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Abstract

Lie algebras are an important class of algebras which arise
throughout mathematics and physics. We report on the for-
malisation of Lie algebras in Lean’s Mathlib library. Although
basic knowledge of Lie theory will benefit the reader, none
is assumed; the intention is that the overall themes will be
accessible even to readers unfamiliar with Lie theory.

Particular attention is paid to the construction of the clas-
sical and exceptional Lie algebras. Thanks to these construc-
tions, it is possible to state the classification theorem for
finite-dimensional semisimple Lie algebras over an alge-
braically closed field of characteristic zero.

In addition to the focus on Lie theory, we also aim to high-
light the unity of Mathlib. To this end, we include examples
of achievements made possible only by leaning on several
branches of the library simultaneously.
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1 Introduction
1.1 Skew-symmetric matrices

Recall that a rotation in Euclidean space can be represented
by an invertible matrix X whose inverse is its transpose:

x1=xT,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP °22, January 17-18, 2022, Philadelphia, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-9182-5/22/01...$15.00
https://doi.org/10.1145/3497775.3503672

At least as far back at the 19® Century, it was observed
that if A is a skew-symmetric matrix and € € R is small then
I + €A is almost a rotation. Indeed since AT = —A, we have:

(I+€eA)T(I+eA)=1-€%A%

That is, the inverse of I + €A is its transpose, if we neglect
terms order €.

Better yet, the exponential ¢! is truly a rotation (no
terms neglected) and for another such matrix B, the Baker-
Campbell-Hausdorff formula quantifies how the composition
of the rotations e€4, €5 behaves in terms of skew-symmetric
matrices:

€4 peB _ eé(A+B)+§[A,B]+O(EB). (1.1)

The term [A, B] appearing in (1.1) is defined as:
[A,B] = AB - BA (1.2)

and is an instance of a Lie bracket. It defines a natural product:
if A and B are skew-symmetric then! so is [A, B].
The Lie bracket is skew-commutative:

[A,B] = -[B,A],

and in general non-associative, but by way of compensation
it satisfies the Jacobi identity:

[A [B,C]]+[B,[CA]]+[C,[AB]]=0. (1.3)

1.2 Abstract Lie algebras and their ubiquity

Recognising skew-symmetric matrices merely as an example,
one can consider the study of abstract Lie algebras. These
are modules carrying a bilinear, skew-commutative product
which satisfies the Jacobi identity (1.3).

The study of abstract Lie algebras was initiated by Lie
and independently by Killing more than 140 years ago [17],
[13-15], [10] and the subject now pervades much of modern
mathematics and physics.

In classical physics, both linear and angular momentum
are best understood as taking values in the dual of a Lie
algebra. More importantly, recognising that the space of
classical observables forms a Lie algebra® under the Poisson
bracket is an important step in quantisation. Furthermore,
in particle physics, elementary particles such as quarks are
essentially basis vectors of irreducible representations of Lie
groups [3] and thus of Lie algebras.

f this is the first time you have seen this, then check: it’s a fun calculation.
2In fact, a Poisson algebra, but it is the bracket structure that is more subtle.
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In number theory, automorphic forms, central objects of
study in the Langlands programme, satisfy a differential
equation defined in terms of a reductive Lie algebra. In differ-
ential geometry, the tangent bundle is special amongst vector
bundles because its sections carry a natural Lie algebra struc-
ture; moreover with just this structure one can define the de
Rham cohomology, thus connecting with algebraic topology.
In Riemannian geometry and gauge theory, the curvature
2-form takes values in a Lie algebra. In symplectic geometry,
the moment map takes values in the dual of a Lie algebra.

Of course the lists above hardly scratch the surface. The
unifying theme is that a great many types of symmetry are
naturally Lie groups or algebraic groups, and thus have asso-
ciated Lie algebras which are essential for their study. Under-
standing symmetry thus requires understanding Lie algebras
and for this reason the classification of semisimple Lie alge-
bras is rightly regarded as a landmark result, obtained just
in time for the 20'" Century?.

1.3 A roadmap for this article

Much of the work discussed here was motivated by the desire
to formalise the statement of the classification of semisimple
Lie algebras in a proof assistant. This statement appears in
section 10 of this article and the intervening sections 2 - 9
essentially correspond to the various waypoints which were
necessarily passed on the way to this milestone.

Aside from section 2, which is included to give a taste for
foundational design decisions, these intervening sections fall
neatly into two groups.

The first group, which consists of sections 3, 4, enables us
to define the class of Lie algebras we are classifying.

The second group, which consists of sections 5 - 9, enables
us to define the concrete Lie algebras which, according to
the classification theorem, exhaust the class of semisimple
Lie algebras (up to equivalence).

Section 11 sketches the formalisation of weights and roots
in Lie theory, and section 12 concludes with some general
remarks.

1.4 A primer on Lean and Mathlib

The work dicussed here was implemented using Lean®*. Lean
is a dependently-typed programming language together with
a proof assistant.

Like Coq, Lean is based on the Calculus of Inductive Con-
structions; see [8] for a detailed discussion. We do not expect
the reader to be an expert in Lean. For the purposes of this
article, an intuitive understanding of the following Lean
keywords should suffice:

e variables
e def
e abbreviation

3Cartan submitted his thesis [9] in March 1894.
4More precisely the community fork of Lean 3.
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e lemma
e class
e instance

The keyword variables adds variables to the local context;
def and its variant abbreviation make definitions. The
keyword lemma is self-explanatory but class and its partner
instance deserve further comment.

The keyword class defines typeclasses. Lean includes a
powerful typeclass system which is heavily used in its Math-
lib [20] library. For example Mathlib contains the typeclass
comm_ring which defines what it means for a type to carry
the structure of a commutative ring (with unit). Using this,
we can say that a type R is a commutative ring by supplying
a typeclass argument [comm_ring R] in the statement of
definition or lemma.

Typeclasses have one constructor which may take several
arguments. In the case of a commutative ring, the arguments
correspond to an addition function, a multiplication func-
tion, associativity of addition, associativity of multiplication,
commutativity of multiplication etc.

Lastly, the keyword instance is what makes typeclasses
so useful: it allows us to register the fact that some type car-
ries a typeclass. These instance statements can even contain
mathematically non-trivial facts. For example here is Math-
lib’s statement that the real numbers form a commutative
ring® 7 :
instance
begin

-- proof using Cauchy sequences (omitted here)
end

. comm_ring R :=

This instance means Lean knows that any lemmas about
commutative rings automatically hold for the real numbers®.

Aside from comm_ring, the most important typeclasses
expliclty used in the work discussed here are add_comm_-
group, which states that a type carries the structure of a
commutative group (with group operation denoted +) and
module, which states that a type carries the structure of a
module over a set of scalars. For readers not familiar with
modules, simply read ‘vector space’ instead.

Finally, since of all the work discussed here has been
merged to the Mathlib master branch, anyone wishing to run,
compile, interact with, or build upon Mathlib’s Lie algebras
can do so by following instructions available at the Lean
community website, especially:

https://leanprover-community.github.io/get_started.html
and:

https://leanprover-community.github.io/leanproject.html.

Notice the [ icon; it is a permalink to the corresponding code in Mathlib.
We provide such permalinks throughout the text so that readers using an
internet-connected device may easily navigate to appropriate locations in
Mathlib.

50f course more is true, e.g., the real numbers are a linearly-ordered field
and Mathlib knows this too.
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Online documentation is automatically generated for all
Mathlib code. For Lie algebras, a good entry point is:

https://leanprover-community.github.io/mathlib_-
docs/algebra/lie/basic.html.

1.5 Lie algebras in Lean
Here is the definition of a Lie algebra in Mathlib (7 :

class lie_ring (L : Type v)
extends add_comm_group L, has_bracket L L :=

(add_lie : V (x y z : L),
Ex +y,z] = Ex,z] + Ly,z])
(lie_add : V (x y z : L),

Ex,y +z] = Ex,yd + Ex,z3)
(lie_self : V (x : L), Ex,x] =0)
(leibniz_lie : V (x y z : L),

Ex,by,z13 = EEx,yd,z3 + By, Ex,z319)

class lie_algebra (R : Type u) (L : Type v)
Lcomm_ring R] [lie_ring L] extends module R L :=

(lie_smul : V (t : R) (xy : L),
Ex,t-yd=t-Ex,yD

The skew-commutative property follows from the lie_self
axiom and the Jacobi identity is equivalent to the leibniz_-
lie axiom’.

There exist computer algebra systems such as SageMath,
GAP, MAGMA as well as a Mathematica package available
at http://katlas.org, and the Lie-specific package LiE [22],
that are capable of performing calculations involving Lie
algebras. However to the best of our knowledge, there is no
previous work formalising the theory of Lie algebras.

As of December 2021, Mathlib contains over 6,000 lines of
code about Lie algebras and their representations, broadly
following Bourbaki [5-7]. Material covered includes (7 :

e Lie algebras and Lie modules

e Morphisms and equivalences of Lie algebras and Lie
modules

e Lie subalgebras, Lie submodules, Lie ideals, and quo-
tients

e Extension and restriction of scalars

e Direct sums of Lie modules and Lie algebras

e Tensor product of Lie modules

o Lie ideal operations, the lower central series, the de-
rived series, and derived length

¢ Nilpotent, solvable, simple, semisimple Lie algebras,
the radical, and the centre of a Lie algebra

e Cartan subalgebras

e Weight spaces of a Lie module, and thus root spaces
of a Lie algebra

o The universal enveloping algebra (and its universal
property)

e The free Lie algebra (and its universal property)

e Definition of the classical Lie algebras

7We comment on the choice of axioms in section 2.
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e Definition of the exceptional Lie algebras

The final item is worth highlighting. There is no easy route
to the definition of the exceptional Lie algebras (section 9)
and it is an important milestone since it allows us to state the
classification of semisimple Lie algebras (section 10). A proof
of this classification within Mathlib would be a significant
undertaking but now looks achievable.

1.6 A note about notation
We draw the reader’s attention to the brackets appearing in
Lean code such as the equation:

Ex,by,z3] = EEx,y3,z] + Ey,Ex,z]3]

appearing above. These brackets, associated with the has_-
bracket typeclass [ , were introduced to Mathlib to provide
a convenient notation for the Lie bracket®.

They are also used in the notation for morphisms in Lie
theory. For example, the following is Mathlib’s notation for
an R-linear map of modules:

M1 —[R] Mg
whereas the following is the notation for a morphism of Lie
algebras:

Li —ER3 L2
and the following is the notation for a morphism of Lie
modules over a Lie algebra L with coefficients in R:

M1 —ER, L] Mo

Finally, similar remarks apply to equivalences, i.e., we use
the notations:

L1 ~ERT L2
and:
My ~ER, L] M2

2 Design choices: Leibniz vs. Jacobi

The choice of the axiom leibniz_lie in the definition ex-
hibited in section 1.5 deserves explanation, if only because
it serves as a simple example of the sorts of choices that
repeatedly came up in the course of formalisation.

In the presence of the other Lie algebra axioms, each of
the following are equivalent:

[x. [y, 2]] + [y, [2. x]] + [z [x. y]] = 0, (21)
[[xyl.2] = [x [y.2]] - [y, [x.2]], (22)
[x.[y.2]] = [[x.y] 2] + [y, [x. 2]]- (23)

Note that (2.3) is the axiom leibniz_lie and that given
x : L, if we define Dy : L — L by:

Dyy = [x,y]

8 Actually they have since been used elsewhere, e.g., for the commutator of
two subgroups of a group.
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then (2.3) says that D, satisfies the Leibniz product rule:
Dx[y, Z] = [ny,z] + [y, sz],

i.e., it says that D, is a derivation.

One might think that the Jacobi identity (2.1) is the best
choice since it looks the most symmetric; in fact it is the
worst choice. This becomes clear when one considers that
we also need a theory of Lie modules.

Informally, if a Lie algebra L acts linearly on a module M,
and if we denote the action of x : L on m : M by [x,m] : M
then this action turns M into a Lie module for L iff:

[x.[y.m]] =[xy} m] + [y, [x.m]],

forall x,y:Land m: M.

Now consider the case L = M and observe that any Lie
algebra is thus a module over itself. This so-called adjoint
action is extremely important in Lie theory. Observe also
that if we replace z : L in equations (2.1) - (2.3) by m : M
then the terms [y, [z, x]], [z, [x,y]] do not make sense since
there is no action of M on L. Thus (2.1) cannot be used as an
axiom for Lie modules.

By choosing to define Lie algebras using the leibniz_lie
axiom (2.3) we thus obtain a theory where Lie algebras and
Lie modules definitionally satisfy the same axiom. This is a
desirable convenience that we exploit. For example, here is
the code that defines the adjoint action @ :

instance lie_self_module : lie_ring_module L L :=
{ .. (infer_instance : lie_ring L) }

One might ask why to choose (2.3) over (2.2). This is of
lesser importance but (2.3) is still the better choice. This is
because (2.2) requires using subtraction which is often a
secondary operation, defined via addition and inverses. This
means that when constructing Lie algebras downstream, it
is likely there will be more direct proof of (2.3).

On the other hand, as a simplification lemma (rather than
a definition) (2.2) is excellent since it can be used to push
Lie brackets right-most in nested expressions. Indeed the
following simp lemma establishes this as the normal form
in Mathlib’ ' :

@[simp] lemma lie_lie :

EEx,yd,m] = Ex,Ey,mi] - Ey,Ex,mi] :=

And of course we could never register (2.3) as simp lemma
since we would get a simp loop: the term [y, [x, m]] on the
right hand side of (2.3) is of the same form as the term
[x, [y, m]] on the left.

Notwithstanding the words above, the choice of axiom
here is of minor importance. However there are many such
choices and en mass they accumulate to have non-trivial
impact.

9Here and elsewhere we have omitted the proof. In the actual code (available
via the permalinks) the proof follows immediately after the := syntax.
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3 Ideal operations, solvable Lie algebras,
nilpotent Lie modules

Several important constructions in Lie theory are conve-

niently stated in the language of ideal operations.
Informally, if L is a Lie algebra, M is a Lie module of L, I

is an ideal of L, and N is a Lie submodule of M we define:

[I, N] = smallest Lie submodule of M containing
[x,n] forallx:I,n:N.

Note that since any Lie algebra can be regarded as a Lie
module over itself, and since ideals are just Lie submodules,
we can thus combine two ideals I, J to make another: [I, J].

Taking advantage of the complete lattice structure on Lie
submodules, we formalised the above as [ :

def lie_span (s : set M) : lie_submodule RL M :=

Inf {N | s c N}
and ':
instance : has_bracket
(lie_ideal R L) (lie_submodule R L M) :=
(N I N, lie_span R L

{m | 3(x : I) (n:N), E(x:L),(n:MI=m}

This definition is compatible with the lattice structure on Lie
submodules in numerous ways. For example [ :

lemma lie_le_right : [I, N]J < N :=

lemma lie_comm : fI, J3 =F7J, I3 :

lemma lie_le_inf : [I, J3 <InNn7J :=

@[simp] lemma lie_sup :
FI, Nu N3 =FI, NJufI, N3 :

lemma mono_lie (hy : I < J) (ha : N < N) :

FI, NI < (7, N7 :=

We also established alternate characterisations of the defi-
nition [I, N. Firstly ('
lemma lie_ideal_oper_eq_linear_span :

(1EI, N3 : submodule R M) = submodule.span R

{m | Ix :I)(n:N), E(x:L,(n:MJ=m}:=

This says that if we forget the action of L and regard [I, N]
merely as a submodule of M then it is just the linear span
of the generating elements (rather than the Lie span). This
result was very useful.

Secondly, we established a characterisation that does not
use spans at all 7 :
lemma lie_ideal_oper_eq_tensor_map_range :

£I, NJ = ((to_module_hom R L M).comp

(map_incl I N : I ® tN—;fR,LI L ® M)).range :=

Informally, from the data I, N we can build a composition of
morphisms of Lie modules:

IOSN LM — M,


https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/basic.lean#L107
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https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/ideal_operations.lean#L47
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https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/tensor_product.lean#L191
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where the first arrow is the tensor product of inclusion maps
and the second arrow is the action of L. The lemma states
that the range of this composite map is [I, N].

Probably the most important application of these ideal
operations are the definitions of the derived series and lower
central series.

Informally the derived series, DL, DL, D?L,... of a Lie
algebra is a sequence of ideals of L, defined inductively using
the ideal operation discussed above:

DL=1L
DN = [D*L, D*L].
We formalised the derived series as [ :
def derived_series_of_ideal (k : N) :

lie_ideal R L — lie_ideal R L :=
(NI, EI, IP~LK]

abbreviation derived_series (k : N) :
lie_ideal R L :=
derived_series_of_ideal R L k T

Note that we defined derived_series as a special case of
a more general definition derived_series_of_ideal. This
was very useful since it provides a type-theoretic expression
of the fact that if we regard a Lie ideal as a Lie algebra in
its own right, then the terms of its derived series are also
ideals of the enclosing algebra'®. Here is the statement that
the two concepts really do agree when we regard an ideal as
a Lie algebra in its own right (7 :

lemma
derived_series_eq_derived_series_of_ideal_comap
(k : N) :

derived_series R I k =
(derived_series_of_ideal R L k I).comap I.incl:=

We then used the derived series to define what it means
for a Lie algebra to be solvable (7 :

class is_solvable : Prop :=
(solvable : 3 k, derived_series R L k = 1)

and built out the standard theory.

By way of example, we recall that the standard example
of a solvable Lie algebra is the set of upper-triangular square
matrices'’.

Similarly, we defined the lower central series [, and used
it to define the concept of nilpotency [ . In this case we
generalised slightly from the standard references since the
concept of nilpotency makes sense not just for Lie algebras
but for Lie modules and so we made this more general defini-
tion. This turned out to be useful when formalising Engel’s
theorem (to appear).

107yst like with normal subgroups of a group, if I is an ideal of a Lie algebra
L and J is an ideal of I it is not necessarily true that J is an ideal of L.
llAgain, if this is the first time you’ve seen this, it is a fun calculation to
verify that if A, B are upper-triangular matrices then so are AB and BA,
and thus also [A, B].
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4 Case study: the radical is solvable

Whenever possible, we strove to work at the greatest reason-
able level of generality. At times the unified nature of Mathlib
made it possible to establish results at a level of generality
beyond that of the standard references, including Bourbaki.
A good example is the basic result that finite-dimensional
Lie algebras possess a maximal solvable ideal.

As we have seen, Lie algebras admit a notion of being
solvable. For the purposes of this discussion, the precise
meaning is unimportant. What is important is that if I, J are
ideals of a Lie algebra and if, regarding them as Lie algebras
in their own right, they are both solvable, then their sum
I + J is solvable. Mathlib knows this fact. Indeed here is the
statement and proof for a Lie algebra L over a commutative
ring R @' :
instance is_solvable_add {I J :

[hI : is_solvable R I] [hJ :

is_solvable R (I + J) :=
begin

tactic.unfreeze_local_instances,

obtain (k, hk) := hI,

obtain (1, hl) := hJ,

exact ((k+l,

lie_ideal.derived_series_add_eq_bot hk hl)),
end

lie_ideal R L}
is_solvable R J] :

The (solvable) radical of a Lie algebra is the sum of all
solvable ideals, or more precisely, the supremum of the subset
of solvable ideals in the complete lattice of ideals of a Lie
algebra. Here is the definition in Mathlib 7 :

def radical :=
Sup { I : lie_ideal R L | is_solvable R I }

It is clear that if R is a field and L is finite-dimensional
then the radical itself is finite-dimensional and can thus
be represented as a sum of finitely-many solvable ideals.
By iterating is_solvable_add we thus see the radical is
solvable. This was the greatest level of generality in which
this fact was established in any reference the author could
find.

However it is not necessary to make such strong assump-
tions. Indeed the result is true over any commutative ring R
as long as L is Noetherian, as can be seen from the following
proof in Mathlib ' :

instance radical_is_solvable [is_noetherian R L] :
is_solvable R (radical R L) :=
begin
have h := lie_submodule.
well_founded_of_noetherian R L L,
rw < complete_lattice.
is_sup_closed_compact_iff_well_founded at h,
refine
h{I:
{ use 1,
exact lie_algebra.is_solvable_bot R L, 3},
{ intros I J hI hJ,

lie_ideal R L | is_solvable R I } _ _,


https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/solvable.lean#L50
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/solvable.lean#L133
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/solvable.lean#L186
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/nilpotent.lean#L35
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/nilpotent.lean#L76
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https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/solvable.lean#L257
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/solvable.lean#L260
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apply lie_algebra.is_solvable_add R L;
[exact hI, exact hJ]1, 3,
end

The key lemma is complete_lattice.is_sup_closed_-
compact_iff_well_founded ' which the author added
to the lattice theory library for the purposes of proving
radical_is_solvable. This addition was only possible be-
cause Mathlib already contained a comprehensive lattice
theory library and numerous key results about well-founded
relations. Furthermore the lemma lie_submodule.well_-
founded_of_noetherian @ ultimately depends upon re-
sults which were originally introduced to Mathlib for the
purposes of formalising results about Noetherian modules
over commutative rings with a view toward algebraic geom-
etry.

Different people with different aims in different corners
of Mathlib are enabling each other to push boundaries into
new territory.

5 Lie algebras from associative algebras

Any associative algebra A carries a natural Lie algebra struc-
ture via the definition:

[x.y] = xy —yx.

This is an extremely important'? class of Lie algebras which
we needed early on.

We thus registered the following data-bearing typeclass
instance [ :

instance {A : Type*} [ring A] : has_bracket A A :=

(A xy, xy - y*x)
together with instances containing proofs that this definition

satisfies the required axioms 7 :

instance {A : Type*} [ring A] : lie_ring A :=

and O':

Type*} [comm_ring R] [ring Al
: lie_algebra R A :=

instance {R A :
[algebra R A]

We also established basic properties about this correspon-
dence. In particular we needed to establish that a morphism
of associative algebras can be regarded as a morphism of Lie
algebras 7'

def alg_hom.to_lie_hom (f :
A >f[R]1B :=

A —4[R]1 B) :

All of the above followed easily using standard tactics.

2Indeed any Lie algebra that injects into its universal enveloping algebra
is a Lie subalgebra of such a Lie algebra, or better yet (in finite dimensions)
see Ado’s theorem [5] I §7.3.
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6 Skew adjoint endomorphisms

If an associative algebra A carries appropriate additional
structure, it contains distinguished Lie subalgebras when
regarded as a Lie algebra in the sense of section 5.

The most important examples of this phenomenon oc-
cur when A is the endomorphisms of a module M, i.e. A =
End(M). These include:

1. If M is free with finite rank, A contains the distin-
guished Lie subalgebra of trace zero elements.

2. If M carries a bilinear form, A contains the distin-
guished Lie subalgebra of skew-adjoint elements.

3. If M carries a bilinear multiplication, A contains the
distinguished Lie subalgebra of derivations.

4. If M carries both a bilinear form and a compatible
bilinear multiplication, A contains the distinguished
Lie subalgebra of skew-adjoint derivations.

Our focus here is the second item above: the Lie subalgebra
of skew-adjoint endomorphisms obtained from a module
carrying a bilinear form.

If the bilinear form is the dot product, the skew-adjoint
endomorphisms are just the skew-symmetric matrices of
section 1.1, but as we shall see, by allowing more general
bilinear forms, we obtain more general Lie algebras.

Informally, given R-modules M, M’ carrying bilinear forms:

B:MxM—R,
B :M' xM —R,

we say that linear maps f : M - M’ and g : M' — M are
adjoint!® iff:

B'(fx,y) = B(x,gy),
for all x : M, y : M’. Building on top of the existing theory of
bilinear forms, we formalised this as follows [ :
def bilin_form.is_adjoint_pair :=
Y {xylh, B (f ) y =B x (g y)
In the special case M = M’ and B = B’ we say that f is
self-adjoint if:

B(fx.y) = B(x. fy),

for all x,y : M and we say f is skew-adjoint if:

B(fx.y) = -B(x.fy),
for all x,y : M.
We formalised these concepts in Mathlib as (7 :

def is_self_adjoint := is_adjoint_pair BB f f

and ':

def is_skew_adjoint := is_adjoint_pair B B f (-f)
and proved that the subsets of self-adjoint and skew-adjoint
endomorphisms are both submodules of End(M). To avoid

code duplication we introduced the concept of ‘pair-self-
adjointness’ 4 :

More precisely, f is left adjoint to g.


https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/order/compactly_generated.lean#L223
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/submodule.lean#L347
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/of_associative.lean#L45
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/of_associative.lean#L55
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/of_associative.lean#L76
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/of_associative.lean#L88
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/linear_algebra/bilinear_form.lean#L1040
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/linear_algebra/bilinear_form.lean#L1129
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/linear_algebra/bilinear_form.lean#L1133
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/linear_algebra/bilinear_form.lean#L1097
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def is_pair_self_adjoint :=
is_adjoint_pair B B’ f f

where we remain specialised to a single module M = M’ but
bring back the second bilinear form B’.

When a module carries a single bilinear form B, the usual
concept of self-adjointness is pair-self-adjointness for the
pair of bilinear forms (B, B) and the usual concept of skew-
adjointness is pair-self-adjointness for the pair of bilinear
forms (-B, B). The relevant formal statement is (4 :
lemma is_skew_adjoint_iff_neg_self_adjoint :

B.is_skew_adjoint f «

is_adjoint_pair (-B) B f f :=

We then proved that for any pair of bilinear forms, the subset
of pair-self-adjoint endomorphisms forms a submodule of
End(M).

Restricting our attention to just the skew-adjoint endo-
morphisms!*, we then proved 4 :

lemma bilin_form.is_skew_adjoint_bracket
(f g : module.End R M)
(hf : f € B.skew_adjoint_submodule)
(hg : g € B.skew_adjoint_submodule) :
Ef, g] € B.skew_adjoint_submodule :=

and so deduced that they form a Lie subalgebra, as required.
Finally, recalling that a square matrix J defines a bilinear
form on vectors:

(v,w) ol Jw,

and that another square matrix A defines an endomorphism
of vectors:

v Ao,

we introduced the concept of adjointness for matrices. This
turns out to be ' :

def matrix.is_adjoint_pair := AT .37 =7.8B

We constructed an API for matrices similar to the one for
bilinear forms and proved that the notions of adjointness
correspond:

lemma matrix_is_adjoint_pair_bilin_form :
matrix.is_adjoint_pair J J' A B <
bilin_form.is_adjoint_pair
J.to_bilin_form J’.to_bilin_form
A.to_lin B.to_lin :=

7 The classical Lie algebras

We made an early effort to construct the classical Lie alge-
bras:

e the special linear algebra sl(n, R),
e the (special) orthogonal algebra so(n, R),
e the symplectic algebra sp(n, R),

141n fact the subset of self-adjoint endomorphisms also carries some extra
structure: they form a Jordan subalgebra under the product xo y = xy + yx.
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for a finite type n and commutative ring R.

These were all constructed as Lie subalgebras of the al-
gebra of square matrices with entries in R. Note that this
already includes a design choice: the algebra of n x n matrices
is equivalent, but not equal, to the algebra of endomorphisms
of the free module on n. In Mathlib, the free module on n is
denoted n — R. We thus also formalised the equivalence of
Lie algebras [ :

lie_equiv_matrix’ :
module.End R (n — R) ~[ERJ matrix n n R

so that results could be transported. It is not clear if construc-
tions as matrices or endomorphisms should be preferred.

7.1 The special linear algebra

The Lie subalgebra sI(n, R) is the square matrices of trace
zero. We thus added a definition of the trace of a matrix and
proved basic properties including:

tr(AB) = tr(BA),

for matrices A, B with entries in a commutative semiring.
In fact this was deduced from the following result about
transposes which does not assume commutativity 4 :
@[simp] lemma trace_transpose_mul

(A : matrix m n R) (B : matrix n m R)

trace n R R (AT . BT) = trace mRR (A - B) :=
finset.sum_comm

Note that the proofis a direct invocation of an existing lemma
finset.sum_comm; this is unsurprising, Mathlib contains a
comprehensive library about finite sums and products. With
the above in hand, it was easy to prove @ :

@[simp] lemma matrix_trace_commutator_zero
(A B : matrix n n R)
matrix.trace n R R [A, B] = 0 :=

from which it follows that sI(n, R) is indeed a Lie subalgebra.

7.2 The skew-adjoint algebras

We already met s0(n, R) in section 1.1, it is the subset of
matrices A such that:

AT = -A.

More generally, by the results of section 6, given any square
matrix J, the subset of matrices A such that:

AT]=-JA (7.1)

form a Lie subalgebra. The remaining classical Lie algebra
sp(n, R) can be defined as the subset of 2n x 2n matrices A
satisfying (7.1) with:

| 0 ~I
] ) [ In On ]
where 0, is the n x n zero matrix and I, is the identity matrix.
Here is the formal definition of the above ':


https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/linear_algebra/bilinear_form.lean#L1136
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/skew_adjoint.lean#L41
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/linear_algebra/bilinear_form.lean#L1168
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/matrix.lean#L38
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/linear_algebra/matrix/trace.lean#L77
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/classical.lean#L76
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/classical.lean#L127
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def J : matrix (n @ n) (n ® n) R :=
matrix.from_blocks @ (-1) 1 @

def sp :
lie_subalgebra R (matrix (n @ n) (n & n) R) :=
skew_adjoint_matrices_lie_subalgebra (J n R)

However this is not the end of the story: different choices
of J yield alternate models of the classical Lie algebras. These
alternate models are different as Lie subalgebras but equiv-
alent as abstract Lie algebras. For example, the subset of
matrices A satisfying (7.1) with:

J= [ (I’: é’; ] (7.2)

is equivalent to s0(2n, R), and there is a corresponding al-
ternate model for the odd case s0(2n + 1, R). Furthermore,
each model has its advantages'® so it is important to cater
for the various choices of J.

We thus also formalized these alternate models, together
with relevant proofs of equivalence as abstract Lie algebras.
For example, here is the formal definition of (7.2) ' :

def JD : matrix (n @ n) (n ® n) R :=
matrix.from_blocks @ 1 1 @

and here is the corresponding alternate model [ :

def type_ D :=
skew_adjoint_matrices_lie_subalgebra (JD n R)

and the statement of its equivalence to a model with a diag-
onal J matrix  :

noncomputable def type_D_equiv_so’
[invertible (2 : R)] :
type_.D n R %fR3 so’ nnR :=

8 General non-associative algebra and the
free Lie algebra

We formalised a construction of the free Lie algebra on a
type X with coefficients in a commutative ring R. Here is the
statement of the universal property (i.e., left adjointness) as
stated in Mathlib with respect to a Lie algebra L @ :

def 1lift :
(X = L) ~ (free_lie_algebra R X —;ER] L) :=

This definition, and the proof of its universality, was hard-
won and is worth comment.

The construction is to take a quotient of the free non-
unital, non-associative algebra16 on X with coefficients in R.
We thus needed to define free_non_unital_non_assoc_-
algebra and prove its universal property (4 :

15The main advantage of the model obtained using (7.2) is that there is a
Cartan subalgebra of diagonal matrices.

18Strictly speaking the terminology should be ‘not-necessarily-unital’ and
‘not-necessarily-associative’ but it is common and easier to say simply
‘non-unital’ and ‘non-associative’.

Oliver Nash

def 1lift :
(X = A) ~ non_unital_alg_hom R
(free_non_unital_non_assoc_algebra R X) A :=

In the above, A is a general non-unital, non-associative alge-
bra and non_unital_alg_hom is the type of morphisms of
such algebras.

Establishing the above result while adhering to the stan-
dards of Mathlib was not straightforward. The problem was
that Mathlib’s theories of rings and algebras were entirely
specialised to the unital, associative setting. To handle this
without fragmenting the algebraic hierarchy, it was nec-
essary to insert new classes, notably the typeclass non_-
unital_non_assoc_semiring, low down in the hierarchy.
In a library as large as Mathlib, such changes are significant
undertakings.

Eric Wieser generously took on this challenge!” and also
showed how to encode a general non-unital, non-associative
algebra:

variables {R A : Type™}
[comm_ring R] [non_unital_non_assoc_semiring A]
[module R A] [is_scalar_tower R A A]
[smul_comm_class R A A]

After Wieser’s work (see also [24]) it was essentially straight-
forward to define free_non_unital_non_assoc_algebra
by dropping the assumption of associativity in the existing
monoid algebra construction and proving the corresponding
universal property with respect to a magma M & :

def lift_magma [has_mul M] :

mul_hom M A ~ non_unital_alg_hom R
(monoid_algebra R M) A :=

With this in hand, the author was able to make the key
definition:

def free_non_unital_non_assoc_algebra :=
monoid_algebra R (free_magma X)

and the corresponding universal property followed trivially.
Finally the free Lie algebra was constructed as a quotient
using the following relation ' :

local notation ‘lib‘ :=
free_non_unital_non_assoc_algebra

inductive rel : 1lib R X - 1lib R X — Prop
| lie_self (a : lib R X) : rel (a*a) o
| leibniz_lie (a b c : lib R X) :
rel (a*(b*c)) (((@*b)*c) + (b*(a"c)))
| smul (t : R) (ab : lib R X) :
rel a b — rel (t-a) (tb)
| add_right (a b c : 1lib R X) :
rel a b - rel (atc) (b+c)
| mul_left (a b c : lib R X) :
rel b ¢ - rel (a*b) (a*c)
| mul_right (a b ¢ : 1ib R X)

7 This pull request shows what was required after all other preparatory
work had been completed.


https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/classical.lean#L215
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/classical.lean#L219
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/classical.lean#L262
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/free.lean#L182
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/free_non_unital_non_assoc_algebra.lean#L75
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/monoid_algebra/basic.lean#L469
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/free.lean#L69
https://github.com/leanprover-community/mathlib/pull/6786
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rel ab — rel (a*c) (b*c)

and its universal property followed easily.

It should be noted that the use of inductive above was
necessary because Mathlib does not yet contain a theory of
ideals and their quotients for general non-associative alge-
bras. Filling this gap would improve the construction even
further, though the benefit would be slight.

We should say that it would have been easy to establish
what we needed without any of the above work by ignoring
most of Mathlib’s algebra library and taking a quotient of an
inductively-defined type with a constructor for every term of
X as well as separate constructors corresponding to the scalar
action, additive law, and Lie bracket. We rejected this low-
level approach because it would require a significant quantity
of single-use code, because it would be harder to maintain,
because the alternative approach was an opportunity to start
developing a general theory of non-associative rings and
algebras, and because this is very unlikely to be the approach
that the informal mathematician would take.

We should also say that we rejected an approach that con-
structs the free Lie algebra as the smallest Lie subalgebra of
the free unital, associative algebra containing the generating
type X. This can be expressed in Lean as:

lie_subalgebra.lie_span R (free_algebra R X)
(set.range (free_algebra.: R))

This approach is mathematically appealing but the proof that
this construction satisfies the universal property appears
to need a powerful version of the Poincaré-Birkhoff-Witt
theorem (see [18] as well as [5] 1 §2.7, §3.1).

9 The exceptional Lie algebras

We assume for now that the coefficients R form an alge-
braically closed field of characteristic zero. The work under
discussion does not make this assumption but it will simplify
the discussion here if we do.

There are numerous beautiful ways to construct the five
exceptional Lie algebras g9, f4, €5, €7, e (e.g., [1], [21], [23],
[11], [12]) but the most useful construction from the point
of view of proving the classification theorem (see section 10)
is probably'® an approach due to Serre [19]. This approach
takes a square matrix of integers as input and yields a Lie
algebra. When the matrix is the Cartan matrix of a semisim-
ple Lie algebra, we recover the corresponding Lie algebra,
together with a splitting Cartan subalgebra.

If A is an [ xI Cartan matrix, the corresponding Lie algebra
is defined to be the quotient of the free Lie algebra on 3!
generators: Hy, Hy, ... Hy, E1,Eo, ..., E}, F1, Fo,. .., F; by the
following relations:

8The only real competitor being [12].
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[ELF;]=0 ifi+j

[Hi.Ej] = AijE;

[Hi, Fj] = -AijF;
ad(E)"™ 0 (E;) =0 ifi#j
ad(F)"™ 0 (F;) =0 ifi#j

Thanks to the construction of the free Lie algebra described
in section 8, it was easy to implement Serre’s construction
in Mathlib and thus to define the exceptional Lie algebras.
For example, here is Mathlib’s definition of f, '

def cartan_matrix.F4 : matrix (fin 4) (fin 4) Z :=

ittt 2, -1, o, el

-1, 2, -2, ol,
Lo, -1, 2, -11,
'L o, o, -1, 2]1]

abbreviation fy :=
cartan_matrix.F4.to_lie_algebra R

What’s more, thanks to Ed Ayers’s Lean Widgets [2], it
was easy to generate the Dynkin diagram corresponding to a
Cartan matrix. For example, here is a screenshot from the au-
thor’s proof-of-concept widget, written in Lean, which reads
Mathlib’s definition of the Eg Cartan matrix and renders the
corresponding Dynkin diagram:

Mathlib’s Eg Dynkin diagram rendered using Lean

Finally, we should confess that we have yet to prove almost
anything about the exceptional Lie algebras. The path is clear
but much work remains until we can prove key facts such
as their simplicity, or for example:

def dimension_gs : Prop := finrank (g2 C) = 14

10 Stating the classification

An important milestone, passed in the course of this work,
was teaching Lean the statements of the classification of
semisimple Lie algebras. Using the above work, we defined
what it means for a Lie algebra to be simple (7 :

class is_simple extends
lie_module.is_irreducible R L L : Prop :=
(non_abelian : -is_lie_abelian L)

and likewise what it means to be semisimple 7 :


https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/cartan_matrix.lean#L234
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/semisimple.lean#L44
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/semisimple.lean#L54
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class is_semisimple : Prop :=
(semisimple : radical RL = 1)

Basic related results like the fact that a simple Lie algebra is
semisimple were also proved 7 :

instance is_semisimple_of_is_simple
[h : is_simple R L] : is_semisimple R L :=

Modulo some boilerplate to establish notation, the classi-
fication statements are then:

variables (K L : Type™)

/- Let K be an algebraically closed field of
characteristic zero. -/

variables [field K] [is_alg_closed K]
[char_zero K]

/- Let L be a finite-dimensional Lie algebra
over K. -/

variables [lie_ring L] [lie_algebra K L]
[finite_dimensional K L]

def simple_classification :
is_simple K L «
((L %EKT g2 K)
(L iKY fq K
(L =EKT e K)
(L zEKT e7 K)
(L %EKq eg K) v
(31, (L%EKI sl nK) A1T<n)vV
(31, (LyuEKIspnK) A2<n)vV
(31, (LyEKI sonK) A4<nAn=6))

Prop :=

< < <<

def semisimple_classification :
is_semisimple K L «
I3 n (I : fin n - lie_ideal K L),
(L %fK] (@ i, T i)) AV i, is_simple K (I i)

Prop :=

Note that simple_classification contains several of
the “exceptional isomorphisms”. E.g., s0(6) is simple so it
must be isomorphic to one of the other algebras on the list.
For dimensional reasons, this has to be sI(4). Likewise for
the other cases excluded.

Note also that if we pursue a proof of the classification,
we will probably restate simple_classification in terms
of algebras constructed from Cartan matrices of types A, B,
C, D rather than the models sl, sp, so defined in terms of
matrices.

11 Weight spaces and root spaces

Just as a key tool when studying the behaviour of a linear
operator is to decompose the space on which it acts into a
sum of (generalised) eigenspaces, a key tool when studying
a Lie module M of Lie algebra L is to decompose M into a
sum of simultaneous eigenspaces of x, as x ranges over L.
These simultaneous generalised eigenspaces are known as
the weight spaces of M.

Oliver Nash

When L is nilpotent, it follows from the binomial theo-
rem that weight spaces are Lie submodules. Even when L
is not nilpotent, it may be useful to study its Lie modules
by restricting them to a nilpotent subalgebra (e.g., a Cartan
subalgebra). In the particular case when we view L as a mod-
ule over itself via the adjoint action, the weight spaces of L
restricted to a nilpotent subalgebra are known as root spaces.

We formalised these concepts in Lean as follows [ :

def pre_weight_space (y : L = R) :
submodule R M :=
m (x : L), (to_endomorphism R L M x).

maximal_generalized_eigenspace (y x)
and 7 :
def weight_space [lie_algebra.is_nilpotent R L]
(x : L - R) : lie_submodule R L M :=

{ lie_mem := ...
. pre_weight_space M y }

and finally @ :

abbreviation root_space (H : lie_subalgebra R L)
[lie_algebra.is_nilpotent R H] (y : H - R) :
lie_submodule R H L := weight_space L y

There is actually quite a lot going on above. For one thing,
the definition of root_space requires Lean to recognise that
we can regard L as a Lie module over H. This is achieved
(in part) via the following typeclass instance registered far
away in the Lie subalgebra theory 7 :

instance (H : lie_subalgebra R L) :
lie_module R H M :=

This is a good example of typeclasses working well: the in-
formal mathematician would not waste space being explicit
about details like this here, and thanks to the typeclass sys-
tem, the formal mathematician need not do so either.

More significantly, the proof of 1ie_mem which we have
omitted in the above definition of weight_space is not quite
trivial. The key step is the following lemma (applied with
y1=0and y2 = y) O0':

lemma
lie_mem_pre_weight_space_of_mem_pre_weight_space
{x1 y2 : L >R} {x : L} {m: M}

(hx : x € pre_weight_space L y1)
(hm : m € pre_weight_space M y2) :
Ex, m] € pre_weight_space M (y1 + y2) :=

The proof is similar (though not quite the same) as the proof
that if a, b are two commuting nilpotent elements of a semir-
ing, then their sum a + b is nilpotent. The standard proof of
this is to apply the binomial theorem. In our case, for each
element of L we obtain commuting elements of End(L ® M)
and again the proof is to apply the binomial theorem for this
ring. Happily, tensor products, and a general version of the
binomial theorem had already been formalised in Mathlib,
so we could just appeal to this theory.


https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/semisimple.lean#L76
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/weights.lean#L67
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/weights.lean#L176
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/weights.lean#L243
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/subalgebra.lean#L148
https://github.com/leanprover-community/mathlib/blob/ba1cbfac3e0f2123bfa7fc13c7abcf0ff8002e4d/src/algebra/lie/weights.lean#L161

Formalising Lie algebras

The function y appearing in these definitions is the can-
didate family of eigenvalues, and is said to be a weight or
root when the corresponding weight space or root space is
non-empty 4 :

def is_weight : Prop := weight_space M y # L

and ':
abbreviation is_root := is_weight H L

Weights and roots are the start of a sizeable branch of Lie
theory. Various foundational results such as [ :

def root_space_weight_space_product
(x1 x2 x3 : H—=>R) (hy : 1 + y2 = x3) :
(root_space H y1) ®[R]
(weight_space M y2) —;ER,H]
weight_space M y3 :=

are in place but much work remains to be done.

12 Final words
12.1 Trivial proofs should be trivial

When building a library the size of Mathlib, one must con-
stantly try to be mindful of how one’s work will scale as
more is built upon it. One metric for the health of a partic-
ular area of the library is how much effort one is forced to
put into proving trivialities. We share an example of what
this looks like when things go well.

Given a type X and a commutative ring R one can use
this data to build the free unital, associative algebra A(R, X).
However, there is another way to build a unital, associative
algebra from this data: one first builds the free Lie alge-
bra L(R,X) and then takes its universal enveloping algebra
U(L(R,X)). A simple diagram chase reveals that these are
the same, in particular:

U(L(R X)) ~ A(R X).

Mathlib knows this fact; here is the proof (using some
notational shortcuts for readability) (7 :

def universal_enveloping_equiv_free_algebra :

universal_enveloping_algebra R
(free_lie_algebra R X) ~4[R]

free_algebra R X :=

alg_equiv.of_alg_hom
(liftu R $ 1liftl R $ 1a R)
(lifta R $ (tu R) o (11 R))
(by { ext, simp, })
(by { ext, simp, })

The point of the above is the two lines that read (by { ext,
simp, }). This is the Lean code discharging the proof obli-
gations which correspond to the informal mathematician’s
diagram chase. It is encouraging that they are trivial appli-
cations of standard tactics.
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12.2 The Lie algebra of a Lie group

Far away in a different corner of Mathlib, Sébastien Gouézel
has developed a theory of differentiable manifolds. Building
on top of this, Nicolo Cavalleri, under the supervision of
Anthony Bordg, has defined Lie groups and has used it to
construct the Lie algebra associated to a Lie group [4].

12.3 A specific example

In section 1.2 we motivated the formalisation of Lie algebras
by highlighting areas of mathematics where they appear.
However there also exist specific examples where their for-
malisation would help directly. A striking case is the recent
paper of Le Floch and Smilga [16]. This is a pure mathematics
paper in which an interesting abstract problem is reduced to
a finite calculation. The problem was settled by running an
algorithm on a computer, and the authors used SageMath,
LiE [22], and a custom Coq program!? written specifically
for their purpose.

It is not hard to imagine developing the Lie theory library
described here into a platform upon which calculations such
as that of Le Floch and Smilga could be run, and formally
verified.

12.4 Proof of classification

With the statement of the classification theorem formalised,
it is tempting to consider formalising its proof. Several key
concepts such as Cartan subalgebras, weight spaces, and root
spaces have also been formalised. The evidence so far is that
formalising a proof of the classification would be non-trivial
but is absolutely within reach.
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