
Mechanized Verification of a Fine-Grained Concurrent
Queue from Meta’s Folly Library

Simon Friis Vindum

vindum@cs.au.dk
Aarhus University

Denmark

Dan Frumin

d.frumin@rug.nl
University of Groningen

Netherlands

Lars Birkedal

birkedal@cs.au.dk
Aarhus University

Denmark

Abstract
We present the first formal specification and verification of

the fine-grained concurrent multi-producer-multi-consumer

queue algorithm from Meta’s C++ library Folly of core in-

frastructure components. The queue is highly optimized,

practical, and used by Meta in production where it scales to

thousands of consumer and producer threads. We present

an implementation of the algorithm in an ML-like language

and formally prove that it is a contextual refinement of a

simple coarse-grained queue (a property that implies that

the MPMC queue is linearizable). We use the ReLoC rela-

tional logic and the Iris program logic to carry out the proof

and to mechanize it in the Coq proof assistant. The MPMC

queue is implemented using three modules, and our proof

is similarly modular. By using ReLoC and Iris’s support for

modular reasoning we verify each module in isolation and

compose these together. A key challenge of the MPMC queue

is that it has a so-called external linearization point, which
ReLoC has no support for reasoning about. Thus we extend

ReLoC, both on paper and in Coq, with novel support for

reasoning about external linearization points.

CCS Concepts: • Theory of computation→ Separation
logic; Concurrent algorithms.

Keywords: separation logic, concurrent data structures, Coq
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1 Introduction
It is well-known that it is challenging to program, specify,

and verify fine-grained concurrent algorithms, and in recent

years we have seen much progress on program logics for

specifying and verifying such algorithms, e.g., [9, 15, 21, 25,
30, 38, 39, 41, 42, 44–46]. In this paper, we present the first for-

mal specification and verification of the highly efficient and

practical concurrent multi-producer-multi-consumer queue

algorithm found in Meta’s open-source library Folly (or, sim-

ply, the MPMC queue in the rest of the paper).

The Folly library is an open-source collection of key in-

frastructure components implemented in C++ and used ex-

tensively in production at Meta [32]. The library contains,

among many other things, the MPMC queue.
1
The queue

was originally developed by Nathan Bronson to connect two

thread pools inside TAO, Meta’s distributed data store for

their social graph [5]. One of the key ideas used in the algo-

rithm is to improve scalability by decreasing the contention

found in other lock-free algorithms, such as the Michael-

Scott queue [35], by striping the queue across 𝑞 “smaller”

sub-queues. To avoid the overhead of maintaining 𝑞 sub-

queues, the striping is taken to the extreme by letting each

sub-queue store only a single element. These single-element
queues can then be simpler and faster. In fact, they are im-

plemented merely as a reference to a value and a so-called

turn sequencer. The latter is a synchronization mechanism

used by the single-element queue to guard access to its value.

The enqueue and dequeue operations on the MPMC queue

are delegated to one of the single-element queues by taking

a ticket from one of two ticket dispensers using an atomic

increment (FAA). After receiving a ticket, up to 𝑞 separate

enqueue or dequeue operations can proceed in parallel, com-

pletely independent of each other as they operate on different

single-element queues. The FAA instruction thus becomes

the main point of contention, but since an FAA instruction

(unlike CAS) always succeeds, this design, in the words of

Bronson, “makes contention count” as its cost always pays

off in significant progress being made in the algorithm [4].

Altogether, this makes the queue scalable to hundreds of

thousands of producer and consumer threads.

More concretely, in this paper we present an implementa-

tion of theMPMC queue and all its components in anML-like

1
The source code is available online at https://github.com/facebook/folly/
blob/main/folly/MPMCQueue.h.
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language with concurrency primitives. The implementation

captures the essence and the key verification challenges of

the algorithm while eliding some of the low-level details of

the original C++ implementation. We prove that the MPMC

queue contextually refines a coarse-grained concurrent queue.
The coarse-grained queue uses a lock to ensure that only

one thread at a time access the queue. We take this sim-

ple queue to be the specification of a queue and the MPMC

queue to be an implementation of the specification. Infor-

mally, the contextual refinement property then means that in

any program we may replace uses of the “obviously correct”

coarse-grained concurrent queue with the more efficient,

but also more complicated, MPMC queue, without changing

the observable behavior of the program. More precisely, an

expression 𝑒 contextually refines another expression 𝑒 ′, if
for all contexts𝐶 of a ground type, if𝐶 [𝑒] terminates with a

value, then there exists an execution of𝐶 [𝑒 ′] that terminates

with the same value.

We prove the contextual refinement using the recently

proposed relational logic ReLoC [15, 16], which builds on

top of the Iris separation logic [22, 23, 25, 28] and greatly

simplifies proofs of contextual refinement by offering rules

that allows one to reason about refinements at a high level

of abstraction. Additionally, it is mechanized in Coq and

allowed us to develop our mechanized proof interactively

using the Iris proof mode [27, 29].

To verify a fine-grained concurrent algorithm, one of the

key steps is to identify the linearization points of its opera-
tions: the point during execution where the operation “ap-

pears to take place”. In our analysis of the MPMC queue we

discover that, in some cases, the linearization point of the

dequeue operation is external. A linearization point is exter-

nal if it happens during the execution of another operation.

For dequeue, its linearization point may happen within the

execution of an enqueue operation, which is not immediately

obvious by looking at the code. As we explain in detail later,

the external linearization points arise because the algorithm,

in contrast to other fine-grained concurrent queues, is not

entirely non-blocking: if all the single-element queues are

full (resp. empty) then enqueue (resp. dequeue) is blocked.

One may categorize linearization points into three

classes [11]: fixed, future-dependent, and external. The first

version of ReLoC [15] had support for reasoning about fixed

linearization points only, and ReLoC Reloaded [16] added

support for future-dependent linearization points, through

its use of Iris-style prophecy variables [24]. However, we

observe that neither version of ReLoC supports reasoning

about external linearization points. The high-level reason

is that ReLoC ties the state of the implementation with the

state of the specification as a single judgment. At an exter-

nal linearization point (in our case in dequeue) the state

of the specification must be transferred to the other opera-

tion where the linearization point takes place (in our case

enqueue). This is not possible with ReloC’s existing rules.

Hence, to verify the MPMC queue we extend ReLoC with

new proof rules and generalize its existing proof rules to

be able to reason about external linearization points. The

extension is simple but elegant and “completes the picture”

by making ReLoC able to handle all three classes of lineariza-

tion points. External linearization points often occur due to

helping and our extension makes ReLoC able to handle these

concurrent data structures with helping as well.

As mentioned, the MPMC queue is implemented as three

submodules: the MPMC queue is implemented using the

single-element queue, which is implemented using the turn-

sequencer. A strength of our approach is that our contextual

refinement proof is similarly modular: it makes use of (unary)

Hoare-style specifications of the turn-sequencer and the

single-element queue. Here we leverage the fact that ReLoC

allows for compositional reasoning and that it, following

[41], includes a proof rule that allows one to use Hoare-style

specifications, written in the Iris program logic, to simplify

reasoning about the left-hand side in a relational proof [15,

Section 7.4].We thus end up not only with a refinement proof

of the MPMC queue but also with reusable specifications for

the single-element queue and the turn sequencer.

To arrive at sufficiently composable specifications we

make use of a proof pattern involving a resource algebra

over infinite sets, to keep track of which turns are “still avail-

able” (see Section 4). The idea of using infinite structures

to improve composability is well-known in the context of

functional programming [20]. In our case, the specification

of the turn-sequencer supplies its client with an infinite set
of turns and the specification of the single-element queue

gives its client two infinite sets of tickets. This approach

greatly simplifies the proofs and makes it possible to rea-

son about the single-element queue in the refinement proof

with the details of the turn sequencer having been abstracted

away. We believe this proof pattern could also be used to

simplify reasoning about other algorithms based on these

components, and have used it to additionally verify a ticket

lock based on the turn sequencer.

Another challenge in verifying the MPMC queue is that

its physical state (i.e., the actual content in the underlying

array) does not immediately determine the abstract state
of the queue (i.e., the state that is observable through the

queue interface). In particular, a value may be present in

the physical state of the queue without actually being in the

queue (i.e., not observable with a dequeue operation), and

vice versa. This lies in contrast with other data structures,

even those with non-fixed linearization points (such as the

Herlihy-Wing queue [19] and the Michael-Scott queue [35]).

In summary, we believe that verifying the MPMC queue

serves as an interesting case study, as it is challenging to

verify, used at scale in the industry, has not been treated in

the literature before, and it providesmotivation for extending

ReLoC with support for external linearization points.
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Outline and contributions.
• Since the MPMC queue has not been treated in the

literature before, we give a detailed description of it

(Section 2).

• We informally analyze the linearization points of the

MPMC queue and observe that one of them is external

(Section 3).

• We define and prove Hoare-style specifications for the

turn sequencer and single-element queue (Section 4).

• We show that the MPMC queue contextually refines a

coarse-grained queue. (Sections 5 and 6). Our proof is

modular and makes use of the aforementioned Hoare-

style specifications for the submodules.

• We explain why prior versions of ReLoC can not han-

dle external linearization points and extend ReLoC,

both on paper and in Coq, with support (including tac-

tics) for reasoning about external linearization points

(Section 7).

• We have formalized all the results in this paper, and

two additional examples of algorithms with external

linearization points in the Coq proof assistant [48]. The

formalization is part of the ReLoC git repository and

can be found online at https://gitlab.mpi-sws.org/iris/
reloc/-/tree/master/theories/examples/folly_queue. The
version that we specifically refer to in this paper cor-

responds to the commit with the git hash b6df47f9.

We discuss related and future work in Section 8.

2 The Folly MPMC Queue
We now describe the three data structures, starting with the

turn sequencer and proceeding bottom-up.

2.1 Turn Sequencer
A turn sequencer is a data structure that implements mu-

tual exclusion by sequentializing access to a critical section

among threads ordered by a monotonically increasing turn.

The turn sequencer implementation is shown in Figure 1a.

The turn sequencer provides two operations: wait and
complete. These are similar to the acquire and release oper-
ations on a lock, but they take an additional natural number

as an argument. The natural number specifies which turn to

wait for or to complete. The turn sequencer guarantees that if

a thread waits for the 𝑛th turn, then it will only proceed once

all the preceding turns have been completed. For this to hold,

the turn sequencer assumes that its clients never wait for the

same turn several times. As such, it is the responsibility of

clients to manage the turns, i.e., which natural numbers they

wait for. Compared to a lock, this places a greater demand

on the client, but in return the client is given precise control

over the order in which threads run their critical sections.

We implement the turn sequencer as a pointer ts to a

number, which represents the current turn. The function

wait ts 𝑛 simply spins on that pointer until its value is equal

to 𝑛. The implementation of complete ends the current turn
by incrementing ts.

2.2 Single-Element Queue
A single-element queue (SEQ) is a queue with a capacity

of one. Our implementation is shown in Figure 1a. It is a

blocking queue: if it is empty (full) then any subsequent

dequeue (enqueue) is blocked until the queue becomes non-

empty (non-full).

Similarly to the turn sequencer, the SEQ’s operations take

a turn as an argument, however the turns are separate for

enqueue and dequeue. The turn argument specifies the order

of the operations: an enqueue or dequeue operation is carried

out only after all operations with a lower number have been

carried out. For an enqueue and a dequeue operation with

the same turns, the enqueue is carried out first. This ordering

ensures that when an enqueue operation is carried out, the

queue is always empty, and when dequeue is run the queue

is non-empty.

The SEQ is implemented as a reference to an option type,

protected by a single turn sequencer. To ensure that the

turn sequencer operations are called with correct turns, the

implementations of the enqueue and dequeue operations

adhere to the following discipline. The even turns of the

turn sequencer correspond to the enqueue operations and

the odd turns correspond to the dequeue operations. Hence

when enqueueSEQ (dequeueSEQ, respectively) is called with

turn 𝑛, the corresponding turn for the turn sequencer is 2𝑛

(2𝑛+1, respectively). Not only does this allow for a single turn

sequencer to provide turns for both of the operations, it also

ensures that the enqueue and dequeue operations are carried

out in the correct order. The first enqueue gets the first even

turn, 0, the first dequeue gets the first odd turn, 1, and so on.

Hence the enqueue and dequeue operations alternately get

access to the pointer, and the dequeue operation can be sure

that a value is present when it reads the pointer.

2.3 MPMC Queue
The MPMC queue is a blocking queue of a fixed capacity

𝑞. The implementation of the MPMC queue is shown in

Figure 1b. The binary operator “mod” denotes modulo (or

remainder) and “/” denotes integer division (i.e., 3/2 = 1).

The Λ is a type abstraction (or a generic) making the queue

polymorphic in the type of values it can store.

Upon initialization, an array of length 𝑞 is created, with

each entry containing a SEQ. The function arrayInit con-
structs an array of the given length, calls the given function

once for each entry, and sets the entry to the result. In ad-

dition to the array, the queue contains two ticket dispensers
(references to natural numbers): pushTicket and popTicket.
The first keep track of tickets for the enqueue operation, and
the second does the same for the dequeue operation.

102

https://gitlab.mpi-sws.org/iris/reloc/-/tree/master/theories/examples/folly_queue
https://gitlab.mpi-sws.org/iris/reloc/-/tree/master/theories/examples/folly_queue


CPP ’22, January 17–18, 2022, Philadelphia, PA, USA Simon Friis Vindum, Dan Frumin, and Lars Birkedal

newTS () = ref(0)
complete ts turn = ts← turn + 1; ()
wait ts turn =

let turn′ = ! ts in
if (𝑡𝑢𝑟𝑛′ = 𝑡𝑢𝑟𝑛) then ()
else wait ts turn

queueSEQ () = (newTS (), ref(None))
enqueueSEQ (ts, 𝑟 ) enqTurn 𝑣 =

let turn = enqTurn ∗ 2 in
wait ts turn;
𝑟 ← Some(𝑣);
complete ts turn

dequeueSEQ (ts, 𝑟 ) deqTurn =

let turn = deqTurn ∗ 2 + 1 in
wait ts turn;
let 𝑣 = match ! 𝑟 with
| Some(𝑥) ⇒ 𝑥

| None⇒ assert(false)
in complete ts turn; 𝑣

(a) Turn sequencer and single-element queue.

queueMPMC 𝑞 = Λ.
let slots = arrayInit 𝑞 queueSEQ in
let pushTicket = ref(0) in
let popTicket = ref(0) in
(_𝑣 . enqueue slots 𝑞 pushTicket 𝑣,
_𝑥 . dequeue slots 𝑞 popTicket)

enqueue slots 𝑞 pushTicket 𝑣 =
let 𝑡 = FAA(pushTicket, 1) in
let idx = 𝑡 mod 𝑞 in
let ticket = 𝑡/𝑞 in
enqueueSEQ (slots[idx]) ticket 𝑣

dequeue slots 𝑞 popTicket =
let 𝑡 = FAA(popTicket, 1) in
let idx = 𝑡 mod 𝑞 in
let ticket = 𝑡/𝑞 in
dequeueSEQ (slots[idx]) ticket 𝑣

(b) MPMC queue.

queue
CG

= Λ.
let𝑤 = (newlock (), ref( [])) in
(_𝑣 . enqueue

CG
𝑤 𝑣,

_𝑥 . dequeue
CG
𝑤)

enqueue
CG
(lk, hd) 𝑣 =

let rec go 𝑣 ls =
match ls with
| [] ⇒ [𝑣]
| ℎ :: 𝑡 ⇒ ℎ :: go 𝑣 t

in acquire lk;
hd ← go 𝑣 (! hd);
release lk

dequeue
CG
(lk, hd) =

acquire lk;
match ! hd with
| [] ⇒ assert(false)
| ℎ :: 𝑡 ⇒ hd ← 𝑡 ;

release lk;
ℎ

(c) Coarse-grained queue.

Figure 1. Implementation of the various data structures.

The enqueue operation first takes a ticket by incrementing

the value of pushTicket with FAA, which atomically incre-

ments the ticket and leaves enqueue with a ticket 𝑡 . From

this ticket, we calculate an index (𝑡 mod 𝑞) in the array for a

SEQ. Then, enqueuewrites an element into the SEQ by using

the turn ⌊𝑡/𝑞⌋. The dequeue operation proceeds in a similar

way. It atomically increments popTicket and calculates an

index and a turn in the same way. It dequeues a value from

the SEQ and returns this value.

2.4 Relationship to the Original C++ Code
Our implementation of the MPMC queue in ReLoC’s ML-like

language is faithful to the original algorithm, but does omit

some low-level details of the original C++ implementation.

• The C++ implementation takes into account the C++

relaxed-memory model whereas the memory model of

ReLoC’s ML-like language is sequentially consistent.

ReLoC does not support weak memory so verifying

the MPMC queue in a weak memory setting would

have required a different verification methodology.

• The C++ turn sequencer gracefully handles integer

overflow of the turn counter. As the ML-like language

included with ReLoC only support unbounded integers

our implementation does not handle overflow.

• When waiting for a turn, the C++ turn sequencer

uses a heuristic consisting of spinning with a back-

off and suspending the thread (using futexes [14]) for

increased performance. Our implementation only uses

spinning. This difference only affects efficiency and

not the safety or linearizability of the algorithm. Ad-

ditionally, to manage the use of futexes the integer in

the turn sequencer stores not only the current turn but

also uses some bits to manage sleeping threads. Due

to this, the turn is incremented using compare-and-set

and not FAA as in our implementation.

• The C++ implementation supports additional opera-

tions in addition to the queue operations dequeue and

enqueue. For instance, an enqueue operation that fails

instead of blocking when the queue is full.

• The use of closures in our implementation can be seen

as corresponding to the use of objects in C++.

3 Linearizability of the MPMC Queue
In this section, we analyze the MPMC queue informally

and identify its linearization points. As a first guess, one

might think that the linearization point for enqueue is when

enqueue writes its value into the SEQ and, similarly, for

dequeue when it reads the value from the SEQ. After all,

these are the points where a value is physically inserted into

or read from the data structure. However, placing the lin-

earization points in this way does not work, as the following

example shows:
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enq(1)

enq(2) deq(1)

FAA

FAA write

write

This diagram represents two threads executing operations on

the queue. The filled segments represent the duration of the

operations. In the example, the first enqueue executes its FAA
and receives ticket 0. Afterward the second enqueue executes

its FAA, receives ticket 1, and writes its value to the queue.

Then the first enqueue writes its value. Finally, a dequeue

executes; gets ticket 0, and therefore returns 1. To make

this consistent, the linearization point of the first enqueue

should happen before the linearization point of the second

enqueue. But, the second enqueue writes its value into the

queue before the first enqueue does so. Hence, making the

linearization points at that time in enqueue is too late.

As the example suggests, the linearization point of the

enqueue operation happens at the FAA. If an enqueue opera-

tion receives a ticket 𝑖 , then clearly the value that it inserts

into the queue is eventually read and returned by the de-

queue operation that also receives the ticket 𝑖 . This means

that exactly when the FAA in enqueue is executed, it is deter-

mined where in the queue its value is inserted. It thus makes

sense to place the linearization point at the FAA. Following
this line of argument, we say that the enqueue that receives

ticket 𝑖 is the 𝑖th enqueue. Moreover, we call the dequeue

that receives ticket 𝑖 the 𝑖th dequeue, and we say that the 𝑖th

enqueue and the 𝑖th dequeue correspond to each other.

It might seem that the linearization point in dequeue is

similarly at the FAA operation. This, however, does not al-

ways work, as the following example shows:

deq(1)

enq(1)

FAA

FAA write

read

The crux of the example is that dequeue receives ticket 0 be-

fore the corresponding enqueue takes its ticket. It is therefore

not consistent to put the linearization point of dequeue at its

FAA, as dequeue would then take place before the value it re-

turns is enqueued in the first place. However, in general, one

can not place the linearization point at when dequeue reads

the value either, as that would lead to the same problems as

for enqueue.

Thus, the linearization point of the dequeue operation is

not always fixed. Looking at the example, we see that we

could place the linearization point for the waiting dequeue

just after the linearization point for the enqueue operation

that unblocks it. This means that the linearization point of

dequeue happens during the execution of enqueue — an

external linearization point.

In summary, we conclude the following. If the 𝑖th dequeue

arrives after its corresponding enqueue then it has a fixed

linearization point at its FAA. If, on the other hand, it arrives

before its corresponding enqueue then it has an external lin-

earization point, which happens right after the correspond-

ing enqueue’s linearization point. Observe that even with

the external linearization point, it is the case that the 𝑖th de-

queue always has its linearization point before the (𝑖 + 1)’th
dequeue.

Abstract state. Given the placement of the linearization

points as above, we can talk about the abstract state of the
queue, which is determined by the linearized order of the

operations. Note that as soon as enqueue receives a ticket,

the enqueued element becomes a part of the abstract state,

before it is even written into the array. Symmetrically, when

a dequeue receives a ticket, it removes an element from the

logical queue, even though that value is still present in the

physical queue. Thus, the physical state of the underlying

array does not determine the abstract state of the queue, e.g.,
the queue might physically contain no values, while logically

it contains arbitrarily many values (and vice versa).

Calculating the abstract state of the queue is important in

the refinement proof (Sections 5 and 6), but it is not related

directly to the physical state of the array. The abstract state

is, however, directly related to the values of pushTicket and
popTicket. If popTicket ≤ pushTicket, then there are exactly

pushTicket − popTicket elements in the logical queue. Other-

wise the queue is empty and there are popTicket−pushTicket
dequeue operations that have arrived before their corre-

sponding enqueue. We will see how these considerations

are formalized as part of the refinement proof in Section 6.

4 Specifications for the Turn Sequencer and
the Single-Element Queue

In this section, we define suitable Hoare triple specifications

for the turn sequencer and the SEQ.We also sketch how these

are proved.We emphasize that the proof of the SEQ only uses

the specification (and not the implementation) of the turn

sequencer. Similarly, when we prove contextual refinement

for the MPMC queue, we only make use of the specification

for the SEQ. Thus our specifications and proofs are modular,
and we observe that to prove contextual refinement for the

MPMC queue, a unary specification for the SEQ suffices.

4.1 Turn Sequencer
As mentioned earlier, the turn sequencer is a mechanism for

mutual exclusion. Therefore, our specification of the turn

sequencer (shown in Figure 2) is an extension of a typical

concurrent separation logic specification for a lock [2, 17],

and the verification process is similar to the verification

of a ticket-based lock [31, Section 2.2]. There are two key

differences though. The first difference is that it is up to

the client of the turn sequencer to ensure that the turns are
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Turn Sequencer

{𝑅(0)} newTS () {𝑣 . ∃𝛾 . isTS(𝛾, 𝑅, 𝑣) ∗ turns(𝛾,N)}
{isTS(𝛾, 𝑅, 𝑣) ∗ turn(𝛾, 𝑛)} wait 𝑣 𝑛 {𝑅(𝑛) ∗ close(𝑣, 𝑛)}
{isTS(𝛾, 𝑅, 𝑣) ∗ 𝑅(𝑛 + 1) ∗ close(𝑣, 𝑛)} complete 𝑣 𝑛 {True}

Single-ElementQueue

{True} queueSEQ ()
{
𝑣 .∃𝛾 . isSEQ(𝛾,𝑄, 𝑣) ∗

turns𝑒 (𝛾, 0) ∗ turns𝑑 (𝛾, 0)

}
{isSEQ(𝛾,𝑄, 𝑣) ∗ turn𝑒 (𝛾, 𝑛) ∗𝑄 (𝑛, 𝑥)}
enqueueSEQ 𝑣 𝑛 𝑥

{True}

{isSEQ(𝛾,𝑄, 𝑣) ∗ turn𝑑 (𝛾, 𝑛)} dequeueSEQ 𝑣 𝑛 {𝑥 .𝑄 (𝑛, 𝑥)}

Figure 2. Unary specifications for turn sequencer and SEQ.

used correctly. For instance, wait should never be invoked
with a past turn. The second difference is that the resource

protected by the turn sequencer is indexed by a turn number,

which allows for a more dynamic treatment of resources

protected behind a critical section. In some sense, this makes

the specification for the turn sequencer stronger than that for

a lock, and in our Coq formalization we have implemented

and verified a lock based on the turn sequencer.

The specification uses two predicates “close” and “isTS”,

which are abstract to clients of the specification (as in [1, 37]).

The latter, “isTS”, is the representation predicate. It is persis-
tent, which intuitively means that, unlike other separation

logic propositions, it is freely duplicable and not consumed

by preconditions.

The predicate 𝑅 describes the resource that the turn se-

quencer protects.Whereas a lock protects a resource𝑅 : iProp,
the turn sequencer protects a N-indexed family of resources,

that is, 𝑅 : N→ iProp, where the index represents the cur-

rent turn. This generalization of the protected resource is

possible since the turn sequencer guarantees to run clients

in the order of their turns. When it becomes a client’s turn to

enter its critical section, it can rely on all earlier turns having

been carried out. This allows for “threading” the resource

through all the clients, as depicted in the diagram below

where the turn sequencer is at the top and its clients at the

bottom.

wait n

turn(n)R(0) R(n) R(n+1)

complete nnewTS

turns(N)

The 𝑅(0) in the precondition of newTS ensures that when

a turn sequencer is created, the turn sequencer owns the

resource for the initial turn. When wait is called with turn

turn-alloc

𝑋 ⊆ N
|⇛∃𝛾 . turns(𝛾, 𝑋 )

turn-disj

turns(𝛾, 𝑋 ) turns(𝛾,𝑌 )
𝑋 ∩ 𝑌 = ∅

turn-sep

𝑋 ∩ 𝑌 = ∅
turns(𝛾, 𝑋 ) ∗ turns(𝛾,𝑌 ) ⊣⊢ turns(𝛾, 𝑋 ∪ 𝑌 )

Figure 3. Rules for turns.

𝑛, the client receives the resource for that turn, 𝑅(𝑛). When

completing the turn, the client must give back 𝑅(𝑛 + 1) and
not 𝑅(𝑛). This makes it possible for the turn sequencer to

give 𝑅(𝑛 + 1) to the next thread in line (which is waiting for

the turn 𝑛 + 1).
We now consider the handling of turns in the specifica-

tion. To represent turns we use ghost state, an Iris feature

also found in other separation logics [8, 25, 36]. Ghost state

are resources that do not correspond to any physical state

of the program. In our case, we want a resource represent-

ing ownership over turns—where owning the turn 𝑛 im-

plies that one has the “right” to wait for the 𝑛th turn. For

that purpose, we use a predicate turns(𝛾, 𝑋 ) that denotes
ownership over the set of turns 𝑋 ⊆ N, and the singular

turn(𝛾, 𝑛) ≜ turns(𝛾, {𝑛}) that denotes ownership over a

turn 𝑛 ∈ N. These turns can be manipulated, for instance by

a client of the turn sequencer, using the rules in Figure 3. The

update modality, |⇛, in these rules represents the possibility

of updating ghost state and can safely be ignored. The rule

tokens-alloc states that for any set of natural numbers one

can construct a resource for them with a fresh ghost name
𝛾 . The ghost name can be thought of as a location or vari-

able for the ghost state. Ownership over two sets of turns

implies that the sets are disjoint (turn-disj). Ownership over

two disjoint sets of turns is equivalent to ownership of their

union (turn-sep).

As depicted in the diagram above, when a client creates

a new turn sequencer, it acquires ownership over all turns:
turns(𝛾,N). To call wait for a turn 𝑛 the client must own

turn(𝛾, 𝑛), the ownership of which is then transferred into

the turn sequencer, ensuring that the client can only wait

for the same turn once. This is necessary for safety of the

turn sequencer, as previously mentioned.

Finally, when a client acquires the current turn, it gets

close(𝑣, 𝑛), an exclusive resource giving permission to com-

plete the turn.

Proof of Specification (Sketch). To prove that the imple-

mentation of the turn sequencer meets the specification, we
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use the following definitions of the predicates:

close(ℓ, 𝑛) ≜ ℓ
1/2
↩−→ 𝑛

isTS(𝛾, 𝑅, ℓ) ≜ ∃𝑛. ℓ
1/2
↩−→ 𝑛 ∗ turns(𝛾, {𝑚 ∈ N | 𝑚 < 𝑛}) ∗
(𝑅(𝑛) ∗ close(ℓ, 𝑛) ∨ turn(𝛾, 𝑛))

N

The predicate “isTS” is defined as an invariant. An invariant

𝑃
N
represents the knowledge that the proposition 𝑃 always

holds. Since an invariant is knowledge and not a resource that

one owns, this definition satisfies the previously mentioned

property that “isTS” is persistent.

With these definitions, we now sketch how the specifica-

tions are proved.

For newTS, we have the resource 𝑅(0) from the precondi-

tion and we obtain ℓ ↩→ 0 from stepping through the imple-

mentation. We can then allocate the ghost state turns(𝛾,N)
using turn-alloc. This allows us to establish the invariant

by picking the left disjunct therein.

For wait, we open the invariant around the load. We then

have the points-to predicate for the location, and can con-

sider whether the value stored in the location is equal to

the turn that wait was called with. In the latter case, we can

use induction to handle the recursive call when the check in

if fails. In the former case, the turn(𝛾, 𝑛) in the right disjunct

in the invariant leads to a contradiction, due to the turn(𝛾, 𝑛)
in the precondition. We thus have the resources in the left

disjunct which we can use to show the postcondition, and

then close the invariant by showing the right disjunct.

Finally, for complete, we use close(ℓ, 𝑛) in the precon-

dition to conclude that 𝑛 is still the current turn, i.e., the
existential is equal to 𝑛. This is the case since close(ℓ, 𝑛) is
in fact half of the points-to predicate for ℓ . We then have

a contradiction in the right disjunct in the disjunction, and

symmetrically to what we did for wait, we “flip” the disjunc-
tion when we close the invariant.

4.2 Single-Element Queue
Similar to the specification for the turn sequencer, in the spec-

ification for the SEQ (shown in Figure 2) we must ensure

that no two dequeue or enqueue operations are performed

with the same turn. As such, creating a new SEQ gives own-

ership over two sets of turns: one for enqueue and another

one for dequeue. These, turns𝑒 (𝛾, 𝑛) and turns𝑑 (𝛾, 𝑛), denote
ownership over all the turns for enqueue and dequeue, re-

spectively, except for the first 𝑛 such turns. Additionally,

turn𝑒 (𝛾, 𝑛) and turn𝑑 (𝛾, 𝑛) represent ownership over the 𝑛th
turn for enqueue and dequeue, respectively. When calling

enqueueSEQ or dequeueSEQ with 𝑛, the specification requires

the corresponding turn.

The representation predicate isSEQ is parameterized by a

predicate 𝑄 : N→Val→ iProp. If 𝑥 is the 𝑛th value added

to the queue, then𝑄 (𝑛, 𝑥) should hold. Correspondingly, the
specification for enqueueSEQ requires this in its precondition.

This in turn allows the specification for dequeueSEQ to en-

sure, in its postcondition, that the returned value satisfies

the predicate.

Proof of Specification (Sketch). First, we consider the
definition of turn𝑒 and turn𝑑 . These are defined to be owner-

ship over all the even and the odd turns, respectively, except

for the first 𝑛 even or odd numbers:

turns𝑒 (𝛾, 𝑛) ≜ turns(𝛾, {𝑚 ∈ N | even(𝑚) ∧ 2𝑛 ≤ 𝑚})
turns𝑑 (𝛾, 𝑛) ≜ turns(𝛾, {𝑚 ∈ N | odd(𝑚) ∧ 2𝑛 + 1 ≤ 𝑚})
turn𝑒 (𝛾, 𝑛) ≜ turn(𝛾, 2𝑛)
turn𝑑 (𝛾, 𝑛) ≜ turn(𝛾, 2𝑛 + 1)

Notice how these definitions are only possible because the

specification for the underlying turn sequencer allows for

ownership over any infinite sets of turns.
Next, we define the representation predicate isSEQ by

instantiating the turn sequencer specification:

𝑅SEQ (𝑄, ℓ) (𝑛) ≜
{

ℓ ↩→ None if even(𝑛)
∃𝑣 . ℓ ↩→ Some 𝑣 ∗𝑄 ( 𝑛−1

2
, 𝑣) otherwise

isSEQ(𝛾,𝑄, 𝑣) ≜ ∃ts, ℓ . 𝑣 = (ts, ℓ) ∗ isTS(𝛾, 𝑅SEQ (𝑄, ℓ), ts)

The predicate isSEQ(𝛾,𝑄, 𝑣) states that the value 𝑣 making up

the SEQ is a pair of a location ℓ and a turn sequencer ts. The
representation predicate for the underlying turn sequencer is

instantiated with the resource 𝑅SEQ, which states that if the

current turn is even, then the location points to None, and
otherwise it points to a Some 𝑣 . Since the 𝑛 given to 𝑅SEQ
is a turn for the turn sequencer, we must convert it to get a

turn for the SEQ. This is why 𝑅SEQ applies 𝑄 to (𝑛 − 1)/2.
With these definitions, the 𝑆𝐸𝑄 specification can be de-

rived from the turn sequencer specification.

4.3 Ghost State for Turns and Tickets
We now detail the construction of the ghost state used to

represent turns. This section can be skipped—understanding

the derived rules presented in the previous two sections

suffices for the rest of the paper.

In Iris ghost state is represented using a form of partial

commutative monoids called a resource algebra. The monoid

operation ( · ) combines elements of the resource algebra

and a subset of elementsV are valid. In the logic the own-

ership assertion 𝑎
𝛾
denotes ownership over an element

𝑎 of some resource algebra for a ghost name 𝛾 . Any valid

element can be allocated for a fresh ghost name 𝛾 (Ghost-

alloc), ownership of two elements combine into ownership

of their combination per the operation (Own-op), and owned

elements are always valid (Own-op).

We want to represent ownership of, potentially, infinite

sets of turns. Since ownership of a turn should be exclusive,

we want the combination of two sets to be invalid if the sets

are not disjoint. The naive approach of letting the elements
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Ghost-alloc

𝑎 ∈ V
|⇛∃𝛾 . 𝑎 𝛾

Own-op

𝑎
𝛾 ∗ 𝑏 𝛾 ⊣⊢ 𝑎 · 𝑏 𝛾

Own-valid

𝑎
𝛾 ⊢ 𝑎 ∈ V

set-alloc

𝑋 ⊆ N
|⇛∃𝛾 . 1𝑋

𝛾

set-sep

𝑋 ∩ 𝑌 = ∅
1𝑋

𝛾 ∗ 1𝑌
𝛾 ⊣⊢ 1𝑋 ∪ 1𝑌

𝛾

set-disj

𝑋 ∩ 𝑌 ≠ ∅ 1𝑋
𝛾 1𝑌

𝛾

False

Figure 4. Rules for ghost state and the resource algebra of

(infinite) sets.

of the resource algebra be sets and defining the operation as

𝐴 · 𝐵 ≜
{
𝐴 ∪ 𝐵 if 𝐴 ∩ 𝐵 = ∅
⊥ otherwise

where ⊥ is invalid, does not work The operation must be

computable, but determining if two arbitrary infinite sets

intersect is not.
2

Instead, we represent sets using a function resembling a

characteristic function. We assemble a resource algebra us-

ing three standard resource algebras: the exclusive resource

algebra, the option resource algebra, and the resource algebra

of functions.

InfSet(𝑋 ) = 𝑋 → Option(Ex(1))
For the resource algebra of functions, the operation is de-

fined point-wise as (𝑓 · 𝑔) (𝑎) = 𝑓 (𝑎) · 𝑔(𝑎). Its elements

are valid 𝑓 ∈ V if and only if 𝑓 (𝑎) ∈ V for all 𝑎 in the

function’s domain. The codomain Option(Ex(1)) has two
valid elements none and some(ex()); and one invalid ele-

ment some(⊥). These combine in the following way:

none · some(ex()) = some(ex())
some(ex()) · some(ex()) = some(ex() · ex()) = some(⊥)

For any 𝐴 ⊆ 𝑋 we can define an element 1𝐴 ∈ InfSet(𝑋 )
as

1𝐴 (𝑎) =
{
some(ex()) if 𝑎 ∈ 𝐴
none if 𝑎 ∉ 𝐴

The idea being that 1𝐴 serves as a sort of characteristic func-

tion. Given two disjoint sets 𝐴 and 𝐵 it is then the case that

1𝐴 ·1𝐵 = 1𝐴∪𝐵 . On the other hand, given𝐴 and 𝐵 that are not

disjoint, then for 𝑎 ∈ 𝐴∩𝐵 it is the case that (1𝐴 ·1𝐵) (𝑎) = ⊥
2
This type of ghost state was used in the GPS logic [43] to verify a ticket

lock. But, since the proof was on paper only, the non-computability of the

operation was not an issue. A variant of the GPS proof was later mechanized

in the iGPS logic [26], using a type of ghost state based on cofinite sets and

not arbitrary infinite sets.

and hence the combination is invalid. The three last rules in

Figure 4 then follow immediately.

With this in place “turns” is defined simply as

turns(𝛾, 𝑋 ) ≜ 1𝑋
𝛾
.

With this definition the previously seen rules for turns in

Figure 3 follow from the rules in Figure 4.

5 Proof of Contextual Refinement
As mentioned, our main result is that the MPMC queue is

a contextual refinement of a coarse-grained queue. We can

succinctly state this as the following ReLoC proposition:

|= queueMPMC 𝑞 ≾ queue
CG

: ∀𝛼.(1→ 𝛼) × (𝛼 → 1)

for any 𝑞 > 0. In such a refinement judgment the left expres-
sion is called the implementation and the right expression

the specification.
A refinement judgment is manipulated using ReLoC’s

high-level rules. While the details are not important, a few

such rules appear in Figure 5. The key principle is that the im-

plementation and specification can be symbolically executed,
similarly to how it is done in a unary program logic with a

Hoare triple or a weakest precondition judgment. The rules

rel-load-l and rel-load-r show how to symbolically execute

a load operation in the implementation and specification

respectively. When the implementation and specification are

both values one must show that the values are related. What

this means depends on the type of the values; for integers,

for instance, it means that they are equal.

Proofs of refinements, like the one above, consist of three

parts: (a) Symbolically execute the initialization (i.e., the
constructor) of the implementation and specification, and

collect the resources. (b) Establish an invariant, using the

resources obtained from the first step. The invariant typically

relates the internal states of the data structures on the both

sides of the refinement. Picking the right invariant is the key

to the proof, and we discuss it in details in Section 6. (c) Using

the invariant, verify refinement of each operation that is

part of the data structure. In this stage we verify separately

that MPMC’s dequeue operation refines the coarse-grained

queue’s dequeue operation, and similarly for the enqueue

operation.

For the first step, due to the polymorphic type ∀𝛼.(1→
𝛼)×(𝛼 → 1) of the queue, wemust assume a binary predicate

𝜏𝑖 that represents what it means for values of a type 𝜏 to be

related. Then, we symbolically execute the initialization code

for the MPMC queue and obtain the resources:

(ℓpush ↩→ 0) ∗ (ℓpop ↩→ 0) ∗ (ℓarr ↩→∗ map 𝜋2 SEQs) ∗

∗
(𝑣,𝛾 ) ∈SEQs

isSEQ(𝛾,𝑄, 𝑣) ∗ turns𝑒 (𝛾, 0) ∗ turns𝑑 (𝛾, 0).
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rel-lam

�
(
∀𝑣1, 𝑣2 . J𝜏KΔ (𝑣1, 𝑣2) −∗ Δ |= (_𝑥1 . 𝑒1) 𝑣1 ≾ (_𝑥2 . 𝑒2) 𝑣2 : 𝜎

)
Δ |= (_𝑥1 . 𝑒1) ≾ (_𝑥2 . 𝑒2) : 𝜏 → 𝜎

rel-load-r

ℓ ↩→s 𝑣 ℓ ↩→s 𝑣 −∗ |=E 𝑒1 ≾ 𝐾 [ 𝑣 ] : 𝜏
|=E 𝑒1 ≾ 𝐾 [ ! ℓ ] : 𝜏

rel-load-l

ℓ ↩→ 𝑣 ℓ ↩→ 𝑣 −∗ Δ |= 𝐾 [ 𝑣 ] ≾ 𝑒2 : 𝜏
Δ |= 𝐾 [ ! ℓ ] ≾ 𝑒2 : 𝜏

rel-qeue-r

∀𝑤. ICG (𝑤, ®𝑥) −∗ |= 𝑡 ≾ 𝐾 [𝑤 ] : 𝜏
|= 𝑡 ≾ 𝐾 [ (newlock (), ref( [ ]))] : 𝜏

rel-deqeue-r

ICG (𝑤, 𝑣 :: ®𝑥) (ICG (𝑤, ®𝑥) −∗ |= 𝑡 ≾ 𝐾 [ 𝑣 ] : 𝜏)
|= 𝑡 ≾ 𝐾 [ dequeue

CG
𝑤 ] : 𝜏

Figure 5. ReLoC rules (selection).

The first two points-to predicates are from allocating

pushTicket and popTicket, while the remaining are from al-

locating the array and the SEQs it contains. We obtain a

pointer ℓarr to the array. For each element of the array, we

invoke queueSEQ and, using its specification from Figure 2,

obtain the value 𝑣 in the array that satisfies isSEQ(𝛾,𝑄, 𝑣) ∗
turns𝑒 (𝛾, 0) ∗ turns𝑑 (𝛾, 0) for some ghost name 𝛾 and a pred-

icate 𝑄 of our choosing. The list SEQs contain the value and

ghost name for each SEQ.We describe the appropriate choice

of the predicate 𝑄 in the next section.

For the coarse-grained queue, we symbolically execute

its initialization using rel-qeue-r and obtain the resource

ICG (𝑤, []). The abstract predicate ICG (𝑤, xs) states that𝑤 is

a coarse-grained queue containing the elements xs.
With these resources we have to prove the remainder of

the refinement:

[𝛼 := 𝜏𝑖 ] |= (_𝑣. enqueue ℓarr 𝑞 ℓpush 𝑣, _𝑥 . dequeue ℓarr 𝑞 ℓpop)
≾ (_𝑣. enqueue

CG
𝑤 𝑣, _𝑥 . dequeue

CG
𝑤)

: (1→ 𝛼) × (𝛼 → 1).

Naturally, it suffices to show that each operation refines its

coarse-grained counterpart. To this end, we use the rule rel-

lam, which intuitively states that two functions are related if

they always (indicated by the �) evaluate to related values

when given related input. This reflects that for two imple-

mentations to be related they have to be indistinguishable in

any context – including a context that calls the functions sev-

eral times, potentially in parallel. However, the resources that

we obtained from the initialization process cannot be used

“as is” as they are ephemeral resources that do not always

hold. Hence, we delegate those resources to an invariant.
The refinement proof of the operations can then proceed by

symbolically executing the implementation. Every step can

assume and must preserve the invariant. The specification

side is stepped forward only at linearization points as it is

at these points that the implementation changes its abstract

state and hence what specification side queue it corresponds

to. At the linearization points we thus apply rules such as

rel-deqeue-r. We do not explain the refinement proof of the

operations in any more detail as defining a suitable invariant

is the most challenging part of the refinement proof and

is explained in the next section. However, in Section 7 we

explain how the external linearization point is handled using

our extension to ReLoC.

6 Invariant for Refinement Proof
The invariant we use is shown in Figure 6. It is non-trivial

and key to the refinement proof so we devote this section

to explain its parts. Overall, the invariant keeps track of the

physical state of the queues, ensures that the MPMC queue

represents a logic-level list of values corresponding to the

coarse-grained queue, manages the turns for all the SEQs,

and handles the external linearization point.

The invariant is parameterized by the interpretation of the

type of values stored in the queue (𝜏𝑖 ), ghost names (𝛾𝑡 , 𝛾𝑚 ,

𝛾𝑙 ), the size of the queue (𝑞), the values for the MPMC queue

(ℓpop, ℓpush, ℓarr, SEQs), and the value for the coarse-grained

queue (𝑤 ).

We now cover each different annotated part of Figure 6 in

turn.

Relation to the coarse-grained queue. The existentially
quantified lists of values xsi and xss represent the abstract
state of the MPMC queue and the coarse-grained queue re-

spectively. The state of the coarse-grained queue is tied to

xss by ICG (𝑤, xss) and xsi is tied to the MPMC queue by the

rest of the invariant. The separating conjunction over the

two lists thus ensures that the abstract states of the two

queues are always related at type 𝜏𝑖 . For example, if we store

integers in the queue, then the separating conjunction states

that the xss and xsi both contain the same integers.

Physical state. The physical state of the queue is rather
simple. The queue consists of three locations and the in-

variant contains points-to predicates for all three. As the

pointer to the array never changes we represent it using the

persistent points-to predicate ↩→�
∗ [47].

Ghost list. We previously explained how the physical

state of the queue reveals very little about the actual values

stored in the queue. To connect the physical and abstract

states, we use a ghost list 𝑚. It contains all values that have
been enqueued, in particular, this includes both values that

are no longer and not yet physically present in the queue.

Thus, while the physical state does not change when en-

queue executes its FAA, the ghost state does. And, since

the linearization point of enqueue is when it increments
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𝐼 (𝜏𝑖 , 𝛾𝑡 , 𝛾𝑚, 𝛾𝑙 , 𝑞, ℓpop, ℓpush, ℓarr, SEQs,𝑤) ≜ ∃xsi, xss ∈ List(Val), popTicket, pushTicket ∈ N,𝑚 ∈ List(Val).

Physical state︷                                                  ︸︸                                                  ︷
ℓpop ↩→ popTicket ∗ ℓpush ↩→ pushTicket ∗

ℓarr ↩→�
∗ map 𝜋2 SEQs

∗

Ghost list︷                                   ︸︸                                   ︷
list𝛾𝑙 (𝑚) ∗ |𝑚 | = pushTicket ∗

drop(popTicket,𝑚) = xsi
∗

Invariants for the
SEQs︷                                       ︸︸                                       ︷

|SEQs| = 𝑞 ∗
(

𝑞∗
𝑖=0

𝐼𝑆𝐸𝑄 (𝑖, SEQs𝑖 )
)
∗

tokensFrom
𝛾𝑡 (max(popTicket, pushTicket)) ∗ ids𝛾𝑚 (popTicket) ∗(pushTicket−1∗

𝑖=0

enqueueObl(𝑖)
)
∗ ©«

popTicket−1∗
𝑖=pushTicket

∃id.
idsAt𝛾𝑚 (𝑖, id) ∗
|= − ≾id dequeueCG 𝑤 : −

ª®¬︸                                                                                               ︷︷                                                                                               ︸
Handling of external linearization points

∗ ICG (𝑤, xss) ∗ ∗
(𝑥𝑖 ,𝑥𝑠 ) ∈(xsi,xss)

𝜏𝑖 (𝑥𝑖 , 𝑥𝑠 )

︸                                          ︷︷                                          ︸
Relation to the coarse-grained queue

where enqueueObl(𝑖) ≜ token
𝛾𝑡 (𝑖) ∨ (∃id, 𝑣i, 𝑣s. idsAt𝛾𝑚 (𝑖, id) ∗ listAt𝛾𝑙 (𝑖, 𝑣i) ∗ 𝜏𝑖 (𝑣i, 𝑣s) ∗ (|= − ≾id 𝑣s : −))

𝐼𝑆𝐸𝑄 (𝑖, (𝛾, 𝑣)) ≜ isSEQ(𝛾,𝑄 (𝑖), 𝑣) ∗ turnCtx(𝛾, 𝑖)
turnCtx(𝛾, 𝑖) ≜ turns𝑒 (𝛾, affectingOps(pushTicket, 𝑞)) ∗ turns𝑑 (𝛾, affectingOps(popTicket, 𝑞))

affectingOps(ops, 𝑞) ≜ ⌊ops/𝑞⌋ + (if (𝑖 < ops mod 𝑞) then 1 else 0)
𝑄 (𝑖) ( 𝑗, 𝑣) ≜ listAt𝛾𝑙 ( 𝑗𝑞 + 𝑖, 𝑣)

Figure 6. Invariant for the MPMC queue

ghost-list-alloc

|⇛∃𝛾𝑙 . list𝛾𝑙 ( [])

ghost-list-append

list𝛾𝑙 (xs)
|⇛list𝛾𝑙 (xs ++ [𝑥]) ∗ listAt𝛾𝑙 ( |xs|, 𝑥)

ghost-list-agree

listAt𝛾𝑙 (𝑖, 𝑥) listAt𝛾𝑙 (𝑖, 𝑥 ′)
𝑥 = 𝑥 ′

ghost-list-lookup

list𝛾𝑙 (xs) xs𝑖 = 𝑥

|⇛list𝛾𝑙 (xs) ∗ listAt𝛾𝑙 (𝑖, 𝑥)

(a) Rules for the ghost list.

tokens-alloc

|⇛∃𝛾𝑡 . tokensFrom𝛾𝑡 (0)

token-exclusive

token
𝛾𝑡 (𝑛) token

𝛾𝑡 (𝑛)
False

tokens-take

tokensFrom
𝛾𝑡 (𝑖)

tokensFrom
𝛾𝑡 (𝑖 + 1) ∗ token𝛾𝑡 (𝑖)

(b) Rules for tokens.

identifier-alloc

|⇛∃𝛾𝑚 . ids𝛾𝑚 (0)

identifier-decide

ids𝛾𝑚 (𝑛)
|⇛ids𝛾𝑚 (𝑛 + 1) ∗ idsAt𝛾𝑚 (𝑛, 𝑖𝑑)

identifier-skip

ids𝛾𝑚 (𝑛)
ids𝛾𝑚 (𝑛 + 1)

identifier-agree

idsAt𝛾𝑚 (𝑖, id) idsAt𝛾𝑚 (𝑖, id′)
id = id′

(c) Rules for identifier registry.

Figure 7. Ghost state rules.

pushTicket, the number of values that have been added to

the queue is always exactly pushTicket. Hence, the ghost list
is connected with the physical state in part from the require-

ment that its length is equal to the value of pushTicket.
Ownership of a ghost list xs is denoted by a proposition

list𝛾𝑙 (xs). Ghost list can grow over time, when the new values

are enqueued at the end. This is in fact the only way in which

the ghost list can change, and that means that once a value

is part of the ghost list it says there. To that extent, we

have a persistent predicate listAt𝛾𝑙 (𝑖, 𝑥), which denotes the

knowledge that the 𝑖th element of the list (corresponding

to the the 𝑖th value added to the queue) is 𝑥 . The ghost list

satisfies a number of proof rules presented in Figure 7a; these

rules are sufficient to carry out the proof.

In the invariant we can see the ownership of the ghost list

(list𝛾𝑙 (𝑚)) of the size pushTicket (|𝑚 | = pushTicket). More-

over, if we remove the first popTicket elements from𝑚, then

the remaining list is exactly the abstract state of the queue

(drop(popTicket,𝑚) = xsi). This makes sense since the ghost

list contains all values that have been enqueued and we re-

move exactly those that have also been dequeued. Note that
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when pushTicket ≤ popTicket, then the above implies that

xsi is empty.

Invariants for the Single-Element Queues. For each of

the 𝑞 single-element queues in the array the invariant needs

to include the invariant for the SEQ and to manage its turns.

We need to instantiate the invariant for each SEQ with

the predicate 𝑄 that holds for the values in it. Recall that

𝑄 is parameterized both by the value in the queue and its

corresponding turn. We use this to define a 𝑄 that relates

the value in the queue to the “right” value in the ghost list:

𝑄 (𝑖) ( 𝑗, 𝑣) ≜ listAt𝛾𝑙 ( 𝑗𝑞 + 𝑖, 𝑣),
were 𝑞 is the capacity of the queue and 0 ≤ 𝑖 < 𝑞 is the index
of the particular SEQ. For the 𝑗th element 𝑣 added to this

SEQ we can then calculate the position of this element in the

whole queue as 𝑗𝑞 + 𝑖 , which we record using the ghost list.

In addition to picking the predicate𝑄 , we must keep track

of the turns for each SEQ. We must calculate these turns

based on the current value of popTicket and pushTicket. The
affectingOps function aids in this. Given the “global” count

ops of an operation (dequeue or enqueue), it calculates how

many times the SEQ in question was affected.

Handling of external linearization points. The part of
the invariant for handling the external linearization point is

rather intricate. For the 𝑖th pair of operations, either enqueue

or dequeue arrives first. In the former case, the invariant

should allow both enqueue and dequeue to carry out their

own linearization point. In the latter case, the invariant must

facilitate handling of the external linearization point.

To do this we must intuitively encode the following: when

dequeue opens the invariant around its FAA it must transfer

the requisite resources into the invariant that will allow an-

other thread to carry out its linearization point. Then, when

enqueue opens the invariant around its FAA it should be

forced to carry out the corresponding dequeue’s lineariza-

tion point and transfer the result into the invariant. Later,

dequeue needs to open the invariant again, conclude that

its linearization point has been carried out, and be able to

transfer the resources for the executed linearization point

out of the invariant.

Came-first token. To keep track of which operation came

first we use tokens—custom ghost state theory similar to the

one that we constructed for turns earlier. The rules for this

ghost state are in Figure 7b. The 𝑖th dequeue or enqueue

that comes first will be able to take the token token
𝛾𝑡 (𝑖).

Hence, owning token
𝛾𝑡 (𝑖) proves that an operation came

before its corresponding counterpart. The invariant owns all

the tokens where neither operation has taken a ticket:

tokensFrom
𝛾𝑡 (max(popTicket, pushTicket)).

To see how this allows the operation that arrives first

to take a ticket, note that when enqueue and dequeue

open the invariant around their FAA, they will close the

invariant by using pushTicket + 1 and popTicket + 1, respec-
tively, for the existential variable that they introduced. If

enqueue comes first then popTicket ≤ pushTicket. Hence
max(popTicket, pushTicket) is equal to pushTicket, and only

tokensFrom
𝛾𝑡 (pushTicket + 1) is required for closing the in-

variant and one token can be kept by enqueue per the rule

tokens-take. On the other hand, if enqueue is last, then

pushTicket < popTicket and max(popTicket, pushTicket) =

max(popTicket, pushTicket + 1). Thus when closing the in-

variant, all the tokens are required and none can be kept.

For dequeue the situation is symmetric. All in all, this means

that this construction ensures that 𝑖th operation that comes

first can take the 𝑖th token.

Identifier registry. Concretely, for enqueue to carry out

its corresponding dequeue’s linearization point means that

it should step dequeue’s specification forward. To this end,

|= − ≾id 𝑒 : − represents that some thread, identified by

id, needs to show that its implementation refines 𝑒 . This re-

source is part of the extensions that wemake to ReLoCwhich

is explained in greater detail in Section 7 and the approach

here is an instance of the general proof pattern identified

in Section 7.1. For now, it suffices to know that the state

of dequeue’s specification is associated with an identifier,

id, and that dequeue needs a way to ensure that enqueue

steps precisely the specification with that identifier forward.

To support this, the invariant contains a resource that lets

the 𝑖th dequeue register which identifier it has. The rules

for this construction are shown in Figure 7c. The resource

ids𝛾𝑚 (𝑛) represents that only the 𝑛 first dequeue operations

might have registered an identifier. The persistent resource

idsAt𝛾𝑚 (𝑖, id) represents the knowledge that the 𝑖th dequeue

has registered the identifier id.

Pending dequeues. When pushTicket < popTicket, there
are popTicket−pushTicket dequeue operations blocked, wait-
ing for a value to read. These blocked dequeues are exactly

those with external linearization points, and when an en-

queue comes along, it should carry out the corresponding

dequeue’s linearization point. To this end, enqueue needs

some resources, which we store in the invariant:

popTicket−1∗
𝑖=pushTicket

∃id. idsAt𝛾𝑚 (𝑖, id) ∗
(
|= − ≾id dequeueCG 𝑤 : −

)
.

This reads: every 𝑖th dequeue operation (where pushTicket ≤
𝑖 < popTicket), has stored some identifier in the identifier

registry and we have the corresponding right refinement,

which is ready to invoke dequeue on the coarse-grained

queue.

Enqueue obligation. The final piece in the invariant is

pushTicket−1∗
𝑖=0

enqueueObl(𝛾𝑙 , 𝛾𝑡 , 𝛾𝑚, 𝑖).
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Since enqueue closes the invariant with pushTicket + 1, it
must show enqueueObl(𝛾𝑙 , 𝛾𝑡 , 𝛾𝑚, pushTicket). Hence, one
should think of enqueueObl(𝛾𝑙 , 𝛾𝑡 , 𝛾𝑚, 𝑖) as something which

enqueue is obliged to produce when it takes the 𝑖th ticket.

Since the proposition enqueueObl is a disjunction, there are

two ways for enqueue to meet this obligation. When en-

queue comes first, the obligation is trivial: it can take the

token token
𝛾𝑡 (pushTicket), and this is exactly the first dis-

junct. If, on the other hand, enqueue is last, then there is

no way to show the first disjunct and the only option is to

show the second disjunct, which involves carrying out the

dequeue’s linearization point.

7 Extending ReLoC with Support for
External Linearization Points

As mentioned earlier, to show that an operation refines its

specification with ReLoC, one symbolically executes the im-

plementation up to its linearization point. At the lineariza-

tion point, the specification is then symbolically executed to

reflect the change in the state of the implementation at the

linearization point. However, for an external linearization

point this approach does not work as the linearization point

does not happen during the symbolic execution of the oper-

ation; instead, it happens during the symbolic execution of

some other operation. Intuitively, it is when we symbolically

execute this second operation that we should symbolically

execute the specification. This kind of reasoning is not sup-

ported by the current ReLoC rules.

To support such reasoning we extend ReLoC with addi-

tional rules, a selection of which is shown in Figure 8. We

explain how these rules are used by using the external lin-

earization point in the MPMC queue as an example.

When we show the dequeue refinement, we symbolically

execute the implementation until we reach the expression

FAA(popTicket, 1). At this point, if pushTicket ≤ popTicket
then the linearization point is external, and the specification

should be symbolically executed during the corresponding

enqueue operation. To this end, we apply the rule rel-split

which splits a refinement judgment into a left refinement of
the form |= 𝑒1 ≾id − : 𝜏 and a right refinement of the form
|= − ≾id 𝑒2 : −. These represent the state of the implemen-

tation and the specification, respectively. When we split a

refinement judgment, we naturally want to keep track of

the fact that the two parts originate from the same refine-

ment judgment. The split refinement judgments is therefore

parameterized by an identifier id from an opaque set Id of

identifiers. Since the right refinement ( |= − ≾id 𝑒2 : −) ap-
pears on the left-hand side of a wand −∗ in rel-split we can

assume it as a resource.3 Hence, after applying rel-split we

obtain the right refinement |= − ≾id dequeue
CG
𝑤 : − for

3
This treatment of the right refinement stems from the “specifications-as-

resources” approach of Turon et al. [41] and is present in the model of

ReLoC as well.

some id as a proposition. We transfer this right refinement

into the invariant, as described in the previous section.

Our goal is now a left refinement with the state of the

implementation. To be able to symbolically execute the left

refinement, we have generalized all the rules in ReLoC for

symbolically executing the implementation in a refinement

judgment such that they apply both in the presence and in

the absence of a specification side. The rule rel-load-l’ show

the generalized rule rel-load-l specialized to a left refine-

ment. We can hence continue symbolically executing the

implementation up to the point where dequeue reads a value

from its designated SEQ. Intuitively, by now an enqueue

operation must have carried out the linearization point, i.e.,
symbolically executed the right refinement that we placed

inside the invariant (we explain how this is done below). We

know this, as the enqueue obligation enqueueObl(𝑖) corre-
sponding to our dequeue operation must have been fulfilled

in the invariant. And since we came first and thus were

able to take the came-first token, we can conclude that the

obligation contains |= − ≾id 𝑣𝑠 : −. The identifier registry
ensures that the id of this right refinement matches the left

refinement in our goal. We take the right refinement out

of the invariant in exchange for our came-first token. To

“re-insert” this right refinement into our goal we use the rule

rel-combine. This rule acts as a counterpart to rel-split and

combines a right refinement in the context with a left refine-

ment in the goal. After applying this rule our goal is again a

standard refinement judgment, but, with a fully evaluated

specification. The remaining part of proof can be completed

using existing rules in ReLoC.

We now consider how the external linearization point is

handled in the refinement proof of enqueue. We symboli-

cally execute the implementation up to FAA(pushTicket, 1).
If pushTicket < popTicket then the corresponding dequeue’s

linearization point is external and we must step its specifica-

tion forward. In the invariant this corresponds to producing

a particular enqueue obligation enqueueObl(𝑖). Since we do
not have a came-first token for this obligation, we must pro-

duce the right refinement |= − ≾id 𝑣𝑠 : − for some id and 𝑣𝑠 .
We can do this by symbolically executing the right refine-

ment |= − ≾id dequeueCG 𝑤 : − present in the invariant by

using a new set of rules that applies to a right refinement in

one’s context (rel-right-load is one such rule). From these

rules the required rel-deqeue-detached can be derived.

7.1 Proof Pattern for External Linearization Points
Summarizing, the generally applicable pattern for external

linearization points is as follows. One must establish an in-

variant that allows transferring a right refinement between

the operation with an external linearization point and the op-

eration during which the external linearization point occurs.

In the refinement proof of the operation with the external

linearization point, one symbolically executes the implemen-

tation up to the point where another operation may carry
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rel-split

∀id.( |= − ≾id 𝑒2 : −) −∗ Δ |= 𝑒1 ≾id − : 𝜏

Δ |= 𝑒1 ≾ 𝑒2 : 𝜏

rel-combine

|= − ≾id 𝑒2 : − Δ |= 𝑒1 ≾ 𝑒2 : 𝜏
Δ |= 𝑒1 ≾id − : 𝜏

rel-load-l’

ℓ ↩→ 𝑣 (ℓ ↩→ 𝑣 −∗ Δ |= 𝐾 [ 𝑣 ] ≾id − : 𝜏)
Δ |= 𝐾 [ ! ℓ ] ≾id − : 𝜏

rel-right-load

ℓ ↩→s 𝑣 |= − ≾id 𝐾 [ ! ℓ ] : −
|⇛ (ℓ ↩→s 𝑣) ∗ (|= − ≾id 𝐾 [ 𝑣 ] : −)

rel-deqeue-detached

ICG (𝑤, 𝑣 :: ®𝑥)
(
|= − ≾id dequeue

CG
𝑤 : −

)
|⇛ICG (𝑤, ®𝑥) ∗ (|= − ≾id 𝑣 : −)

Figure 8. Selected rules for external linearization points.

out the linearization point. At this point, one applies rel-

split and transfers the right refinement into the invariant.

Then, one uses the generalized symbolic execution rules to

step the implementation forward until the point where it

is certain that the external linearization point has occurred.

At that point, one extracts the advanced right refinement

from the invariant and applies rel-combine to merge it back

into the left refinement. In the refinement of the operation

during which the linearization point happens, one steps for-

ward the implementation to the point where the external

linearization point occurs, take a right refinement from the

invariant, steps it forward using the symbolic execution rules

for a right refinement, and puts it back into the invariant

afterward.

This approach is general and in our Coq formalization we

have applied it to two other examples of data structures with

external linearization points: a version of the elimination-

backoff stack from [18], and the red flags versus blue flags

example from [42].

7.2 Changes to the ReLoC Model
We now describe how the left and right refinement judg-

ments are defined and how the rules are encoded. The changes

that we make to ReLoC rely on exposing and encapsulating

a suitable amount of capabilities already present in the un-

derlying model (described in [16]) and thus the soundness

result of ReLoC is unaffected.

Recall, from [16], that the refinement judgment is defined
4

as:

|= 𝑒1 ≾ 𝑒2 : 𝜏 ≜ ∀𝑗, 𝐾 .
{specCtx ∗ 𝑗 Z⇒ 𝐾 [𝑒2]} 𝑒1

{
𝑣 . ∃𝑣 ′. 𝑗 Z⇒ 𝐾 [𝑣 ′] ∗ J𝜏K (𝑣, 𝑣 ′)

}
That is, it is a particular Hoare triple for the left-hand side

expression 𝑒1, specifications for which talk about the thread-

pool resource 𝑗 Z⇒ 𝐾 [𝑒 ′] and an invariant specCtx (the latter
can be ignored). These thread-pool resources are part of the

ghost thread-pool: the key element in the definition of the

model.

In order to obtain a right refinement, we package this

thread-pool resource 𝑗 Z⇒ 𝐾 [𝑒 ′] together with the invariant

specCtx. The identifier for such a refinement is then a pair

4
For reasons of clarity, the definitions given here are presented without

masks and view-shifts; see [16] for details.

of the thread id 𝑗 and the evaluation context 𝐾 . This hides

all the unnecessary details:

Id ≜ { 𝑗 : 𝑛𝑎𝑡, 𝐾 : 𝑐𝑡𝑥}
|= − ≾id 𝑒2 : − ≜ specCtx ∗ id. 𝑗 Z⇒ id.𝐾 [𝑒2]

Finally, the left refinement judgment is obtained by taking

the definition of a normal refinement, and stripping away

the information about the right refinement from the precon-

dition in the Hoare triple:

|= 𝑒1 ≾id − : 𝜏 ≜

{True}
𝑒1{
𝑣 .∃𝑣 ′, id. 𝑗 Z⇒ id.𝐾 [𝑣 ′] ∗ J𝜏K (𝑣, 𝑣 ′)

} .
In the Coq formalization, we formalize a generalized def-

inition that combines the left refinement |= 𝑒1 ≾id − : 𝜏

and the regular refinement |= 𝑒1 ≾ 𝑒2 : 𝜏 . This allowed

us to make tactics that automatically apply the correct rule,

depending on whether we are proving a left refinement or

a regular one. Tactics allow the user to interactively carry

out refinement proofs, without worrying too much about

the low-level details of the rules. For example, the user can

invoke a tactic rel_load_l, that applies either rel-load-l
or rel-load-l’, depending on what is applicable. The tactics

automatically determine the evaluation context 𝐾 and the

resource ℓ ↦→ 𝑣 (if available).

8 Discussion: Conclusion, Related and
Future Work

We now discuss related and future work along two dimen-

sions: (1) specification and verification of the MPMC queue,

and (2) and the extension of ReLoC with support for reason-

ing about external linearization points.

Wrt. (1), ours is the first formal specification and veri-

fication of the highly-efficient and practical MPMC queue

algorithm used in Meta’s Folly library. Thanks to our modu-

lar approach we also get specifications for its submodules.

For example, our specification for the turn sequencer can

also be used to verify other clients than the SEQ; indeed, in

our Coq formalization we have used the turn sequencer to

implement and verify a ticket lock.

Recently a similar bounded queuewas considered byMével

and Jourdan [33]. Their motivation, approach, and challenges
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are different from ours. They specified the queue they con-

sidered in terms of logically atomic triples, while we prove
contextual refinement. They verify the queue with respect

to the weak memory model of multicore OCaml by using the

Cosmo logic [34] , while we assume sequential consistency

(a simplification compared to the C++ memory model). Their

challenges stem from the complexities of weak memory, but

the queue operations they verify are comparatively simpler

than ours and have only fixed linearization points.

Wrt. (2), we emphasize that our extensions to ReLoC are

generally applicable and suitable to support mechanized

verification of a wide range of fine-grained concurrent al-

gorithms with external linearization points. Indeed in our

Coq formalization we have applied our methodology to

two other examples: a version of the elimination-backoff

stack from [18], and the red flags versus blue flags example

from [42].

Themost closely relatedwork not already discussed earlier

in the paper is Liang and Feng’s local rely/guarantee-style re-

lational logic [30], which can be used to show refinement for

fine-grained concurrent algorithms with non-fixed lineariza-

tion points, including algorithms with external linearization

points. In contrast to Liang and Feng’s logic, our extended

version of ReLoC supports a more expressive programming

language with higher-order functions (we use them to write

out the constructors as closures encapsulating the internal

state of the queue). Recently, a variant of Liang and Feng’s

logic has been formalized in Coq by Zou et. al. [49], for the

purposes of verifying a concurrent file system with external

linearization points. They extend the logic of Liang and Eng

with abstract “helping” mechanism, which allows one thread

to carry out linearization points of several other threads. It

would be interesting to obtain the Coq formalization and

investigate a) how a proof of the MPMC queue in that set-

ting would compare with our proof in ReLoC; b) whether
the mechanism of helpers can be implemented and applied

in ReLoC.

Another relational program logic that was used for verify-

ing algorithms with external linearization points is CaReSL

[41], which also supports a functional programming lan-

guage with higher-order functions and higher-order state. As

mentioned, our approach to handling external linearization

points is closely inspired by the “specifications-as-resources”

approach of CaReSL present in the model of ReLoC.

In addition to (relational) program logics, there are many

alternative methods for verifying concurrent data structures

with external linearization points, including generic meth-

ods like interval reasoning [10, 12], or data structure spe-

cific methods like aspect-oriented proofs for concurrent

queues [6]. We refer an interested reader to the survey article

by Dongol and Derrick [11].

Other alternatives to contextual refinement include log-

ically atomic Hoare triples [7, 21, 25] (which were used in

the aforementioned work [33]) and HOCAP-style specifica-

tions [40], which aim at internalizing the notion of atomicity.

In particular, the Iris notion of logically atomic triples is a

popular correctness criterion that can handle data structures

with external linearization points [25]. A logically atomic

triple is a special kind of Hoare triple for a single program—

unlike ReLoC’s refinement judgment which relates an im-

plementation to a specification. One strong point of logi-

cally atomic triples is that they are easy to use and build

upon inside the Iris logic. On the other hand, they do not

yield as strong results outside the logic as ReLoC’s refine-

ment judgment, which implies contextual refinement. Re-

cently, logically atomic triples have been shown to imply

linearizability[3], but only in a simpler first-order setting.

Contextual refinement is related to another popular cor-

rectness for concurrent algorithms: linearizability [19].While

there is an abundance of methods for verifying or checking

linearizability, it has mainly been considered for first-order

languages and with certain restrictions placed on how clients

can interact with the concurrent algorithm.
5
To the best of

our knowledge, linearizability has not even been properly

defined for a programming language with features that we

consider here (e.g., higher-order functions, higher-order state,
fork-based concurrency).
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