
The Design and Development of a GPU-accelerated Radar
Simulator for Space Debris Monitoring

Mogamat Yaaseen Martin
Department of Electrical Engineering, University of Cape

Town, South Africa

Simon Lucas Winberg
Department of Electrical Engineering, University of Cape

Town, South Africa

Mohammed Yunus Abdul Gaffar
Department of Electrical Engineering, University of Cape

Town, South Africa

David Macleod
Advanced Computer Engineering Lab, Centre for High

Performance Computing, South Africa

ABSTRACT
The problem of space debris represents a major topic of concern
in astronomy as the threat of space junk continues to grow, and
the accuracy of its tracking is greatly restricted by the insufficiency
and limitations of current surveillance sensors. This article presents
the development of an open-source, high-performance, signal-level
radar simulator to assist in modelling the detection and tracking of
space debris from terrestrial radar stations, including multistatic
installations where the transmitter and receiver may be separated
by many kilometers. This tool is expected to aid astronomers and
researchers in space situational awareness, supporting the mod-
elling of radar interactions in this context and simulation-based
exploration of radar designs for space surveillance. It makes use of
an accelerated orbit propagation technique with measured two-line
element datasets being used to define space debris objects. The soft-
ware has been named the Space Object Astrodynamics and Radar
Simulator – or SOARS – and both the transmitted and received
signals generated by the application have been shown to agree
with theoretical expectations. Additionally, SOARS is presently
undergoing continued development, extension and optimization
for heterogeneous computing platforms, enabling the use of the
NVIDIA® Compute Unified Device Architecture (CUDA) interface.
Results have demonstrated promising speed-ups in simulation run-
times when using the CUDA version of the application over the
original sequential version, even on lower-end graphics processors.
It is anticipated that the developed application will be used for the
design and testing of radar sensors for space situational awareness
applications, as well as for use in research, teaching and training
environments.

CCS CONCEPTS
• Software and its engineering → Software creation and man-
agement; Designing software; Software design engineering; • Com-
puting methodologies→Modeling and simulation; Simulation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HPCCT’21, July 02–04, 2021, Qingdao, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9013-2/21/07. . . $15.00
https://doi.org/10.1145/3497737.3497741

types and techniques; Massively parallel and high-performance
simulations.

KEYWORDS
Space debris, radar simulation, orbital modelling, CUDA

ACM Reference Format:
Mogamat Yaaseen Martin, Simon Lucas Winberg, Mohammed Yunus Abdul
Gaffar, and David Macleod. 2021. The Design and Development of a GPU-
accelerated Radar Simulator for Space Debris Monitoring. In 2021 5th High
Performance Computing and Cluster Technologies Conference (HPCCT’21),
July 02–04, 2021, Qingdao, China. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3497737.3497741

1 INTRODUCTION
Orbital space debris – or “space junk” – comprises artificial space
objects such as spent rocket stages and inactive satellites. These are
often produced as the result of in-orbit collisions, explosions, or the
natural decay of objects through solar wind and other forces. Due
to the increasing number of these objects in the Low Earth Orbit
(LEO), there is accordingly a growing threat of valuable spacecraft
potentially colliding with these debris [1]. In fact, Kessler and Cour-
Palais [2] posited that the continued exponential generation of
space junk could eventually create a debris “shell” in LEO, which
would prevent any further space missions and operations from
being conducted in this orbital space.

LEO is currently at the greatest risk of over-population due to
space debris [3], and recent trends have already demonstrated the
predicted near-exponential growth in space junk numbers. The
implications of this are already being experienced, as discussed
in [4] – which summarizes the extreme increase in catalogued
Resident Space Objects (RSOs) since 1956.

For this to be remedied, space situational awareness methods are
employed using advanced sensing instrumentation to detect, mea-
sure and track space debris. However, the sheer size of the growing
debris population – particularly smaller objects that are harder to
track – poses a significant challenge. Typically, debris populations
are monitored by highly sensitive sensors such as terrestrial or
space-based radars as well as optical and laser instruments [5, 6].
In particular, radar offers many advantages over optical and laser
systems for these kinds of purposes, such as being able to operate
during the day or at night under various conditions, operating using
a wider beam even at very large ranges, and providing improved
orbit determination for space-based targets [7]. The primary aim
of this paper is therefore to design and develop a complete space

27

https://doi.org/10.1145/3497737.3497741
https://doi.org/10.1145/3497737.3497741
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3497737.3497741&domain=pdf&date_stamp=2021-12-23

HPCCT’21, July 02–04, 2021, Qingdao, China Mogamat Yaaseen Martin et al.

debris and radar simulator that could be used to design and test
radar sensors for space monitoring applications.

Additionally, the program could be used by researchers for con-
ceptual pre-studies or simulation-based investigations for proposed
installations, through which they may ascertain what could happen
in certain situations under various conditions. This would allow
studies and experiments to be conducted even in situations where
the required infrastructure does not exist, and this could be natu-
rally extended to teaching or training environments. Theoretically,
this software could also be extended for planning satellite evasive
maneuvers and spacecraft launches, as the program is intended to
simulate large populations of space debris and predict their propa-
gation paths over extended periods.

In 2013, similar work was done by McCall [8], who proposed
using thermal modelling for characterizing space debris objects via
infrared signals, and specially aimed to focus on the simulation of
debris in LEO. However, this focused solely on the thermal model
of the debris and thus did not priorities the detection, tracking or
imagine of such objects through radar. More recent related work
was conducted by Kastinen et al. [9] in 2019, which presented the
development of a radar simulator to be used for monitoring space
debris through a tracklet approach. However, this specifically served
to estimate the sizes of debris populations through tracking and
was thus not flexible enough for the objectives in this work.

Presently, no simulator exists for use in designing space-oriented
radar systems. This paper aims to remedy this through the develop-
ment of a radar simulator to be used in designing space surveillance
radars on an international scale. In particular, it is desired that such
a simulator should simulate the raw return signal that would be
received by a physical radar receiver, factoring in the system’s de-
sign and its surrounding propagation environment. This structure
agrees with the definition of a signal-level radar simulator, which
allows users to process the resulting return signal(s) for the pur-
poses of target detection, imaging and tracking. An example of
detection processing is shown in [10]. Signal-level simulators are
vital for various applications, including pulsed systems testing [11],
Synthetic Aperture Radar (SAR) techniques [12], and for modelling
specific systems such as the MARSIS radar [13].

Previously, three basic signal-level simulators were developed by
Golda [14], Lengenfelder [11], and Brooker [15] at the University
of Cape Town in 1997, 1998, and 2008 respectively. The most capa-
ble of these is Brooker’s [15] Flexible Extensible Radar Simulator
(FERS) – an open-source signal-level simulator used to design and
test various general radar configurations. This represents a viable,
modern candidate for use as a software basis in this work, which
aims to modify FERS towards a more space-oriented approach with
built-in support models for astronomy applications.

The baseline version of the developed software has been aptly
named the Space Object Astrodynamics and Radar Simulator
(SOARS). The work in this paper introduces the following orig-
inal contributions with respect to the established literature:

• The developed software represents a signal-level radar sim-
ulator that is specialised towards space monitoring and in-
cludes a built-in model for environmental noise as well as
dynamic propagation for target orbits.

• A software implementation of a galactic and sky noise model
has been developed for use in radar simulations.

This paper thus aims to document the development of SOARS as
an open-source radar simulator as well as its use for space-oriented
experiments and system design and testing.

2 BACKGROUND
As it is desired that SOARS should be able to accurately model
space objects and their movements, it is important to understand
the dynamics involved in orbital propagation. This section therefore
summarizes some of the key ideas from the literature surrounding
the field of orbital dynamics and space monitoring.

The motion of orbiting space objects is often described by the
Keplerian coordinate system, which defines both the position and
velocity of RSOs. This framing system makes use of six classical
Keplerian elements, namely the semi-major axis a, eccentricity e ,
right-ascension of the ascending node Ω, orbital inclination i , ar-
gument of the perigee ω, and the true anomaly ν . Together, these
describe the space object’s orbit size, shape, and orientation relative
to the Earth’s equator, as well as the observed object’s position
and movement within the orbit. The relationships between these
Keplerians are illustrated in Figure 1 (adapted from [16]), depicting
a typical RSO’s elliptical orbit relative to the Earth.

These Keplerian elements are stored inside Two-Line Element
(TLE) datasets, constructed from raw measured data after minor
corrections; most notably, certain periodic variations are removed
from the data for simplicity. As such, it is critical that these periodic
variations are carefully reconstructed when using the TLE sets
in practice. Many existing space-monitoring radars make use of
TLE sets to predict when RSOs could cross the radar’s beam. One
example of this is the European Incoherent SCATter facility at
Troms Φ, which was previously used to compare measured object
data against the theoretical propagation prediction from a TLE
dataset in [17].
TLE sets are typically used to propagate the objects they represent
along their extrapolated orbits. This is often achieved using Sim-
plified General Perturbations #4 (SGP4) theory [18] – an analytical
orbit propagation scheme that predicts the effect of dynamic per-
turbations on a space object’s orbit due to the Earth’s shape, drag,
and radiation, as well as due to gravitational forces from the sun
and the moon [19]. Since these are only predictions, the use of TLE
sets can typically result in semi-major axis position errors up to a
few kilometers per day of propagation.

A comparative study by Shuster [20] demonstrated the speed of
SGP4 over alternative methods on a Central Processing Unit (CPU).
In LEO, SGP4 was shown to operate over 500 times faster than both
the Runge-Kutta and Nyström-Lear numerical integrators – with
the same position accuracy. The study thus concluded that SGP4 is
more reliable in its accuracy than most alternatives. This makes it
perfectly suited for use in this work.

The SGP4 propagation model generates RSO ephemerides in a
reference frame defined as the True Equator, Mean Equinox (TEME)
frame [21] – a special type of the Earth-Centered Inertial (ECI)
frame classification. This is useful for representing objects in space,
as the frame does not rotate with the Earth’s surface. However,

28

The Design and Development of a GPU-accelerated Radar Simulator for Space Debris Monitoring HPCCT’21, July 02–04, 2021, Qingdao, China

Figure 1: An elliptical Kepler orbit showing the classical elements.

Figure 2: Flowchart illustrating the integration of CUDA
into the SGP4 algorithm within SOARS.

the ECI frame presents significant problems when also considering
terrestrial objects, such as ground-based radars.

Ideally, a radar’s coordinates should be fixed relative to other
objects in a simulation environment. This is to ensure that target
ranges and Doppler shifts can be reliably predicted and computed.
Ideally, a radar’s coordinates should be fixed relative to other objects
in a simulation environment. This is to ensure that target ranges and
Doppler shifts can be reliably predicted and computed. Terrestrial
objects are thus best represented in the Earth-Centered, Earth-Fixed
(ECEF) frame – a coordinate system that remains fixed with the
Earth’s surface during its rotation. This would thus serve as themost
useful reference frame for use in SOARS, as all TEME coordinates
could be converted directly into ECEF coordinates following the
SGP4 processing. Figure 2 shows the relationship between the ECI
frame and the ECEF frame, as adapted from [22].

This illustrates the rotation angle θGMST (measured in radians)
and the rate of the Earth’s rotation about its axis ωe (measured in
radians per second). Here, θGMST is defined as the Greenwich Mean
Sidereal Time angle derived from the Julian date at the RSO’s epoch.
This represents the angle through which the ECEF frame is rotated

about the z-axis, as measured from the initial x-axis direction in
the ECI frame. These quantities are thus vital in the transformation
from ECI to ECEF.

Due to inherent limitations in any radar system’s observation
angles and field of view, as well as the obstruction of the Earth
itself, there is currently no single space surveillance sensor that is
able to monitor every object in LEO. For the surveillance of space
junk to be improved, a more global approach is required – one that
is not centralized in the Northern Hemisphere but is instead spread
throughout various locations on an international scale [23].

This shows that there is a lack of space-oriented sensors cur-
rently stationed in the Southern Hemisphere. This gives rise to a
need for more space-oriented instrumentation below the equator.
With the development of MeerKAT and the SKA [24], Agaba [25]
proposed a design for a bistatic, space-oriented radar to assist with
this problem. In theory, this type of system could provide the de-
sired global surveillance required to observe more of the debris
population. These types of systems could thus serve to help popu-
late international databases for space objects, making the testing of
such systems through simulation significantly useful.

3 METHODOLOGY
The first step in designing the simulator was to review the relevant
literature associated with space debris, Keplerian orbital dynamics
and radar simulation, as covered in the previous sections. The next
step was thus to develop a design plan and define a methodology
through which the software design could be approached. It is thus
important to determine the desired operation of the SOARS program
and how it could be used to address the problems described in the
previous sections.

It is desired that the SOARS software should operate using a
single simulation definition file as the main input, specifying all
simulation properties; the simulator should then output the raw
received signal(s) computed at each simulated receiver. This is in
keeping with the signal-level radar simulator classification and will
enable users to post-process the output signal(s) in various ways.
The accessibility of the application should also be improved via a
Graphical User Interface (GUI) for SOARS. This should allow users

29

HPCCT’21, July 02–04, 2021, Qingdao, China Mogamat Yaaseen Martin et al.

to design and output simulations into a definition file using a user-
friendly application window, as well as to visualize their simulated
environments through an interactive 3-D rendering.

Due to the inherent limitations of commodity computers, it is also
desired that Graphics Processing Unit (GPU) acceleration should
be used via the NVIDIA® Compute Unified Device Architecture
(CUDA) model [26]. This is expected to provide noticeable perfor-
mance improvements to some modules of the software once the
sequential versions have been tested, but also to futureproof the
program for future expansion; namely, SOARS is expected to be
extended through the implementation of a ray-tracing algorithm
using NVIDIA®’s OptiXTM [27] in a future iteration of SOARS.

With these objectives in mind, the primary aims of this research
can be broken down into the following sequence of sub-objectives:

• Explore and review the relevant literature associated with
space junk, orbital modelling, radar simulation and high-
performance computing to better understand the space de-
bris problem and its challenges.

• Design and develop the radar simulator with appropriate
hardware models, system properties, an orbit propagation
scheme, and noise considerations. A user interface should
also be developed to improve usability and accessibility.

• Integrate CUDA into the program for GPU acceleration and
futureproofing purposes (namely for the inclusion of a ray-
tracing algorithm in the next iteration of SOARS). Any CUDA
speed-ups should be benchmarked.

• Verify the operation of the software by comparing output
data against established radar theory and performing soft-
ware benchmarks. These verification tests should namely
cover the new additions to the existing programs, as will be
detailed later in this section.

This paper thus serves to document the development and testing
of the baseline SOARS software, as well as identifying the capabil-
ities and limitations of the present build of the application while
additional features are still in development. The version of SOARS
explored in this paper is thus limited so as to establish a working
system, but it will later be improved through the implementation of
a ray-tracing algorithm using NVIDIA®’s OptiXTM software [27].
This is expected to improve simulation accuracy, but benchmarks
will need to be conducted to assess the potential trade-off between
accuracy and speed.

4 DESIGN AND DEVELOPMENT
After conducted a review of the relevant literature, it was decided
that the development of a signal-level radar simulator would be
appropriate to meet this work’s objectives. The design of this simu-
lator has progressed incrementally using the spiral development
model [28], and design tools were specifically chosen to meet the
desired software capabilities – as described by a list of user require-
ments for this software.

4.1 Software Requirements
The establishment of the user requirements was focused on after
the literature review. This was separated into non-functional and
functional requirements. The non-functional requirements focused

on portability, speed, accuracy, usability, and modularity – and
prioritizing aspects of reliable and extensibility of the program.

Regarding functional requirements, the baseline version of
SOARS needed to satisfy these technical aspects:

• Measured datasets: The software should natively support
measured datasets as inputs for maximum accuracy in target
representations, such as TLE sets (described further in [29]).

• Keplerian dynamics: The software should consider the
effects of orbital dynamics and perturbations as modelled by
TLE sets and the well-documented SGP4 theory.

• Radar systems theory: The software should accurately
adhere to established radar theory, such as the modelling of
object Radar Cross Section (RCS), path loss, gain patterns,
noise considerations, and Doppler computation.

• Noise sources: The simulator should account for the effects
of internal thermal system noise as well as external sources
of noise such as natural and man-made phenomena in the
simulation environment.

With these software requirements, the expected capabilities of
the software have been fully defined. Thusly, the development tools
and design criteria required to fully realize SOARS can be selected.

4.2 Design Considerations
Based on the software requirements and the discussions in previ-
ous sections, the FERS software was selected as the simulator upon
which the design of SOARS would be based. This is because FERS
is coded in standardised C++ – an efficient, compiled program-
ming language supported on a wide variety of operating systems
with support for CUDA and a variety of fast built-in algorithms
and data structures. For these reasons, the use of C++ provides
the portability and efficient performance as specified by the first
two non-functional user requirements. FERS has also been verified
against established theory and validated against measured data, as
documented in [15] for SAR processing and pulse-Doppler testing.

Additionally, FERS is already a well-established signal-level radar
simulator that offers support for the pulse-Doppler radar scheme
– which SOARS is also anticipated to use – and is capable of exe-
cuting simulations comprised of multiple targets and multistatic
radar systems. The software has also been extensively used for
designing, testing and training purposes since its inception, and it
features built-in models for propagation loss, Doppler, phase shifts,
pulse waveforms, accurate clock timings, and various antenna gain
patterns. FERS is thus a logical choice for use in this work, provid-
ing the foundation for all the required features of a standard radar
simulator. Maintaining and expanding upon the existing FERS also
addresses the third functional software requirement by accounting
for all the necessary radar systems theory.

However, FERS also has limitations that could be improved upon;
for instance, FERS acts as a generalized radar simulator, whereas
SOARS should be specialised towards space monitoring. FERS also
does not include built-in models for environmental noise sources
and dynamic movement for targets – instead, FERS only models
internal noise and uses hard-coded target coordinates at predefined
time instances. SOARS should thus make use of measured TLE sets
to model targets in simulation and propagate them dynamically
over a defined time period.

30

The Design and Development of a GPU-accelerated Radar Simulator for Space Debris Monitoring HPCCT’21, July 02–04, 2021, Qingdao, China

Achieving this in the base FERS software would be significantly
slow since each TLE target would need to be propagated manually
by the user and in a serial fashion, and then translated into Cartesian
coordinates and written into a FERS input file; instead, SOARS will
use CUDA with an integrated SGP4 algorithm to do all the TLE
propagation independently. This integration of CUDA will also
futureproof the application for when ray tracing is added using
OptiXTM in the near future.

Based on these design decisions, the following libraries constitute
the external dependencies that are required to compile SOARS:

• HDF5: The Hierarchical Data Format version 5 (HDF5) li-
brary [30] enables reading and writing of the popular HDF5
data storage format. This is used in SOARS to store simulated
received signals in their in-phase and quadrature forms via
an efficient, portable storage structure.

• Boost: A formally reviewed C++ package providing a set
of efficient functions for use alongside native libraries [31].
This grants access to multiple additional features in SOARS,
including the use of CPU threading.

• TinyXML/PugiXML: FERS makes use of the TinyXML [32]
package to read and write simulation scripts stored in Exten-
sible Markup Language (XML) files, whereas SOARS makes
use of the PugiXML library [33] for improved efficiency. This
is further discussed later.

• FFTW3: The FFTW3 library [34] provides access to an ef-
ficient implementation of the discrete Fourier transform in
the SOARS C++ code.

• Python: Enables the use of the Python programming lan-
guage [35] for optional functionalities within FERS, such as
importing antenna gain patterns from Python files.

• SGP4: An official C++ implementation of the SGP4 model
developed by Vallado et al. [21]. This is used to propagate
the orbits of TLE targets within the SOARS framework.

• CMake: An open-source tool [36] used to build SOARS and
link its source code against the required libraries; also sup-
ports compilation of CUDA code through the NVCC compiler
[37], as developed by NVIDIA®.

These dependencies are all freely available as open-source soft-
ware and are widely used in C++ development; many of them have
been chosen due to their native use in FERS, while additional pack-
ages have been selected for implementation specifically in SOARS.

4.3 Simulator Structure
The SOARS software has largely been based upon the structure
of FERS, which was designed to be modular in nature and thus
extensible for various purposes. SOARS aims to follow a similar de-
sign approach, whereby the code should be easily readable through
comments and adaptable for possible future expansion. It is also
desired that the structure of SOARS should be made clear to the
end user to encourage further development and iteration.

Based on the software requirements defined earlier, the block
diagram for the structure of the SOARS software is presented in
Figure 3. This depicts SOARS as being comprised of five core soft-
ware elements, namely the environment model, the signal renderer,
the ray-tracing simulator, the SGP4 algorithm, and the CUDA inte-
gration. The ray-tracing simulator is currently being worked upon

using the OptiXTM engine, which natively requires CUDA integra-
tion. It is expected that this will form part of a near-future iteration
of the SOARS program upon completion.

As illustrated in Figure 3, the SOARS software application re-
quires an input file in a specific XML format – a SOARSXML file –
comprehensively describing the full simulation environment with
all systems, antennas, signals, and targets. These inputs are read
into the software using an XML parser (PugiXML), stored in mem-
ory, and then passed into an environment model. This environment
model is responsible for processing the full radar simulation as well
as the radar equation computations, after which the signal renderer
outputs the raw return signal in the efficient HDF5 file format.

Each HDF5 output file is generated to contain the raw return sig-
nal samples for one simulated radar receiver, stored in their original
in-phase and quadrature form. Results from the environment model
are then produced separately in additional XML files, documenting
the receiver response data for every receiver in the environment.

4.4 Noise Implementation
Each receiver in FERS simulates a low-noise amplifier to model the
hardware between the antenna and down-mixer. This generates
thermal noise that is picked up in the received signal due to the
resistance of the amplifier. This component is thus responsible for
the effect of internal system noise on the signal, where the noise
power generated from this – assuming a resistance of Rn = 1 Ω –
is represented by a series voltage source with magnitude Vn.

The system’s noise power Pn is thus expressed as:

Pn = kTsB (1)

where k is Boltzmann’s constant, B is the system bandwidth, and
Ts is the system noise temperature. This is then used to generate
white Gaussian noise.

Aside from system thermal noise, the SOARS simulator should
also account for external noise sources such as galactic noise and
the Cosmic Microwave Background (CMB) [38]. Such environmen-
tal noise sources are often estimated as non-linear functions of
frequency, such as noise from atmospheric gases, the Earth’s sur-
face, and the Sun. These sources are often defined by a brightness
temperature, which relates to the actual effective antenna tempera-
ture, Ta, through the convolution of the antenna pattern and the
brightness temperature of the sky and ground [39].

The data in [39] depicts the frequency-dependent antenna noise
temperature curves for carrier wave frequencies between 100 MHz
and 100 GHz, where Fa is defined as:

Fa = 10 log (fa) (2)

and fa is the external noise factor. This is related to the effective
antenna temperature, Ta, through the equation:

fa =
Ta
T0

(3)

with T0 taken as the reference temperature of 290 K.
When designing radio links, it is often useful to account for the

worst-case scenario in terms of received noise and interference. As
a result of this, SOARS is designed to only account for the effects of
noise contributions from nearby man-made sources, galactic noise,
variable noise emitted due to quiet Sun conditions, atmospheric sky
noise, and black body radiation from the CMB.

31

HPCCT’21, July 02–04, 2021, Qingdao, China Mogamat Yaaseen Martin et al.

Figure 3: Block diagram showing the overall software structure and information flow of the SOARS software.

The aforementioned external noise additions are implemented
in SOARS using linear interpolation between approximated points
along each temperature curve; the user’s input carrier frequency is
then to be used to find the exact interpolated noise temperatures at
the specific frequency. The user should be allowed to disable any
or all of these external noise sources if they believe the sources
to be irrelevant to their simulation experiment. Overall, this noise
implementation serves as a new addition to the existing FERS pro-
gram and accounts for many of the most common radioastronomy
noise sources. This also addresses the fifth functional software re-
quirement by accounting for the modelling of internal and external
noise sources.

4.5 Orbit Propagation
Targets in FERS need to be manually defined by the user and then
propagated through various position waypoints, which also need
to be defined by the user at specific time steps. SOARS, however,
aims to automate this process and dynamically propagate targets.
This is achieved by using TLE datasets to define targets, and then
employing an appropriate propagation algorithm to compute the
target’s time-varying position based on its orbital properties.

Based on the previous discussions on Keplerian dynamics, the
SGP4 model was selected as the propagation scheme to be used in
SOARS, while the TEME reference frame is to be used to define
target coordinates relative to fixed radar system positions. However,
the desired use case for SOARS is to simulate extraordinarily large
numbers of targets simultaneously. It would thus be very computa-
tionally expensive to serially compute the SGP4-propagated paths
of thousands of targets, particularly when the paths are computa-
tionally independent.

As a result, it was decided that CUDA would be used in SOARS,
providing GPU-based parallelism on NVIDIA® graphics hardware.
This interface facilitates the communication between a host (i.e., a
CPU) and a device (i.e., a GPU), making use of kernel functions that
can run concurrently across multiple CUDA threads on the device,
resulting in a high throughput for many large-scale use cases.

However, for small simulation sizes, the use of CUDA may actu-
ally reduce program efficiency due to the overhead required in its
setup. It is thus important to consider this trade-off when design-
ing a program around this interface, and GPU acceleration should

only be employed in situations where large numbers of indepen-
dent mathematical operations are being computed. Benchmarking
should therefore always be used to assess the potential trade-offs in
using a CUDA-based software instead of its serial equivalent. Such
results are shown later in the paper.

In SOARS, CUDA is intended to be used for two express purposes,
namely:

• accelerating the ray-tracing algorithm used during compu-
tation of the radar equation (part of future work)

• parallelizing the SGP4 algorithm when propagating target
RSOs along their orbits

The first purpose involves using the GPU to maximize through-
put of the ray-tracing mechanism. Since ray tracing is an inherently
parallel technique, it is well suited for acceleration across thousands
of CUDA threads - with each thread computing the path of a single
radar ray. This ties in well with the radar equation computation
currently used in FERS (and hence also SOARS), which computes
the return power of a received signal and is highly dependent on
target range, RCS, and other factors. This is to be implemented
using the OptiXTM engine in a future iteration of SOARS.

The second purpose for CUDA in this work relates to the paral-
lelization of Vallado’s [40] SGP4 software, providing an additional
boost to performance while also futureproofing for the coming
ray-tracing model. The desired functionality of the SGP4 library is
clear: the software needs to convert TLE sets into ECEF vectors of
the form (x, y, z) at time t. The implementation of this algorithm
with CUDA is reflected in Figure 4.

As depicted in Figure 4, the process works as follows:

• ATLE set is parsed from the SOARSXML file and is processed
to produce a satrec structure and create a new target in the
simulation environment.

• The satrec structure is then stored in an array on the host
side. This is repeated for every TLE set serially, and a fully
populated satrec array if formed.

• A time array is produced on the host, which contains the
time t for various instances. This accounts for every sample
between the simulation start and end in increments of ti, the
target sampling interval.

This concludes the orbit propagation procedure and enables
further processing to be done on the target position arrays.

32

The Design and Development of a GPU-accelerated Radar Simulator for Space Debris Monitoring HPCCT’21, July 02–04, 2021, Qingdao, China

Figure 4: Flowchart illustrating the integration of CUDA
into the SGP4 algorithm within SOARS.

4.6 Radar Computation
The original FERS application accounts for most of the basic radar
computations to be expected in any basic radar simulator, but im-
provements can be made to some of these aspects to increase their
accuracy and efficiency.

In both FERS and SOARS, the effect of propagation attenuation
occurring between a radar and a target is inherently computed by
the multistatic radar equation. This is defined as shown in Equation
4 [41, 42] for the qth receiver (up to Q receivers) the jth transmitter
(up to J transmitters):

PRq =
PTjGTjGRqλ

2σRCS

(4π)3R2
Tj
R2
Rq

(4)

where PR and PT are the powers of the received and transmitted
signals respectively (measured in Watts),GR andGT are the respec-
tive gains of the receive and transmit antennas, σRCS is the RCS
of the target (measured in square meters), λ is the wavelength of
the radar, and RR and RT represent the respective ranges of the
receive and transmit antennas from the target. This equation is
thus used to compute the return power of the received signal after
the effects of attenuation, RCS, and signal-target interactions have
been factored into the transmit signal.

In the case of a monostatic radar, this is simplified to the equation:

PRq =
PTjGTj λ

2σRCS

(4π)3R4
T

(5)

as the transmitter and receiver are collocated and thus GR = GT
and RR = RT . In this setup, there is only one antenna available
and it will thus toggle between transmit and receive modes. After
transmitting the pulse, the antenna switches to receive mode and
waits for return echoes for a specified period of time; once the next
PRI starts, the process repeats. It is thus pertinent that the echoes
are not received while the antenna is still in transmit mode.

In the case of FERS and SOARS, this is avoided using awindowing
method to skip specified lengths of the received signal. This is
essentially treated as dead time that is specified as a fraction of
the Pulse Repetition Interval (PRI) to allow the radar to transmit
a pulse and then safely switch to receive mode. In this way, the
simulator avoids immediate, potentially dangerous feedback that
could be picked up at the receiver. Antennas in SOARS will thus
only operate in receive mode during the window’s “on” period –
usually taken as the remainder of the PRI.

It is also important to consider the time delay τ in receiving the
observed signal after initial transmission, computed as follows:

τ =
RT + RR

c
(6)

where c is the speed of light, taken as 299,792,458 m/s. This ac-
counts for the round-trip time between a signal being transmitted,
propagating towards a target, and then propagating from the target
to a receiver.

Another computation to consider is that of the Doppler fre-
quency fD . Before this can be computed, it is important to consider
the geometry of the simulated bistatic radar configuration. This is
reflected in Figure 5, as adapted from [43].

Using the information highlighted in this geometry setup, the
bistatic Doppler shift can be related to the velocity of a targetV (as
projected onto the bistatic plane) using Equation 7 [44].

fD =
2V cos (δ) cos

(
β
2

)
λ

(7)

where fD corresponds to the Doppler shift, L is the bistatic baseline,
β is the bisecting angle between the RT and RR vectors, and δ is the
angle measured from the bistatic bisector to the target propagation
vector. Alternatively, Equation 8 [45] can be used to relate the
Doppler shift to a radial velocity component Vr (i.e., the projection
of V onto the initial radar-to-target line-of-sight vectors):

fD = fc

(
1 + Vr

c

1 − Vr
c

− 1

)
(8)

In a three-dimensional space, it is vital that a target velocity vector
Vtдt (computed as the change in target coordinates over time) is
first projected onto the bistatic plane as vector V . Only after this
projection should V be projected onto the transmitter and receiver
line-of-sight vectors. Both Equations 7 and 8 represent more ac-
curate implementations of the Doppler than the version currently
found in FERS; as such, both of these are to be tested and compared
within SOARS.

33

HPCCT’21, July 02–04, 2021, Qingdao, China Mogamat Yaaseen Martin et al.

Figure 5: Bistatic radar geometry showing the bistatic plane,
a transmitter Tx, receiver Rx, and target Tgt.

In this paper, it is worth noting all results are computed using a
parabolic gain pattern for each antenna in the simulations. This is
implemented using the following equations, as per [46]:

Xp =

(
πd

λ

)
sin (θOB) (9)

Gmax =

(
πd

λ

)2
(10)

G (θOB) = G2

max
(

2J1(Xp)
Xp

) (11)

where Gmax the maximum possible gain of the antenna, G is the
overall antenna gain as a function of the off-boresight angle θOB ,
and J1 is the Bessel function of the first kind of order one. The vari-
able Xp is an interim quantity used in the calculation of the overall
antenna gain G and is dependent on θOB . This angle corresponds
to the angle measured between the vector from the antenna to a
target and the vector from the antenna to its beam center. This is
computed directly in SOARS.

With all of the aforementioned equations defined, the return
signal is described by Equation 12 in SOARS.

yq [n] =

J∑
j=0

©«
Ajqn djq [n]

fs
+

P∑
p=0

Ajpqn djpq [n]

fs

ª®¬ (12)

where q is the receiver index, j is the transmitter index, p is the
target index, n is the sample number, fs is the sampling rate, J is
the number of transmitters in the simulation, and P represents the
total number of targets being simulated. Ajq and djq correspond
to the amplitude function and delayed samples for the direct path
from a transmitter j to a receiver q, respectively. Thus, Ajpq and
djpq correspond to the amplitude function and delayed samples
for the path measured from j to target p to q, respectively. Further
detail is provided in [47].

5 RESULTS
Having detailed the design and development of the application, this
section aims to investigate the capabilities and limitations inherent
in the baseline version of the developed software. This includes
testing the software against the intended implementations detailed
earlier, verifying its operation against established theory, and bench-
marking the application in some aspects of its performance.

Since the operation of FERS has already been verified against
radar systems theory and validated against real-world radar data
in [15], this section aims to focus on results produced by the new
features implemented in SOARS. Namely, this section details the
comparison of simulated received signals against expected results
based on the equations defined previously, benchmarks for the
SGP4 algorithm and the developed CUDA alternative, as well as
runtime improvements to file parsing.

5.1 Simulator Verification
The previous section covered the detailed design and development
of the SOARS application, explaining in particular the underlying
radar simulation approach and models that were implemented. This
section presents the testing and analysis of some of the results from
this baseline version of SOARS.

All simulation results were verified using the theoretical space-
monitoring radar designed in a study by Agaba [25] in 2017. This
design proposed using the MeerKAT radio telescope [24] as the
receiver in a bistatic radar configuration. This simulation repre-
sents a short unit test performed using the SOARS simulator for
verification purposes, where many of the parameters were chosen
for convenience and the simulation was fully designed using the
aforementioned GUI designed for SOARS.

The tested simulation makes use of a bistatic radar and a target
that was propagated through nine manual positions at time-steps
between t = 0 ms and t = 80 ms in intervals of 10 ms. The target
was initially placed at the approximate coordinates (x , y, z) =
(5208049.329, 1999182.830, -3485881.148) m such that it transited
close enough to both the transmit and receive antennas, which were
placed at (x , y, z) = (4923738.121, 1821610.792, -3622037.530) m and
(x , y, z) = (5103916.070, 2004714.383, -3257572.688) m respectively.
This ensured that the target position would not introduce any range
ambiguities.

All noise sources were also disabled for these initial results (in-
cluding the 20 K amplifier noise temperature), but these will be
enabled in a later experiment to verify the noise implementation.
The full list of the simulation parameters is shown in Table 1. Note
that the receiver position vector used in this experiment corre-
sponds to the nominal array centre position of the full 64-antenna
MeerKAT configuration.

Upon executing this simulation in SOARS, the target’s orbit is
dynamically propagated using SGP4 while the radar antennas are
created at the designated position coordinates. Thereafter, pulses
are spawned and propagated from the transmitter, through the
simulation environment, and towards the TLE-based target. These
pulses then illuminate and reflect off the target, after which they are
collected at the receiving antenna. The signal information is then
computed using the equations defined earlier in the paper, such as
time and phase delays, Doppler, and signal power. The results are
then written to the SOARS output files after the process has been
repeated for every target and each transmitter-receiver pair.

For this small unit-test simulation, the transmit and receive sig-
nals are illustrated in Figure 6 after post-processing the results and
plotting their measured power against time. This depicts both the
full transmitted signal and the raw received signal, where the latter
signal is stored via its samples in a HDF5 file and separated into its

34

The Design and Development of a GPU-accelerated Radar Simulator for Space Debris Monitoring HPCCT’21, July 02–04, 2021, Qingdao, China

Table 1: Simulation parameters used to test verification aspects of SOARS

Parameter Value Units

Number of pulses 12 -
Carrier frequency 1.35 GHz
Sampling frequency 25 MHz
Transmit power 10 kW
Radar bandwidth 10 MHz
Pulse width 1 ms
Pulse Repetition Interval 6.667 ms
Receive window length 4.667 ms
Receive skipping period 2 ms
System noise temperature 20 K
Parabolic transmit antenna diameter 10 m
Parabolic receive antenna diameter 13.5 M
Target RCS 0.0001 m2

Figure 6: Transmitted and received signals simulated in SOARS using the MeerKAT radar.

in-phase and quadrature components – along with a scaling factor
that needs to be applied before plotting the results. These two signal
components are each measured in Volts, and in assuming an ideal
resistance of 1 Ω, the power is computed by squaring the signal
magnitude.

It should be noted that this received signal only shows the signal
samples observed at the receiver while it is in operation, i.e., the
receive window skip period is not inherent in the recorded HDF5
file, hence why the signal ends before 80 ms. This plot was obtained
by plotting the raw signal against sample number and then scaling
the horizontal axis by the reciprocal of the sampling frequency.

When applying a matched filter to the received signal and enlarg-
ing the first pulse in each signal, the result in Figure 7 is obtained.

As shown in Figure 7, the transmit signal has a power of 10
kW, a pulse width of 1 ms, as expected. As for the first received
pulse, the receive skip period of 2 ms needs to be accounted for and

thus the return echo is seen to be received starting at 0.04408 ms
+ 2 ms = 2.04408 ms. This agrees with the result calculated based
on Equation 6 (computed as 2.04409 ms based on the propagation
distance of RT + RR = 612.802 km). The matched-filtered signal
also demonstrates the near-exact same time delay at 0.04404 ms.
Additionally, the width of the return pulse is calculated to be exactly
1.00028 ms, demonstrating a slight change in the transmitted 1 ms
pulse width due to the falling edge of the pulse illuminating the
target at a slightly different position than the leading edge.

Finally, the received signal’s power can be computed using the
monostatic radar equation presented in Equation 5. This requires
knowledge of the overall transmitter and receiver gains, each of
which is calculated using Equation 11. This yields transmitter and
receiver gains ofGT = 1.198 andGR = 9.644 respectively. Applying
Equation 5, PR is thus computed as 3.481 x 10−26 W, closely agreeing
with the power result of 3.480 x 10−26 Wdepicted in the first receive

35

HPCCT’21, July 02–04, 2021, Qingdao, China Mogamat Yaaseen Martin et al.

Figure 7: Enlarged view of the first transmit and receive pulses using the MeerKAT radar design in SOARS.

pulse in Figure 7. This confirms that both the transmitted and
received signals are being generated as expected, verifying that the
implementation of power and range computation.

Another quantity to be tested is that of target Doppler, i.e., veri-
fying the Doppler/velocity information computed in SOARS for a
SPG4-propagated target. For this to be tested, the target’s velocity
needs to be computed by considering the change in its coordinates
over a specified time period. This velocity vector must then be
projected onto the bistatic plane, which is formed using the initial
coordinates of the transmitter, receiver and target – denoted Tx,
Rx, and Tgt respectively.

The projected velocity component – denoted V in Equation 7
– can then be used to calculate the Doppler shift once the angles
β and δ are determined; however, SOARS instead uses Equation 8
to get the Doppler result. This represents a more accurate method
compared to that of FERS, which could produce unreliable Doppler
frequencies in some situations. The implementations in Equations
7 and 8 have thus been tested to compare their accuracy. This
experiment used the same target position set-up as before, with
the target being propagated over a 1 ms interval from its initial
position to the coordinates (x , y, z) = (5208045.021, 1999183.745,
-3485875.509) m. This yields a velocity vectorVtдt with a magnitude
of 7155.231 m/s, which is then projected onto the bistatic plane as
V .

This is approximated in the geometry shown in Figure 8.
This depicts the bistatic bisector, the object coordinates, angles δ

and β , the target velocity and its projection, and the bistatic plane.
Using the bistatic plane, the angle β is calculated as 91.553 deg.
The bisector is simply found by normalizing and adding the line-
of-sight vectors, i.e., the bisector is the resultant of the vector sum
of the range vectors from the target to the transmitter and receiver.
Determining V and δ , however, requires normalising the normal
vector of the bistatic plane and then projecting the final coordi-
nates of the target onto this plane. Taking the vector subtraction

Figure 8: Approximation of the geometry in the tested
bistatic configuration.

of the initial target position vector from its final position vector,
and then dividing it by the propagation time of 1 ms, yields the
projected velocity vectorV . Along with this, the angle δ can finally
be computed as the angle between the bisector and V .

This is determined as 37.554°, leading to a calculated Doppler
of 34903.930 Hz using Equation 7; the corresponding output from
Equation 8 was found to be 34904.382 Hz. Based on the theory of
special relativity, the latter result was found to be slightly more
accurate than Equation 7 based on the extensive derivation in [45],
ultimately accounting for a greater number of minor Doppler con-
tributions. It was for this reason that Equation 8 was chosen for

36

The Design and Development of a GPU-accelerated Radar Simulator for Space Debris Monitoring HPCCT’21, July 02–04, 2021, Qingdao, China

Figure 9: Matched-filtered return signal observed by the MeerKAT radar when all noise sources are enabled.

implementation in SOARS, as opposed to the more equation used
for Doppler computation performed in FERS.

One final verification experiment is to test the noise implemen-
tation. When accounting for the noise sources described in [39],
including all external and internal sources, the result in Figure 9 is
obtained after matched-filtering the received signal.

This demonstrates the matched-filtered return signal for the
same simulation depicted previously – but with all noise sources
enabled. This accounts for the internal amplifier temperature of
20 K, the CMB, and all other aforementioned noise sources for
a carrier frequency of 1.35 GHz. The result shows that the noise
peaks far higher than the original target return shown in Figure
6, showing that the target echo is drowned out in the interference.
This demonstrates the importance of carefully selecting the noise
and system design parameters, as well as how feint the target re-
turns from space debris will typically be relative to environmental
interference.

With this, the simulator has been fully tested from the simulation
definition files to the final output results. The results have shown
that both the simulated transmit and receive signals have met the-
oretical expectations, and thus the operation of the simulator has
been verified against the theory. The raw received signal can thus
be reliably used for post-processing purposes, such as for target
tracking or detection [10], signal-to-noise ratio comparisons, et
cetera.

Realistically, SOARS is designed for much larger-scale, dynamic
simulations with upwards of 100,000 targets being simulated at
once. In general, the program is capable of being used for multiple
antennas with large fields of view, multiple noise sources, and a
huge number of space objects. The unit tests conducted in this
section have thus only served to highlight some of the verification
methods used to ensure that the simulator has been accurately
implemented against established theory.

5.2 Orbit Propagation Performance
With SOARS having been verified against established radar theory,
this subsection aims to consider the performance of the adapted
SGP4 model with the added CUDA support.

The target propagation and file parsing performance of the sim-
ulator were tested using a full simulation with the parameters as
presented in Table 2. Most of these parameters were selected for
convenience to showcase the operation of SOARS in its simplest
form – using a monostatic radar with a single pulse, a single target,
and generic parameters values offering predictable results for a

typical space-oriented radar experiment. Some parameters were
selected such that benchmarking could be more easily conducted.

The simulation makes use of a monostatic radar configuration
and a single TLE-based target that was propagated through nine
time-steps between t = 0 ms and t = 80 ms in intervals of 10 ms.
The transmit pulse is defined by a linear chirp with a bandwidth of
10 MHz and a width of 1 ms. The range to the target was computed
as 463.405 km at t = 0 ms. All noise sources were disabled for
simplicity.

Using the CUDA SGP4 algorithm (based on the original serial
code developed and verified in [40]), every target at every time
instance can be propagated simultaneously using SGP4 theory and
CUDA; however, there are drawbacks to this approach. The most
notable drawbacks are the additional memory requirements for
the arrays on the host side (which could become quite enormous
for large numbers of targets or long simulation times), as well as
the additional overhead introduced into the software’s runtime by
using CUDA. The latter entails overhead from having to initialize
the GPU, using the CUDA compiler NVCC [36], and the process of
copying data to and from the device.

It is thus important to consider the possibility that the use of
CUDA may actually degrade code performance as opposed to ac-
celerating it as desired. Runtime benchmarking tests were thus
conducted for this purpose, pitting the serial version of SGP4 in
SOARS against its CUDA alternative. This entailed conducting sev-
eral ordinary SOARS simulations with a varying number of targets
(ranging from 1 to 1,000,000) – each of which was propagated
through nine time-steps – and then measuring the time taken to
process every target via SGP4. This was done for both the serial
and CUDA versions of the code.

All benchmarking tests were conducted on a heterogeneous
compute node equipped with 132 GB of high-speed memory, an
Intel®Xeon®E5-2695 v3 CPU clocked at 2.30 GHz (sporting 28 CPU
cores), and a NVIDIA® Tesla V100 GPU [48]. The V100 GPU sports
32 GB of GPU memory and 5,120 CUDA cores. The results of these
benchmarks are illustrated in Figure 10, showing a ratio of the serial
software’s runtime to the CUDA version’s runtime for a varying
number of propagated targets. All runtimes were initially measured
in ms.

From the results depicted in Figure 10, it is clear that there is an
advantage to using the CUDA version for large-scale simulations.
Based on the data, the CUDA version of SGP4 executes faster than
the serial version for large simulation sizes and requires nearly
the same amount of processing time regardless of the number of

37

HPCCT’21, July 02–04, 2021, Qingdao, China Mogamat Yaaseen Martin et al.

Table 2: Simulation parameters used to test performance aspects of SOARS

Parameter Value Units

Number of pulses 8 -
Carrier frequency 1 GHz
Sampling frequency 25 MHz
Transmit power 10 kW
Radar bandwidth 10 MHz
Pulse width 1 ms
Pulse Repetition Interval 10 ms
Receive window length 8 ms
Receive skipping period 2 ms
System noise temperature 0 K
Parabolic antenna diameter 13.5 m
Target RCS 0.0001 m2

Figure 10: Speed-up in processing times for propagating a varying number of targets using SGP4 functions serially and with
CUDA.

targets – up until around 10,000 targets. Thereafter, the results
scale differently based on the size of the simulation. This is due to
the larger array sizes that require copying to and from the device,
which increases the runtime non-linearly.

For both the cases of 100,000 and 1,000,000 targets, the CUDA
version demonstrates faster runtimes compared to the serial ver-
sion of the software. In cases where fewer targets are used, the
serial version of the software provides improved speeds over the
CUDA version. This is attributed to the large processing overhead
and memory access patterns required for CUDA usage. Overall,
the results demonstrate that the simulator is well suited towards
large-scale use, as per the software requirements. Additionally, the
main purpose of CUDA in SOARS is for futureproofing its use with
OptiXTM – a program that requires CUDA integration. The speed-
ups demonstrated in this subsection are thus an additional benefit
to the software on top of the futureproofing provided by CUDA.

5.3 File Processing Performance
This subsection aims to consider the performance changes provided
by the file processing methods used to read and write inputs and
outputs in SOARS.

In particular, while FERS was originally developed to use the
TinyXML package for reading and writing XML files, modern im-
plementations of XML parsing mechanisms have offered significant
speed-ups over this library. It was for this reason that PugiXML was
chosen to replace TinyXML for file processing. To verify any poten-
tial performance improvements, both parsers were benchmarked
via timing tests observing their read/write speeds for SOARS inputs
and outputs.

Using the same hardware and simulation setup described earlier,
the results of the file read/write tests are demonstrated in Figure 11,
illustrating the speed-up provided by PugiXML over TinyXML as a
ratio of their performance, i.e., TinyXML’s runtime to PugiXML’s
runtime. All runtimes were initially measured in ms.

38

The Design and Development of a GPU-accelerated Radar Simulator for Space Debris Monitoring HPCCT’21, July 02–04, 2021, Qingdao, China

Figure 11: Speed-up in read/write times using PugiXML over TinyXML for SOARSXML simulation files with a varying number
of targets.

Each parser was tested using the parameters in Table 2 with a
varying number of targets, each of which is a duplicated TLE set
propagated through nine time-steps. The recorded timings in Figure
11 correspond to the periods of time taken to fully parse a complete
SOARSXML file into the SOARS software, illustrating how the use
of PugiXML provided significant performance improvements over
TinyXML for almost every simulation tested – both in terms of
read and write speeds. The speed-ups in reading times show that
PugiXML parsed the input file at up to 13x the speed of TinyXML.
The speed-ups in writing times also show that PugiXML was up to
1.9x faster than TinyXML.

Another consideration is the difference in output values gener-
ated by the serial and CUDA versions of SGP4, as there are slight
discrepancies in the computed values of the target position co-
ordinates produced by each method. These are attributed to the
unavoidable precision differences resulting from floating-point cal-
culations, which are typically computed slightly differently on a
CPU compared to a GPU.

This is particularly apparent with CUDA, where functions that
are compiled for the GPU make use of NVIDIA®’s CUDA math
library, while functions compiled for the CPU use the host com-
piler’s math library [49]. These libraries will often produce slightly
different output values due to the different implementations of
mathematics functions built into the libraries.

6 CONCLUSIONS
This paper has highlighted the threat of the growing space debris
population and the potential damage it may cause to existing and
future spacecraft. This represents a major topic of concern, par-
ticularly with the insufficiency and limitations of available space-
monitoring sensors. This paper has thus presented the design and
development of a baseline version of SOARS – an open-source,
signal-level radar simulator intended to be used in the design and
testing of space surveillance radar systems to improve global cov-
erage of the space debris population. It is anticipated that SOARS

could be used by researchers for conceptual investigations and
systems design, as well as in teaching or training environments.

The developed program serves as an extension and combination
of a newly developed software model for radioastronomy noise
sources, the existing FERS application, the established SGP4 prop-
agation model, and NVIDIA® CUDA. Improvements have been
made to the original FERS software and SGP4 model, including the
improvement of the former’s Doppler accuracy and the use of GPU-
based parallelism for more efficient target processing. Additionally,
this work has added a new noise model implementation to account
for galactic, sky, manmade and internal noise, the integration of
CUDA and SGP4 into the simulator, and the introduction of a more
modern XML file parser, PugiXML. A list of software requirements,
both functional and non-functional, has also been presented and
met by the developed software.

The results have shown that both the transmitted and received
signals, as generated by SOARS, agree with theoretical expecta-
tions. This includes the computed target range and the received
signal’s pulse width, time delay, and power amplitude. This served
to verify the operation of the simulator in basic radar computa-
tion. The introduction of CUDA into the SGP4 algorithm has also
been presented, where the serial version of SGP4 showed software
runtimes scaling almost linearly in proportion to the number of
targets in the simulation. However, for 100,000 targets or more, the
CUDA version of the software proved faster than the serial version
– making the CUDA version ideal for large-scale use.

The accuracy of the simulator will need to be further investigated
by comparing the raw simulated return against measured radar
data from a space surveillance experiment. As part of future work,
the application is also expected to be augmented with a ray-tracing
model through the OptiXTM software. This should improve simula-
tion accuracy and allow for more complex space object properties
to be simulated, such as size, shape, and reflectivity parameters.
This represents the primary reason for the use of CUDA in SOARS,
while also providing the advantage of speed-ups to the SGP4 al-
gorithm for large simulations. However, benchmarking tests will

39

HPCCT’21, July 02–04, 2021, Qingdao, China Mogamat Yaaseen Martin et al.

need to be conducted to assess the trade-offs between the theoreti-
cal improvements in accuracy and the changes in computational
efficiency brought about by OptiXTM.

An extensible baseline version of SOARS has thus been estab-
lished through this paper, which was planned around facilitating
further expansion of the application. In particular, the provision of
the aforementioned additions should result in a feature-complete
iteration of the software which should be completed in the future.

ACKNOWLEDGMENTS
This work was supported through funding by the Council for Sci-
entific and Industrial Research (CSIR) in South Africa. All results in
this paper were made possible through the use of GPU computing
hardware provided by the Centre for High Performance Computing
– a subsidiary of the CSIR.

REFERENCES
[1] Jer-Chyi Liou. 2016. Orbital Debris Challenges for Space Operations. In Second

International Civil Aviation Conference (ICAO). NASA, 1–12.
[2] Donald J Kessler and Burton G Cour-Palais. 1978. Collision frequency of artificial

satellites: The creation of a debris belt. Journal of Geophysical Research: Space
Physics 83, A6 (1978), 2637–2646.

[3] Heiner Klinkrad. 2006. Space debris: Models and Risk Analysis. Springer Science &
Business Media.

[4] National Aeronautics and Space Administration. 2020. Orbital Debris Quarterly
News. Retrieved February 1, 2021 from https://www.orbitaldebris.jsc.nasa.gov/
quarterly-news/pdfs/odqnv24i1.pdf.

[5] John A Kennewell and Ba-Ngu Vo. 2013. An overview of space situational aware-
ness. In FUSION. 1029–1036.

[6] Osman Kalden and Christian Bodemann. 2011. Building space situational aware-
ness capability. In 2011 5th International Conference on Recent Advances in Space
Technologies (RAST). IEEE, 650–654.

[7] Ian Ritchie. 2013. Remote control southern hemisphere SSA observatory. In
Proceedings of the 18th international workshop on laser ranging, Fujiyoshida, Japan.
1–9.

[8] Paul D McCall. 2013. Modeling, simulation, and characterization of space debris in
low-Earth orbit. Ph.D. Dissertation. Florida International University.

[9] D Kastinen, Juha Vierinen, Johan Kero, S Hesselbach, Tom Grydeland, and Holger
Krag. 2019. Next-generation Space Object Radar Tracking Simulator: SORTS++.
In 1st NEO and Debris Detection Conference. European Space Agency, 1–8.

[10] D Cutajar, A Magro, J Borg, K Adami, G Bianchi, G Pupillo, A Mattana, G Naldi, C
Bortolotti, F Perini, et al. 2020. PyBIRALES: A Radar Data Processing Backend for
the Real-Time Detection of Space Debris. Journal of Astronomical Instrumentation,
Vol. 9, No. 1.

[11] Rolf Lengenfelder. 1998. The design and implementation of a radar simulator.
Master’s thesis. University of Cape Town.

[12] Giorgio Franceschetti, Maurizio Migliaccio, Daniele Riccio, and Gilda Schirinzi.
1992. SARAS: a synthetic aperture radar (SAR) raw signal simulator. IEEE Trans-
actions on Geoscience and Remote Sensing 30, 1 (1992), 110–123.

[13] J-F Nouvel, A Herique, W Kofman, and A Safaeinili. 2003. Marsis radar signal
simulation. In IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing
Symposium. Proceedings (IEEE Cat. No. 03CH37477), Vol. 4. IEEE, 2756–2758.

[14] Peter John Golda. 1997. Software simulation of synthetic aperture radar. Master’s
thesis. University of Cape Town.

[15] Marc Brooker. 2008. The design and implementation of a simulator for multistatic
radar systems. Ph.D. Dissertation. University of Cape Town.

[16] Jill Tombasco. 2011. Orbit Estimation of Geosynchronous Objects Via Ground-Based
and Space-Based Optical Tracking. Ph.D. Dissertation. University of Colorado.

[17] Markus Landgraf, R Jehn, and W Flury. 2004. Comparison of EISCAT radar data
on space debris with model predictions by the master model of ESA. Advances in
Space Research 34, 5 (2004), 872–877.

[18] David Vallado and Paul Crawford. 2008. SGP4 orbit determination. In AIAA/AAS
Astrodynamics Specialist Conference and Exhibit. 6770.

[19] Felix R Hoots, Ronald L Roehrich, and TS Kelso. 1980. Spacetrack report no.
3. Project Spacetrack Reports, Office of Astrodynamics, Aerospace Defense Center,
ADC/DO6, Peterson AFB, CO 80914 (1980), 14.

[20] Simon P Shuster. 2017. A Survey and Performance Analysis of Orbit Propagators
for LEO, GEO, and Highly Elliptical Orbits. Master’s thesis. Utah State University.

[21] David A Vallado, Paul Crawford, Richard Hujsak, and TS Kelso. 2006. Revisiting
spacetrack report #3: Rev 2. In AIAA/AAS Astrodynamics Specialist Conference
and Exhibit. 6753.

[22] Morten Breivik. 2003. Nonlinear maneuvering control of underactuated ships. Mas-
ter’s thesis. Norwegian University of Science and Technology.

[23] Glen Shepherd. 2018. Space Surveillance Network. Retrieved September 21, 2020
from http://climateviewer.org/img/gallery/ssa2shepherd.pdf.

[24] SKA Africa. 2017. SKA SA Project. Science & Technology Parliamentary Portfolio
Committee. Retrieved September 10, 2021 from http://www.ska.ac.za/wp-content/
uploads/2017/06/presentation parliament 2017.pdf.

[25] Doreen Agaba. 2017. System design of the MeerKAT L-band 3D radar for monitoring
near earth objects. Ph.D. Dissertation. University of Cape Town.

[26] David Kirk et al. 2007. NVIDIA® CUDA software and GPU parallel computing
architecture. In ISMM, Vol. 7. 103–104.

[27] Steven G Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,
David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison,
et al. 2010. OptiXTM : a general purpose ray tracing engine. In ACM transactions
on graphics (tog), Vol. 29. ACM, 66.

[28] BarryW Boehm. 1988. A spiral model of software development and enhancement.
Computer 21, 5 (1988), 61–72.

[29] Emilian-Ionu Croitoru and Gheorghe Oancea. 2016. Satellite Tracking Using
NORAD Two-Line Element Set Format. Scientific Research and Education in the
Air Force-AFASES, Vol. 1, 423–431.

[30] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. 2011.
An overview of the HDF5 technology suite and its applications. In Proceedings of
the EDBT/ICDT 2011 Workshop on Array Databases. ACM, 36–47.

[31] Boris Schäling. 2011. The Boost C++ libraries.
[32] Lee Thomason. 2015. TinyXML. Retrieved February 16, 2021 from http://www.

grinninglizard.com/tinyxml/.
[33] Arseny Kapoulkine. 2019. A light-weight C++ XML processing library. Retrieved

June 27, 2021 from http://pugixml.org.
[34] Matteo Frigo and Steven G Johnson. 2005. The design and implementation of

FFTW3. Proc. IEEE 93, 2 (2005), 216–231.
[35] PythonTM Software Foundation. 2019. PythonTM . Retrieved September 10, 2020

from https://www.python.org/.
[36] Ken Martin and Bill Hoffman. 2010. Mastering CMake: a cross-platform build

system. Kitware.
[37] Vinod Grover and Yuan Lin. 2012. Compiling CUDA and other languages for

GPUs. In GPU Technology Conference (GTC). 1–59.
[38] George Smoot. 2007. Cosmic Microwave Background Radiation anisotropies:

their discovery and utilization. Bulletin of the American Physical Society 52 (2007).
[39] ITU. 2016. Recommendation ITU-R P. 372-13. Radio Noise. ITU-R P Series, Ra-

diowave Propagation (2016).
[40] David Vallado. 2018. Astrodynamics Software. Retrieved May 21, 2020 from

https://celestrak.com/software/vallado-sw.php.
[41] KMilne. 1977. Principles and concepts of multistatic surveillance radars. Radar-77.

46–52.
[42] Victor S Chernyak. 1998. Fundamentals of multisite radar systems: multistatic

radars and multistatic radar systems. CRC press.
[43] Terje Johnsen and Karl E Olsen. 2006. Bi-and multistatic radar. Technical Report.

NORWEGIAN DEFENCE RESEARCH ESTABLISHMENT KJELLER.
[44] Nicholas J Willis. 2005. Bistatic radar. Vol. 2. SciTech Publishing.
[45] Mark A Richards, James A Scheer, William A Holm, Brent Beckley, et al. 2010.

Principles of Modern Radar - Volume 1: Basic Principles. SciTech Publishing.
[46] Robert M Gagliardi. 2012. Satellite communications. Springer Science & Business

Media.
[47] Marc Brooker and Michael Inggs. 2011. A signal level simulator for multistatic

and netted radar systems. IEEE Trans. Aerospace Electron. Systems 47, 1 (2011),
178–186.

[48] NVIDIA® Corporation. 2018. NVIDIA® Tesla® V100 GPU Accelerator. Retrieved
February 01, 2021 from https://images.nvidia.com/content/technologies/volta/
pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf.

[49] Nathan Whitehead and Alex Fit-Florea. 2011. Precision & performance: Floating
point and IEEE 754 compliance for NVIDIA® GPUs. rn (A+ B) 21, 1 (2011), 18749–
19424.

40

https://www.orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv24i1.pdf
https://www.orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv24i1.pdf
http://climateviewer.org/img/gallery/ssa2shepherd.pdf
http://www.ska.ac.za/wp-content/uploads/2017/06/presentation
http://www.ska.ac.za/wp-content/uploads/2017/06/presentation
http://www.grinninglizard.com/tinyxml/
http://www.grinninglizard.com/tinyxml/
http://pugixml.org
https://www.python.org/
https://celestrak.com/software/vallado-sw.php
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf

	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	3 METHODOLOGY
	4 DESIGN AND DEVELOPMENT
	4.1 Software Requirements
	4.2 Design Considerations
	4.3 Simulator Structure
	4.4 Noise Implementation
	4.5 Orbit Propagation
	4.6 Radar Computation

	5 RESULTS
	5.1 Simulator Verification
	5.2 Orbit Propagation Performance
	5.3 File Processing Performance

	6 CONCLUSIONS
	Acknowledgments
	References

