
1

Automatic Mapping of the Best-Suited DNN Pruning
Schemes for Real-Time Mobile Acceleration
YIFAN GONG∗ and GENG YUAN∗, Northeastern University, USA

ZHENG ZHAN, Northeastern University, USA

WEI NIU, College of William and Mary, USA

ZHENGANG LI, Northeastern University, USA

PU ZHAO, Northeastern University, USA

YUXUAN CAI, Northeastern University, USA

SIJIA LIU,Michigan State University, USA

BIN REN, College of William and Mary, USA

XUE LIN, Northeastern University, USA

XULONG TANG, University of Pittsburgh, USA

YANZHI WANG, Northeastern University, USA

Weight pruning is an effective model compression technique to tackle the challenges of achieving real-time

deep neural network (DNN) inference on mobile devices. However, prior pruning schemes have limited

application scenarios due to accuracy degradation, difficulty in leveraging hardware acceleration, and/or

restriction on certain types of DNN layers. In this paper, we propose a general, fine-grained structured

pruning scheme and corresponding compiler optimizations that are applicable to any type of DNN layer

while achieving high accuracy and hardware inference performance. With the flexibility of applying different

pruning schemes to different layers enabled by our compiler optimizations, we further probe into the new

problem of determining the best-suited pruning scheme considering the different acceleration and accuracy

performance of various pruning schemes. Two pruning scheme mapping methods, one is search-based and

the other is rule-based, are proposed to automatically derive the best-suited pruning regularity and block

size for each layer of any given DNN. Experimental results demonstrate that our pruning scheme mapping

methods, together with the general fine-grained structured pruning scheme, outperform the state-of-the-art

DNN optimization framework with up to 2.48× and 1.73× DNN inference acceleration on CIFAR-10 and

ImageNet dataset without accuracy loss.
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1 INTRODUCTION
Model compression techniques have been proposed to reduce the computation andmemory intensity

without compromising accuracy [22, 26, 40, 57, 69, 81, 82]. It is a promising solution for achieving

various practical deep learning (DL)-based methods such as fingerprinting [31], YOLO[9], super-

resolution [79], and speech recognition [18] in real time on resource-limited platforms, especially

mobiles and embedded devices [37, 58, 84]. Among the compression techniques, weight pruning [22,

26, 27, 57, 69] explores and reduces the vast redundancy in the number of weights and results in

structural sparsity of DNN models with fewer memory references and power consumption during

inference.

The design of a weight pruning method includes two fundamental aspects, i.e., pruning regularity
and pruning algorithm. The former refers to the structural characteristics of the DNNs after pruning,

whereas the latter determines the rule to identify the weights to be pruned. From the pruning
regularity aspect, the widely adopted pruning schemes include unstructured pruning, structured

pruning, and pattern-based pruning. Specifically, unstructured pruning is flexible to prune any

weights and generally yields promising accuracy. However, they are not compatible with hardware

accelerations due to the irregular computation after pruning [22, 23, 48]. On the other hand,

structured pruning eliminates weights while maintaining a full matrix format. It is hardware-

friendly but suffers from notable accuracy degradation due to the coarse-grained nature in pruning

whole filters/channels [45, 54, 57, 83, 86, 87]. Recently proposed pattern-based pruning overcomes

the shortcomings of prior works by incorporating fine-grained structured pruning in a hardware-

aware fashion [50, 59], with the aid of compiler. However, pattern-based pruning is only applicable

to 3×3 convolutional (CONV) layers and is difficult to be generalized to fully-connected (FC) layers

and CONV layers with other kernel sizes. There lacks a pruning regularity that is general and

achieves high accuracy and hardware performance simultaneously.

From the pruning algorithm aspect, heuristic-based pruning was first proposed in [23] and gets

improvements with more sophisticated designed heuristics [19, 27, 36, 49, 74, 87]. Regularization-

based pruning [21, 26, 39, 41, 43, 55, 56, 62, 69, 76, 77, 81], on the other hand, are more mathematics-

oriented. Recent works [39, 51, 62, 81, 82] achieve substantial weight reduction without hurting

the accuracy by leveraging Alternating Direction Methods of Multipliers (ADMM) with dynamic

regularization penalties, but these methods require the manual setting of the compression rate for

each layer.

To fully exploit the potential of the pruned models on mobile devices for inference accelerations,

it is necessary to incorporate compiler optimizations to support efficient sparse computation and

storage. However, state-of-the-art compiler-based DNN execution frameworks such as TensorFlow-

Lite (TFLite) [1], Alibaba Mobile Neural Network (MNN) [2], and TVM [11] do not support sparse

(pruned) model inference acceleration on the mobile platforms, while the recent works PCONV

[50] and PatDNN [59] only have limited sparse inference support for 3×3 CONV layers.

Apart from the individual limitations mentioned above, there is one additional deficiency that

prevents DNN models from taking full advantage of weight pruning. Different pruning schemes

result in different acceleration and accuracy performance, but prior works simply apply the same

pruning scheme to the entire model, undermining the flexibility to select the best-suited pruning

scheme for each layer to achieve better accuracy and acceleration performance.
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This paper aims to overcome the above limitations of prior works. More specifically, we make

the following contributions towards a general, fine-grained structured pruning scheme and two

automatic pruning scheme mapping methods.

For the pruning scheme part:

• We propose a novel and general pruning regularity, block-based pruning for FC layers and

block-punched pruning for CONV layers with different kernel sizes, that can achieve high

accuracy and high hardware inference performance simultaneously.

• We adopt a reweighted dynamic regularization algorithm to derive the structured sparsity

with automatically determined compression rate for each layer and each block without

compromising the accuracy.

• To extract the fine-grained structure information and exploit hardware parallelism, we

propose a compiler-based mobile acceleration framework that supports the proposed pruning

regularity as well as other pruning regularities. It provides the flexibility to apply different

pruning schemes to different layers for a better performance of the pruned model.

For the automatic pruning scheme mapping methods part: Taking the different acceleration
and accuracy performance of various pruning schemes into consideration, we probe into the

new problem of determining the best-suited pruning scheme for each layer of any given DNN.

We propose two automatic pruning scheme mapping methods to address this problem. More

specifically:

• The first is a search-based method leveraging the recent concept of network architecture

search (NAS) [8, 67, 70, 85, 88], which employs reinforcement learning (RL) technique to

yield close-to-optimal pruning scheme mappings.

• The second is a training-free, rule-based method leveraging an offline-generated latency

model. It is efficient and more useful in practice.

We perform comprehensive evaluations of the proposed general pruning scheme and the two

mapping methods on representative DNN models and benchmark datasets. Experimental results

demonstrate that our methods significantly outperform state-of-the-art DNN pruning framework

PatDNN in terms of accuracy and latency performance. We achieve 17.22ms, 18.17ms, and 3.90ms

ImageNet inference time with negligible accuracy loss on an off-the-shelf mobile phone for ResNet-

50, VGG-16, and MobileNetV2, respectively. Furthermore, the search-based method only shows a

slightly better performance than the rule-based method while the rule-based method is training-free

in pruning scheme mapping.

2 BACKGROUND AND RELATEDWORKS
2.1 DNN Pruning: Regularity and Algorithm
2.1.1 Pruning Regularity. From the pruning regularity aspect, existing pruning schemes can be

divided into three categories: fine-grained unstructured pruning, coarse-grained structured pruning,
and pattern-based pruning. We show the different pruning regularities in Fig. 1, with colored grids

representing remaining weights. The left and middle column in the figure illustrates pruning

regularities in the 4-D weight tensor format and 2-D weight matrix format for CONV layers,

respectively. The right column shows the different regularities for FC layers.

Unstructured pruning is fine-grained and flexible in removing weights at arbitrary loca-

tions [15, 16, 20, 22], as shown in Fig. 1 (a) and (b). Though having the advantage in maintaining

accuracy, unstructured pruning leads to sparse and irregular weight matrices, and as a result,

indices are required to locate the non-zero weights in the sparse matrix storage format, e.g., CSR

format. Therefore, it cannot effectively and efficiently leverage the hardware parallelism provided
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Fig. 1. Different weight pruning schemes for CONV and FC layers using 4D tensor and 2D matrix representa-
tion.

by the underlying system. Consequently, unstructured pruning is generally not compatible with

GPU acceleration for DNN inference, and speed degradation can often be observed [52].

Structured pruning [27, 28, 69, 74, 75] focuses on CONV layers and maintains structured

regularity. It consists of filter pruning and channel pruning that prune the entire filter(s)/channel(s).

In the weight matrix format representation as shown in Fig. 1 (c), filter pruning corresponds to

reducing one row of the weight matrix and it is also termed as row pruning. Accordingly, channel

pruning corresponds to reducing multiple consecutive columns. The key advantage of structured

pruning is that a full matrix will be maintained with dimension reduction, thereby facilitating

hardware acceleration. However, structured pruning is coarse-grained and often leads to certain

accuracy degradation [59, 68].

Pattern-based pruning [50, 59, 78] alleviates the shortcomings of prior works by incorporating

the benefits from fine-grained pruning while maintaining structures that can be exploited for

hardware accelerations with the help of compiler. Pattern-based pruning is a combination of kernel

pattern pruning and connectivity pruning as shown in Fig. 1 (e). Kernel pattern pruning prunes

weights at an intra-kernel level by enforcing the locations of the remaining weights in a kernel to

form a specific kernel pattern. Different kernels can have different kernel patterns, but the total

types of kernel patterns are restricted to a fixed-size set. Each kernel pattern reserves 4 non-zero

weights to match the single-instruction multiple-data (SIMD) architecture of embedded CPU/GPU

processors to maximize the hardware throughput. As a fixed number of weights are pruned, the

compression rate is constant for kernel pattern pruning. For a higher compression rate, connectivity

pruning is adopted as the supplementary to kernel pattern pruning. Connectivity pruning prunes

weights at an inter-kernel level via cutting the connections between certain input and output

channels.
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However, pattern-based pruning is designed for 3×3 CONV layers and suffers difficulty when

generalized to CONV layers with other kernel sizes and FC layers. To avoid the execution overhead

of branching conditions caused by using different pattern types, pattern-based pruning requires

limiting the maximum number of different pattern types to be used. Generally, 8 or 16 different

pattern types are allowed to be selected from all possible 4-entry pattern combinations to ensure a

decent acceleration while not hurting accuracy. For larger kernel sizes such as 5x5/7x7, 4-entry

patterns need to be selected from 25/49 weights (instead of 9 weights in 3x3 case), making the

pattern have too many potential candidates. As a result, if only 8 or 16 patterns are used, there

will be an accuracy degradation. Moreover, as studied in [53], the Gaussian filter-like patterns and

the Enhanced Laplacian of Gaussian (ELoG) filter-like patterns (as shown in Fig. 1 (e)) are more

preferred since they can provide an enhancement on feature extraction. But such 4-entry patterns

in 5x5/7x7 kernels cannot provide the receptive field size that the large kernels are supposed to

have. For the 1x1 CONV layer, there is only one weight in a kernel, making the pattern-based

pruning same as unstructured pruning, which is hard to achieve actual acceleration. Therefore, the

existing pattern-based pruning is only suitable for 3x3 kernels, which significantly restricts the

application scenarios of pattern-based pruning.

2.1.2 Pruning Algorithm. There are two main categories of pruning algorithm, i.e., heuristic-

based algorithm and regularization-based algorithm. Heuristic-based pruning algorithm was first

proposed to achieve unstructured pruning by pruning weights with small magnitudes in an iterative

manner [23]. Later heuristic works get improved in multiple directions including structured-

preserving pruning [36, 49, 74], combining growth of neurons and connections with pruning

[16], and introducing meticulously-designed criteria [27, 49, 74, 87] to replace magnitudes for the

pruning.

Regularization-based algorithm deal with the pruning problem using a more mathematics-

oriented method. To solve filter/channel pruning problems, early works [28, 69] incorporate ℓ1 or ℓ2
structured regularization in the loss function. Work [46] introduces a scaling factor to each channel

while imposing ℓ1 regularization on the scaling factors in batch normalization to prune channels

with near-zero scaling factors. However, these works directly apply fixed regularization terms

that penalize all weights equally, incurring potential accuracy loss. Later works [21, 62, 81] adopt

ADMM to reform the pruning problem as optimization problems with dynamic regularization

penalties, thus preserving accuracy. One drawback of these methods is the requirement for the

manual setting of the compression rate for each layer.

2.2 Compiler-based DNN Frameworks on Mobile
Mobile devices become key carriers of deep learning [29, 34, 60, 80] to enable the widespread of

machine intelligence. To facilitate the deployment of various DNN models on mobile devices, mul-

tiple mobile DNN execution frameworks from both industry and academia attract broad attention

[24, 30, 33, 35, 71, 73]. TFLite [1], MNN [2], and TVM [11] are three representative state-of-the-

art end-to-end DNN execution frameworks with high execution efficiency. They employ several

performance optimization techniques, such as various computation graph optimizations, tensor

optimizations, and half-float support. Particularly, TVM includes a more advanced parameter auto-

tuning technique. However, none of these frameworks support sparse (pruned) DNN models on

mobile platforms
1
. This is the essential drawback that obstructs the real-time DNN inference on

mobile devices. Take VGG-16 network, one of the key DNN models in transfer learning, as an

example, TVM takes 200ms to perform an inference on the embedded GPU (Adreno 640), and

TFLite takes an even longer time (270 ms).

1
TVM considers sparsity recently for desktop processors.
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Fig. 2. High-level overview of proposed automatic pruning scheme mapping framework.

Previous efforts based on fine-grained pattern-based pruning such as PatDNN [59] and PCONV [50]

employ a set of compiler-based optimizations to support sparse DNN models, significantly acceler-

ating the end-to-end DNN inference on mobile devices. However, they mainly accelerate the square

and small convolution kernels used in 3×3 CONV layers. A larger kernel size, e.g., 5×5, 7×7, will
introduce huge code execution overhead due to the increasing number of branches in generated

code. In addition, they cannot support FC layers and 1×1 CONV layers that are commonly used in

DNNs.

3 OVERVIEW OF THE AUTOMATIC PRUNING SCHEME MAPPING FRAMEWORK
To achieve real-time mobile acceleration for various modern DNNs, we propose an automatic

pruning scheme mapping framework, which is illustrated in Fig. 2. Given an arbitrary DNN model,

the framework can automatically map the best pruning configurations to each layer and leverage

compiler-based optimizations to achieve inference speedup. The layer-wise configurations include

the pruning regularity, compression rate, and the block size.

In order to achieve the design objective, our framework contains the following innovations. We

first propose a general, fine-grained pruning regularity that is applicable to different types of
layers while achieving both high accuracy and hardware acceleration performance to overcome

the limitations of prior pruning regularities in Section 4.1. To determine the compression rate for

each layer automatically without compromising accuracy, we introduce a reweighted pruning

algorithm in Section 4.2. For the goal of transforming compression to real inference speedup on

mobile devices, we propose corresponding compiler-based optimizations that support the proposed

pruning regularity as well as other pruning regularities in Section 4.3. As directly applying the same

pruning scheme to the entire model can not yield the optimal performance, we further propose

to map the best-suited pruning configurations to each layer of any given DNN for mobile devices

thanks to the flexibility enabled by our compiler optimizations. The mapping methods include a

comprehensive search-based method that can provide close-to-optimal results in Section 5.1 and a

training-free rule-based method that is more useful in-practice while reaching similar performance

as the search-based method in Section 5.2.

4 GENERAL, FINE-GRAINED STRUCTURED PRUNING SCHEME
In this section, we present a novel fine-grained structured pruning scheme and corresponding

compiler optimizations to (i) achieve high accuracy and hardware inference performance simul-

taneously while applicable to different types of layers; (ii) determine the compression rate for

each layer automatically without compromising the accuracy; and (iii) provide the supports to the

proposed pruning regularity and other pruning regularities for the exploitation of the hardware

parallelism. We start by providing a general fine-grained structured pruning regularity that includes

block-based pruning for FC layers and block-punched pruning for CONV layers with different

kernel sizes in Section 4.1. Next, a reweighted dynamic regularization algorithm which allows the

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.
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Fig. 3. Comparisons of (a) parameter ratio and (b) computation ratio for 3×3 CONV layers and non-3×3
layers for different networks on ImageNet dataset.

automatic determination of the per-layer and per-block compression rate is introduced to derive

the sparse regularity in Section 4.2. Then we provide corresponding compiler optimizations for the

proposed pruning scheme to enable efficient on-device inference of the pruned model in Section

4.3.

4.1 General, Fine-Grained Structured Pruning Regularity
Though state-of-the-art pattern-based pruning strikes a desirable balance between accuracy and

hardware efficiency, it only works for CONV layers with 3 × 3 kernels and suffers difficulty
when generalized to layers with other kernel sizes and FC layers. Note that not all of the layers

only operate on 3 × 3 kernels in a given DNN model. As a result, the number of layers using 3 × 3

kernels affect the effectiveness of pattern-based pruning. Fig. 3 illustrates the percentage of the

parameters and multiply-and-accumulates (MACs) in 3 × 3 CONV layers of four representative

networks. The large portion of non-3 × 3 CONV layers leaves great space for higher compression

rate and faster inference that cannot be achieved by pattern-based pruning alone.

To alleviate the deficiencies, we propose a general pruning scheme with fine-grained structured

pruning regularity, including block-based pruning for FC layers and block-punched pruning for

CONV layers with different kernel sizes.

4.1.1 Block-based Pruning for FC Layers. Block-based pruning is an extension of the coarse-

grained structured pruning that prunes rows/columns in matrix-based computation for FC layers.

As shown in Fig. 1 (g), we divide a whole weight matrix of a FC layer to a number of equal-sized

blocks (e.g., 4×4, 16×32, 64×128, etc.), and apply independent row and column pruning for each

block. The compression rate (the number of pruned rows/columns) for each block can either be the

same or different, which depends on the design requirements.

4.1.2 Block-punched Pruning for CONV Layers. Compared with matrix-based representation

and computation, tensor-based representation and computation are more suitable for CONV layers.

Thus, inspired by block-based pruning, we further propose block-punched pruning that is tailored

for CONV layers and can be accelerated with the same compiler optimizations. As shown in Fig. 1

(f), block-punched pruning first partitions the weight tensor of a CONV layer into groups (blocks)

of kernels along the filter and input channel dimensions. For each block, the weights at the same

locations for all kernels within the block are pruned. With effective compiler-level executable code

generation, high hardware parallelism and inference acceleration on mobile can be achieved.

Compared with state-of-the-art pattern-based pruning, the proposed fine-grained structured

pruning regularity is general and flexible as it can adaptively prune FC layers and CONV layers

with different kernel sizes. In the same time, block-based pruning and block-punched pruning

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.
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Table 1. Comparison of different pruning algorithms.

GroupLasso
Accuracy

Low Auto

Auto
ManuallyHigh

High

Compre. rate

ADMM
Reweighted

can simultaneously achieve high accuracy and high hardware inference performance like

pattern-based pruning. The high accuracy is attributed to the fine-grained property of pruning

regularity, which allows higher flexibility when searching the pruned model structure compared to

coarse-grained structured pruning that prunes entire rows/columns in weight matrices. On the

other hand, the high hardware inference performance is attributed to the appropriate degree

of structural regularity, which can be exploited by compiler-level code generation to achieve high or

even maximum hardware parallelism. With an appropriate selection of the block size, the remaining

entries in each block can still be sufficient to exploit high hardware parallelism. The block size for

each layer is an important hyperparameter that influences hardware performance and accuracy.

We will elaborate on how to select the appropriate block size for each layer in Section 5.2.2.

4.2 Reweighted Dynamic Regularization Algorithm
Another important design aspect of a pruning scheme is the pruning algorithm. Prior pruning

algorithms such as using the group Lasso regularization [28, 46, 69] or ADMM [39, 61, 81], either

suffer from potential accuracy loss or require compression rate tuning manually. To overcome the

limitations, we propose to adopt reweighted group Lasso [10] method to discover the structured

sparsitywith systematically and dynamically reweighted penalties. More specifically, the reweighted

method reduces the penalties on weights with larger magnitudes, which are likely to be more

critical weights, and increases the penalties on weights with smaller magnitudes. A comparison of

the characteristics of different regularization-based pruning algorithms is shown in Table 1.

For the 𝑖-th layer in the DNN, if the layer is a FC layer, let𝑾𝑖 ∈ R𝑃𝑖×𝑄𝑖
denote the 2-D weight

matrix, with 𝑃𝑖 and 𝑄𝑖 indicating the rows and columns of the weight matrix, otherwise 𝑾𝑖 ∈
R𝑃𝑖×𝑄𝑖×𝐾ℎ

𝑖
×𝐾𝑤

𝑖 represents the 4-D weight tensor of a CONV layer, where 𝑃𝑖 is the number of filters,

𝑄𝑖 is the number of input channels, 𝐾𝑤
𝑖

and 𝐾ℎ𝑖 are the kernel width and kernel height. Let 𝒃𝑖 ∈ R𝑃𝑖
represent the bias for the 𝑖-th layer. We also define𝑾 := {𝑾𝑖 }𝑁𝑖=1, and 𝒃 := {𝒃𝑖 }𝑁𝑖=1 as the set of all
weights and biases in the DNN.We denote the loss of the DNN under datasetD by 𝑓 (𝑾 , 𝒃 ;D). Each
𝑾𝑖 is divided into 𝐽 blocks with the same size, 𝑝𝑖 ×𝑞𝑖 for a FC layer and 𝑝𝑖 ×𝑞𝑖 ×𝐾ℎ𝑖 ×𝐾𝑤𝑖 for a CONV

layer, namely,𝑾𝑖 = [𝑾𝑖1,𝑾𝑖2, ...,𝑾𝑖 𝐽 ], where𝑾𝑖 𝑗 ∈ R𝑝𝑖×𝑞𝑖 for a FC layer and𝑾𝑖 𝑗 ∈ R𝑝𝑖×𝑞𝑖×𝐾
ℎ
𝑖
×𝐾𝑤

𝑖

for a CONV layer. The general reweighted pruning problem is formulated as

minimize

𝑾 ,𝒃
𝑓
(
𝑾 , 𝒃 ;D

)
+ _

𝑁∑︁
𝑖=1

𝑅(𝜶 (𝑡 )
𝑖
,𝑾𝑖 ), (1)

where _ is the hyperparameter to adjust the relative importance between accuracy and sparsity.

Let 𝜶 (𝑡 )
𝑖

denote the collection of penalty values applied on the weights𝑾𝑖 for layer 𝑖 at step 𝑡 . Note

that each element in 𝜶 (𝑡 )
𝑖

is a positive value that is determined by reweighted ℓ1 algorithm [10].

For block-based row pruning, the regularization term is

𝑅(𝜶 (𝑡 )
𝑖
,𝑾𝑖 ) =

𝐽∑︁
𝑗=1

𝑝𝑖∑︁
𝑚=1

𝛼 (𝑡 )
𝑖 𝑗𝑚

◦ [𝑾𝑖 𝑗 ]𝑚,:
2
𝐹
, (2)

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Automatic Mapping of the Best-Suited DNN Pruning Schemes for Real-Time Mobile Acceleration 1:9

1 2 3
4 5 6
2 3
5 6

3 4
7 5

0 3 6 8 10 12 14
Row offset array

Ro
w

Col

0 3 6 0 3 5 7
Compact column array

0 3 5 7
Column stride array

0 2 4 6
Occurrence array 

1 2 3 4 5 6 2
3 5 6 3 4 7 5

Weights array

Original weight Compact weight Index

Fig. 4. Blocked Compressed Storage (BCS) for weights.

where the operator ◦ represents element-wise multiplication, [𝑾𝑖 𝑗 ]𝑚,: denotes the𝑚-th row of𝑾𝑖 𝑗 ,

and 𝛼
(𝑡 )
𝑖 𝑗𝑚

is updated by 𝛼
(𝑡 )
𝑖 𝑗𝑚

= 1

∥ [𝑾𝑖 𝑗 ]𝑡𝑚,: ∥2𝐹 +𝜖
to help increase the degree of sparsity beyond group

Lasso regularization.

For block-based column pruning, the regularization term is

𝑅(𝜶 (𝑡 )
𝑖
,𝑾𝑖 ) =

𝐽∑︁
𝑗=1

𝑞𝑖∑︁
𝑛=1

𝛼 (𝑡 )
𝑖 𝑗𝑛

◦ [𝑾𝑖 𝑗 ] :,𝑛
2
𝐹
, (3)

where [𝑾𝑖 𝑗 ] :,𝑛 is the 𝑛-th column of𝑾𝑖 𝑗 and 𝛼
(𝑡 )
𝑖 𝑗𝑛

is updated by 𝛼
(𝑡 )
𝑖 𝑗𝑛

= 1

∥ [𝑾𝑖 𝑗 ]𝑡:,𝑛 ∥2𝐹 +𝜖
. The block-based

row pruning problem (2) and column pruning problem (3) can be solved separately or simultaneously

using a standard deep learning solver.

For block-punched pruning, the regularization term is formulated as

𝑅(𝜶 (𝑡 )
𝑖
,𝑾𝑖 ) =

𝐽∑︁
𝑗=1

𝐾ℎ
𝑖∑︁

𝑚=1

𝐾𝑤
𝑖∑︁

𝑛=1

𝛼 (𝑡 )
𝑖 𝑗𝑚𝑛

◦ [𝑾𝑖 𝑗 ] :,:,𝑚,𝑛
2
𝐹
, (4)

where [𝑾𝑖 𝑗 ] :,:,𝑚,𝑛 indicates the weight located at the𝑚-th row and 𝑛-th column in a kernel for

all kernels in the block and 𝛼
(𝑡 )
𝑖 𝑗𝑚𝑛

= 1

∥ [𝑾𝑖 𝑗 ]𝑡:,:,𝑚,𝑛 ∥2𝐹 +𝜖
. The reweighted method only requires the

hyperparameter _ and the soft constraints formulation allows the automatic determination of the

compression rate for each layer and each block.

4.3 Compiler Optimizations for Proposed Pruning Regularity
Compiler optimizations can turn the sparsity of pruned models into higher speedups. Without

compiler optimizations, the pruned weights (with zero values) still participate in the inference

computations, resulting in minor inference speedup. Hence, we develop a comprehensive compiler-

based automatic code generation framework to extract the fine-grained structure information in

block-punched and block-based pruning. The framework also supports other pruning regularities

including unstructured pruning, structured pruning, and pattern-based pruning. Our proposed

compiler-based mobile acceleration framework first compacts the model storage with a novel

compression format called Blocked Compressed Storage (BCS) format, as shown in Fig. 4. Then, it

performs computation reordering to reduce the branches within each thread and eliminate the load

imbalance among threads.

BCS stores non-zero weights as Compressed Sparse Row format (CSR) with a better compression

rate by further compressing the index with a hierarchical structure. Traditional CSR has to store

each non-zero weight with an explicit column index. Our proposed block-based/block-punched

pruning preserves non-zero weights in identical columnswithin each block, inducingmany repeated
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Fig. 5. Accuracy and latency performance with different block sizes on ResNet-50 using ImageNet dataset.

column indices if we use CSR. BCS eliminates this redundancy with a hierarchical compression on

the column index only.

Fig. 4 shows a simplified example. Weights array stores all non-zero weights. Compact column
array stores the compressed column index, e.g., [0, 3, 6] denotes the column id of the first three

weights [1, 2, 3]. Column stride array denotes the start and end index of each row in compact

column array, e.g., [0, 3] denotes that the column index for the first row starts from index 0 and

ends at index 2 in compact column array. The same column indices may be used for multiple rows.

Occurrence array is used to specify the start and end rows with the identical column index, e.g.,

[0, 2] means that row 0 and 1 share the same column index. BCS also contains a row offset array
to specify the starting location of each row in weight array.

Usually, the weight distribution is not as regular as the above simplified example, thus, a row

reordering optimization is also included to further improve the regularity of the weight matrix.

After this reordering, the continuous rows with identical or similar numbers of non-zero weights are

processed by multi-threads simultaneously, thereby eliminating thread divergence and achieving

load balance. Each thread processes more than one rows, thus eliminating branches and improving

instruction-level parallelism. We also incorporate other compiler-based optimizations for on-mobile

DNN inference acceleration, such as the layer-fusion, the auto-tuning, and the high-level domain-

specific language. More details are provided in the Appendix.

4.4 Effectiveness of the Proposed Pruning Scheme
We show an example of the inference accuracy and acceleration performance of the proposed

pruning scheme on ResNet-50 using ImageNet dataset in Fig. 5. More thorough evaluation results

are presented in Section 6.2. Here, block-based pruning is applied for all FC layers and block-

punched pruning is applied for all CONV layers. The compression rate for each layer is derived by

the reweighted dynamic regularization algorithm. As can be seen from the figure, unstructured

pruning, which is equivalent as setting the block size as 1 × 1 for each layer, achieves the highest

accuracy while has the worst performance in latency. In contrast, structured pruning, i.e., using the

whole matrix as the block size, achieves the fastest inference but degrades the accuracy the most.

With a suitable block size, our proposed fine-grained structured pruning scheme achieves high

accuracy and inference speed simultaneously. The reason is that the maximal hardware parallelism

is limited by the computation resource. Since the weight matrix/tensor is typically very large,

the remaining entries in each block is still sufficient to exploit high hardware parallelism. With

parallelism maximally exploited, the hardware inference performance can be almost the same as

coarse-grained structured pruning.
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Takeaway: In this section, we first introduced a general, fine-grained structured pruning

regularity, which can work for CONV layers with any kernel size and FC layers. Second, we

proposed reweighted group Lasso with block-based constraints as the pruning algorithm to derive

the structured sparsity with automatically determined compression rate for each layer and each

block. Third, we develop the first compiler-based mobile acceleration framework that supports

general block-based/block-punched sparsity as well as other pruning regularities, which is flexible

and allows different layers to adopt different pruning regularities and block sizes.

5 AUTOMATIC PRUNING SCHEME MAPPING METHODS FOR MOBILE DEVICES
Though the general, fine-grained pruning scheme proposed in Section 4 can achieve high accuracy

and hardware acceleration performance, it is not optimal to directly apply the same pruning scheme

to the entire model as different layers may prefer different pruning regularities and configurations,

e.g., the compression rate and block size. Fortunately, effective compiler optimization techniques

provide the flexibility to apply different pruning regularities and block sizes to different layers. As

different weight pruning schemes have different acceleration and accuracy performance under the

same mobile acceleration framework, it is important to have a pruning scheme mapping method to

determine the pruning configurations for each layer. Therefore, we further probe into the problem

of mapping the best-suited pruning scheme for each layer of any given DNN to obtain pruned

model with better performance in terms of accuracy and latency in this section.

The performance of a pruned model is influenced by the compression rate, pruning regularity,

and block size when block-based/block-punched pruning is selected, of each layer. This is a new

challenge resulted from the new dimension of compiler-aware pruning scheme optimizations. To

find the appropriate pruning schemes in such a large design space, we propose two automatic

pruning scheme mapping methods, one is search-based and the other is rule-based, as shown in

Fig. 6. The former is a more comprehensive framework to yield close-to-optimal pruning scheme

mapping results, while the latter is a training-free procedure that is efficient and more useful in

practice. Note that with our proposed reweighted dynamic regularization algorithm in Section 4.2,

the compression rate can be obtained automatically for each layer and each block. Thus, the search

space of the pruning scheme mapping problem can be reduced to finding the appropriate pruning

regularity and the block size for each layer in the given DNN.

5.1 Search-based Pruning Scheme Mapping Method
Albeit we simplify the search space with the reweighted dynamic regularization algorithm to

determine the per-layer and per-block compression rate automatically, there is still a huge amount
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of combinations of pruning regularities and block sizes to seek. Inspired by recent advances in NAS

[8, 67, 70, 85, 88], we consider to leverage a search-based method by employing RL [38, 65] to map

the appropriate pruning scheme for each layer of a given DNN.

In RL, an agent interacts with the environment by taking an action 𝑎𝑡 ∈ 𝐴 according to a policy 𝜋

upon the observation of a state 𝑠𝑡 ∈ 𝑆 at time step 𝑡 . For our problem, each time step 𝑡 corresponds

to the pruning scheme mapping of one layer. The state 𝑠𝑡 ∈ 𝑆 represents the information of current

layer, which is defined as a 4-D vector {layer type, kernel size, input channel number, output channel
number}. The action 𝑎𝑡 ∈ 𝐴 is the mapping decision for the current layer, which is a 2-D vector

{pruning regularity, block size}. For a 𝑁 -layer DNN with information I = {𝑠1, · · · , 𝑠𝑁 }, an entire

mapping M = {𝑎1, · · · , 𝑎𝑁 } can be found with 𝑁 time steps. Let 𝑅(M) denote the cumulative

reward for M, which is the optimization target of the RL agent. A good pruning scheme mapping

should achieve high accuracy and hardware performance jointly, thus we define 𝑅(M) as the
weighted sum of the accuracy and the negative of the latency of the pruned model with information

I under the mapping M.

We leverage the policy gradient method [66] to directly learn a parameterized policy for the

pruning scheme mapping, and the training objective of the policy is defined as:

𝐽 (\ ) = EM∼𝜋 (M |I;\ ) [𝑅(M)|I], (5)

where 𝜋 (M|I;\ ) is a sequence-to-sequence model in our work. The input to the encoder RNN

is the sequence of the information of each layer in the target DNN and the decoder is an LSTM

with 𝑁 time steps to output the mapping decision for each layer at the same encoder time step.

We estimate the gradient of the objective function by drawing 𝐾 mapping decision samples from

M𝑘 ∼ 𝜋 (M|I;\ ) and reduce the variance of the estimate with a baseline term 𝐵, leading to

∇\ 𝐽 (\ ) ≈
1

𝐾

𝐾∑︁
𝑘=1

(𝑅(M𝑘 ) − 𝐵) · ∇\ log𝜋 (M𝑘 |I;\ ) . (6)

For each mapping decision sample𝑀𝑘 in a training iteration of the policy, we need to compress

the target DNN to obtain the accuracy and latency performance for the calculation of the reward

𝑅(M𝑘 ). The latency is obtained via deploying pruned model with compiler code generation on

target device and measuring the real execution time. To accelerate the policy training, we adopt

magnitude-based, one-shot pruning and early stopping for faster accuracy evaluation during the

policy training process. More specifically, once a mapping M𝑘 is obtained, we conduct a one-

shot pruning for each layer of the DNN based on the weight magnitude and retrain the DNN for

two epochs to regain accuracy. This partially regained accuracy can be used to predict the final

model accuracy and compare the performance between different schemes [67, 85]. Furthermore, as

compiler code generation and latency measurement do not depend on absolute weight values and

are faster than DNN training, we overlap the compiler code generation and latency measurement

with the accuracy evaluation of the pruned model.

5.2 Rule-based Pruning Scheme Mapping Method
The advantage of the search-based method is that it can find the globally close-to-optimal pruning

configurations for each of the layers in a given DNN. While it works perfectly for small DNN

models, the searching overheads increases exponentially when the models size increases, making it

unsuitable for large-size DNN models. Therefore, we design a training-free rule-based method

that maps the best-suited pruning schemes in a layer-wise fashion to avoid the time-consuming

search process for the best mapping. We consider the search-based solution as the performance

upper-bound, and we target to make the rule-based method perform as well as the search-based

one, yet highly efficient and practical.
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5.2.1 Latency Model. To obtain the latency performance without the pruning and retraining

of the given DNN, we build latency models for different types of layers, e.g., 1×1 CONV, 3×3
CONV, 5×5 CONV, and depthwise-3×3 CONV, on the target device, e.g., Samsung S10 smartphone.

Each latency model contains latency results for different settings, including block size, number

of filters, input and output feature map size, pruning scheme, and compression rate. The results

are measured on the target device by running test models with each setting for 100 runs. Each

test model has 10 cascaded layers with the same setting. Since building the latency model does

not involve DNN training, it will not take a very long time. The testing time for each run of each

setting is in milliseconds (ms) level. For instance, our latency model including 512 different layer

settings can be built in around 30 minutes. Such a building time is negligible compared to the DNN

training or the searching process, which usually counts in days. The latency model only needs to

be built once for a target device and is universal to different DNN models.

5.2.2 Block-Size Selection. Block size has a significant impact on the accuracy and hardware

performance for block-based/block-punched pruning. A larger block size is typically more hardware-

friendly and easier to leverage the built-in hardware acceleration, yet it may cause more severe

accuracy degradation due to the coarse granularity. On the contrary, a smaller block size typically

leads to higher accuracy but also increases the latency. An appropriate setting of the block size

can achieve high accuracy as unstructured pruning (essentially with block size 1×1) and high

hardware acceleration performance as structured pruning (essentially with block size of whole

weight tensor/matrix) simultaneously.

To determine the proper block size for each layer without the requirement of a time-consuming

training process, we consider to decouple the two optimization targets, i.e., accuracy and hardware

performance. To minimize the impact of pruning on hardware performance, our rule-based method

will first derive the inference latency of each block size from the offline generated latency models

and normalize the latency (i.e., divide by the MACs of that layer). We introduce a latency threshold

𝛽 , indicating the acceptable latency degradation range of the proposed general pruning regularity

compared with coarse-grained structured pruning. The value of 𝛽 can be adjusted according to the

design requirement, and it can either be the same for the entire model or different for each layer.

For example, 𝛽 = 20%means that the inference speed of block-based/block-punched pruning can be

at most 20% slower than structured pruning under the same compression rate. After the hardware

performance-driven design is satisfied, we only need to consider the influence of block size on

accuracy. As a smaller block size can provide a finer granularity in pruning and the consequent

higher accuracy, the smallest valid block size that satisfies the 𝛽-degradation requirement is selected

as the desired block size. This process depends on our latency model, and is free of training.

5.2.3 3×3 CONV Layer: Pattern or Block. For 3×3 CONV layers, both pattern-based pruning

and block-punched pruning can be applied. To map the best-suited pruning scheme, the problem

is to compare the accuracy and inference latency of block-punched pruning and pattern-based

pruning.

Accuracy Perspective: To investigate the accuracy of pattern-based pruning and block-punched
pruning, we conduct comprehensive experiments on ResNet-18 and VGG-16 with CIFAR-10 and

ImageNet dataset. Fig. 7 (a) and (b) show an example of the comparison results on the CIFAR-10

dataset and the block size is set to 4×16. Note that only 3×3 CONV layers are pruned and non-3×3
layers remain unpruned to provide a fair comparison. Here, the compression rate indicates the

parameter reduction rate for each 3×3 CONV layer. From the figure, we can make the following

observations: i) block-punched pruning consistently shows comparable or higher accuracy for

the pruned model under different compression rates on CIFAR-10 dataset; ii) both block-punched
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Fig. 7. The top-1/top-5 accuracy comparisons of pattern-based pruning and block-punched pruning (block size
of 4×16) under the same compression rates for ResNet-18 and VGG-16 on CIFAR-10 and ImageNet dataset.

and pattern-based pruning achieve accuracy enhancement when the compression rate is relatively

low, especially on ResNet-18. The reason is that pruning with a small compression rate can help

mitigate the over-fitting problem.

The comparison results of pattern-based pruning and block-punched pruning on ImageNet dataset

with different compression rates are shown in Fig. 7 (c) and (d). Different from the observations

on CIFAR-10 dataset, pattern-based pruning shows a better accuracy performance under various

compression rate settings for both ResNet-18 and VGG-16.

We attribute the different performance on the two datasets to: (1) For tasks on easy datasets

such as CIFAR-10 that can easily achieve higher than 90% accuracy, the networks are generally

overparameterized and both block-punched and pattern-based pruning schemes can achieve a high

compression rate (e.g., >10×) and significant acceleration without hurting the model generalization

ability. Thus, the acceleration performance of the two pruning schemes becomes a more essential

factor that contributes to the pruning scheme selection. Compared to pattern-based pruning, the

block-based/block-punched pruning has a more strict constraint on the weight structure, benefiting

hardware parallelism and hence a higher acceleration performance under the same compression

rate. Therefore, block-based/block-punched pruning is more favorable for easier datasets. (2) For

tasks on harder datasets such as ImageNet that even the unpruned network can only achieve

less than 80% Top-1 accuracy, the pattern-based pruning scheme is more desirable than block-

based/block-punched pruning on 3×3 CONV layers. Because the patterns used by pattern-based

pruning form the shape of Gaussian filter or Laplacian of Gaussian filter that can enhance the

ability for feature extraction (as mentioned in Sec. 2.1), which plays an important role in preserving

accuracy under an accelerable compression rate.

Based on the above results, we make the following remark:

Remark 1. For 3×3 CONV layers, block-punched pruning is more suitable for tasks with easier
datasets while pattern-based pruning suits tasks with harder datasets better.
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We will provide more discussions and verification of the remark in Section 6.3.

Latency Perspective: Latency is the other important aspect in performance evaluation of

a pruning scheme. From comprehensive comparative experiments conducted offline, we have

observed that under the same compression rate, the latency performance of block-punched pruning

is better than pattern-punched pruning when the block size is large, but worse when the block size

is small. The latency of these two pruning regularities mainly depends on which one can achieve

a larger compression rate under the same accuracy. Thus, latency is considered as a secondary

criterion for the best-suited pruning scheme mapping in the rule-based method. More discussion

will be provided in Section 6.3.

5.2.4 3×3 Depth-wise CONV Layer. The 3×3 depth-wise CONV layer (3×3-DW) is widely used

in current DNN designs such as the MobileNet family [63]. It is a special case of 3×3 CONV layer,

which applies a 2-D depth filter at each depth level of the input tensor. Thus, both pattern-based

pruning and block-punched pruning can be applied to 3×3-DW layers theoretically. In our rule-

based selection policy, we prefer not prune 3×3-DW layers mainly for two reasons: (1) 3×3-DW
layers are computation- and memory-efficient; (2) 3×3-DW layers are sensitive to pruning.

We use MobileNet-V2 on ImageNet as an example, 33% of layers are 3×3-DW layers, but they

only contribute 6.9% MACs and 1.7% parameters in total. Pruning 3×3-DW layers will not achieve a

considerable gain even if all of them are pruned. On the other hand, the 3×3-DW layers contribute

33% of activations, making each weight in the 3×3-DW layer more significant. Moreover, in a

regular 3×3 CONV layer, one input (activation) channel will be filtered by multiple CONV kernels

that come from different CONV filters and have different pruned locations, mitigating the damage

of pruning on feature extraction. On the contrary, in a 3×3-DW layer, one input channel will only

be filtered by one CONV kernel, which makes 3×3-DW layers more sensitive to the pruning.

We conduct an ablation study about the impact of pruning 3×3-DW on accuracy and overall

pruning ratio. The results show that pruning 3×3-DW layers will only slightly increase the pruning

ratio while leading to a noticeable accuracy loss. Our experiment results shown in Section 6.2

indicate both pattern-based pruning and block-punched pruning lead to a non-negligible accuracy

drop when applied to 3×3-DW layers. Therefore, our rule-based method does not map any pruning

scheme to the 3×3 depth-wise CONV layers.

We summarize the workflow of the training-free rule-based method in Fig. 8. For each layer of a

given DNN, we first examine the layer type. If the layer is a 3×3 depth-wise CONV layer, no pruning

scheme is mapped. For 3×3 CONV layers, the pruning regularity depends on the size of the dataset.

Pattern-based pruning is mapped to 3×3 CONV layers if the task has a large dataset, otherwise

block-punched pruning is selected. The proposed general block-based/block-punched pruning is
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Fig. 9. Latency of 1×1 and 3×3 CONV layer under different feature sizes and input/output channels.

mapped to all other types of layers. When block-based/block-punched pruning is selected, the

block size is determined according to an offline generated latency model with a latency threshold.

We note that the entire mapping process, including the pruning regularity mapping and block size

selection, is training-free without incurring any additional cost.

6 EVALUATION
6.1 Methodology
Evaluation Objective: (i) Show the effectiveness of the general, fine-grained structured pruning

scheme and the corresponding compiler optimizations; (ii) compare the overall pruning scheme

mapping framework with state-of-the-art DNN inference acceleration framework PatDNN [59]

in terms of accuracy and latency. Note that PatDNN already outperforms other DNN inference

frameworks including TVM [11], MNN [2], and Tensorflow-Lite [1], thus the comparison with

PatDNN is sufficient to show the effectiveness of our methods.

Our achieved speedup mainly comes from: (i) our general, fine-grained structured pruning is

applicable to all types of layers, which better compresses the model size and reduces the computa-

tion workload; (ii) our compressed sparse matrix storage and associated compiler optimizations

improve the computation regularity/parallelism, thus transforming the computation reduction

to real performance gains; (iii) our automatic pruning scheme mapping methods successfully

map the best-suited pruning configurations to each layer, maximizing the compression rate while

maintaining accuracy.

DNNModels:Weevaluate on threemainstreamDNNs, VGG-16 [64], ResNet-50 [25], andMobileNet-

V2 [63]. They are trained on two representative datasets, CIFAR-10 and ImageNet [17]. We also

conduct experiments on YOLOv4 [6] with MS COCO dateset [42].

Evaluation Platforms and Running Configurations: All the evaluated models are trained on a

server with 8 NVIDIA RTX 2080Ti GPUs. The training codes are implemented with the PyTorch API.

The latency is measured on the mobile GPU of an off-the-shelf Samsung Galaxy S10 smartphone,

which has the Qualcomm Snapdragon 855 mobile platform with a Qualcomm Kryo 485 Octa-core

CPU and a Qualcomm Adreno 640 GPU. Each test takes 50 runs on different inputs with 8 threads

on CPU, and all pipelines on GPU. As different runs do not vary greatly, only the average time is

reported for readability. All runs are tuned to the best configurations. We empirically choose the

latency threshold 𝛽 = 20%.

6.2 Evaluations of Proposed Pruning Scheme
We first evaluate the inference latency of block-punched pruning using different block sizes on 1×1
and 3×3 CONV layers with different layer sizes, as shown in Fig. 9. The input feature map size of
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Table 2. Comparison on YOLOv4.

Pruning Scheme # Weights Compres. Rate mAP FPS

Not Prune 64.36M 1× 57.3 3.5

Structured 8.82M 7.3× 39.4 11.8

Unstructured 5.75M 11.2× 52.5 7.6

Pattern 10.22M *6.3× 52.8 9.7

Block 10.38M *6.2× 52.4 9.1

Block 7.94M 8.1× 51.3 11.5

Hybrid 7.57M 8.5× 51.7 12.3

* Overall compression rate, but only 3×3 CONV layers are pruned.
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Fig. 10. (a) Latency of two example FC layers. (b) Example of latency
comparisons of 3×3 CONV layer using pattern-based pruning and block-
punched pruning.

Table 3. Accuracy comparison (Δ
acc.) of applying pattern-based prun-
ing and block-punched pruning to
the depth-wise 3×3 CONV layers in
MobileNetV2.

CIFAR-10 CIFAR-100

Compres. rate 7.19×->8.12× 2.78×->2.91×
Pattern-based -0.4 -0.9

Block-based -1.01 -1.51

the testing CONV layers is set to 56×56, 28×28, 14×14, and 7×7 while the input/output channel
size is set to 64, 128, 256, and 512. These configurations are commonly used in real DNN networks

such as ResNet-50 and VGG-16 on ImageNet. And these configurations keep the MACs the same

for all 1×1/3×3 CONV layers, which can help us observe the impact of different input feature map

size and number of channels on latency better.

From Fig. 9 (a), we can see that the latency is reduced with a larger block size. However, the

speedup gradually saturates. The reason is that the remaining weights in each block are more likely

to be sufficient to exploit high hardware parallelism with larger block size. Another observation is

that the layer inference latency increases for all block sizes as the size of the input feature map

decreases and the number of input/output channels increases. The reason is that a smaller input

feature map size lowers the reuse rate of each weight, causing hardware parallelism degradation.

Similar observations can also be found in Figure 9 (b), which shows the latency results for different

3×3 CONV layers.

Similar results can also be observed on FC layers with block-based pruning. Fig. 10 (a) shows

the latency comparisons on two FC layers. The size of the FC layer on the left-hand side is used as

the first FC layer in VGG-16, while the right-hand side is the representative FC layer in BERT. The

latency of each FC layer is normalized to its own 1×1 block size result. We can observe that for

large FC layers, increasing the block size can reduce latency effectively, while the latency reduction

achieved by increasing the block size gets saturated gradually in relatively small FC layers.

6.3 Automatic Pruning Scheme Mapping Methods Evaluations
6.3.1 Accuracy Analysis on Pattern-based Pruning and Block-Punched Pruning. From the results

on ResNet-18 and VGG-16 with CIFAR-10 and ImageNet dataset, we make Remark 1. We further

examine the remark on YOLOv4 with MS COCO dataset, which can be reasonably regarded as

difficult task, as shown in Table 2. The compression rate refers to the compression rate of the entire

model and the block size is 4×16. When only 3×3 CONV layers are pruned, pattern-based pruning
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Table 4. Comparison with PatDNN on CIFAR-10 dataset (top-1 acc.) and ImageNet dataset (top-1/top-5 acc.).

Network Method

Pruning

scheme
Pruned layers

Original

acc. (%)

Compres.

rate

Acc.

drop (%)

Latency

(ms)

MACs

CIFAR-10

ResNet-50

PatDNN Pattern 3x3 CONV 95.6 1.57× -1.0 10.44 1.9G

Rule-based Block 3x3 CONV, 1x1 CONV 95.6 11.51× 0.1 4.25 0.6G

Search-based Hybrid 3x3 CONV, 1x1 CONV 95.6 11.88× 0.1 4.20 0.6G

VGG-16

PatDNN Pattern 3x3 CONV 93.9 8.0× -0.4 2.59 73M

Rule-based Block 3x3 CONV 93.9 12.38× -0.3 2.02 59M

Search-based Hybrid 3x3 CONV 93.9 12.50× -0.3 2.00 58M

MobileNetV2

PatDNN Pattern 3x3 DW CONV 94.6 1.01× -0.1 3.63 296M

Rule-based Block 1x1 CONV 94.6 7.53× 0.2 1.86 89M

Search-based Block 1x1 CONV 94.6 7.54× 0.1 1.86 89M

ImageNet

ResNet-50

PatDNN Pattern 3x3 CONV 76.1/92.8 1.56× —/-0.2 29.89 3.0G

Rule-based Hybrid 3x3 CONV, 1x1 CONV 76.1/92.8 4.37× 0.3/0.1 17.26 1.6G

Search-based Hybrid 3x3 CONV, 1x1 CONV 76.1/92.8 4.41× 0.1/0 17.22 1.6G

VGG-16

PatDNN Pattern 3x3 CONV 74.5/91.7 8.0× —/0.1 18.91 3.8G

Rule-based Pattern 3x3 CONV 74.5/91.7 8.22× 0.2/0.1 18.17 3.5G

Search-based Pattern 3x3 CONV 74.5/91.7 8.22× 0.2/0.1 18.17 3.5G

MobileNetV2

PatDNN Pattern 3x3 DW CONV 71.0/90.3 1.01× —/0 4.90 300M

Rule-based Block 1x1 CONV 71.0/90.3 1.76× 0.5/0.3 3.98 177M

Search-based Block 1x1 CONV 71.0/90.3 1.82× 0.5/0.3 3.90 165M

achieves a higher mean average precision (mAP), which matches the remark that pattern-based

pruning suits tasks with larger dataset better on 3×3 CONV layers. However, current pattern-based

pruning is only applicable to 3×3 layers, limiting the compression performance. With the proposed

general pruning scheme applicable to different layers, we achieve an 8.1× compression rate with

51.3 mAP and 11.5 frames per second (FPS). A hybrid pruning scheme by mapping pattern-based

pruning to 3×3 CONV layers and block-based/block-punched pruning to all the other layers can

further achieve an 8.5× compression rate with 51.7 mAP and 12.3 FPS. We also show the results

of unstructured pruning and structured pruning, which achieve 52.5 mAP and 39.4 mAP, and 7.6

FPS and 11.8 FPS, respectively. It can be observed that our hybrid scheme method is 1.62× faster

than unstructured pruning while maintaining comparable accuracy. When compared to structured

pruning, our hybrid scheme method achieve much higher accuracy and is also slightly faster than

structured pruning at the same time. This further strengthens the advantage of our proposed

method.

6.3.2 Latency Analysis on Pattern-based Pruning and Block-Punched Pruning. We conduct com-

prehensive comparative experiments offline to analyze the latency performance of pattern-based

pruning and block-punched pruning to determine the best-suited pruning scheme for 3×3 CONV
layers. Fig. 10 (b) shows an example of the latency comparisons for a 3×3 CONV layer with 28×28
input feature map size and 128 input/output channels under different compression rates. Under

4× and 8× compression, pattern-based pruning has similar latency performance to block-punched

pruning with a block size of 8×16. When the compression rate is higher than 12×, pattern-based
pruning has similar speed as block-punched pruning with a block size of 16×32. However, the
latency difference between pattern-based pruning and block-punched pruning is minor, as we dis-

cussed in Section 5.2.3, thus we consider latency performance as a secondary criterion in rule-based

pruning scheme mapping method.

6.3.3 Ablation Study on 3×3 Depth-wise CONV Layer. As mentioned in Section 5.2.4, 3×3 depth-
wise CONV layers usually only account for a small portion of weights and computations, and

they play an important role in capturing spatial correlations in DNNs [13], thus we propose not to

prune 3×3 depth-wise CONV layers. Table 3 shows the accuracy results of applying pattern-based
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pruning and block-punched pruning to 3×3 depth-wise CONV layers in MobileNetV2. Here we

use the baseline models that all the 1×1 CONV layers are pruned by block-punched pruning with

compression rate 7.19× and 2.78× for CIFAR-10 and CIFAR-100, respectively. Then, on top of

the pruned model, we apply an extra 2.22× pattern-based/block-punched pruning only for the

3×3 depth-wise CONV layers and compare the final accuracy. The results show that the overall

compression rate only increases slightly, but there is non-negligible accuracy drop for pattern-based

pruning and block-based pruning. Thus, our rule-based pruning scheme mapping method will not

map any pruning scheme for 3×3 depth-wise CONV layers.

6.3.4 Evaluations of Automatic Pruning Scheme Mapping Methods. We compare the search-based

and rule-based methods with the state-of-the-art end-to-end inference framework PatDNN [59],

which uses pattern-based pruning with ADMM pruning algorithm. The comparison results are

shown in Table 4. Here, the compression rate refers to the parameter reduction rate of the CONV

layers. The accuracy for ImageNet dataset indicates the top-5 accuracy.

The configurations of the search-based method are obtained using 5 GPU servers, and take 3

and 9 days for CIFAR-10 and ImageNet models, respectively, which is acceptable for RL-based

search methods [67, 88]. We use search-based method to provide a close-to-optimal result, which

indicates the performance upper-bound. Accelerating the search process is not the main concern of

our work, and our search process can be accelerated by adopting fast evaluation techniques such

as Bayesian Optimization [12, 32].

For ResNet-50 on CIFAR-10, rule-based method can achieve an 11.51× compression rate with

only 0.1% accuracy drop, significantly higher than the results obtained by PatDNN. The reason for

the limited performance of PatDNN is that only 44.3% of the parameters of ResNet-50 are in the 3×3
CONV layers that can be pruned with pattern-based pruning, as shown in Fig. 3. Our rule-based

method, on the other hand, maps the flexible block-punched pruning that can be applied to CONV

layers with different kernel sizes, thus achieving a much higher compression rate. Search-based

method reaches a slightly higher compression rate and minor latency reduction compared with the

rule-based method.

With the automatic mapping of block-punched pruning and block size provided by the rule-

based method and compression rate derived by the reweighted pruning algorithm, we reach a

12.38× compression rate with 0.3% accuracy improvement on VGG-16 for CIFAR-10 dataset. Still,

search-based method renders a slightly better performance than rule-based method.

For MobileNet-V2, mapping block-based pruning with optimized block size on 1×1 CONV

layers by rule-based method achieves a 7.53× compression rate with only 0.2% accuracy drop. The

compression rate is much higher than PatDNN, as pattern-based pruning cannot be applied to 1×1
CONV, and 3×3 depth-wise CONV layers only account for 1.9% of the parameters in the model.

The performance difference between rule-based method and search-based method is negligible.

Different from CIFAR-10, pattern-based pruning has a better accuracy performance on tasks with

large datasets like ImageNet as discussed in Remark 1. Hence, rule-based method maps pattern-

based pruning to 3×3 CONV layers and block-punched pruning with optimized block size to the

remaining layers. For ResNet-50 on ImageNet, rule-based method can reach a 4.37× compression

rate with only 0.1% accuracy loss, and 1.73× speedup on mobile GPU over PatDNN.

For VGG-16 on ImageNet, both rule-based method and search-based method maps pattern-based

pruning to all the 3×3 layers with the reweighted dynamic regularization algorithm, and achieves a

8.22× compression rate with only 0.1% accuracy loss, which outperforms PatDNN. As all methods

adopt pattern-based pruning, the performance difference between our methods and PatDNN is

attributed to the pruning algorithm. With the reweighted pruning aglorithm, our method has the

advantage of determining the compression rate for each layer automatically while PatDNN is based

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:20 Gong and Yuan, et al.

Table 5. The comparisons with models obtained by various model compression techniques on ImageNet.

Group Model MACs Top-1 Acc

300M MACs

MobileNetV2 1.0× 300M 71.0%

NetAdapt-MobileNetV1 [72] 284.3M 69.1%

ChamNet-B [14] 323M 73.8%

200M MACs

MobileNetV2 0.75× 209M 69.8%

AMC-MobileNetV2 [26] 211M 70.8%

AutoSlim-MobileNetV2 [44] 207M 73%

MetaPruning-MobileNetV2 [47] 217M 71.2%

Ours (Rule-based) 203M 70.8%

150M MACs

MobileNetV1 0.5× 150M 63.3%

AutoSlim-MobileNetV1 [44] 150M 67.9%

Ours (Rule-based) 177M 70.5%

Ours (Rule-based) 151M 69.8%

on ADMM and requires the manual setting of the compression rate for each layer. For MobileNet-

V2 on ImageNet dataset, both rule-based method and search-based method map block-punched

pruning to 1×1 CONV layers, and reaches a 1.76× compression rate and 1.82× compression rate,

respectively.

We also compare our method with other representative model compression techniques including

NetAdapt [72], ChamNet [14], AMC [26], AutoSlim [44], and MetaPruning [47] on the ImageNet

dataset, and the results are shown in Table 5. At 200M MACs level, our rule-based method achieves

the same accuracy as AMC with fewer MACs. Our method also outperforms the 0.75× channel

scaled MoileNetV2 in both accuracy and MACs. At 150M MACs level, the model obtained by our

rule-based model achieves the highest top-1 accuracy with similar MACs compared with AutoSlim

and the 0.5× channel scaled MobileNetV1.

Combining all the results, we can see that both the rule-based and the search-based method

significantly outperform PatDNN. Rule-based method can provide pruned models with similar

accuracy and latency performance as search-based method, and avoids the policy training process,

thus is more useful in practice. Moreover, with the assist of our compiler optimization, both methods

can easily achieve real-time DNN inference (less than 33ms) on all models mentioned above.

6.3.5 Portability Evaluation on Different Platforms. We further evaluate the portability of our

proposed rule-based pruning scheme mapping method on different mobile platforms. Three tested

platforms are Samsung Galaxy S10, S20, and S21, respectively. They are equipped with different

types of chipsets and mobile GPUs. The detailed hardware specifications are shown in Table 6.

Table 7 shows the portability evaluation results on the three platforms using our rule-based pruning

scheme mapping method. We use VGG16 network and test on CIFAR10 and ImageNet dataset,

respectively. We build latency model for each platform and use the same latency threshold 𝛽 = 20%.

It can be observed that our rule-based method can consistently achieve high model accuracy and

leverages the better hardware for a higher inference speed, which illustrates the stability of our

reweighted pruning algorithm and the effectiveness and portability of our rule-based method.

7 CONCLUSION
Wepropose a general pruning schemewith fine-grained structured pruning regularity and reweighted

dynamic pruning algorithm. Compiler optimizations are introduced to extract the structure infor-

mation and exploit hardware parallelism. We further probe into the new problem of mapping the
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Table 6. Hardware specifications of platforms for portability evaluation.

Model Chipset GPU RAM

Samsung Galaxy S10 Qualcomm Snapdragon 855 Adreno 640 8GB

Samsung Galaxy S20 Qualcomm Snapdragon 865 Adreno 650 12GB

Samsung Galaxy S21 Qualcomm Snapdragon 888 Adreno 666 8GB

Table 7. Portability evaluation on different platforms using rule-based method on VGG16.

Dataset Platform

Compres.

rate

MACs

Top-1

acc.

Latency

(ms)

CIFAR10

Galaxy S10 12.38× 59M 94.2% 2.02

Galaxy S20 12.06× 62M 94.1% 1.85

Galaxy S21 12.12× 61M 94.2% 1.65

ImageNet

Galaxy S10 8.22× 3.5G 74.3% 18.17

Galaxy S20 8.12× 3.4G 74.5% 16.23

Galaxy S21 8.15× 3.4G 74.5% 15.12

best-suited pruning scheme for each layer of any given DNN and propose two automatic pruning

scheme mapping methods. Experimental results demonstrate the effectiveness of the proposed

pruning scheme and pruning scheme mapping methods.
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A COMPILER OPTIMIZATION DETAILS
We provide more details of our compiler optimizations in this section. Different from prior DNN

inference acceleration frameworks [1–3, 11, 50, 59] that only support dense models or pattern-based

pruned models, our compiler optimizations are general, support both dense (unpruned) model and

sparse (pruned) model with different pruning schemes for fast inference on various mobile platforms.

Besides the blocked compressed storage (BCS) and the row reordering optimization mentioned in

the main paper (Section 4.3), our compiler-based optimization techniques also include (i) a layer

fusion mechanism to fuse different layers together for the reduction of memory consumption

of intermediate results and number of operators; (ii) an auto-tuning process to determine the

best-suited configurations of parameters for different mobile CPUs/GPUs; (iii) Domain Specific

Language (DSL) based code generation.

A.1 Layer Fusion Mechanism
To effectively reduce the model inference latency, a layer fusion technique is incorporated in our

compiler optimization to fuse the computation operators in the computation graph. With layer

fusion, both the memory consumption of the intermediate results and the number of operators

can be reduced. The fusion candidates in a model are identified based on two kinds of polynomial

calculation properties, i.e., compression laws and data access patterns. The compression laws

include associative property, communicative property, and distributive property.
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However, looking for the fusion candidates in such a large space of all combinations of computa-

tion operations is too expensive. Therefore, we introduce two constraints to guide the looking up

process: (i) only explore the opportunities that are specifically provided due to the above properties,

and (ii) only consider enlarging the overall computation for CPU/GPU utilization improvement

and reducing the memory access for memory performance improvement as the cost metrics in the

fusion. Compared with prior works on loop fusion [4, 5, 7], our method is more aggressive without

high exploration cost.

A.2 Auto-Tuning for Different Mobile CPUs/GPUs
During DNN execution, there are many tuning parameters, e.g., matrix tiling sizes, loop unrolling

factors, and data placement on GPU memory, that influence the performance. It is hard to determine

the best-suited configuration of these parameters manually. To alleviate this problem, our compiler

incorporates an auto-tuning approach for both sparse (pruned) model and dense (unpruned) model.

The Genetic Algorithm is leveraged to explore the best-suited configurations automatically. It starts

parameter search after an initialization with an arbitrary number of chromosomes and explores the

parallelism better. Acceleration codes for different DNN models and different mobile CPUs/GPUs

can be generated efficiently and quickly through this auto-tuning process, providing the foundation

for fast end-to-end inference. The auto-tuning optimizations, together with the layer-fusion and

sparse model optimizations, make our framework outperform other acceleration frameworks.

A.3 DSL-based Code Generation
In deep learning, a computational graph of a DNN model can be represented by a directed acyclic

graph (DAG). Each node in this graph corresponds to an operator. We propose a high-level Domain

Specific Language (DSL) to specify such kind of operators. Each operator in a computational graph

also with a layerwise Intermediate Representation (IR) which contains BCS pruning information.

The input and output are different tensors in terms of different shapes. This DSL also provides a

Tensor function for users to create matrices (or tensors).

In this way, DSL is equivalent to a computational graph (that is, DSL is another type of high-level

functions used to simulate the data flow of the DNN model), and they can be easily converted

to each other. DSL provides users with the flexibility to use existing DNNs or create new DNNs,

improving the productivity of DNN programming. If the DNN already exists, we will convert it into

an optimized calculation graph and convert this graph into a DSL. Otherwise, the user writes the

model code in the DSL, converts it back to a calculation graph, performs advanced optimization,

and regenerates the optimized DSL code.

Finally, our compiler translates the DSL into low-level C++ code for mobile CPU and OpenCL

code for mobile GPU, and optimizes the low-level code through a set of optimizations enabled by

BCS pruning. The generated code can be then deployed on the mobile device.
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