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Specialized accelerators can im-
prove the ability of low-power proces-
sors to support complex models, 
making it possible to run  image-rec-
ognition models in smartphones. Yet 
a major focus of R&D is to try to find 
ways to make the core models far 
smaller and more energy efficient than 
their server-based counterparts. The 

T
HE  COM PUTATIONAL DEMAND 

made by artificial intelli-
gence (AI) has soared since 
the introduction of deep 
learning more than 15 years 

ago. Successive experiments have  
demonstrated the larger the deep neu-
ral network (DNN), the more it can do. 
In turn, developers have seized on the 
availability of multiprocessor hard-
ware to build models now incorporat-
ing billions of trainable parameters. 

The growth in DNN capacity now out-
paces Moore’s Law, at a time when rely-
ing on silicon scaling for cost reductions 
is less assured than it used to be. Accord-
ing to data from chipmaker AMD, cost 
per wafer for successive nodes has in-
creased at a faster pace in recent genera-
tions, offsetting the savings made from 
being able to pack transistors together 
more densely. “We are not getting a free 
lunch from Moore’s Law anymore,” says 
Yakun Sophia Shao, assistant professor 
in the Electrical Engineering and Com-
puter Sciences department of the Uni-
versity of California, Berkeley.

Though cloud servers can support 
huge DNN models, the rapid growth in 
size causes a problem for edge comput-
ers and embedded devices. Smart speak-
ers and similar products have demon-
strated inferencing can be offloaded to 

cloud servers and still seem responsive, 
but consumers have become increas-
ingly concerned over having the con-
tents of their conversations transferred 
across the Internet to operators’ data-
bases. For self-driving vehicles and other 
robots, the round-trip delay incurred by 
moving raw data makes real-time con-
trol practically impossible. 

Shrinking Artificial 
Intelligence 
Energy concerns push AI optimizations to the edge.
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 N work began with the development of 
DNN architectures such as ResNet and 
Mobilenet. The designers of Mobilenet 
recognized the filters used in the con-
volutional layers common to many 
image-recognition DNNs require 
many redundant applications of the 
multiply-add operations that form the 
backbone of these algorithms. The 
Mobilenet creators showed that by 
splitting these filters into smaller two-
dimensional convolutions, they could 
cut the number of calculations re-
quired by more than 80%. 

A further optimization is layer- 
fusing, in which successive operations 
funnel data through the weight calcu-
lations and activation operations of 
more than one layer. Though this does 
not reduce the number of calcula-
tions, it helps avoid repeatedly load-
ing values from main memory; in-
stead, they can sit temporarily in local 
registers or caches, which can provide 
a big boost to energy efficiency.

More than a decade ago, research 
presented at the 2010 International 
Symposium on Computer Architec-
ture by a team from Stanford Univer-
sity showed the logic circuits that 
perform computations use far less 
energy compared to what is needed 
for transfers in and out of main mem-
ory. With its reliance on large num-
bers of parameters and data samples, 
deep learning has made the effect of 
memory far more apparent than with 
many earlier algorithms. 

Accesses to caches and local 
scratchpads are less costly in terms of 
energy and latency than those made to 
main memory, but making best use of 
these local memories is difficult. Gem-
mini, a benchmarking system devel-
oped by Shao and colleagues, shows 
even the decision to split execution 
across parallel cores affects hardware 
design choices. On one test of 
ResNet-50, Shao notes convolutional 
layers “benefit massively from a larger 
scratchpad,” but in situations where 
eight or more cores are working in 
parallel on the same layer, simula-
tions showed larger level-two cache as 
more effective.

Reducing the precision of the calcu-
lations that determine each neuron’s 
contribution to the output both cuts 
the required memory bandwidth and 
energy for computation. Most edge-AI 

processors now use many 8-bit integer 
units in parallel, rather than focusing 
on accelerating the 32-bit floating-
point operations used during training. 
More than 10 8-bit multipliers can fit 
into the space taken up by a single 32-
bit floating-point unit.

To try to reduce memory band-
width even further, core developers 
such as Cadence Design Systems 
have put compression engines into 
their products. “We focus a lot on 
weight compression, but there is 
also a lot of data coming in, so we 
compress the tensor and send that to 
the execution unit,” says Pulin Desai, 
group director of business develop-
ment at Cadence. The data is decom-
pressed on the fly before being moved 
into the execution pipeline.

Compression and precision reduc-
tion techniques try to maintain the 
structure of each layer. More aggres-
sive techniques try to exploit the re-
dundancy found in many large mod-
els. Often, the influence of individual 
neurons on the output of a layer is 
close to zero; other neurons are far 
more important to the final result. 
Many edge-AI processors take advan-
tage of this to cull operations that 
would involve a zero weight well be-
fore they reach the arithmetic units. 
Some pruning techniques force 
weights with little influence on the 
output of a neuron to zero, to provide 
even more scope for savings. 

Unstructured pruning makes it 
hard to feed the single-instruction 
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John’s research centers 
on the design, modeling, and 
benchmarking of computer 
architectures, focusing 
on multicore processors, 
memory systems, performance 
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reconfigurable computing.

She explains, “In order to 
design efficient computers, you 
need to evaluate options and 
design trade-offs.” 

John sees applications 
evolving and hardware chasing 
after applications, and by the 
time the hardware catches up, 
the applications have advanced 
again. She says performance 
evaluation and benchmarking 
allows designers to capture 
applications’ essential features 
that affect performance, power 
consumption, and other factors 
influencing application and 
hardware design.

“Designing futuristic 
benchmarks helps to design 
machines for the future,” John 
says, adding that after more 
than 25 years of doing this 
research, she thinks the future 
looks brighter than ever.

—John Delaney

With its reliance 
on large numbers 
of parameters and 
data samples, deep 
learning has made 
the effect of memory 
far more apparent 
than with earlier 
algorithms.
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University and Google Research pub-
lished in the summer of 2021 ques-
tioned whether the teacher passes on 
the knowledge that people expect. Stu-
dent networks often can perform well 
based on the training they receive, but 
in tests, provide different answers to 
the teacher, even when the teacher and 
student networks have the same struc-
ture and capacity. 

“It means we can’t generally expect 
the student to behave like the teacher. 
So, if we are confident that the teacher 
is a good model, it’s hard to have the 
same confidence about the student,” 
says Wilson. “I find it interesting that it 
is so hard to achieve a good distillation 
loss. It turns out to be a much harder 
optimization problem than we usually 
encounter in classification. It indicates 
it may be much harder to train modern 
deep networks when we move outside 
standard loss functions.”

As with much of the world of DNNs, 
more work will be needed to under-
stand how these systems generalize and 
how that can translate into improved 
compression. However, research has 
already found numerous ways to avoid 
joining the parameter arms race that 
is happening in DNNs that are being 
trained to run on cloud servers.  
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it would provide to a user. With this ex-
tra information, student networks usu-
ally perform better than they would 
compared to those trained purely on 
the teacher’s classifications. 

The amount of compression that 
knowledge distillation provides varies 
widely. In some cases the savings are 
minimal, but in work on language, 
models students have made are 18 
times smaller than the teacher, and still 
only suffer minor losses in accuracy. 

In many of the experiments per-
formed so far using distillation, size 
and structure have a major influence 
on the ability of smaller student net-
works to approach the accuracy of the 
teacher. This observation is helping to 
drive work on automated neural archi-
tecture search, in which machine 
learning and evolutionary algorithms 
are used to try to find the best combi-
nation of model parameters for a giv-
en level of accuracy and computation-
al overhead. 

In their work, a group from DarkMat-
ter AI Research and Monash University 
decided to focus distillation on blocks 
inside a trained DNN, rather on the net-
work overall, to try to find the best com-
bination of structures for a given size-
and-accuracy trade-off. The choice of 
teacher may not make as much of a dif-
ference using current approaches to 
distillation. The DarkMatter AI group 
found they could switch to a teacher 
that was 10 times smaller than the origi-
nal and build a student with the same 
level of accuracy as the one derived from 
the much larger model.

Research by a team from Andrew 
Gordon Wilson’s group at New York 

multiple-data (SIMD) pipelines of 
many processors efficiently. Even if the 
zero weight calculations are culled to 
save energy, they lead to execution 
units being left idle. A combination of 
software compilation and the use of 
hardware address generators at run-
time reorders the operations to pack 
as many useful computations as pos-
sible into each SIMD group. Any opera-
tions that involve a zero operand are 
left untouched, but the pipeline is kept 
full by the hardware.

Further savings can come from not 
running the DNN in every case. Bert 
Moons, senior engineer at Qual-
comm’s research group in Amster-
dam, says one approach is look at the 
differences between successive 
frames of a video: the DNN only oper-
ates on parts that have changed. An-
other uses preprocessing layers to de-
termine which parts of an image are 
important before engaging the main 
neural network. For example, the pre-
processing layers may filter out areas 
such as the sky, where there is little 
visual information that is important 
to an object-detection task. 

Knowledge distillation provides a 
different avenue for finding savings in 
large models. In this case, the original 
model acts as the teacher for a more 
compact student model that is trained 
using not just the original input data, 
but also information from inside the 
teacher’s neural network. For image-
recognition tasks, a common tech-
nique is to have the teacher give the 
student the probabilities it generated 
of a training image being in various 
classes, instead of the final prediction 

Figure 1. Cost per square millimeter for recent semiconductor nodes. 
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