝛽 =
Δ𝜙𝑡
Δ𝜙𝑟

=
Δ𝐿𝑡
Δ𝐿𝑟

=
Δ𝑑 · 𝑐𝑜𝑠𝜃𝑡
Δ𝑑 · 𝑐𝑜𝑠𝜃𝑟

=
𝑐𝑜𝑠𝜃𝑡
𝑐𝑜𝑠𝜃𝑟

. (10)

By applying this compensation coefficient, we transfer the device-

induced phase variation at the reference to the phase change at the

target. Then the device-induced phase variation can be cancelled

out. So the key is to obtain the compensation coefficient 𝛽 . From
Equation 10, we know that 𝛽 is dependent on the device movement
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direction. The device movement direction can be assumed as a con-

stant in a small time window. Let 𝑃𝑟𝑛 and 𝑃𝑡𝑛 denote the phase of

the 𝑛-th signal samples of reference reflection and target reflection

respectively. The total number of signal samples is 𝑁 . To search the

optimal 𝛽 in each time interval, we optimize the following function:

argmin
𝛽,𝛾

𝑁∑
𝑛=1

((𝛽 · 𝑃𝑟𝑛 + 𝛾) − 𝑃𝑡𝑛)
2 . (11)

Here 𝛾 is a constant phase value which helps move the phases of all

the samples up/down. This function finds a 𝛽 which can minimize

the difference between the phase of the reference reflection and

target reflection after compensation. This optimization problem can

be solved by the least square algorithm [33] to obtain the optimal 𝛽
value. The rationale behind this optimization is that the two phase

curves are closest in this time interval, as shown in Figure 11c.

Note that for a small device motion, 𝛽 does not change much and

therefore it can be assumed as a constant in a large time window.

For a large device motion, we need to update 𝛽 more often.
By applying the compensation coefficient 𝛽 , we make Δ𝜏𝑑𝑚𝑜𝑣 (𝑡)

= 𝛽 ·Δ𝜏𝑑𝑚𝑜𝑣,𝑘 (𝑡) in Equation 9. The phase of𝐻𝑠,𝑘 is also multiplied

by 𝛽 and it changes to 𝐻 ′
𝑠,𝑘

= 𝐴𝑖𝑛𝑖,𝑘 · 𝑒 𝑗 ·2𝜋 ·𝑓𝑐 ·𝛽 ·𝜏𝑖𝑛𝑖,𝑘 , which is

still a static component. We thus can eliminate the signal phase

change 𝑒 𝑗 ·2𝜋 ·𝑓𝑐 ·Δ𝜏𝑑𝑚𝑜𝑣 (𝑡 ) caused by the device motion. The detailed
derivation process is as follows:

𝑦𝑛𝑒𝑤 (𝑡 ) =
𝑦𝑡 (𝑡 )

𝑦′
𝑠,𝑘

(𝑡 )
=

𝑒 𝑗 ·2𝜋 ·𝑓𝑐 ·Δ𝜏𝑑𝑚𝑜𝑣 (𝑡 ) · (𝐻𝑡 +𝐻𝑠,𝑖 )

𝑒 𝑗 ·2𝜋 ·𝑓𝑐 ·𝛽 ·Δ𝜏𝑑𝑚𝑜𝑣,𝑘 (𝑡 ) · 𝐻 ′
𝑠,𝑘

= 𝐴
′

𝑚𝑜𝑣 · 𝑒 𝑗 ·2𝜋 ·𝑓𝑐 · (Δ𝜏𝑡𝑚𝑜𝑣 (𝑡 )+𝜏𝑖𝑛𝑖−𝛽 ·𝜏𝑖𝑛𝑖,𝑘 )

︸�����������������������������������������������︷︷�����������������������������������������������︸
New dynamic component

+𝐴
′

𝑖𝑛𝑖 · 𝑒
𝑗 ·2𝜋 · (𝑓𝑐 ·𝜏𝑖𝑛𝑖−𝛽 ·𝜏𝑖𝑛𝑖,𝑘 )

︸�������������������������������︷︷�������������������������������︸
New static component

,

(12)

where𝐴′
𝑚𝑜𝑣 and𝐴

′
𝑖𝑛𝑖 are the amplitude of new dynamic component

and new static component, respectively. Note that 𝜏𝑖𝑛𝑖 and 𝜏𝑖𝑛𝑖,𝑘
are constants related to object position. The obtained new signal

only contains Δ𝜏𝑡𝑚𝑜𝑣 (𝑡) which is the target motion induced phase

variation.

4.3 Target movement recovery

After we cancel out the effect of device motion, we obtain clean

phase change induced by target movement. However, besides the

target reflection, reflections from close-by static objects may exist.

Different from those reflections from static objects far away, the

reflection from close-by objects can fall in the same range bin as

the target reflection and therefore can not be easily separated. The

static signal needs to be removed before we can obtain accurate

target movement information. We use an example in Figure 12 to

illustrate the concept. We can see that the dynamic signal rotates

an angle of Δ𝜑 . However, if the static signal is not removed, the

phase change we obtain from the composite signal is Δ𝜑 ′, which is

much smaller than Δ𝜑 . Note that the amount of phase rotation is

critical in calculating target displacement.

We estimate the static vector through circle fitting [27]. The

rationale is that the amplitude of the dynamic signal can be consid-

ered as a constant for fine-grained movements such as gesture or

respiration. Take respiration as the example, the chest displacement

is just around 5 mm. This displacement causes roughly a signal

Figure 12: Illustration of circle fitting and static vector re-

moval.

path length change of 10 mm. Compared to a target-device distance

of 2 m, this 10 mm distance change only causes the amplitude to

vary by around 0.5%. On the other hand, a 5 mm displacement can

cause a large phase change of 87◦. Therefore, during the movement

process, the dynamic vector rotates with respect to the static vector,

forming a circle. The circle radius indicates the amplitude of the

dynamic vector. We can then leverage this circle property to calcu-

late and remove the static signal [42]. We regard the circle fitting as

the best linear unbiased estimates of arc center (𝐼𝑐 , 𝑄𝑐 ) and radius

𝑟𝑐 [42]. The arc can be estimated as [𝐼𝑐 , 𝑄𝑐 ,𝜓 ]
𝑇 = (𝑯𝑇𝑯 )−1𝑯𝑇 𝒀 ,

where

𝑯 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2𝐼1 2𝑄1 1

2𝐼2 2𝑄2 1
...

...
...

2𝐼𝑁 2𝑄𝑁 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 𝒀 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐼21 +𝑄2
1

𝐼22 +𝑄2
2

...
𝐼2𝑁 +𝑄2

𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (13)

(𝐼𝑛, 𝑄𝑛) is the coordinate of the 𝑛-th sample in the complex plane,

𝑁 is the total number of samples, and𝜓 = 𝑟𝑐 2 − 𝐼𝑐
2
−𝑄𝑐

2
. After we

obtain the static vector, we remove it from the received signal to

obtain the clean target reflection signal. We move the center of the

dynamic vector to the origin on the complex plane. We can then

obtain correct target movement distance by calculating the phase

change of the signal only reflected from target.

5 IMPLEMENTATION

Hardware Implementations. We implement Mobi2Sense on a

COTS UWB hardware (XETHRU X4M05) which has an integrated

X4 system-on-chip [16]. X4M05 chip works on the 7.25–10.2 GHz

frequency band. The unit cost of the XETHRU X4M05 is $249 and

the price can drop to $80 for bulk purchase [4]. It integrates two on-

board antennas embedded onto a 6.6 × 4.2 cm2 PCB board. Benefit

from its high-speed analog-to-digital module, the raw sampling rate

is 23.328 GS/s. The data processing happens on a Dell XPS-15 9570

laptop with an Intel i7-8750H processor and 16GB memory. The

UWB chip [7] has a much lower power consumption (0.084 mW)

compared to WiFi and RFID chips. We connect the UWB module to

the Raspberry Pi and package it in a 3D-printed box with a size of

13.9 × 9.4 cm2 as a handheld sensing device as shown in Figure 13.5

We use a commercial Reeman mobile robot [40] to move the UWB

device as a mobile sensing platform. We use Python to control robot

movement (i.e., moving speed, direction and distance).

Software Implementations. We implement the signal pro-

cessing on Matlab. After the Raspberry Pi receives the raw signal

5The UWB module size can be further reduced using Wafer Level Chip Scale Packag-
ing (WLCSP). This design has been adopted in Lenovo X1 laptop.
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samples from the UWB module, it forwards the raw data to the

laptop through WiFi connection. We restructure the raw data into

a matrix form to obtain the range profile as illustrated in Figure 5.

Then we perform signal phase compensation and eliminate the

effect of device motion using a reference.

Figure 13: Hardware impl-

ementation.

Figure 14: Setup of bench-

mark experiment.

6 EVALUATION

In this section, we evaluate the sensing performance of the system

using both benchmark experiments and real-world applications.

Benchmark experiments are employed to verify the effectiveness

of the proposed schemes and study the influence of varying param-

eters and conditions. We showcase three sensing applications with

the proposed system: i) sensing sub-millimeter level vibration of

a speaker to “hear” the music play; ii) holding the UWB device in

hand to monitor the patients’ millimeter level respiration (rate and

depth) in a hospital environment; and iii) placing the UWB device

on a moving robot to recognize gestures of multiple persons.

6.1 Benchmark experiment

Experiment Setting: As shown in Figure 14, we use a metal plate

which is an ideal signal reflector as the target6 in this benchmark

experiment. The metal plate has a size of 10 × 15 cm2 and we em-

ploy a 2 m-long sliding track controlled by Raspberry Pi 3 Model

to precisely move the metal plate. We use another stationary metal

plate as the reference to eliminate the device motion. We also con-

sider commonly-seen static objects as reference in Section 6.1.4.

The default moving speed of the robot is 0.2 m/s.

GroundTruth:Wemove the target with a high-precision sliding

track (Mjunit MJ45N) which is capable of achieving an accuracy of

0.01 mm.

Performance metric:We use the mean absolute error between

the displacement estimated by our system and ground truth as the

metric to evaluate the system performance.

6.1.1 How effective can device motion of different scales be
addressed? We first investigate the impact of device motion scale

on our system. We let the target move periodically for 1 cm on the

sliding track. When the RF device is held in hand by a person, we

observe that even the person keeps still, the subtle involuntary hand

shaking can cause a hand movement around 0.2-0.5 cm.7 As shown

in Figure 15, if the device motion is not removed, the involuntary

6Experiments with human target will be presented in the application section.
7The displacement of subtle handshaking is measured by the Qualisys motion capture
camera system[12], which can achieve a sub-mm level accuracy. Four ultra high-speed
cameras are mounted on the wall at a height of 2.8 m. The frame rate of the Qualisys
system is set as 250 Hz. A reflective marker needs to be attached to the the target for
Qualisys MoCap system to work.

shaking causes a large error of 0.34 cm. When the involuntary

shaking is cancelled out using the proposed method, the average

error is reduced to 0.02 cm. We further ask the user to intentionally

shake the hand with a gradually increasing scale from 1 cm to 5 cm.

In this case, the target movement is completely submerged by hand

movement. We can see that if the device motion is not addressed,

the error of displacement estimate increases from 0.52 cm to 2.73 cm.

In contrast, by applying the proposed device motion cancellation

method, the error is reduced to below 0.08 cm.

Figure 15: Effect of hand

shaking scale.

Figure 16: Effect of robot

moving speed.

6.1.2 How effective can device motion of different speeds
and trajectories be addressed? We further explore the impact of

motion speed on the performance of our system. We move a robot

for 1 m which is much larger than the hand movement scale in the

previous experiment. We increase the robot speed from 0.1 m/s to

2 m/s. As shown in Figure 16, we can see that the device movement

speed does affect the sensing performance. Without the proposed

method, the error can be up to 85.67 cm at 2 m/s. With the proposed

method, for all seven speeds, the displacement estimation errors

are below 0.15 cm.

We also study the impact of different moving trajectories of the

robot. As shown in Figure 17a and 17b, we let the robot cruise

following five different trajectories including (1) a horizontal line,

(2) a vertical line, (3) a diagonal line, (4) a horizontal Z shape and

(5) and a vertical Z shape. For five different trajectories, the esti-

mation errors are 0.04 cm, 0.06 cm, 0.10 cm, 0.12 cm and 0.06 cm,

respectively, demonstrating a high accuracy under different robot

moving trajectories.

(a) Straight line trajectories. (b) "Z" shape trajectories.

Figure 17: Robot moves following different trajectories.

6.1.3 Robot’s moving direction is parallel to the wall. When

the robot’s moving direction is parallel to the wall as shown in

Figure 18a, the wall cannot be used as a reference because the

distance between the device and the wall is a constant and does

not contain device motion information. Fortunately, our system

can detect the parallel wall and exclude it from being selected as a

reference. As shown in the range profile in Figure 18b, the distance
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of the parallel wall is roughly a constant over time. The parallel

wall can thus be detected and excluded from being considered as

the reference for device motion cancellation. By selecting the small

metal plate on the desk as the reference, target motion can be

recovered as shown in Figure 18c.

(a) Experiment setup. (b) Range-time profile.

(c) Device motion removal using the metal plate as reference

Figure 18: Experiment setup and device motion removal.

When the robot moves in parallel with the wall, the wall

is excluded from being selected and the small metal plate is

selected as the reference.

6.1.4 Effect of selecting different static objects as the ref-
erence. Many commonly seen static objects can be selected as

reference to eliminate the influence of device motion. We therefore

conduct experiments to evaluate the effect of selecting different

static objects in real environment as the reference. We employ eight

commonly seen static objects, i.e., water bottle, bookshelf, chair,

table, bookcase, laptop, sofa and wall in two scenarios, as shown in

Figure 19a and 19b as the reference. We let the target move periodi-

cally for 1 cm on the sliding track. In each scenario, we evaluate the

displacement tracking accuracy in both handheld and robot-carried

scenarios. The results are presented in Figure 20a and 20b. We can

see that all the static objects in the range can be chosen as reference

to successfully cancel out the device motion. We can also see that

a larger error occurs when sofa is chosen as the reference. This is

because sofa is far away and the clothe surface is not as smooth as

other objects so the signal reflection is weaker.

6.1.5 Challenging real-life scenarios. We now evaluate the sys-

tem performance in challenging real-life scenarios. When device is

held in hand, we consider two cases: i) the user changes the hand

to hold the device and ii) the user holds the device and walks. For

robot case, we let the robot move on four rough grounds: carpet,

steel, brick, and soil as shown in Figure 21b. We show the perfor-

mance of sensing a target with a small 1 cm displacement in these

challenging scenarios. It can be seen that without the proposed mo-

tion cancellation scheme, the average target motion displacement

(a) Desk scenario. (b) Lobby area scenario.

Figure 19: A lot of commonly seen objects in our environment

can be selected as reference for device motion removal.

(a) The result of selecting different ob-
jects on the desk as the reference.

(b) The result of selecting different ob-
jects in the lobby area as the reference.

Figure 20: The effect of selecting different commonly seen

object in our surrounding environment as references.

error reaches 8.87 cm, 15.52 cm, 13.81 cm, 14.27 cm, 16.45 cm and

16.98 cm respectively. In contrast, with the proposed method, the

displacement error is reduced dramatically to below 0.31 cm for all

six challenging scenarios.

(a) Change the hand holding the device. (b) Robot moves on rough ground.

Figure 21: Challenging real-life scenarios.

Figure 22: The performance of fine-grained sensing, i.e.,

tracking a target displacement of 1 cm in the six challenging

real-life scenarios.
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(c) The proposed device motion removal.

Figure 23: Performance comparison between IMU-based and the proposed reference-

based device motion removal methods.

Figure 24: Performance comparison

with static device scenario.

(a) Handheld scenario. (b) Robot-carried scenario. (c) Ground truth signal captured
by static device.

(d) Sensing signal corrupted by
device motions.

(e) Recovered signal.

Figure 25: The experiment setups and the results of sensing fine-grained speaker vibrations.

6.1.6 Performance comparison with IMU-based cancella-
tion. In this section, we compare the system performance with

IMU-based device motion cancellation. To make IMU and UWB

work together, we use a Raspberry Pi to connect a high-end 9-axis

IMU sensor (GY-85 module) and our X4M05 UWB as shown in

Figure 23a. We record the IMU and UWB data with timestamps for

time synchronization. Acceleration information can be obtained

from the IMU sensor and we convert it to displacement through

the integration operation. For a fair comparison, we apply the same

method proposed in this work to cancel the target motion using

the IMU data and UWB-reference data respectively. The results are

shown in Figure 23b and Figure 23c. We can see that while IMU

data can be used to cancel the device motion, it is not as accurate

as the UWB-reference based method.

We further compare the performance of our system with a static

device. As shown in Figure 24, in both handheld and robot-carried

scenarios, the achieved performance is close to that achieved with

a static UWB device. These results demonstrate the effectiveness

of the proposed scheme in dealing with device motions.

6.2 Case studies

We conduct case studies to evaluate the performance of Mobi2Sense

in real-life applications.

6.2.1 “Listen to” music through fine-grained UWB sensing.
In this application, we demonstrate Mobi2Sense can be used to “lis-

ten to” music through wireless sensing. In this experiment, we use

our system to sense the sub-millimeter level vibration of a commod-

ity speaker (Philips SPA20) when it is playing music. The sampling

rate of the UWB system is set to 1200 samples/s. We conduct experi-

ments in two scenarios as shown in Figure 25a and 25b in which the

devices are handheld and robot-carried, respectively. The speaker is

placed on the desk. There are other static objects (i.e., water bottle,

laptop and bookshelf) on the desk. The selected reference is the

laptop. We play the seven basic music notes, i.e., do, re, mi, fa, so,

la and si with the frequency ranges from 261 Hz to 494 Hz and a

song Twinkle twinkle little star. Because the speaker vibrates when

playing music, we can sense the fine-grained vibration information

of the speaker and recover the sound the speaker is playing purely

through wireless sensing. This technology can be applied to snoop

sound or record sound in a noisy environment.

As shown in Figure 25c, we present the ground truth music wave-

form, which is the music waveform captured by our system when

the device is static. Figure 25d and Figure 25e show the corrupted

music waveform when the device is mobile and the recovered wave-

form by applying our motion removal technique, respectively. We

can clearly see that our system can hear the music through fine-

grained vibration sensing and our system can recover the very sub-

tle vibration information in the presence of hand and robot motions.

The demo video can be found at https://youtu.be/0IfiomQ9Jnw.

6.2.2 Respiration rate and depth sensing. Next, we show the

feasibility of using Mobi2Sense to monitor fine-grained human

respiration (millimeter level). Vital sign sensing plays a key role

in health care. We show that our proposed system can enable the

nurse to hand hold the device to sense the patient’s respiration.

The UWB device can also be placed on a robot to patrol around to

monitor the human vital signs.

In the first scenario, the patients lie in bed and breath normally.

As shown in Figure 26a, a nurse holds our UWB device in hand 1 m

away from the patient to monitor the respiration. A lot of static

reflectors in the hospital room can be chosen as reference including

bed, bedside desk and wall. The selected reference is the bedside

desk. In the second scenario as shown in Figure 26b, as the robot

moves, the distance between the device and the human target is

between 2-5.5 m. The selected reference is the laptop. Figure 26c
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(a) Handheld scenario. (b) Robot-carried scenario. (c) Signal corrupted by device motions. (d) Recovered signal.

Figure 26: The experiment setups and the results of sensing human respiration.

and Figure 26d show the original signal phase variation corrupted

by the device motion and the recovered phase variation respectively

during the respiration process. We can clearly see that the signal

phase variation pattern is severely corrupted by device motions.

To verify the robustness of the system, in the first scenario, we

recruit 10 patients with IRB approval. The ground truth is measured

by a professional three-lead electrocardiogram monitor (HealForce

PC-3000) which costs around $1000 [5]. Note that most wireless

sensing-based respiration monitoring systems [9] only pay atten-

tion to respiration rate. Owing to our static signal removal scheme

presented in Section 4.3, we are able to obtain not just the respira-

tion rate but also the depth. Figure 27a and Figure 27b show the

CDF plots of respiration rate estimation error and respiration depth

estimation error. Our system achieves a mean respiration rate error

below 0.1 bpm (Breaths Per Minute) which is much lower than

the 1 bpm requirement for respiration sensing. The mean depth

estimation error is below 2 mm.

(a) Respiration rate error. (b) Respiration depth error.

Figure 27: Performance comparison when the device is static

and and when the device is mobile.

6.2.3 “Recognize”multi-target gestures . WeemployMobi2Sense

to recognize human gestures while the robot is moving. As shown

in Figure 28, four commonly-seen hand gestures are employed in

this experiment: 1) push, 2) zig-zag, 3) triangle and 4) circle. Note

that the gestures which can be supported by our system are not

limited to these four. The repetition for each gesture is ten. We let

the robot move following the five trajectories shown in Figure 17.

The distance between the robot and target is 2-7 m as the robot

moves. The chair is selected as the reference.

We first let one target perform each gesture when robot is mov-

ing. We can see in Figure 29 that the signal variations are clearly

different for the four gestures. We apply the simple dynamic time

warping (DTW) method to recognize the gestures. When there is

Figure 28: The experiment

scenario for multi-target ges-

ture recognition.

Figure 29: Signal patterns of

four gestures. Each gesture is

repeated twice.

one target, the confusion matrix is shown in Figure 30a. We can

see that even when the device moves with robot, we can achieve a

100% accuracy.

With a large signal bandwidth, the spatial resolution of UWB

sensing is high and the proposed system has the capability to sense

multiple close-by targets. In Figure 28, we further let three targets

sitting around a table perform gestures simultaneously while the

robot is moving. Even with multiple targets interfering with each

other, the gesture recognition accuracy is still higher than 90%

as shown in Figure 30b. Another interesting observation worth

mentioning is that for gesture recognition, we can even employ

the human body as the reference to eliminate device motion for

sensing.

(a) Single target. (b) Multiple targets.

Figure 30: Confusion matrices of gesture recognition.

7 RELATEDWORK

Contactless sensing using various RF signals: Research efforts

have been devoted to sensing human and objects in a contactless
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manner. A large variety of wireless technologies are utilized for

sensing including WiFi [15, 54, 60], RFID [46], LoRa [18, 63, 64],

LTE [19, 35], FMCW radar [69, 70] and UWB [24, 71, 72]. Among

these technologies,WiFi has attracted a lot of research attention due

to its pervasiveness and low cost. However, the narrow bandwidth

limits the sensing accuracy of WiFi. Another critical issue with

WiFi sensing is that it is not compatible with WiFi communication.

In contrast, UWB technology has a large bandwidth and can be

dedicated for ranging and sensing purposes.

Wireless sensing applications: Wireless sensing has been

applied to sense human targets, objects, and also the environ-

ment. A large range of sensing applications have been developed

ranging from vital sign monitoring [51, 59, 61, 68], gesture track-

ing [3, 38], daily activity recognition [31, 66] and passive localiza-

tion [13, 14, 47] to machine vibration sensing [6, 57], food quality

monitoring [39], material sensing [55], liquid identification [30],

temperature sensing [17, 65] and soil moisture monitoring [18]. We

envision that mobility can further expand the application scope of

wireless sensing to realize more exciting sensing applications.

Ultra-wideband (UWB) based sensing: In 2002, the FCC re-

leased regulations on the use of spectrum and power for civilian

UWB technology [1]. UWB technology has then been mainly used

for high-precision positioning [50, 74]. Recent research works uti-

lize UWB for contactless sensing [23, 24, 34, 72]. Multi-Breath [58]

employs UWB for human respiration sensing, which can support up

to four persons. For coarse-grained movements, HAR-SAnet [21]

proposes a UWB-based human activity recognition system. It adopts

a convolutional neural network to automatically identify features

instead of feeding the handcraft features of RF signals into a classi-

fier. Seven commonly seen activities are classified with an accuracy

of 97.4%. All these works place the UWB device on tables or walls

and the UWB device is static.

8 LIMITATIONS AND DISCUSSIONS

Possible interference:When there are other moving subjects near

the target, the reflections from other subjects can cause interference.

The good news is that the large frequency bandwidth (1.5 GHz)

of UWB signals brings fine resolution in resolving signals from

different objects. As long as the interferer is not too close to the

target, the two signals can still be separated without causing inter-

ference. Based on our experience, for human respiration sensing,

if another walking person (interferer) is not within 20 cm of the

target, accurate respiration sensing can still be achieved. However,

if the interferer moves even closer, the performance degrades.

High speed mobility: In this work, Mobi2Sense targets remov-

ing the device mobility caused by natural hand holding and robot

movement. The device speed is not very fast. When we wave our

hand dramatically at a very high speed (4-5 m/s), we do observe

a performance degradation. We believe this is because high speed

induces large Doppler shift which can cause phase measurement

errors. Also the larger speed requires our system to adjust the

compensation coefficient at a higher rate, causing larger errors.

Apply the proposed method on other wireless signals: The

proposed method can be applied to other wireless signals such as

FMCW radar and chirp-based acoustic signals. However, it can not

be applied to narrow-band wireless technologies such as WiFi and

LoRa, as the limited bandwidth cannot provide fine-enough spatial

resolution for the proposed reference-based cancellation scheme to

work. It is worth mentioning that the up-to-come 802.11be (WiFi 7)

standard will adopt a large frequency bandwidth up to 320 MHz,

and it is likely the proposed scheme can be applied on the next-

generation WiFi.

Application scenarios: The first application scenario is to en-

able wireless sensing on robot when the robot is moving. For ex-

ample, a robot is moving and the user would like to use a gesture

which can be sensed by the RF module on the robot to change

the robot’s moving direction. Without the proposed method, the

robot needs to stop to sense the gesture and the dilemma is that the

robot needs to sense there is a gesture to stop. Another interesting

application scenario we envision is to integrate wireless sensing

with drone to enable applications which require high mobility such

as sensing the soil moisture in a farm covering an area of tens of

kilometers. The drone’s movement and motor-induced vibration

would severely interfere with wireless sensing. Compared with a

robot, the drone can freely move in 3D and the movement pattern is

more complicated. The complex device motions need to be tackled

before wireless sensing can work on a drone.

9 CONCLUSION

Although contactless sensing has been studied for years, a missing

piece which has not been studied is the effect of device motion

on sensing. We theoretically model the impact of device motion

on sensing and propose novel signal processing schemes to cancel

the effect of device motion to enable sensing with mobility. We

demonstrate the effectiveness of the proposed system using three

real-life applications. We believe this is a new sensing modality

which combines wireless sensing with mobility, moving a critical

step towards true mobile and ubiquitous sensing.
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