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ABSTRACT
A direct proof of the Steiner-Lehmus theorem has eluded geometers

for over 170 years. The challenge has been that a proof is only con-

sidered direct if it does not rely on reductio ad absurdum. Thus, any

proof that claims to be direct must show, going back to the axioms,

that all of the auxiliary theorems used are also proved directly. In

this paper, we give a proof of the Steiner-Lehmus theorem that is

guaranteed to be direct. The evidence for this claim is derived from

our methodology: we have formalized a constructive axiom set for

Euclidean plane geometry in a proof assistant that implements a

constructive logic and have built the proof of the Steiner-Lehmus

theorem on this constructive foundation.

CCS CONCEPTS
•Theory of computation→Constructivemathematics;Logic
and verification.

KEYWORDS
constructive logic, proof assistants, constructive geometry, founda-

tions of mathematics

1 INTRODUCTION
The Steiner-Lehmus theorem, which states that if two internal angle
bisectors of a triangle are equal then the triangle is isosceles,was posed
by C. L. Lehmus in 1840. Since the publication of Jakob Steiner’s

1844 proof of the theorem, it has become somewhat infamous for

the many failed attempts of a direct proof; that is, one that does not
use reductio ad absurdum. Numerous allegedly direct proofs have
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Figure 1: The Steiner-Lehmus theorem: if 𝑎𝑦 � 𝑐𝑥 , ∠𝑐𝑎𝑦 �
∠𝑦𝑎𝑏, and ∠𝑏𝑐𝑥 � 𝑥𝑐𝑎 then 𝑎𝑏 � 𝑐𝑏.

appeared over the years, only to later be discredited due to their

reliance on reductio ad absurdum by means of auxiliary theorems

with indirect proofs. Given the many failures to provide a direct

proof, attempts have been made to prove that a direct proof can’t

possibly exist [6, 14]. Recently, we have been reassured that a direct

proof does exist [13], but we have yet to see one. Thus, the history

of the Steiner-Lehmus theorem serves as 177 years of evidence that

a human can’t account for all instances of the use of particular rule
of logic, even in the proof of a theorem that many would consider

to be rather elementary.

In this paper, we provide a direct proof of the Steiner-Lehmus

theorem. Our guarantee of directness is obtained on modern terms:

by formalizing a constructive axiom set for Euclidean plane geom-

etry in the Nuprl proof assistant [5] and building a proof of the

Steiner-Lehmus theorem on this constructive foundation.

Our direct proof of the Steiner-Lehmus theorem is given in Sec-

tion 5 and can be found in the Nuprl library
1
. Of the many indirect

proofs published since the theorem was first posed by Lehmus in

1840, ours is superficially the most similar to the proof given by

R.W. Hogg in 1982 [10]. Like many of the former proofs of the

Steiner-Lehmus theorem, the proof given by Hogg uses reductio ad
absurdum both explicitly and implicitly; the implicit use is hidden in

auxiliary constructions. In comparison, our proof is completely free

from the use of reductio ad absurdum. The atomic relations, axioms,

and definitions used in our direct proof of the Steiner-Lehmus the-

orem are described in Sections 3–4. The soundness of our axioms

with respect to the constructive reals provides additional assurance

that the axioms themselves do not harbor any hidden instances of

reductio ad absurdum. The basis for our model in the constructive

reals is given in Section 7.

Before introducing the necessary axioms and definitions in Sec-

tions 3–4, we first provide background on the methods of construc-

tive logic that clarify how a direct proof of the Steiner-Lehmus

theorem was obtained.

2 CONSTRUCTIVE PROOF, STABILITY, AND
DECIDABILITY

When the Steiner-Lehmus theorem was first posed in 1840, the field

of logic was not fully formed. Perhaps if it had been, and construc-

tive logic had flourished, geometers would have realized that the

Steiner-Lehmus theorem is an example of a proof of negation. In
particular, the notion of a triangle being isosceles is constructively

understood to be a negative statement about a strict notion of in-

equality of segment lengths. While it is generally assumed that

the use of case distinctions is rejected in constructive reasoning,

the proof of a negation is an instance where reasoning by cases is

constructively valid.

1
The entire formalization of geometry can be found at http://www.nuprl.

org/LibrarySnapshots/Published/Version2/Mathematics/euclidean!plane!

geometry/index.html and the Steiner-Lehmus theorem can be found at

http://www.nuprl.org/LibrarySnapshots/Published/Version2/Mathematics/

euclidean!plane!geometry/Steiner-LehmusTheorem.html.
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Proof by contradiction (reductio ad absurdum) is a classically

admissible reasoning principle that allows one to prove a proposi-

tion 𝑃 by assuming ¬𝑃 and deriving absurdity. A proof of negation
is superficially similar, as one provides proof of the proposition

¬𝑃 by assuming 𝑃 and deriving absurdity. The validity of the two

is clearly differentiated in constructive reasoning by the general

rejection of the law of double negation elimination for arbitrary

propositions 𝑃 : in constructive logic, a proof of negation remains

perfectly valid, while a proof by reductio ad absurdum, which is

classically equivalent to the law of double negation elimination,

does not.

While the law of double negation elimination is not construc-

tively valid for arbitrary propositions 𝑃 , it is provably true for some

propositions. Propositions for which double negation elimination

is provably true are referred to as stable:

Definition 2.1. (Stability)

A proposition 𝑃 is stable if ¬¬𝑃 → 𝑃 holds.

In constructive logic, all negative propositions are stable. Specif-

ically,

Theorem 2.2. For all propositions 𝑃 , ¬¬ (¬𝑃) → ¬𝑃 .

Furthermore, the proof of a stable proposition permits case dis-

tinctions. In particular, the double negation of the law of excluded

middle for arbitrary propositions is constructively valid:

Theorem 2.3. For all propositions 𝑃 , ¬¬ (𝑃 ∨ ¬𝑃).

Thus, in the proof of a stable proposition 𝑃 , one need only in-

troduce the double negation of the desired case distinction as a

hypothesis and apply the appropriate elimination rules to obtain

the desired cases.

Finally, a strictly stronger notion than stability is decidability:

Definition 2.4. (Decidability)

A proposition 𝑃 is decidable if 𝑃 ∨ ¬𝑃 holds.

While the decidability of arbitrary propositions does not hold

constructively, it is a provable property for many propositions 𝑃 ,

specifically those for which there is an algorithm for deciding which

of 𝑃 or ¬𝑃 holds.

2.1 Stable Relations in Constructive Geometry
We do not take the stability or decidability of any of our atomic or

defined relations as axioms. This choice clearly distinguishes our

theory from those that take the stability of equality, betweenness,

or congruence as axioms [1, 2, 11]. Instead, we define equivalence,

collinearity, betweenness, and congruence (Definitions 3.5, 3.6, 3.7,

and 3.10) negatively in terms of a strictly positive atomic relation.

It follows from Theorem 2.2 that these are stable relations. Our

axioms therefore clearly distinguish the geometric propositions

that constructively permit case distinctions from those that do not.

Finally, the choice to not take the stability of equality as an axiom

is driven by the desired model, which is the Nuprl implementation

of the constructive reals. If we were to take the stability of equality

as an axiom, then equality and equivalence would coincide, which

does not hold in the Nuprl implementation of the constructive

reals [3, p. 3].

3 CONSTRUCTIVE GEOMETRIC PRIMITIVES
AND RELATIONS

Our axioms rely on two atomic relations on points: a quaternary

relation representing an ordering on segment lengths and a ternary

relation for plane orientation. These relations are introduced using

the formalism of type theory to parallel their implementation in

the Nuprl proof assistant. For example, the statement 𝑎 : Point is
to be read as “𝑎 of type Point."

3.1 Segments in Type Theory
The segment type is defined as the Cartesian product of two points.

The elements of a Cartesian product are pairs, denoted ⟨𝑎, 𝑏⟩. If𝑎 has
typePoint and𝑏 has typePoint, then ⟨𝑎, 𝑏⟩ has typePoint×Point:

𝑎 : Point 𝑏 : Point
⟨𝑎, 𝑏⟩ : Point×Point.

We will abbreviate segment pairs ⟨𝑎, 𝑏⟩ by simply writing 𝑎𝑏:

𝑎 : Point 𝑏 : Point
𝑎𝑏 : Segment

When it is necessary to decompose the points constituting a seg-

ment 𝑎𝑏, we may write fst(𝑎𝑏) and snd(𝑎𝑏) for 𝑎 and 𝑏 respec-

tively.

3.2 Atomic Relations and Apartness
Constructive geometry traditionally utilizes a binary apartness re-
lation in place of equality [9, 11, 15, 16]. A notable exception is the

axiom set presented by Lombard and Vesley [12], which uses an

atomic six place relation and defines a binary apartness relation

in terms of the atomic six place relation. In this work, we use an

atomic quaternary strictly greater than relation to define a binary

apartness relation. In particular, given the four points 𝑎, 𝑏, 𝑐, and 𝑑 ,

if the length of the segment 𝑎𝑏 is strictly greater than the length of

the segment 𝑐𝑑 , then the atomic ordering relation on points will be

denoted by 𝑎𝑏 > 𝑐𝑑 . A binary apartness relation on points can then

be defined using the atomic strictly greater than relation as follows.

Definition 3.1 (Apartness of points). The points 𝑎 and 𝑏 satisfy an

apartness relation if the length of the segment 𝑎𝑏 is strictly greater

than the length of the null segment 𝑎𝑎:

𝑎#𝑏 := 𝑎𝑏 > 𝑎𝑎.

The strictly greater than relation is used to define two additional

quaternary relations on points: apartness of segment lengths and a

non-strict ordering of segment lengths.

Definition 3.2 (Apartness of segment lengths). The length of the

segments 𝑎𝑏 and 𝑐𝑑 satisfy a length apartness relation if either the

length of the segment 𝑎𝑏 is strictly greater than the length of the

segment 𝑐𝑑 or the length of the segment 𝑐𝑑 is strictly greater than

the length of the segment 𝑎𝑏:

𝑎𝑏#𝑐𝑑 := 𝑎𝑏 > 𝑐𝑑 ∨ 𝑐𝑑 > 𝑎𝑏.
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Definition 3.3 (Non-strict order of segment lengths). The length of

𝑎𝑏 is greater than or equal to the length of 𝑐𝑑 if the length of 𝑐𝑑 is

not strictly greater than the length of 𝑎𝑏:

𝑎𝑏 ≥ 𝑐𝑑 := ¬𝑐𝑑 > 𝑎𝑏.

The atomic relation for plane orientation used in this work is

adopted from the constructive axiom set for Euclidean plane ge-

ometry introduced in [11]: given the three points 𝑎, 𝑏, and 𝑐 , if the

point 𝑎 lies to the left of the segment 𝑏𝑐 , then the atomic leftness
relation on points will be denoted by Left(𝑎, 𝑏𝑐). We use the atomic

leftness relation to define an apartness relation between a point a

segment as follows.

Definition 3.4 (Apartness of a point and a segment). The point 𝑎
lies apart from the segment 𝑏𝑐 if it is either to the left of the segment

𝑏𝑐 or to the left of the segment 𝑐𝑏 :

𝑎#𝑏𝑐 := Left(𝑎, 𝑏𝑐) ∨ Left(𝑎, 𝑐𝑏) .

3.3 The Constructive Interpretation of
Classical Geometric Relations

The classical relations of equivalence, collinearity, betweenness, and
congruence are defined using the atomic relations of leftness and
strictly greater than. In this section, we give the definitions of these

relations, and provide the proof of a useful theorem as a simple

example of proving stable propositions using constructive logic.

Definition 3.5 (Equivalence on points). The points 𝑎 and 𝑏 are

equivalent if they do not satisfy the binary apartness relation on

points (Definition 3.1):

𝑎 ≡ 𝑏 := ¬𝑎#𝑏.

As is mentioned in Section 2.1, equivalence and equality do not

coincide: while equality on points implies equivalence, equivalence

does not imply equality.

Definition 3.6 (Collinearity). The points 𝑎, 𝑏, and 𝑐 are collinear
if they do not satisfy the apartness relation between a point and a

segment:

Col(𝑎𝑏𝑐) := ¬(𝑎#𝑏𝑐) .

Definition 3.7 (Betweenness). The point 𝑏 lies between the points

𝑎 and 𝑐 if 𝑎, 𝑏, and 𝑐 are collinear and the length of the segment 𝑎𝑐

is not strictly greater than the lengths of 𝑎𝑏 and 𝑏𝑐:

𝐵(𝑎𝑏𝑐) := Col(𝑎𝑏𝑐) ∧ 𝑎𝑐 ≥ 𝑎𝑏 ∧ 𝑎𝑐 ≥ 𝑏𝑐.

Note that the above definition coincides with what is referred

to as non-strict betweenness. That is, the points 𝑎, 𝑏, and 𝑐 may be

equivalent.

Theorem 3.8 (Collinear Cases). Any three collinear points sat-
isfy a weak betweenness relation.

∀𝑎, 𝑏, 𝑐 : Point . Col(𝑎𝑏𝑐) ⇒
¬¬(𝐵(𝑎𝑏𝑐) ∨ 𝐵(𝑐𝑎𝑏) ∨ 𝐵(𝑏𝑐𝑎) ∨ 𝑎 ≡ 𝑏 ∨ 𝑎 ≡ 𝑐 ∨ 𝑏 ≡ 𝑐).

Proof. The stability of the conclusion allows for reasoning by

cases on

¬¬(𝑎#𝑏 ∨ ¬𝑎#𝑏),
and similarly for 𝑎#𝑐 and 𝑏#𝑐 . Consider the case where 𝑎#𝑏, 𝑎#𝑐 ,

and 𝑏#𝑐 . Assume

¬(𝐵(𝑎𝑏𝑐) ∨ 𝐵(𝑐𝑎𝑏) ∨ 𝐵(𝑏𝑐𝑎) ∨ 𝑎 ≡ 𝑏 ∨ 𝑎 ≡ 𝑐 ∨ 𝑏 ≡ 𝑐),

and prove false. Observe that ¬𝐵(𝑎𝑏𝑐) ∧ ¬𝐵(𝑐𝑎𝑏) ∧ ¬𝐵(𝑏𝑐𝑎)
follows from the assumption. From ¬𝐵(𝑎𝑏𝑐) it follows that

¬¬(𝑎#𝑏𝑐 ∨ 𝑎𝑏 > 𝑎𝑐 ∨ 𝑏𝑐 > 𝑎𝑐) .

Stability of the conclusion allows for elimination of the double nega-

tion for each betweenness relation, and expanding the disjunctions

results in absurdity. □

Definition 3.9 (Strict Betweenness). The point 𝑏 lies strictly be-
tween the points 𝑎 and 𝑐 if the point 𝑏 lies between the points 𝑎 and

𝑐 , and the points 𝑎, 𝑏, and 𝑐 satisfy apartness relations:

𝑆𝐵(𝑎𝑏𝑐) := 𝐵(𝑎𝑏𝑐) ∧ 𝑎#𝑏 ∧ 𝑏#𝑐.

Definition 3.10 (Congruence). The segments 𝑎𝑏 and 𝑐𝑑 are congru-
ent if they do not satisfy the apartness relation on segment lengths

(Definition 3.2):

𝑎𝑏 � 𝑐𝑑 := ¬𝑎𝑏#𝑐𝑑.

Definition 3.11 (Out). The point 𝑝 lies out along the segment

𝑎𝑏 if it is separated from both 𝑎 and 𝑏 and satisfies some weak

betweenness relation with 𝑎 and 𝑏. Observe that this definition can

be viewed as using an constructive interpretation of the classical

disjunction used in Definition 6.1 of [17].

𝑜𝑢𝑡 (𝑝, 𝑎𝑏) := 𝑝#𝑎 ∧ 𝑝#𝑏 ∧ ¬(¬𝐵(𝑝𝑎𝑏) ∧ ¬𝐵(𝑝𝑏𝑎))

The universally quantified axioms introduced in Section 4 im-

ply that collinearity, betweenness, and congruence are equivalence
relations.

3.4 Angle Relations
Our proof of the Steiner-Lehmus theorem required constructive

definitions for angle congruence, the sum of two angles, and angle

ordering. The following definition of angle congruence is taken

from Tarski [17], but has been modified to use the appropriate

constructive relations.

Definition 3.12 (Congruent Angles). The angles 𝑎𝑏𝑐 and 𝑥𝑦𝑧 are
congruent if the segments of each angle are distinct and there ex-

ist points making the corresponding segments of the two angles
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congruent:

𝑎𝑏𝑐 �𝑎 𝑥𝑦𝑧 :=

𝑎#𝑏 ∧ 𝑏#𝑐 ∧ 𝑥#𝑦 ∧ 𝑦#𝑧 ∧
(∃𝑎′, 𝑐 ′, 𝑥 ′, 𝑧′ : Point . 𝐵(𝑏𝑎𝑎′) ∧ 𝐵(𝑏𝑐𝑐 ′) ∧ 𝐵(𝑦𝑥𝑥 ′) ∧
𝐵(𝑦𝑧𝑧′) ∧ 𝑏𝑎′ � 𝑦𝑥 ′ ∧ 𝑏𝑐 ′ � 𝑦𝑧′ ∧ 𝑎′𝑐 ′ � 𝑥 ′𝑧′) .

The set of Axioms U, introduced in Section 4, imply that angle

congruence is an equivalence relation.

Definition 3.13 (Sum of two angles).

𝑎𝑏𝑐 + 𝑥𝑦𝑧 = 𝑑𝑒 𝑓 :=

∃𝑝, 𝑝 ′, 𝑑 ′, 𝑓 ′ : Point . 𝑎𝑏𝑐 �𝑎 𝑑𝑒𝑝 ∧ 𝑓 𝑒𝑝 �𝑎 𝑥𝑦𝑧 ∧
𝐵(𝑒𝑝 ′𝑝) ∧ 𝑜𝑢𝑡 (𝑒𝑑𝑑 ′) ∧ 𝑜𝑢𝑡 (𝑒 𝑓 𝑓 ′) ∧ 𝑆𝐵(𝑑 ′𝑝 ′𝑓 ′)

d′

d

fe f ′

p′abc

xyz

Figure 2: A diagram of Definition 3.13: 𝑎𝑏𝑐 + 𝑥𝑦𝑧 = 𝑑𝑒 𝑓 with
𝑝 ′ = 𝑝.

Definition 3.14 (Angle Inequality).

𝑎𝑏𝑐 <𝑎 𝑥𝑦𝑧 =: ¬𝑜𝑢𝑡 (𝑦𝑥𝑧) ∧
∃ 𝑝, 𝑝 ′, 𝑥 ′, 𝑧′ : Point . 𝑎𝑏𝑐 �𝑎 𝑥𝑦𝑝 ∧
𝐵(𝑦𝑝 ′𝑝) ∧ 𝑜𝑢𝑡 (𝑦𝑥𝑥 ′) ∧ 𝑜𝑢𝑡 (𝑦𝑧𝑧′) ∧
¬𝐵(𝑥𝑦𝑝) ∧ 𝐵(𝑥 ′𝑝 ′𝑧)′ ∧ 𝑝 ′#𝑧′

Our axioms imply that angle inequality is a transitive relation

for angles satisfying the ternary apartness relation on points (Defi-

nition 3.4).

3.5 Parallel Segments
The following definition of parallel segments was essential to our

proof of the Steiner-Lehmus theorem.

Definition 3.15 (Parallel Segments). The segments 𝑎𝑏 and 𝑐𝑑 are

parallel if 𝑎#𝑏 and 𝑐#𝑑 and there do not exist points 𝑥 and 𝑦

collinear with 𝑎𝑏 such that 𝑥 and 𝑦 lie on opposite sides of 𝑐𝑑 :

𝑎𝑏 ∥ 𝑐𝑑 := 𝑎#𝑏 ∧ 𝑐#𝑑 ∧ ¬(∃𝑥,𝑦 : Point . Col(𝑥𝑎𝑏) ∧
Col(𝑦𝑎𝑏) ∧ Left(𝑥, 𝑐𝑑) ∧ Left(𝑦,𝑑𝑐)) .

y z

x′

x

p′

z′
abc

(a) Definition 3.14 for typical angles, with 𝑝 =

𝑝′.

y zx′x z′

p′

p

abc

(b) Definition 3.14 for a straight angle.

Figure 3: Definition 3.14, 𝑎𝑏𝑐 <𝑎 𝑥𝑦𝑧.

According to our axioms introduced in the following section,

parallelism is a symmetric and reflexive relation but not a transitive

relation. Transitivity of parallelism is known to be equivalent to the

parallel postulate [4], which is not an axiom of the theory presented

in this paper.

4 CONSTRUCTION POSTULATES AND
AXIOMS

The axioms are introduced here in two separate groups: Axioms U

and Axioms C. Axioms U are universally quantified and contain no

disjunctions or existential quantifiers. The application of any one of

these axioms does not result in a geometric construction. Axioms

C are constructor axioms relying on disjunctions and existential

quantifiers. As a result, the axioms in group C have a convenient

functional reading which may be used in proofs.

From the Axioms listed below, Axioms U7–U13 and Axioms

C1–C3 are also used in a previous set of constructive axioms for

Euclidean geometry [11]. Unlike the previous system, the relations

of betweenness, congruence, and apartness are not primitives of

our theory, they are instead defined as described in Section 3.3.

Furthermore, as previously noted, the stability of congruence and

betweenness are not taken as axioms in the current work. Finally,

the axioms C4 and C5 have been simplified to remove the assertion

of the existence of redundant points.

4.1 Universally Quantified Axioms
Axiom U1. ∀𝑎, 𝑏, 𝑐 : Point . 𝑏𝑐 ≥ 𝑎𝑎

Axiom U2. ∀𝑎, 𝑏, 𝑐, 𝑑 : Point . 𝑎𝑏 > 𝑐𝑑 ⇒ 𝑎𝑏 ≥ 𝑐𝑑
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Axiom U3. ∀𝑎, 𝑏, 𝑐 : Point . 𝑏𝑎 > 𝑎𝑐 ⇒ 𝑏#𝑐

Axiom U4.

∀𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 : Point . 𝑎𝑏 > 𝑐𝑑 ⇒ 𝑐𝑑 ≥ 𝑒 𝑓 ⇒ 𝑎𝑏 > 𝑒 𝑓

Axiom U5.

∀𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 : Point . 𝑎𝑏 ≥ 𝑐𝑑 ⇒ 𝑐𝑑 > 𝑒 𝑓 ⇒ 𝑎𝑏 > 𝑒 𝑓

Axiom U6. ∀𝑎, 𝑏, 𝑐 : Point . 𝐵(𝑎𝑏𝑐) ⇒ 𝑏#𝑐 ⇒ 𝑎𝑐 > 𝑎𝑏

Axiom U7. ∀𝑎, 𝑏, 𝑐 : Point . Left(𝑎, 𝑏𝑐) ⇒ Left(𝑏, 𝑐𝑎)
Axiom U8. ∀𝑎, 𝑏, 𝑐 : Point . Left(𝑎, 𝑏𝑐) ⇒ 𝑏#𝑐

Axiom U9. ∀𝑎, 𝑏, 𝑐, 𝑑 : Point . 𝐵(𝑎𝑏𝑑) ⇒ 𝐵(𝑏𝑐𝑑) ⇒ 𝐵(𝑎𝑏𝑐)
We take an constructive versions of Tarski’s Five-Segment axiom

and Upper Dimension axiom [17].

Axiom U10 (Five-Segment).

∀𝑎, 𝑏, 𝑐, 𝑑,𝑤, 𝑥,𝑦, 𝑧 : Point . (𝑎#𝑏 ∧ 𝐵(𝑎𝑏𝑐) ∧ 𝐵(𝑤𝑥𝑦) ∧
𝑎𝑏 � 𝑤𝑥 ∧ 𝑏𝑐 � 𝑥𝑦 ∧ 𝑎𝑑 � 𝑤𝑧 ∧ 𝑏𝑑 � 𝑥𝑧) ⇒

𝑐𝑑 � 𝑦𝑧

Axiom U11 (Upper Dimension).

∀𝑎, 𝑏, 𝑐, 𝑥,𝑦 : Point . 𝑎𝑥 � 𝑎𝑦 ⇒ 𝑏𝑥 � 𝑏𝑦 ⇒
𝑐𝑥 � 𝑐𝑦 ⇒ 𝑥#𝑦 ⇒ Col(𝑎𝑏𝑐)

Axiom U12 (Convexity of Leftness).

∀𝑎, 𝑏, 𝑥,𝑦, 𝑧 : Point . Left(𝑥, 𝑎𝑏) ∧ Left(𝑦, 𝑎𝑏) ∧ 𝐵(𝑥𝑧𝑦) ⇒
Left(𝑧, 𝑎𝑏)

Axiom U13.

∀𝑎, 𝑏, 𝑐,𝑦 : Point . 𝑎#𝑏𝑐 ⇒ 𝑦#𝑏 ⇒ Col(𝑦𝑎𝑏) ⇒ 𝑦#𝑏𝑐

4.2 Construction Postulates
Axiom C1 (Cotransitivity of separated points:).

∀𝑎, 𝑏, 𝑐 : Point . 𝑎#𝑏 ⇒ 𝑎#𝑐 ∨ 𝑏#𝑐

Axiom C2 (Plane Separation). If the points 𝑢 and 𝑣 lie on oppo-
site sides of the segment 𝑎𝑏, then the point 𝑥 , collinear with 𝑎𝑏, exists
between 𝑢 and 𝑣 .

∀𝑎, 𝑏,𝑢, 𝑣 : Point . ( Left(𝑢, 𝑎𝑏) ∧ Left(𝑣, 𝑏𝑎) ⇒
∃𝑥 : Point . 𝐶𝑜𝑙 (𝑎𝑏𝑥) ∧ 𝐵(𝑢𝑥𝑣))

v

a b

u

x

Figure 4: Axiom C2: plane separation.

Axiom C3 (Non-triviality).

∃𝑎, 𝑏 : Point . 𝑎#𝑏

Axiom C4 (Straightedge-Compass). The straight-edge compass
axiom constructs a single point of intersection between a circle and a
segment (see Figure 5):

∀𝑎, 𝑏, 𝑐, 𝑑 : Point . (𝑎#𝑏 ∧ 𝐵(𝑐𝑏𝑑)) ⇒
∃𝑢 : Point . 𝑐𝑢 � 𝑐𝑑 ∧ 𝐵(𝑎𝑏𝑢) ∧ (𝑏#𝑑 ⇒ 𝑏#𝑢)

d

a u
b

c

Figure 5: AxiomC4, the straight-edge compass construction.

Axiom C5 (Compass-Compass). The compass-compass axioms
constructs a single point of intersection between two circles (see Fig-
ure 6):

∀𝑎, 𝑏, 𝑐, 𝑑 : Point . 𝑎#𝑐 ∧
(∃ 𝑝, 𝑞 : Point . 𝑎𝑏 � 𝑎𝑝 ∧ 𝑐𝑑 > 𝑐𝑝 ∧ 𝑐𝑑 � 𝑐𝑞 ∧ 𝑎𝑏 > 𝑎𝑞) ⇒

∃𝑢 : Point . 𝑎𝑏 � 𝑎𝑢 ∧ 𝑐𝑑 � 𝑐𝑢 ∧ Left(𝑢, 𝑎𝑐)

a

p
c

q

d

b
u

Figure 6: Axiom C5, the compass-compass construction.

5 THE STEINER-LEHMUS THEOREM
The conclusion of the Steiner-Lehmus theorem is stable and so it

suffices to prove the double negation of auxiliary theorems with

constructive content. Thus, rather than proving a lemma stating

that

from two points along the sides of any triangle, a parallelogram can
be constructed such that one side of the parallelogram lies along one

side of the triangle,
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we prove the following lemma:

Lemma 5.1.

∀𝑎, 𝑏, 𝑐, 𝑥,𝑦 : Point . (𝑎#𝑏𝑐 ∧ 𝑆𝐵(𝑎𝑥𝑏) ∧ 𝑆𝐵(𝑐𝑦𝑏) ⇒
¬¬(∃𝑡 : Point . 𝑦𝑡 | | 𝑎𝑥 ∧ 𝑥𝑡 | | 𝑎𝑦 ∧

𝑎𝑥 � 𝑦𝑡 ∧ 𝑥𝑡 � 𝑎𝑦 ∧ 𝑡#𝑏𝑐).

Proof. Construct the midpoint𝑚 along the segment 𝑥𝑦 using

Euclid I.10 (Theorem 6.5), and extend the segment 𝑎𝑚 to construct

the point 𝑡 such that 𝑎𝑚 � 𝑚𝑡 by Lemma 6.1. Now, the angle con-

gruence 𝑥𝑚𝑎 �𝑎 𝑦𝑚𝑡 follows from Euclid I.15 (Theorem 6.6), and

the congruence relations 𝑎𝑥 � 𝑦𝑡 and 𝑥𝑡 � 𝑎𝑦 follow from Euclid

I.4 (Theorem 6.2) and Axiom U10, respectively. The angle congru-

ence 𝑎𝑥𝑦 �𝑎 𝑡𝑦𝑥 then follows by definition, and from Euclid I.27

(Theorem 6.9) it follows that 𝑎𝑥 ∥ 𝑦𝑡 and 𝑥𝑡 ∥ 𝑎𝑦. Finally, stability
of the conclusion allows for reasoning by cases on 𝑡#𝑏𝑐 orCol(𝑡𝑏𝑐).

If Col(𝑡𝑏𝑐) then by Lemma 6.10 the point 𝑡 must be the point 𝑝

such that 𝑆𝐵(𝑏𝑝𝑐) and 𝑆𝐵(𝑎𝑚𝑝); 𝑝 is guaranteed to exist by con-

struction using Lemma 6.14. Without loss of generality, from 𝑎#𝑏𝑐

assume Left(𝑎, 𝑐𝑏). From Lemma 6.11, it follows that Left(𝑐, 𝑥𝑎).
Now, construct the point 𝑞 by Lemma 6.1 such that 𝑆𝐵(𝑐𝑏𝑞) and
𝑆𝐵(𝑦𝑝𝑞). It follows from Lemma 6.13 thatLeft(𝑞, 𝑎𝑥), contradicting
𝑎𝑥 ∥ 𝑦𝑡 . □

a c

b

x m

t

y

Figure 7: Lemma 5.1

Theorem 5.2 (Steiner-Lehmus).

∀𝑎, 𝑏, 𝑐, 𝑥,𝑦 : Point . (𝑎#𝑏𝑐 ∧ 𝑆𝐵(𝑎𝑥𝑏) ∧ 𝑆𝐵(𝑐𝑦𝑏) ∧
𝑎𝑦 � 𝑐𝑥 ∧ 𝑥𝑎𝑦 �𝑎 𝑐𝑎𝑦 ∧ 𝑦𝑐𝑥 �𝑎 𝑎𝑐𝑥 ⇒ 𝑎𝑏 � 𝑐𝑏).

Proof. Construct the parallelogram 𝑎𝑦𝑥𝑡 by Lemma 5.1. From

Euclid I.5 (Theorem 6.3) it follows that 𝑥𝑐𝑡 �𝑎 𝑥𝑡𝑐 . The angle sum

relations 𝑥𝑡𝑦 +𝑦𝑡𝑐 �𝑎 𝑥𝑡𝑐 and 𝑥𝑐𝑦 +𝑦𝑐𝑡 �𝑎 𝑥𝑐𝑡 follow by definition

from construction of the point 𝑞 using Axiom C2 such that 𝑆𝐵(𝑞𝑦𝑐),
𝐵(𝑡𝑦𝑦), 𝑆𝐵(𝑥𝑞𝑡), and𝐵(𝑐𝑞𝑞). Now, stability of the conclusion allows
for reasoning by cases on 𝑐𝑦 > 𝑎𝑥 or ¬(𝑐𝑦 > 𝑎𝑥).

If 𝑐𝑦 > 𝑎𝑥 , then 𝑐𝑦 > 𝑦𝑡 by definition of the parallelogram 𝑎𝑦𝑥𝑡 .

From Euclid I.25 (Theorem 6.8) it follows that 𝑎𝑐𝑥 <𝑎 𝑐𝑎𝑦, and

therefore 𝑥𝑐𝑦 <𝑎 𝑥𝑡𝑦. It then follows from Euclid I.18 (Theorem 6.7)

that 𝑡𝑐𝑦 <𝑎 𝑦𝑡𝑐 , which, along with Lemma 6.15 and the angle sum

relations 𝑥𝑡𝑦 + 𝑦𝑡𝑐 �𝑎 𝑥𝑡𝑐 and 𝑥𝑐𝑦 + 𝑦𝑐𝑡 �𝑎 𝑥𝑐𝑡 , yields the contra-

diction 𝑥𝑡𝑦 <𝑎 𝑥𝑐𝑦.

If ¬(𝑐𝑦 > 𝑎𝑥), it follows that ¬¬(𝑎𝑥 > 𝑐𝑦 ∨ 𝑎𝑥 � 𝑐𝑦): stability
of the conclusion allows for elimination of the double negation, so

that we can reason by cases on 𝑎𝑥 > 𝑐𝑦 or 𝑎𝑥 � 𝑐𝑦. A contradiction

is reached for 𝑎𝑥 > 𝑐𝑦 by the same reasoning used for 𝑐𝑦 > 𝑎𝑥 .

Finally, if𝑎𝑥 � 𝑐𝑦, it follows fromDefinition 3.12 that𝑥𝑎𝑐 �𝑎 𝑦𝑐𝑎.

Theorem 6.4 then yields 𝑎𝑏 � 𝑐𝑏, as desired.

□
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Figure 8: The Steiner-Lehmus Theorem 5.2

6 ESSENTIAL AUXILIARY THEOREMS
This section contains only the statements of the auxiliary theorems

used in the proof of the Steiner-Lehmus theorem (Theorem 5.2)

and Lemma 5.1. The names given to the theorems in this section

match their names in the Nuprl library
2
. Some definitions used

in the Nuprl statement of a theorem may occur unfolded in the

following theorem statements for clarity.

Theorem 6.1 (geo-extend-exists).

∀𝑞, 𝑎, 𝑏, 𝑐 : Point . 𝑞#𝑎 ⇒ ∃𝑥 : Point . 𝐵(𝑞𝑎𝑥) ∧ 𝑎𝑥 � 𝑏𝑐.

Theorem 6.2 (Euclid-Prop4). If two triangles have two sides
equal to two sides respectively, and have the angles contained by the
equal straight lines equal, then they also have the base equal to the
base, the triangle equals the triangle, and the remaining angles equal
the remaining angles respectively, namely those opposite the equal
sides.
∀𝑎, 𝑏, 𝑐, 𝑥,𝑦, 𝑧 : Point . 𝑎#𝑏 ∧ 𝑎#𝑐 ∧ 𝑏#𝑐 ∧ 𝑥#𝑦 ∧ 𝑥#𝑧 ∧

𝑦#𝑧 ∧ 𝑎𝑏 � 𝑥𝑦 ∧ 𝑏𝑐 � 𝑦𝑧 ∧ 𝑎𝑏𝑐 �𝑎 𝑥𝑦𝑧 ⇒
𝑎𝑐 � 𝑥𝑧 ∧ 𝑏𝑎𝑐 �𝑎 𝑦𝑥𝑧 ∧ 𝑏𝑐𝑎 �𝑎 𝑦𝑧𝑥 .

2
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Mathematics/

euclidean!plane!geometry/index.html

http://www.nuprl.org/LibrarySnapshots/Published/Version2/Mathematics/euclidean!plane!geometry/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Mathematics/euclidean!plane!geometry/index.html
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Theorem 6.3 (Euclid-Prop5). In isosceles triangles the angles
at the base equal one another, and, if the equal straight lines are
produced further, then the angles under the base equal one another.

∀𝑎, 𝑏,𝑐, 𝑥,𝑦 : Point . 𝑎𝑏 � 𝑎𝑐 ∧ 𝑎#𝑏𝑐 ∧ 𝑆𝐵(𝑎𝑏𝑥) ∧
𝑆𝐵(𝑎𝑐𝑦) ⇒ 𝑎𝑏𝑐 �𝑎 𝑎𝑐𝑏 ∧ 𝑥𝑏𝑐 �𝑎 𝑦𝑐𝑏.

Theorem 6.4 (Euclid-Prop6). If in a triangle two angles equal
one another, then the sides opposite the equal angles also equal one
another.

∀𝑎, 𝑏, 𝑐 : Point . 𝑐#𝑎𝑏 ⇒ 𝑐𝑎𝑏 �𝑎 𝑐𝑏𝑎 ⇒ 𝑐𝑎 � 𝑐𝑏.

Theorem 6.5 (Euclid-Prop10). To bisect a given straight line.

∀𝑎, 𝑏 : Point . 𝑎#𝑏 ⇒
∃𝑑 : Point . 𝑆𝐵(𝑎𝑑𝑏) ∧ 𝑎𝑑 � 𝑑𝑏.

Theorem 6.6 (vert-angles-congruent). If two straight lines
cut one another, then they make the vertical angles equal to one
another.

∀𝑎, 𝑏, 𝑐, 𝑥,𝑦 : Point . 𝑆𝐵(𝑎𝑏𝑥) ∧ 𝑆𝐵(𝑐𝑏𝑦) ⇒ 𝑎𝑏𝑐 �𝑎 𝑥𝑏𝑦.

Theorem 6.7 (Euclid-Prop18). In any triangle the angle opposite
the greater side is greater.

∀𝑎, 𝑏, 𝑐 : Point . 𝑎#𝑏𝑐 ∧ 𝑎𝑐 > 𝑎𝑏 ⇒ 𝑏𝑐𝑎 <𝑎 𝑎𝑏𝑐.

Theorem 6.8 (Euclid-Prop25). If two triangles have two sides
equal to two sides respectively, but have the base greater than the
base, then they also have the one of the angles contained by the equal
straight lines greater than the other.

∀𝑎, 𝑏, 𝑐, 𝑑,𝑒, 𝑓 : Point . 𝑎#𝑏𝑐 ∧ 𝑑#𝑒 𝑓 ∧ 𝑎𝑏 � 𝑑𝑒 ∧
𝑎𝑐 � 𝑑 𝑓 ∧ 𝑏𝑐 > 𝑒 𝑓 ⇒ 𝑒𝑑 𝑓 <𝑎 𝑏𝑎𝑐.

In the following theorem, the Left relation is used in the an-

tecedent to capture the notion of “alternate angles."

Theorem 6.9 (Euclid-Prop27). If a straight line falling on two
straight lines makes the alternate angles equal to one another, then
the straight lines are parallel to one another:

∀𝑎, 𝑏, 𝑐, 𝑑, 𝑥,𝑦 : Point . (Col(𝑥𝑎𝑏) ∧ Col(𝑦𝑐𝑑) ∧ 𝑎#𝑏 ∧
𝑐#𝑑 ∧ Left(𝑎,𝑦𝑥) ∧ Left(𝑐, 𝑥𝑦) ∧ 𝑎𝑥𝑦 �𝑎 𝑐𝑦𝑥) ⇒

𝑎𝑏 ∥ 𝑐𝑑.

Lemma 6.10 (geo-intersection-unicity).

∀𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞 : Point . ¬Col(𝑎𝑏𝑐) ∧ 𝑐#𝑑 ∧
Col(𝑎𝑏𝑝) ∧ Col(𝑎𝑏𝑞) ∧ Col(𝑐𝑑𝑝) ∧ Col(𝑐𝑑𝑞) ⇒ 𝑝 ≡ 𝑞.

Lemma 6.11 (left-convex). Given a segment 𝑎𝑏 and a point 𝑥
lying to the left of it, the point 𝑦 lying out from 𝑥 that along the
segment 𝑎𝑥 or 𝑏𝑥 is in the same half-plane as 𝑥 .

∀𝑎, 𝑏, 𝑥,𝑦 : Point . Left(𝑥, 𝑎𝑏) ∧ (𝑜𝑢𝑡 (𝑎𝑥𝑦) ∨ 𝑜𝑢𝑡 (𝑏𝑥𝑦)) ⇒
Left(𝑦, 𝑎𝑏)

Lemma 6.12 (geo-left-out). Given a segment 𝑎𝑏 and a point 𝑐
lying out from 𝑏 along 𝑎𝑏, if the point 𝑥 lies to the left of 𝑎𝑏, then 𝑥
also lies to the left of 𝑎𝑐 .

∀𝑎, 𝑏, 𝑐, 𝑥 : Point . Left(𝑥, 𝑎𝑏) ∧ 𝑜𝑢𝑡 (𝑎𝑏𝑐) ⇒ Left(𝑥, 𝑎𝑐)

Lemma 6.13 (strict-between-left-right).

∀𝑎, 𝑏, 𝑐, 𝑥,𝑦 : Point . Left(𝑥, 𝑎𝑏) ∧ Col(𝑎𝑏𝑐) ∧ 𝑆𝐵(𝑥𝑐𝑦) ⇒
Left(𝑦,𝑏𝑎)

Theorem 6.14 (outer-pasch-strict).

∀𝑎, 𝑏, 𝑐,𝑥, 𝑞 : Point . 𝑥#𝑏𝑞 ∧ 𝑆𝐵(𝑏𝑞𝑐) ∧ 𝑆𝐵(𝑞𝑥𝑎) ⇒
∃𝑝 : Point . 𝑆𝐵(𝑏𝑥𝑝) ∧ 𝑆𝐵(𝑐𝑝𝑎) .

Lemma 6.15 (hp-angle-sum-lt4). If the sum of the strict angles
𝑎𝑏𝑐 and 𝑥𝑦𝑧 is equal to the sum of the strict angles 𝑎′𝑏 ′𝑐 ′ and 𝑥 ′𝑦′𝑧′,
and 𝑥 ′𝑦′𝑧′ is less than 𝑥𝑦𝑧, then it must be the case that the angle
𝑎𝑏𝑐 is less than the angle 𝑎′𝑏 ′𝑐 ′.

∀𝑎, 𝑏, 𝑐, 𝑥,𝑦, 𝑧, 𝑖, 𝑗, 𝑘 : Point .

∀𝑎′, 𝑏 ′, 𝑐 ′, 𝑥 ′, 𝑦′, 𝑧′, 𝑖 ′, 𝑗 ′, 𝑘 ′ : Point .
𝑎𝑏𝑐 + 𝑥𝑦𝑧 � 𝑖 𝑗𝑘 ∧ 𝑎′𝑏 ′𝑐 ′ + 𝑥 ′𝑦′𝑧′ � 𝑖 ′ 𝑗 ′𝑘 ′ ∧

𝑖 𝑗𝑘 �𝑎 𝑖 ′ 𝑗 ′𝑘 ′ ∧ 𝑎′#𝑏 ′𝑐 ′ ∧ 𝑥 ′#𝑦′𝑧′ ∧ 𝑥#𝑦𝑧 ∧ 𝑖# 𝑗𝑘 ∧
𝑥 ′𝑦′𝑧′ < 𝑥𝑦𝑧 ⇒ 𝑎𝑏𝑐 < 𝑎′𝑏 ′𝑐 ′.

7 A MODEL ON THE CONSTRUCTIVE REALS
The soundness of our axioms with respect to the Nuprl imple-

mentation of the constructive reals [3] is implied by the following

interpretations of our primitives
3
.

Definition 7.1. If 𝑥 ∈ R is the length of the segment 𝑎𝑏 and 𝑦 ∈ R
is the length of the segment 𝑐𝑑 , 𝑥 is strictly greater than 𝑦 if and

only if there exists a natural number 𝑛 such that the 𝑛th rational

terms of 𝑥 and 𝑦 differ by more than four:

𝑥 >R 𝑦 := ∃𝑛 ∈ N. 𝑥 (𝑛) >Q 𝑦 (𝑛) + 4.

Note that the ordering relation >Q on the rational numbers is

decidable (Definition 2.4) while the ordering relation >R on the

constructive reals is not.

3
The proofs of soundness for the Axiom sets U and C can be found

at http://www.nuprl.org/LibrarySnapshots/Published/Version2/Mathematics/reals!

model!euclidean!geometry as the theorems

r2-basic-geo-axioms and r2-eu_wf, respectively.

http://www.nuprl.org/LibrarySnapshots/Published/Version2/Mathematics/reals!model!euclidean!geometry
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Mathematics/reals!model!euclidean!geometry
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Definition 7.2. Given the real coordinates (𝑥0, 𝑦0, 1),
(𝑥1, 𝑦1, 1), (𝑥2, 𝑦2, 1) of the points 𝑎, 𝑏 and 𝑐 , respectively, the point

𝑎 lies left of the segment 𝑏𝑐 if and only if the determinant of the

matrix formed by the points 𝑎, 𝑏 and 𝑐 is strictly positive:

Left(𝑎, 𝑏𝑐) :=

������𝑥0 𝑦0 1
𝑥1 𝑦1 1
𝑥2 𝑦2 1

������ >R 0.

The soundness of our axioms with respect to the constructive

reals provides additional assurance that our axioms do not use

reductio ad absurdum. Although the axioms presented in this paper

differ (as described in Section 4) from those presented in [11], only

minor modifications were necessary for the soundness proofs.

Finally, while the constructive real model for our axioms guar-

antees that a direct proof of the Steiner-Lehmus theorem exists in

the constructive reals, it says nothing about the existence of direct

proof in the classical reals.

8 CONCLUSION
We have introduced here for the first time a proof of the Steiner-

Lehmus theorem that is entirely absent of the use of reductio ad
absurdum and can therefore be considered fully direct. This theorem
was proved in the constructive logic of the Nuprl proof assistant

using a novel axiomatization of Euclidean plane geometry without

the parallel postulate. The crux of the proof is the realization that

congruence in constructive geometry is a stable relation, and that

the proof of a stable relation permits double negation elimination

and therefore also case distinctions.

Finally, we conclude by addressing the suggestion that the many

years of failed attempts to find a direct proof of the Steiner-Lehmus

theorem was cause to celebrate the indispensability of reductio ad
absurdum. In particular, a discussion of the Steiner-Lehmus theorem

given in a geometry textbook by Coxeter and Greitzer [7] includes

the popular quote of G. H. Hardy [8]: Reductio ad absurdum, which
Euclid loved so much, is one of a mathematician’s finest weapons.We

instead propose the following:

Double negation is one of a mathematician’s finest weapons, and a
proof assistant one of her most steadfast companions.
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