
61

Deployment Archetypes for Cloud Applications

ANNA BERENBERG and BRAD CALDER, Google, Inc.

This is a survey article that explores six Cloud-based deployment archetypes for Cloud applications and the

tradeoffs between them to achieve high availability, low end-user latency, and acceptable costs. These are

(1) Zonal, (2) Regional, (3) Multi-regional, (4) Global, (5) Hybrid, and (6) Multi-cloud deployment archetypes.

The goal is to classify cloud applications into a set of deployment archetypes and deployment models that

tradeoff their needs around availability, latency, and geographical constraints with a focus on serving appli-

cations. This enables application owners to better examine the tradeoffs of each deployment model and what

is needed for achieving the availability and latency goals for their application.

CCS Concepts: • Computer systems organization → Cloud computing; Availability; • Networks →

Cloud computing;

Additional Key Words and Phrases: Cloud deployments, cloud archetypes, cloud architecture, cloud

availability

ACM Reference format:

Anna Berenberg and Brad Calder. 2022. Deployment Archetypes for Cloud Applications. ACM Comput. Surv.

55, 3, Article 61 (February 2022), 48 pages.

https://doi.org/10.1145/3498336

1 INTRODUCTION

In looking at how applications have changed over the past 20 years, we have evolved from a world
where planned maintenance downtime was standard and business applications were typically
available only 99% of the year [117] to today where applications are expected to be up and running
24/7. Similarly for latency, online transactions over the internet took on the order of seconds 20
years ago [123], where users today expect transactions to complete in milliseconds.

The drive toward higher availability and lower end-user latency is pushing application develop-
ers and operators to evolve and deploy applications with the best availability and latency possible.
Even applications built around deployment options that were only available 20+ years ago need
to be supported in this 24/7 available and low-latency world. With Cloud as the preferred platform
for deploying and running applications, this means Cloud needs to help achieve these goals for
(a) applications that have been around since before Cloud existed (Enterprise applications) and
(b) greenfield applications born in the Cloud (Cloud-native applications).

As businesses move to the Cloud, some applications may need to continue to run as they did on-
premises and potentially benefit from Cloud-managed services (e.g., storage, relational databases,
data analytics, SAP). In comparison, some businesses may want to evolve applications within

Authors’ address: A. Berenberg and B. Calder, Google, Inc, 1600 Amphitheatre Parkway Mountain View, CA 94043; emails:

aberenberg@google.com, bcalder@google.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the Owner/Author.

© 2022 Association for Computing Machinery.

0360-0300/2022/02-ART61 $15.00

https://doi.org/10.1145/3498336

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

https://doi.org/10.1145/3498336
https://doi.org/10.1145/3498336
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3498336&domain=pdf&date_stamp=2022-02-03

61:2 A. Berenberg and B. Calder

existing boundaries or go for partial or complete rewrites to achieve higher availability, better
end-user latency, and increased operational efficiency and agility. In addition, the underlying tech-
nologies used for existing applications influences the deployment options that are suitable when
migrating applications to the Cloud. The choices each business will make for their applications
will be different depending on the needs of each business.

When running an application in the Cloud, there are many important aspects an application
owner needs to address including security, identity, data recovery, data and traffic management,
cost optimization, and much more. We touch on some of these, but this article is primarily focused
on exploring different deployment models for the application serving stack.

We explore six Cloud-based deployment archetypes for Cloud applications and the tradeoffs
between them to achieve high availability and low end-user latency. These are (1) Zonal, (2) Re-
gional, (3) Multi-regional, (4) Global, (5) Hybrid, and (6) Multi-cloud deployment archetypes. Cloud
applications consist of multiple services and microservices, and the application may mix services
of different archetypes based upon its needs. We look at multiple categories of application deploy-
ments from Enterprise to Cloud-native applications, their impact on availability and latency, and
how they can leverage these six deployment archetypes.

1.1 Principles of Availability

The level of availability each part of the application is targeting depends on its business purpose
[33]. Some applications only need three nines (99.9%) availability, which means the service can be
unavailable for at most 43 min a month. Other applications need four nines (99.99%) availability,
which means the application can only be unavailable for at most 52 min a year. Then there are those
mission-critical applications that need five nines (99.999%) availability, where they can only be
unavailable at most 5 min a year. To achieve these levels of availability, it is important to understand
what is needed for each part of the application and invest in closing the gap between current and
desired availability for each part.

The investment in availability comes at a cost, but it is often crucial to the long-term success of
the business, since availability directly influences the reputation of the business and the satisfac-
tion of the application’s users. For the purpose of this article, we group together into the overall

availability of the application the following: (a) the time to access the application, (b) the time
to get a response with valid results, (c) the application’s access to its data, (d) the assurance that
data is stored and maintained with integrity, and (e) the application’s ability to scale and handle
peak traffic demands.

For an application, availability is best designed from the start. Adding availability as a feature
later can require re-architecting the application and potentially a full rewrite. A key part of the
design is how the application reasons about fault domains and how it provides redundancy and
scales across those fault domains to maximize availability. A fault domain is a set of infrastructure
parts that together represent a single point of failure. To increase availability, applications need
to run and store their data across multiple fault domains (zones and regions) and have the ability
to balance load or failover in case of failure. Data needs to be replicated and backed up so that
it is never lost, and checks must be in place to make sure data is never corrupted. In addition,
applications need to be able to quickly load balance across multiple instances of the application to
scale to the largest traffic the application can have. This includes minimizing time for startup and
shutdown, so applications can be restarted, and scaled up and out quickly.

Two additional important concepts for minimizing the impact of an outage are (a) sharding
the application and (b) making sure all application updates are done incrementally and can be
rolled back. Applications may apply sharding across their users or data so that they are served
across different fault domains [2]. In this way, an issue with one fault domain will only impact

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

Deployment Archetypes for Cloud Applications 61:3

a subset of the users/data, thus containing the failure radius (often called the blast radius) [59].
Similarly, code and configuration changes should be rolled out incrementally across the different
fault domains to gradually introduce a change into production, with the ability to quickly roll back
if any production issues are discovered to return the application to a healthy state. This allows code
and configuration production issues to be discovered early on and reduces the impact to only those
parts of the application running in the fault domains being updated. In addition to being able to
quickly roll back recent application changes, having the ability to drain or shed load from the
affected fault domains is often used to quickly mitigate issues.

These techniques collectively determine how large of an impact there is to the application and
its users when there is an outage. Ideally there is no impact on users when an issue occurs, but if
the best design and deployment practices are followed, when there is an issue then only a small
set of users of the application are affected in one or a few fault domains.

Finally, applications need to understand their dependencies, the availability and failure modes of
those dependencies, and to evaluate the multiplicative implications across these dependencies on
the application’s design and availability. Typically, the fewer dependencies a service has the better,
and it is better to avoid linking in code, calling out to other services and APIs that bring in un-
known dependencies. As part of the overall manageability, separating out parts of the application
into its vital and non-vital services, identifying the availability targets of each, and continuously
improving the vital parts, are important. If a service is vital, then for its vital components, all of
their dependencies (recursively down the call chain) should be either highly available or the com-
ponent should be able to function in the absence of the dependencies. Examine availability for
each service in the application independently and for the application as a whole.

In this article, as we examine the different deployment archetypes, we examine the availability
applications can achieve with each archetype with the focus on overall availability as described in
this section.

1.2 Types of Applications

A business relies on multiple types of applications, each having different availability and latency
requirements.

• Business-critical applications—these represent the critical applications for a business.
If these applications are unavailable, then the business is down. Highest availability and
lowest latency are desired for these applications. These applications could be user-facing or
not, and the classification of a business-critical application depends on each business.

• Line-of-business applications—these are applications that support running the business.
While these applications do not serve customer-facing traffic, they are typically instru-
mental for supplying data for the business. They often have requirements to finish work
by a particular time. Continuous Integration and Continuous Deployment (CI/CD)

pipelines fall into this category, as well as data processing and analytics. High availability
is desirable for these applications, but they can sustain short-lived outages without having
an immediate business impact.

• Internal applications—these are applications that are for internal consumption for a
business (e.g., recruiting, time-off tracking). Best effort availability is required. Employees
want these to be always available, but if they are not, then the impact on the business is
lower.

This article is primarily focused on business-critical applications, though the deployment
archetypes can also apply to the other types of applications as well.

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

61:4 A. Berenberg and B. Calder

1.3 Data Durability, Availability, and Backup

For an application to be available, its data has to be available, and for the application deployments,
we examine there are several concepts that are related to how the data is stored and managed.
These include:

• Data durability—long-term data protection, where the stored data does not suffer from
corruption and is not lost or compromised. To achieve this, the underlying data storage
system often replicates the data and performs error-correcting checks and scrubbing of the
data to prevent data decay.

• Data availability—access to data upon request. High data availability is achieved by plac-
ing and replicating the data across more than one failure domain, keeping the data durable,
ensuring the service provides access to the data, and making sure the data is appropriately
resource-provisioned to serve requests. The type of replication, asynchronous (eventually
consistent) or synchronous (strongly consistent), along with data failover capabilities are
important building blocks for achieving data availability.

• Data backup—point-in-time snapshots of data. Backups are important for protecting
against application and human errors, and they can also be used as a means for disaster
recovery. All applications should use backup services to protect against accidental loss or
corruption of data due to application-level issues.

Similar to defining the desired level of availability, it is as important to define objectives for
disaster recovery [64] for each application (e.g., Recovery Point Objective (RPO) and Recovery

Time Objective (RTO)), and to choose deployment models and infrastructure that can achieve
the desired RPO and RTO. RPO captures how old a copy (backup or replica) of the data is compared
to the current state in production. It is important to understand the RPO, since this copy of the
data would become the active state of production in case the current state fails, and any data
changes more recent than the recovery point would be lost. If an application has more than one
source of data, then independent recovery points of each one need to be reconciled. RTO captures
how long it takes to restore an application during recovery to bring it back online and available
in production, which includes access to the data needed for running the application. A highly
available application wants both RPO and RTO to be as close to zero as possible.

In this article, we examine deployment archetypes and deployment models within each
archetype that focus on the availability of data, while maintaining durability, and Google Cloud
[25, 55], Microsoft Azure [23, 83], and AWS [22, 29] have each developed storage and database
products that meet the requirements needed for each deployment archetype examined. In addi-
tion, data backup services should be used in conjunction with these deployment options.

1.4 Six Deployment Archetypes for Cloud Applications

Figure 1 shows all deployment archetypes and models discussed in this article. In addition, we
examine Hybrid and Multi-cloud archetypes that are composed of the models shown in Figure 1.

(1) Zonal—All components of an application run within a single zone. A zone provides a set
of clusters with the infrastructure needed to run services (compute, storage, networking,
data, etc.) within that zone. Should a zone go down, what is running within the zone is
either restarted in another zone from the last checkpointed state, or a failover occurs to a
standby instance of the application in another zone.

(2) Regional—All components of an application are deployed and run out of one Cloud re-
gion. A region consists of 3 or more zones, where each zone is treated as a separate fault do-
main. High availability can be achieved by replicating the application across zones within

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

Deployment Archetypes for Cloud Applications 61:5

Fig. 1. Classification of deployment archetypes.

the region. These applications are typically designed to run with a data store that shares
data and makes it accessible across that region. To serve application traffic, the requests
are load-balanced across compute instances in multiple zones. To further increase avail-
ability and reliability, some applications may have a secondary standby region with an
asynchronous copy of the data, where the application can failover to the secondary re-
gion in case the primary region is not available.

(3) Multi-regional—The application serving stack runs and is stitched together across mul-
tiple regions to achieve higher availability and low end-user latency through geographic
distribution. In this deployment archetype, data is typically replicated and shared across
regions. This archetype is commonly used for applications that want to achieve high avail-
ability, such as user-facing applications.

(4) Global—The application stack is spread and replicated across Cloud regions around the
globe and data is available worldwide via global databases and storage. Applications con-
sisting of a large number of services and microservices benefit from this deployment
archetype. This is the five-nines deployment model used by retail, social media and other
businesses requiring always-on availability, while running large services economically.

(5) Hybrid—Applications that have deployments combining on-premises and public cloud(s)
are becoming increasingly common. On-premise software stacks will continue to evolve
and be connected with the Cloud, to the point where on-premises will be considered to be
another form of connected zone or region. Hybrid application availability and resilience
is often achieved by (a) creating deployment archetypes that leverage failover between
on-premise and Cloud, and (b) coordinating the execution of parts of the application that
run in the Cloud versus run on-premises.

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

61:6 A. Berenberg and B. Calder

(6) Multi-cloud—Applications can potentially gain the highest availability by using two or
more public Cloud platforms at the same time, to protect against one Cloud’s unavail-
ability. In each cloud, one of the deployment archetypes listed above is used, and then
combined across clouds to create a multi-cloud deployment. This deployment archetype
is in its infancy, but applications that require the highest availability are prime targets for
multi-cloud deployments as this model evolves.

There are many reasons why one archetype will be used for an application over another. For
applications that are required to have data reside in a particular region or jurisdiction, the choice
of geographical distribution may be limited to an individual country or to a union of countries, and
therefore the choice of deployment options will be limited. Other globally ubiquitous applications
may have latency budgets, where, if latency is too high, then users may interpret it as an availability
issue and abandon their requests.

Within each archetype there are multiple models that represent the deployment scenarios ap-
plications may use. We will now examine each of these deployment archetypes and models, and
their tradeoffs in detail, and conclude with a summary comparing the tradeoffs.

2 ZONAL

In the Cloud, a zone represents a fault domain in which to deploy and run services and infrastruc-
ture. Running an application within a single zone typically means running the application within
a compute cluster potentially spread across multiple racks near each other in the same datacenter.
Should a zone go down, what is running within the zone is either restarted in another zone from
the last checkpointed state, or a failover occurs to a standby instance of the application in another
zone. We now go through these two types of zonal deployment models.

2.1 Single Zone

Running an application only within a single zone is not targeted toward high availability, since
a zone is considered as a single failure domain from both software issues as well as other types
of disasters (e.g., fire). Even so, applications that need supercomputer-like connectivity, as well as
applications that do not need high availability, leverage single-zone deployments.

High Performance Computing [67] and Tensor Processing Unit Pods [56] are examples of Cloud
applications that are deployed and run in a single zone. These applications typically require very
low latency and high bandwidth usage, achievable within a single zone. They do not serve live
traffic and can work with three-nines availability, and they can restart from the last checkpointed
state. The data for these applications can be kept in a regional data store, with the primary or
one of the copies of the data stored within the zone where the data is being read and processed. In
addition, an advantage of keeping applications that have a lot of communication across VMs within
the same zone is that Cloud providers typically have an additional charge for egress between VMs
across zones.

Another important application type that works well with single zone deployments is developer
testing workloads. This enables developers to continuously build and test their applications in the
Cloud. It also may be suitable for use cases where downtime is acceptable or the application can
be restarted elsewhere.

A single-zone application should be considered sufficient for these use cases, but not for most
production applications.

2.2 Primary Zone with Failover Zone

As companies bring their on-premises applications to the cloud, a first step often taken is to choose
a deployment model to run the application in the Cloud with minimal changes. Some of these may

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

Deployment Archetypes for Cloud Applications 61:7

be commercial off the shelf (COTS) applications that application owners acquired and may
not be able to change. In addition, sometimes these applications come with per-instance licenses
that can be prohibitively expensive to deploy for redundant extra copies. As a result, single-zone
deployments continue to be a valid deployment option for these applications.

Single-zone applications still need as much redundancy and availability as possible. The deploy-
ment model typically used is to run the application in a primary zone, and to use a failover zone
in the same region as a recovery zone. If the primary zone has issues, then the recovery zone is
used to start the application up again. Many enterprise applications are built to run in a form of
primary/failover configuration, also known as Highly Available (HA) topologies, and this is an
established pattern used in enterprise and on-premises deployments over the years.

Let us look at the example of a single-license application running in the Cloud that wants to
have failover support. Assume there are two VMs in two different zones (A and B), where one is
the primary and the other is used as the failover. In this example the application owner has to pay
for every instance running, so the application is only running in the primary zone and not the
failover zone to control costs. In this case there are generally three options for how to connect to
the application VM for license renewal:

• Static IP address (also referred to as floating IP address)—This static IP is used for the
license renewal and can be either private RFC 1918 [105], RFC 6598 [127], or public IP. The
static IP address initially points to the primary VM (for this example assume it is in zone
A), which runs the single application. When zone A goes down, either manual or script-
based reconfiguration occurs, and the application is started in zone B, with the same static
IP address. In this case clients can continue to connect to the same IP address, whether they
use DNS resolution or connect directly to the IP.

• List of Static IP addresses—List of IP addresses are used in a round-robin fashion in case
connection is lost. The exact logic to pick one address from the list depends on application
client-side behavior.

• Dynamic Addresses with DNS—If the IP for license renewal is not static, then DNS is
used for resolution. In this case, DNS is configured to point to the primary VM in zone A.
When zone A goes down, the DNS configuration is updated to point to the VM in zone
B. The tradeoffs around DNS and how it relates to failover deployments are discussed in
Section 4.2.

Now let us look at another example in Figure 2, which is a basic application deployed in a
primary zone with a replica for failover purposes in a secondary zone. In this example, we have
a Load Balancer (LB), which denotes not just one instance, but a highly available replicated
setup. The setup has a replicated compute workload named “Front-End,” and the Cloud-managed
database that holds the application data replicated across zones. Most databases will work in this
configuration, and for this example, we assume it is a SQL database.

Let us consider zone A of region AA to be a primary zone, and zone B of region AA a failover
zone. The primary instance of the SQL database is placed in zone A and all read and writes happen
to this instance. In addition, the SQL database is configured with a standby in zone B, and the data
is replicated from zone A to zone B by the cloud provider managed database. The Front-End in zone
A and Front-End in zone B are configured identically with the same virtual IP address (10.3.2.1) to
access the SQL database. This means the Front-End service does not need to change the IP address
of the SQL instance when failover occurs. In addition, the load balancer is configured to have a
primary set of compute instances (VMs or containers) in zone A and failover instances in B.

Now let us assume that zone A fails. Every second, the primary Front-End and SQL instance in
zone A responds to a heartbeat signal from the monitoring system. If multiple heartbeats are not

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

61:8 A. Berenberg and B. Calder

Fig. 2. Primary zone with failover zone deployment model.

detected by the monitoring system, then an alarm is sent and failover is initiated by the application
owner or a script that has been automated. With failover initiated, the Front-End in zone B now
serves user traffic, and the standby SQL instance in zone B is configured to now act as the primary
SQL instance using the same virtual IP address (10.3.2.1) [50]. The load balancer will react to the
failure in zone A by moving traffic to zone B, because it was configured to failover to the Front-
End in the other zone based on health check status. Once the traffic is being served from zone B
and the primary SQL instance is now in zone B, the availability is re-established for a single zone
application on failover.

Health checking is an essential part of the failover process. As part of the health check status,
the application’s services need to decide if they are healthy or not, and this greatly depends on the
service. Each instance of the service needs to determine its health based on error rates, exhaustion
of resources, such as CPU and memory, or other custom signals, and declare itself unhealthy as
part of a health checking response.

When zone A comes back, the traffic is not sent back to zone A by the load balancer unless the
application owner decides to fail back. The deployment will now be in a steady state with zone B
as primary and zone A as failover, until a failover is performed to make zone A the primary again.
A best practice here is to reserve the capacity needed for failover in the failover zone and ready to
go in case of a failure, and to routinely failover the application between zones to ensure failover
works when it is needed. Note, there are additional scenarios to cover for an application using

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

Deployment Archetypes for Cloud Applications 61:9

failover (e.g., restarting up cross-zone data replication after failover, whether to allow failing over
only part of the application stack, and more [58]), which we did not have time to go over in this
article, and the application owner needs to make sure they are covered for this type of deployment
model.

3 REGIONAL

In Cloud, a region is a specific geographical location in which to deploy and run application ser-
vices and infrastructure that consists of multiple zones. A region consists of three or more zones,
where each zone is treated as a separate fault domain. High availability can be achieved by repli-
cating the application and its data across zones within the region.

We distinguish between zonal and regional archetypes with the following definition. The re-
gional archetype has the application replicated across multiple zones within the region and actively
serving traffic across the multiple zones at the same time. In comparison, the zonal archetype has
an application serving traffic from a single zone and then failing over to another zone when there
is an issue.

Single-region applications typically focus on users in one geography (e.g., country). This is used
to (a) optimize for latency, where users are served from the same region they reside in, and/or
(b) provide data sovereignty or location requirements, where user data is kept and served from
a single country or region. To further increase availability and reliability, some applications may
have a secondary standby region with an asynchronous copy of the data, where the application
can failover to the secondary region in case the primary region is not available. We now describe
these two deployment models (single region and a single primary region with failover).

3.1 Single Region

In the context of this article, running an application in a region means running an application
spread across multiple zones within that region, where each zone is treated as an independent
failure domain. A best practice here is to replicate the application across all of the zones within
the region and keep the size of each deployment approximately the same across zones. This ensures
the application always has capacity available in other zones when there is a zonal failure.

To demonstrate this, we will use a more complex application architecture shown in Figure 3.
In this example, we have a service named “Front-End” that contains the interface the end-users
interact through, a service “Back-End” that contains the business logic of the application, and a
Cloud-managed database (e.g., SQL) that holds the application’s data. In addition, there are load
balancers in front of each service to load-balance requests across them. A request flow across the
services in the diagram can be described as user→Front-End→Back-End→SQL and the response in
the opposite order. In reality, applications consist of a large number of services and microservices,
ranging from tens to hundreds in the same application.

As shown in the example, the single-region application should try to achieve higher availability
by replicating data as well as compute workloads across multiple zones within the region. To
achieve this for data, most Clouds support replicating SQL synchronously across the zones within
a region, where writes and reads go to the primary zone for the SQL instance even though the data
is replicated across zones for durability [52]. In addition, there can also be read replicas configured
across all zones, where read requests are served from the closest zone.

When a request comes into Load Balancer 1, the request may be forwarded to any healthy
replica of the Front-End service in any of the zones in the region, and then the request path is
latency-optimized to keep the request flow within the same zone as the request traverses multiple
services. For example, a request arriving at Front-End(A) will be sent to Back-End(A) to optimize
latency by keeping the request within the same zone. Then the request to the SQL database may

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

61:10 A. Berenberg and B. Calder

Fig. 3. Single region deployment model.

be across zones. The SQL(primary) is running in one of the zones, and communication with the
SQL(primary) may happen across the zones, as writes are always sent to the primary.

Should one zone become unhealthy due to software failure, such as bad binary rollout for the
Front-End or Back-End service, or due to infrastructure failure such as a power outage event,
the requests destined to that zone will be steered to another zone. If the zone where the primary
instance of SQL fails, then automatic failover is initiated [51] for the SQL(primary) and a standby
replica now becomes the new primary. To achieve availability during failover, applications should
retry idempotent requests or re-establish a new connection to the database [118].

As an example, assume that the SQL(primary) is in zone B and assume the Back-End microser-
vice in zone B becomes unhealthy. For a request that comes into Front-End(B), the Load Balancer
2 will know that Back-End(B) is unhealthy and choose a different back-end to route the traffic
to. In this case, the traffic flow coming into zone B is now Front-End(B)→Back-End(C)→SQL(B) or
Front-End(B)→Back-End(A)→SQL(B). With this approach the load balancers can route the traffic
around failures within a specific zone at a specific service layer.

For a single-region deployment, a question that comes up is how many zones to run the appli-
cation across. The standard topology in Cloud is to have three zones for each region, where an

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

Deployment Archetypes for Cloud Applications 61:11

application is run across all three zones and it uses the Cloud provider managed regional stor-
age and database services to manage the data. The reason for using three zones instead of two
zones is because the loss of one zone means losing one-third of the serving capacity instead of
half of the capacity. Not having enough serving capacity left after the loss of the zone can impact
availability as it takes time for autoscaling to kick in. Another reason is to survive the unlikely
but possible event of two simultaneous failures across two zones—one caused by the application
and the other by the Cloud provider. This can potentially occur if (a) an issue in the application
causes a single zone outage (e.g., as the application is incrementally updated one zone at a time
and an outage is potentially found after the first zone is updated) and (b) the Cloud provider has
an issue that results in one zone having an outage. With three zones, an application can still be
available even if two zones have issues (one due to the application update and one due to the Cloud
provider).

3.2 Primary Region with Failover Region

While single-region applications with multi-zone replication provide a highly available region,
some business applications may have continuity requirements over large distances (e.g., having
a primary and secondary separated by hundreds of miles). The desire for business continuity for
a single-region application is fulfilled by maintaining a second region that is used for failover
events. To satisfy compliance requirements, primary and standby regions may need to be located
in the same country or union of countries. If there is no compliance requirement, then the failover
region may be located anywhere where the latency increase on failover for serving response time
is satisfactory.

In this deployment model as depicted in Figure 4, application data is synchronously replicated
within a primary region, providing RPO = 0 for in-region failures. It is also asynchronously repli-
cated to a standby region [49] that is sufficiently distant from the primary region. While this means
a non-zero Recovery Point Objective and therefore potential data loss of recent updates on failover,
the approach is used by Enterprise applications with availability or regulatory needs that require a
replica in another region. Live traffic is always served from the primary region, and if the primary
region becomes unhealthy either due to infrastructure or software component problems, then the
standby region is used.

Some application owners prefer manual failover to the standby region. In this scenario, the DNS
entry for the primary region is manually substituted with the VIP or IPs of the standby region when
failover occurs. Otherwise, DNS Load Balancing (DNS LB) is used for automatic failover, which
we describe in Section 4.2. If DNS is not used at all, then clients have the list of IPs for both the
primary and standby region, and they are configured to use the current primary region.

For this model, the deployment is regional aside from the DNS LB. The DNS LB assigns traffic to
the primary region, but if there is an issue with the primary region and a failover needs to occur,
then DNS LB assigns traffic to the standby region. Health checking is done by the DNS LB sending
probes to load balancers that represent a region (the Load Balancer 1 in Figure 3). If the health
checks fail, then the application can failover to the standby for availability. Note, the DNS LB
can also be used on an application owner’s Virtual Private Cloud (VPC) for service-to-service
communication as a service discovery mechanism.

For an application with more than one region to be operational, there needs to be an under-
standing of the full health of the service stack within a region. If there is a regional issue for just a
single layer (e.g., Load Balancer 1, all Front-Ends, Load Balancer 2, all Back-Ends, or regional SQL),
then the region would be unhealthy and a failover would need to occur to keep the service up and
running. This means the application owner needs to build up an understanding of the health of

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

61:12 A. Berenberg and B. Calder

Fig. 4. Primary region with failover region deployment model.

all layers and be able to trigger failover if a given layer is having a regional issue. We will go into
more details on this in Section 4.3.

When a failover is triggered, the primary for the database is switched to the new primary re-
gion (what was the standby database will be promoted to be the new primary [53]). If this is an
unplanned failover, then recent updates to the database could be lost. For a planned failover, the
failover can be coordinated to ensure all of the latest changes from the primary are made to the
standby database before switching over.

With this deployment model, there is a need to ensure that the standby region functions well
even though most of the time the standby region is idle. The best practice is to perform planned
failovers on a timeline that makes sense for the business. In addition, health probers should be used
to not only continuously check the health of the primary region but also the standby region. AWS
provides Application Recovery Controller [11] to offer this deployment archetype as a solution to
their application owners.

For some applications, this deployment can be simplified to have a primary region with a
single zone and failover region with a single zone. This targets applications that are limited by
number of licenses or limitations in architecture and is an improvement over the Primary Zone
with Failover Zone deployment described in Section 2.2 for applications that need cross-regional
business continuity.

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

Deployment Archetypes for Cloud Applications 61:13

4 MULTI-REGIONAL

The world has become more and more interconnected, with the users of the applications becoming
more and more geographically dispersed. With that, the application deployment that was tradi-
tionally optimized for availability needs to evolve, because user-perceived latency has become a
differentiating factor between competing applications. In addition, as users moved from desktop to
mobile they have gotten accustomed to having access to their application and data anywhere with
quick response times. This has pushed application deployment to being able to serve requests near
to where users reside and means a single-region application is becoming less competitive from a
user latency perspective.

Running an application across multiple regions gives lower end-user latency, drives higher avail-
ability, and meets some business continuity requirements by having the application and its data
running and available in multiple regions separated by hundreds of miles. There are different de-
ployment models for multi-regional archetypes, and we will go through two of them.

4.1 Fully Isolated Stacks with Data Sharding

If the application data is partitionable into separate databases, then one deployment option some
applications have considered is to partition or shard the application and data across multiple re-
gions into separate isolated stacks. In this approach, each stack would use the Primary Region with
Failover Region approach described in Section 3.2, and a given user’s data is confined to a single
regional deployment based on the sharding.

This is shown in Figure 5, where users are routed to the region where their data resides, and
their requests are fully processed within that region. A given client of the application knows the
region that it is accessing and requests an application name resolution by regional hostname—
our example application in region AA has a hostname aa.example.com and in region BB it has a
hostname bb.example.com. We do not imply geographical proximity between the regions AA and
BB. In practice two regions could be close to each other (e.g., 10–20 ms Round Trip Time) or far
away across continents (e.g., 100–200 ms Round Trip Time).

For applications that can only be run within a single region, this gives potentially higher avail-
ability by sharding user data across multiple regions and better end-user latency for the users close
to the regions hosting their data. Sharding the user data across regions can reduce the number of
users impacted due to an application change that affects just a single region. In addition, this de-
ployment model can be used to meet jurisdictional requirements for keeping data within a given
region. This approach has the disadvantage of (a) having to deal with failover and loss of avail-
ability when a single region has issues, (b) having issues absorbing distributed denial of service

(DDoS) attacks and large traffic spikes being directed at a specific region, since user requests go
to a specific region and cannot be load-balanced across multiple regions, and (c) rendering user
experience as a function of where their data is located (i.e., if a user’s data resides in region AA,
then it is always routed to region AA no matter where the user is in the world).

4.2 DNS Load Balancing

The next step in the evolution of multi-regional applications is the addition of a DNS Load Bal-
ancer to connect regional application stacks and load balance traffic across the regions. This is for
applications that can run across multiple regions and be run with a data store that shares data and
makes it accessible across those regions.

DNS-based Load Balancing is considered to be the standard way for clients to resolve the domain
name of the service to get the IP address to use when accessing the service [17, 73]. A domain can
be configured with one or more IP addresses, usually Virtual IPs (VIPs), and these VIP addresses

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

61:14 A. Berenberg and B. Calder

Fig. 5. Fully isolated stacks with data sharding in multi-regional deployment model.

target load balancers that front the application stacks. Then the DNS is configured by the applica-
tion owner with one of the following routing policies that determines how the VIP addresses are
given out for client requests:

• Round Robin (RR)—DNS requests are rotated and shared evenly across multiple IPs/VIPs
that serve a domain.

• Weighted Round Robin (WRR)—DNS requests are assigned to different VIPs based on
service owner-configured weight.

• Geo-Mapping of Clients—Another option is to create geo-mapping of clients to an edge
region and DNS requests will be assigned to the closest IP/VIP. For this approach, DNS
LB providers have their own knowledge of IP prefixes mapped to known geographies, as
well as latency associated with reaching these geographies. This mapping is used to decide
which region client IPs belong to, as well as which region destination VIPs belong to when
processing a request.

When DNS is integrated with load balancing, the load balancer health-checks the application
VIPs by sending requests to the VIP as if it were with real traffic. Typically, such health checking
is done from several regions to make sure there is a reasonable level of confidence that the VIP is
indeed healthy. After the health status is collected, unhealthy VIPs are removed from participating

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

Deployment Archetypes for Cloud Applications 61:15

Fig. 6. DNS with multi-regional isolated stacks deployment model.

in the DNS routing assignments. In addition, DNS load balancing can be set up so that DNS requests
can be redirected from a primary VIP to a failover VIP based on health checking.

With DNS, a client initiates a DNS request every time when the DNS’ time-to-live (TTL) ex-
pires. This resolved address is the address the client will send the request to. The client will con-
tinue to use that resolved address until the TTL expires and continue to send requests to the
assigned region and its services behind the domain. The TTL affects the failover time and avail-
ability of the application, and ultimately the user’s experience.

We now walk through an example using Figure 6 with region AA and region BB. When a request
to resolve example.com is answered by the DNS LB it is mapped to a VIP based on which one of
the three routing approaches described earlier is used. If region AA becomes unhealthy and the
DNS LB knows this, then it will update the DNS routing to not use AA. For clients already using
AA, they will need to wait for their TTL to expire before they contact DNS again; then they will
be routed to BB. The TTL will affect the availability of those clients during this resolution.

We now look at the tradeoff of using DNS LB with geo-mapping versus weighted round robin.
Let us assume 100 DNS requests come from clients near the geographical area around region AA
and 50 DNS requests come from clients near region BB.

• With DNS geo-mapping, region AA will receive all traffic generated by clients from region
AA, and region BB will receive all traffic generated by clients from region BB. This produces

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

61:16 A. Berenberg and B. Calder

the best latency, but an unequal load on the two regions, and can lead to resource contention
in some regions over others. In this case, it can be beneficial to use autoscaling to scale each
region to the desired load.

• With DNS weighted round robin, that says to send 50% of requests to region AA and 50% to
region BB, this will cause 75 DNS requests to go to region AA and BB each. This provides
the best load distribution, but latency will suffer, because clients will be mapped across
regions randomly. In addition, even for distributing load this is an approximation, since DNS
does not understand the actual load received by the services in each region and is instead
assuming the load will even out over time. But this may not hold true, since a given client
may generate significantly more requests for example.com than other clients. Therefore,
the number of requests sent to a region do not directly correlate with the number of DNS
requests.

4.3 DNS Load Balancing with Isolated Stacks

With DNS load balancing, user data should no longer be contained to one region for primary
operations, since requests can end up being sent to any of the regions participating in the DNS
load balancing. For this deployment model, multi-regional or global storage and database solutions
should be used, since the same data needs to be accessible at the same time across multiple regions.
Asynchronous or synchronous cross-region replication is employed depending on capabilities of
storage and databases as well as the need of the application [25].

For DNS load balancing to truly work and provide the highest availability, there needs to be an
understanding of the end-to-end health of the service stack within each region, and it is up to the

application, or the monitoring infrastructure, to combine the end-to-end health of the

application together and provide this to the DNS Load Balancer. In this section, we will look
at two strategies for providing full-stack health information to the DNS LB.

For multi-regional topology, the DNS Load Balancer usually is configured for health checking,
combined with load balancing or routing options. For each regional VIP there are one or more
VIPs dedicated as backup pointing to the other regions. If a health check of the regional VIP fails,
then backup VIPs are used. If there is more than one backup VIP, then configured load balancing
policies are used (e.g., RR, WRR or geo-mapping) over VIPs in the backup pool.

An alternative approach to having backup VIPs is to have DNS with the set of regional VIPs
and weights used to guide the traffic across those VIPs. Health checks can be attached to load
balancing policies and an unhealthy VIP is removed from the VIP pool, and in the WRR case
the dynamic weights are recalculated to send traffic in proportion to the remaining VIPs using the
configured weights. Let us say the intended configuration is VIP-AA:0.5, VIP-BB:0.25, VIP-CC:0.25,
which means 50% of DNS responses contain VIP-AA, 25% of responses contain VIP-BB and 25% of
responses VIP-CC. If VIP-AA becomes unhealthy, then DNS LB recalculates weights as VIP-BB:0.5
and VIP-CC:0.5, which means 50% of DNS responses contain VIP-BB and 50% responses contain
VIP-CC.

Let us look again at Figure 5, where we are using DNS with multi-regional isolated stacks. If
there is an issue for just a single layer (e.g., Load Balancer 1, all Front-Ends, Load Balancer 2, all
Back-Ends, or regional SQL database) in a single region, then the region would be unhealthy and
traffic should be directed to a different region. This means the monitoring infrastructure needs to
build up an understanding of the health of all layers for each region and provide this to the DNS
LB. There are two main approaches for achieving this:

• Propagate layer failure up the stack to Load Balancer 1—This approach assumes that
the health of a layer is continuously propagated up the stack to each prior layer. In case of

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

Deployment Archetypes for Cloud Applications 61:17

a failure in the region all Front-Ends will eventually know that they are unhealthy, which
tells Load Balancer 1 there are no Front-Ends to send the traffic to in the region. This will
cause DNS LB health checks to Load Balancer 1 to fail and the region to stop being used.
For this approach to work, every service in the application stack needs to implement such
logic.

• Aggregate health of all layers and report health to Load Balancer 1—The stack of
services within a region is declaratively defined and a region is considered healthy only
when all services are healthy via aggregated status that is collected by an independent
health observer service for the application. The observer aggregates the health status across
all services in the stack and sends the combined health status to Load Balancer 1. If the
aggregated status is unhealthy, then the DNS LB will fail a health check and take the region
out of service.

For both of these approaches, Load Balancer 1 can only front one domain name at a time (e.g.,
example.com), and there are usually multiple services deployed behind one domain name (e.g.,
example.com/videoshare, example.com/news, example.com/shopping), separated by the path or
other routing attributes. The issue is example.com has a set of VIPs shared across all of these
services, so there is not a way to distinguish between the different services (paths) at the DNS
load balancer, which would be required to understand the health of each service and act upon it.
This means to understand and give the health status to Load Balancer 1, the health of all services
behind that domain name need to be combined and will have the same shared fate if there is a
failure. For example, if example.com/videoshare has an issue in a region and is down, then the
aggregated health check will fail for example.com telling Load Balancer 1 to not use that region
for any of the services under example.com, and all requests will be sent to other healthy regions.
This aggregated health check creates a shared fate for services under a single domain name when
using DNS load balancing for a region failure.

To summarize, the advantages of DNS load balancing with separated stacks are:

• Any region can serve a user request. This allows (a) a potential DDoS to be mitigated by a
larger pool of resources across multiple regions and (b) traffic to be shifted to the remaining
available regions if there is a failure with a specific region.

• The service owner has manual controls over per-region traffic distribution via the DNS LB
configuration.

• Separate VIPs behind DNS can easily point to completely different deployments, different
Clouds or on-premises data centers, providing mix-and-match options for increased failure
isolation.

The disadvantages are:

• The need to implement propagation or aggregation of health across services and zones in
regional stacks introduces considerable complexity.

• DNS TTL delays actuating failover to a healthy region and the time to failover is not
deterministic. 75% of the TTLs are at 5 min and the remaining 25% are longer (can be
hours to days) [28]. In addition, DNS TTLs can be ignored by some nameservers and some
clients, which means the TTL can be much longer for clients than what the service provider
specifies.

• DNS load balancing is based on DNS requests that do not represent volume of actual traffic
and therefore cannot anticipate how much regional capacity will be needed to serve traffic
represented by these DNS requests.

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

61:18 A. Berenberg and B. Calder

• Application capacity can be stranded within a region, especially for applications that are
not autoscaled and applications that have diurnal traffic patterns. Capacity is not available
to other regions for use, since the DNS LB may not have the means to take into account the
region’s capacity when directing traffic.

This deployment architecture has been a standard for user-facing applications for many years.

4.4 DNS LB with Custom Multi-regional Load Balancing

Large companies, such as Netflix [36, 64], who choose a multi-regional deployment but would like
to build globally ubiquitous applications supplement the Cloud provider’s multi-regional setup de-
scribed above with their own multi-regional/global load balancing. In this approach, an application
owner builds their own multi-regional load balancer using Cloud compute resources. In addition,
this multi-regional load balancer must have higher availability than the target application. Such a
load balancer can be placed to serve internet traffic and can also be used for service-to-service com-
munication as well. A multi-regional load balancer needs to know the health of the stack across
all of the regions and the capacity available in each region so as not to overload other regions with
too much traffic. Building a multi-regional highly available Load Balancer requires specialized en-
gineering skills and specialized processes to provide what is essentially described in the Global
Services Stack in Section 5.3 (built and managed by Cloud providers).

This deployment model may be customized further as having only regional databases that have
data for a subset of users. Such a model requires a custom load balancer to know which region
each user mapped to and proxy the request cross-regions [86].

This deployment model depicted in Figure 7 increases the availability of a multi-regional de-
ployment, but it puts the responsibility on the application owners for solving the hard problem of
connecting regions in a way to optimize for lower latency, resource utilization and health. While
sophisticated application owners build additional layers on top of Cloud providers, it is not ex-
pected that all application owners, who want global ubiquitous applications, will build their own
traffic management, but rather use the global deployment archetypes described next.

5 GLOBAL

Consumer applications may evolve into global applications due to the global nature of the business,
and/or the need to optimize for end-user latency and experience. This means businesses want to
serve their cached and dynamic content as close to the users as possible no matter where users
are located (both where they live as well as where they travel). In addition, as part of running a
global business, application owners need to contend with global events that produce traffic spikes,
as well as defend against massive DDoS attacks from around the globe. The difference between
multi-regional and global deployments is that while multi-regional creates a deployment from
regional building blocks where the application is aware of what region it is running in, a global
deployment builds on a globally available fabric of network, data storage and databases that allow
the application code to be location unaware.

There are several deployment models for global applications. Below, we discuss a few popular
ones, but more variations are possible. These models are typically present in the Cloud and not
on-premises as they require large global investments in network infrastructure and infrastructure
systems that power these applications.

The global model also assumes the data is globally replicated and available in all regions where
services run. This is because requests will be load balanced across regions, so multiple regions will
need to have access to and read/write the same data. An example of such systems are Google’s
Spanner [25] and CockroachDB [113]. With global databases like Spanner and CockroachDB, the

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

Deployment Archetypes for Cloud Applications 61:19

Fig. 7. DNS with custom multi-regional load balancing deployment model.

application can be accessed from any region around the world to perform SQL transactions, with
strong consistency and five-nines availability. Some applications that do not require strong consis-
tency due to their business requirements may achieve five nines with asynchronously replicated
and eventually consistent data systems.

5.1 Global Anycast

The next step in the evolution of application traffic serving is using Global Anycast as an alterna-
tive to DNS Load Balancing to create a deployment capable of instantaneous failover of internet
traffic should a multi-regional application become unavailable in one of its regions.

Global Anycast uses a single IP for the application to route traffic from a sender to the topolog-
ically closest destination IP address for a group of potential receivers, which for Cloud providers
means edge load balancers. Google announces IPs via the Border Gateway Protocol (BGP) from
multiple points across its global network [104]. A deployment model that uses Global Anycast
eliminates the need for DNS Load balancing with multiple domain VIPs, since the application only
needs a single Global Anycast VIP, but it still needs to address the following two issues:

• Too many close-by users can overwhelm an edge site where the traffic is being sent to.
• BGP route calculation might reset connections because of “route flap” [124], which hap-

pens when there is a pattern of repeated route withdrawal and re-announcement. This can

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

61:20 A. Berenberg and B. Calder

happen because of frequent problems on a particular link or misconfiguration or misman-
agement of routers.

To address these issues, Google developed stabilized anycast using the Maglev [32] network load
balancer. This solved the problem of route flap by redirecting a flapped request to a peer Maglev
that is responsible for the connection [21]. Maglevs are deployed in each edge location and if an
edge location goes down, BGP will reroute to Maglevs in the next closest edge location. In addition,
Google uses global load balancing for the Global Anycast LB itself to distribute traffic to edge sites
to ensure an edge site is not overloaded. The algorithm considers incoming Requests Per Second

(RPS) load and the capacity of edge proxies and assigns new connections to each edge to ensure
the best utilization of edge proxies, while at the same time optimizing for user latency.

Google Cloud uses stabilized Anycast technology as a front to the Cloud HTTP(S) Load Balancer
[57]. This load balancer provides application owners with the ability to have a single global VIP
that represents their global application deployed anywhere in the world.

5.2 Global Anycast LB with Isolated Regional Stacks

In this deployment model, a Global anycast LB ingests traffic and then sends traffic to the re-
gional LB in the region containing the application owner’s compute resources, depending on geo-
mapping, health and weights. Other Cloud providers have also developed products using Anycast
– Azure Front Door [84] and AWS Global Accelerator [10].

This approach, depicted in Figure 8, uses a regional stack like the prior one, and replaces the DNS
LB with a Global Anycast LB. This means the application still has to build up an understanding
of the health of all layers within a given region and provide this to the Global Anycast LB. This is
the same as described in the DNS LB Section 4.3, where the Global Anycast LB only understands
the health being propagated up to it via the Load Balancer 1 layer from each region.

The advantages of a Global Anycast LB with Isolated Regional Stacks are:

• Using DNS with Global Anycast means DNS always resolves a domain to the same single
VIP. Lack of reliance on specific DNS resolution means that load balancing between the
regions will be done instantaneously by Maglevs and not subject to DNS TTL.

• A single global VIP simplifies an application owner’s setup as there is no need to use DNS
LB and manage multiple IPs. Using Global Anycast with DNS will resolve a domain to the
single global VIP anywhere in the world and traffic will reach the closest healthy destination
with available capacity.

The disadvantages of this approach are:

• Since this is still a regional-based stack, the application still needs to implement propagation
or aggregation of health across services in regional stacks.

• The application owner does not have control over traffic distribution from clients to the
edge location where the LB service resides. In comparison, with DNS LB the application
owner could redirect traffic administratively if needed. For example, if an application itself
has a partial issue in a given region, but the health checks are passing (i.e., gray failure),
then with DNS it is easy to tell it to not send any traffic to the VIP having the issue for that
region.

This deployment architecture is for global user-facing applications.

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

Deployment Archetypes for Cloud Applications 61:21

Fig. 8. Global Anycast with regional isolated stacks and global database deployment model.

5.3 Global Services Stack

In this deployment, services are global. The data is also global and synchronously or asyn-
chronously replicated and available in all regions where services run (e.g., using Google Spanner
[25]). In addition, having a global network is important to making a Global Services Stack possible.

This application deployment is targeted toward applications with a worldwide audience, that
receive traffic spikes, serve a large volume of traffic, must run economically and need five nines
availability. These are typically large-scale global applications deployed over three or more regions
and a large number of microservices (a hundred or more) all communicating with each other, with
global load balancers between them. At a high level, this approach puts a Global Load Balancer in
front of each microservice. Given the large number of microservices, there is typically distributed
ownership with each team owning one or a few microservices [69]. Having each microservice (or
set of them) having their own Global LB provides the ability to manage traffic and reason about
each microservice independently, which fits well with the distributed ownership of the microser-
vices that make up the overall application.

This global load balancer provides the global service-to-service communication for each mi-
croservice in the stack. This functionality is provided by either middle proxies or by using a global
service mesh with sidecar proxies or even a proxyless gRPC service mesh [103]. Using a managed
service mesh has an advantage in that it aids in managing tens to hundreds of microservices with

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

61:22 A. Berenberg and B. Calder

Fig. 9. Global services stack deployment model.

integrated load balancing, health checking and autoscaling [39] without needing to take care of
proxy resilience and availability.

With a service mesh, the global service-to-service communication supports HTTP(S)/gRPC and
TCP/UDP traffic. Global service communication (called east-west or service-to-service load balanc-
ing and routing) optimizes traffic globally for each microservice in the stack, so communication at
each source-to-destination pair of services exhibits the lowest latency. This makes sure the desti-
nation service is not overloaded and redirects traffic to the closest available region in case of failure
or administrative maintenance. The placement of services in a Global Services Stack is economical
as only one zone is needed in each region where the application wants to run.

Let us consider the example.com application in a Global Services Stack deployment as depicted
in Figure 9. A request to example.com is resolved to the Global Anycast VIP and the request is
subsequently sent to the Global Front-End Load Balancer to decide where to serve this request. In
addition, each path in example.com (assume example.com/video and example.com/photo in this
example) is registered with the Global Front-End Load Balancer so they can be routed to different
services. Depending on the path chosen (example.com/video or example.com/photo) as well as
other routing options, the request is mapped to a different service, in this case a video service or
photo service. This allows each path to have separate health checking, which was not achievable
when using DNS LB described in Section 4.3. Each service may be deployed independently as a
microservice with its own Front-End service or combined into a shared Front-End service. Health
checking for each path is done independently and a shared Front-End service may reply as healthy
for video requests and unhealthy for photo requests allowing global load balancing to direct traffic

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

Deployment Archetypes for Cloud Applications 61:23

separately for each service. Depending on the health, geographical proximity, and capacity of the
Front-End service, requests will be forwarded to the most appropriate instances.

The same approach happens at the Global Back-End Load Balancer when the Front-End service
wants to send requests to the Back-End service. For example, assume the Back-End service in
region AA is unhealthy. Traffic from Front-End in region AA will be rerouted to the Back-End
in region BB or region CC by the Global Back-End Load Balancer, without the need to propagate
health up the stack (as described in the DNS Load Balancing with Isolated Stacks deployment model
in Section 4.3). With the Back-End in region AA unhealthy, the Global Back-End Load Balancer will
assess the health, geographic proximity, and capacity of each individual microservice/service in all
zones of regions BB and CC, and requests will flow to the most appropriate Back-End instances.
From there on, the closest, and most likely local, database will be used to read or write the data.

The following are benefits of the Global Stack Services deployment approach:

• Allows every layer and microservice in the stack to understand the health of and load to that
layer to load balance for each layer. In comparison, Multi-region deployments (Section 4),
DNS LB with Isolated Stacks (Section 4.3), and Global Anycast LB with Isolated Stacks
(Section 5.2) approaches require applications to stitch together stacks and health signals
to deal with failures. In addition, all of these approaches lack sufficient understanding of
service capacity for load balancing down the stack.

• As shown in the example.com example, a whole region does not become unhealthy for an
application if one microservice in the stack becomes unhealthy in that region, compared to
the DNS LB approaches.

• Traffic spikes are automatically in real time load-balanced around the world (regions) as
needed to keep the application available. Traffic spikes could be caused by users (e.g., trig-
gered by inorganic events) or by services (e.g., an accidentally created DoS attack from lack
of exponential backoff).

• This deployment is the cheapest option to run a worldwide application with the highest
availability, since capacity can always be efficiently used. In Google Cloud, we integrate
global load balancing with autoscaling to allow an application to scale up and down as the
load changes [57].

The following is the disadvantage with this approach:

• Global service-to-service communication means the potential for a global outage if the
Global LB has an issue. This requires the utmost care in operation of such services. Here
are some of the practices used by Cloud providers to manage risk:
◦ Rollouts and configuration changes are done incrementally and applied zone by zone to

minimize blast radius for a bad software update or configuration change. Even within
a zone, techniques such as blue-green deployment or rolling updates are employed. In
addition, a new version of a service workload is canaried for some time in the first zone
to understand the impact of a new binary on the availability and latency of the application
before resuming rollout to other zones and regions.

◦ To mitigate global outages, cloud providers use techniques such as sharding to reduce
the blast radius across tenants (customers) in multi-tenant systems, as well as provide
multiple paths to a service either via dual VIPs, or DNS failover from a global VIP to
regional VIPs.

When using a global stack there is no requirement for services to be global, and they can be
downscoped to regional when it makes sense. It is up to the particular application architecture,
and a mix of regional and global services in one application deployment is possible.

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

61:24 A. Berenberg and B. Calder

6 HYBRID

Hybrid applications that consist of running across a combination of on-premises and cloud are
becoming increasingly common. While on-premises applications have grown organically, they
still fit into the archetypes and models described in this article. On-premises software stacks will
continue to evolve and be connected with the Cloud [119], to the point where on-premises can be
considered to be another form of a zone or region of a public cloud, thus creating InterCloud or
Interconnected Cloud as described in Reference [19]. Hybrid application availability and resilience
can then be improved by creating deployment models that leverage failover between on-premises
and Cloud and coordinating the execution of the parts of the application and its services [99].
Deployment models discussed in Sections 2–6 are used as a building blocks for composed hybrid
applications, and the following are a few examples:

• Cloud frontend serving for on-premises applications.
◦ Use case: Better network latency and security for applications.
◦ In this scenario, data resides on-premises. Incoming traffic (typically from the internet)

is ingested into the Cloud using one of the front-end serving architectures for different
archetypes. As traffic is ingested, Cloud-managed services such as content distribution
networks, DDoS protection, or access policies are applied and enforced. Then the traf-
fic is sent to the on-premises deployment for further processing. This example could be
achieved by using multi-regional deployment archetype and all its models described in
Section 4, and global deployment archetypes and all its models described in Section 5.

• Cloud disaster recovery [8] for on-premises applications.
◦ Use case: Backup of important data for redundancy.
◦ Some application owners prefer to use on-premises deployment and sync their data to

the Cloud for recovery in case something happens with their on-premises data. In this
scenario, the data placement archetype (Zonal in Section 2, Regional in Section 3, Multi-
regional in Section 4, or Global in Section 5) can be employed, depending on the Cloud
provider’s availability and the application owner’s needs.

• Replicated application between on-premises and Cloud [3, 85].
◦ Use case: During migration from on-premises to Cloud or when traffic demand can grow

inorganically.
◦ Incoming traffic (typically from the internet) is ingested into the cloud using one of the

front-end serving architectures for different archetypes. The application is replicated be-
tween cloud region(s) and on-premises datacenter(s). Data is also replicated between
cloud and on-premises as if it were cross-region replication between cloud regions. Traffic
management capabilities allow for scenarios such as:
– Traffic can be directed to the closest regional application stack, independently of

whether the stacks are in the Cloud or on-premises.
– Allow the balancing of application capacity between the Cloud and on-premises parts

of the application.
– Burst into Cloud when on-premises application capacity is exhausted [100].
– Failover to boost overall application availability [30] when on-premises application is

unhealthy [1].
◦ Data replication is also being supported between Cloud and on-premises. For example, a

database can be replicated across the Cloud and on-premises, as with Cloud SQL [54].
• Using first-party Cloud services with an on-premises application [5].
◦ Use case: The application needs specialized services that are easily available in the Cloud

and hard to get on-premises.

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

Deployment Archetypes for Cloud Applications 61:25

◦ In this scenario, the application is mixed, with some services residing on-premises [7, 87,
113] and some on public Cloud. Services residing in the Cloud are potentially managed
first-party services, such as Google Cloud BigQuery and Machine Learning.

If the on-premises application can be treated as running in a separate region, then the multi-
regional and global archetypes described, respectively, in Sections 4 and 5, may be applicable.

Besides the enterprise on-premises, hybrid deployments may apply to edge or fog computing
environments [15, 16, 111] where parts of applications may reside on the edge of the network to
further improve latency or extend application deployment to mobile devices [112] and Internet of
Things [26].

7 MULTI-CLOUD

To improve availability even further, the application may be deployed across multiple public
clouds, but there are many areas of investment that need to be made to make this an accessible
option for businesses.

A multi-cloud application has the potential for the highest availability, as it removes reliance on
a single Cloud provider to be always up and provides cross-cloud load balancing and autoscaling
for traffic spikes. In addition, using multiple clouds provides more vendor optionality and choices
for the application owner. Also, a multi-cloud application may have lower latencies as it gives more
options to distribute the load in a given geography across cloud providers.

The current state of this deployment is in its infancy and some of its challenges [20] include:

• APIs—a multi-cloud application needs portable APIs [96] to effectively run its application
across clouds [19, 119]. There are many areas where the APIs are similar enough across
clouds (e.g., Object/Blob storage), where others are fairly different. Increasingly there are
a number of open source API standards [31, 96] that are becoming common across clouds
(e.g., Kubernetes APIs [71], Envoy Proxy APIs [34], and Istio [63]), which will aid multi-
cloud deployments. Another approach some applications have taken is to leverage the base
semantics that are common across the clouds and abstract the cloud-specific differences
away into a client library layer the application uses. The library layer can translate the
requests to the appropriate APIs depending on the cloud being used.

• Operational Complexity—to run multi-cloud applications, multi-cloud operational tools
and orchestrators for binary configuration, upgrade, rollout, monitoring and debugging
must be developed [6]. The complexity of building such tools is based on the challenges
of not having common cross-cloud APIs as well as the operational differences in platform.
To help address this, application owners can use a cross-cloud application management plat-
form such as Anthos [75] to provide consistent development and operational experiences
across clouds. In addition, application owners can use cross-cloud configuration tools such
as Terraform to simplify configuration to provision resources in multiple clouds [27].

• Load Balancing—there are multiple ways of load balancing between public and private
clouds [3, 85, 92]. The majority of them are only in the beginning of a multi-cloud journey,
such as:
(i) DNS LB—similar to the DNS LB with Isolated Stacks deployment described in Section 4.3,
a multi-cloud application could use DNS LB to route traffic across clouds.
(ii) Client-driven Traffic Routing—each client receives IPs/VIPs for each of the clouds
and distributes traffic based on either routing or load balancing configuration. Configura-
tion is delivered via a control plane. An example of this approach is Envoy Mobile [35].
(iii) Global Anycast LB with Isolated Stacks Across Clouds—in this deployment, one
cloud has the primary Global LB [3] that distributes traffic between primary and secondary

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

61:26 A. Berenberg and B. Calder

clouds, based on algorithms chosen by the application owner. This approach assumes net-
work connectivity and that the global load balancer has the endpoints from other clouds
registered with it. The distribution algorithms may be (a) geographically optimized (e.g.,
send to the closest cloud), (b) burst to the other cloud due to lack of capacity [3], which is
typically from private to public cloud, and (c) failover to the other cloud based on the health
of the service behind the Global LB.
(iv) Global Services Stack—this is similar to a single-cloud Global Services Stack deploy-
ment described in Section 5.3, where each layer either operates across clouds or the serving
stack is distributed across clouds. In this case, a given service is replicated across multiple
clouds and traffic is distributed based on geography or other constraints. This deployment
model is hard to achieve today, and for this approach, having common cross-cloud APIs is
important.

• Networking and Security—A multi-cloud application can have its services in different
clouds connected to one another via public (Internet) or private (interconnects and VPN
tunnels) connections. Connectivity is subject to QoS and bandwidth management, and net-
work level encryption via IPSEC or SSL/TLS. For private connectivity, underlying pipes are
shared between applications, and cloud providers must manage resources shared between
different services and their customers [20]. Multiple networking topologies [48] are sup-
ported for public and private connectivity based on the needs of the application:
(i) Flat Network—In this model a flat network spans multiple clouds and all services can
communicate with one another. Firewalls are enforced on both sides. In addition, zero trust
or end-to-end application security via mTLS authentication and authorization between ser-
vices in different clouds is used. This requires either homogeneity of compute environments,
such as Kubernetes and hence the same credentials, or have federated identities for hetero-
geneous compute environments.
(ii) Gateway Model (ingress and egress)—In this model, there are gateways on both sides.
Depending on the direction of the traffic, it is either ingress or egress gateways. Ingress
gateway protects access to the services by providing a security perimeter to enforce access
to the limited number of services by allowed or denied roles or IP addresses. The access
is enforced for “workforce” (people) and “workloads” (services). Egress gateway protects
source workloads and data, from events such as exfiltration attempts, and also enforces
policies for destination services in other clouds. Zero trust model is also possible here by
Gateway terminating mTLS from the client and creating another mTLS connection to the
server.
(iii) Handover Model—In this model, there is a shared environment between two clouds
and data from one cloud is uploaded to this shared environment and picked up by the work-
load from another cloud (e.g., using Pub/Sub or worker queues). There is no private network
connectivity between parts of the application. This model is not used by serving applica-
tions, but rather by processing applications and data analytics.

• Data Management—Multi-cloud database [90] and storage solutions that replicate across
clouds [68] would need to be used. Approaches can be considered where the primary for
the database is in one cloud and read replicas in another cloud [91]. If the primary cloud
has issues, then first try to failover within that cloud, otherwise failover to another cloud.

• Cost—A multi-cloud deployment may entail higher costs [18, 19], with a tradeoff for higher
availability and cross-cloud optionality [109]. A few examples are:
(i) Data duplicated across clouds will typically be stored also redundantly within each cloud,
which costs more than just keeping the data replicated within a single cloud.

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

Deployment Archetypes for Cloud Applications 61:27

Table 1. Zonal Deployment Archetype Comparison of Risks

Deployment
Model

Scope of
Failure

What Failed Application
Down

Mitigation Instantaneous
Recovery

Single Zone zone Zonal infra or
managed
services

Yes Wait until zone is
back or rebuild app
in new zone

No

Single Zone
with Failover
(Figure 2)

zone Zonal infra or
managed
services

Yes (during
failover)
No (after failover)

Continue operation
via failover to
standby zone

No

region Regional infra
or managed
services

Yes Wait until region is
back or rebuild app
in new region

No

(ii) The egress costs for replicating and duplicating data across clouds may be higher than
just storing the data replicated and durable within a single cloud.
(iii) There can be resource inefficiency unless the cross-cloud load balancer fully under-
stands the capacity utilization in each cloud. This includes understanding the actual capac-
ity and load to the microservice layers in each cloud.

The multi-cloud approach is promising [20] for increasing availability and optionality, but there
are many areas of investment that need to be made to make this an accessible option for businesses.

8 COMPARING AND SELECTING DEPLOYMENT MODELS

Throughout this article, we examined how to span zones, regions, and geographical reach to
achieve availability for serving applications. To achieve higher availability, an application deploy-
ment has copies of its serving stack, using either (a) an additional failover copy or (b) additional
active serving stacks to load balance across. As the application increases its geographical spread
from zonal, to regional, to multi-regional, to global, a higher number of nines of reliability can
be achieved. The deployments that achieve the highest availability are multi-regional, global, and
multi-cloud.

Multi-regional and global deployment archetypes need databases, object stores, and data caches
that provide access to a shared state. Depending on the type of datastore needed, there is a spec-
trum of multi-regional and global data store deployments, using either synchronously or asyn-
chronously replicated data, to choose from. The type of datastore used depends on the application’s
access patterns and type of data that it is serving, whether it serves read-only cached data (e.g.,
songs, images, or directions), can function well with eventual consistency (e.g., putting items in
an online shopping cart), or requires strong consistency. In addition, the application owner needs
to determine how much redundancy and freshness of data is needed for business continuity.

Tables 1, 2, 3, 4, and 5 provide a comparison between the various deployment archetypes and
models. Some deployment archetypes (a table for each archetype) have more than one deployment
model (first column). We compare each archetype and deployment model pair based on character-
istics that are used to judge the risks of application failures. The second column is the potential
scope of failure, which we separate into four types: zone, region, global, and cloud (for multi-cloud
deployment). The third column describes, at an abstract level, the type of failure that could cause
the corresponding scope of failure to occur.

Therefore, each row in the table describes the application impact and recovery for a given de-
ployment archetype and model assuming the specified scope and type of failure has occurred.
Then, for application impact and recovery, the last three columns describe: the impact to the

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

61:28 A. Berenberg and B. Calder

Table 2. Regional Deployment Archetype Comparison of Risks

Deployment
Model

Scope of
Failure

What Failed Application
Down

Mitigation Instantaneous
Recovery

Single Region

(Figure 3)

zone Zonal infra or
managed
services

No Continue operation
from remaining
zones in region

Yes

region Regional infra
or managed
services

Yes Wait until region is
back or rebuild app
in new region

No

Single Region
with Failover
(Figure 4)

zone Zonal infra or
managed
services

No Continue operation
from remaining
zones in the
primary region

Yes

region Regional infra
or managed
services

Yes (during
failover)
No (after failover)

Continue operation
via failover to
standby region

No

global DNS LB (if
DNS is used
for failover)

Yes for new or
expired TTL
clients

Wait until DNS LB
is back

No

application’s serving stack’s availability (fourth column), the type of mitigation needed to re-
store availability because of the failure (fifth column), and whether the mitigation provides in-
stantaneous recovery or not (sixth column). For the Application Down column, “Yes” means the
application is down with an outage until the specified Mitigation happens, and “No” means the
application continues to serve traffic (typically due to load balancing across the scope of failure
or after failover completes).

A regional application may experience zonal and regional failures, whereas a multi-regional
application may experience zonal, regional, and global failures. In addition, the failures could be
cascading from smaller scopes to a larger one. For example, cascading zonal failures limited within
a region would be considered a regional failure and spreading beyond the region would be con-
sidered a multi-regional or global failure.

When we examine “What Failed,” it could be the cloud service provider, or could be a service
in the application, which may include dependencies on third party services. It is important to
capture and understand all of the dependencies, their criticality to availability and their risks when
considering what can fail and how.

8.1 Failover-to-Standby Versus Load Balancing

When comparing the failover-to-standby deployment models to those that use load balancing
across failure domains, the failover-to-standby model has the following concerns an application
owner needs to address:

• Failover-to-standby models do not provide instantaneous recovery due to the time to
failover delays and therefore display unavailability even if for a short period of time. The
startup time of the standby stack and the ability for it to go from zero load to full throt-
tle is important, as traffic does not trickle in slowly on failover, but rather moves over all
at once. For example, when the standby stack takes on primary traffic, its service caches
may be cold and there is going to be observed latency impact, as well as additional com-
pute capacity may be needed to process requests as the caches warm up. These failover
startup delays can impact availability and can expose startup issues by putting high load on

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

Deployment Archetypes for Cloud Applications 61:29

Table 3. Multi-regional Deployment Archetype Comparison of Risks

Deployment Model Scope of
Failure

What Failed Application
Down

Mitigation Instantaneous
Recovery

Multi-regional
Fully Isolated with
Data Sharding
(No Failover to
Standby) (Figure 5)

zone Zonal infra or
managed
services

No Continue operation
from remaining
zones in the region

Yes

region Regional infra
or managed
services for a
single region

Yes for users in
region affected,
since users are
sharded across
regions

Wait until shard is
back

No

global DNS Yes for new or
expired TTL
clients

Wait until DNS is
back

No

Multi-regional
Fully Isolated with
Data Sharding with
Failover to Standby
(Figure 5)

region Regional infra
or managed
services

Yes (during
failover)
No (after
failover)

Continue operation
via failover to
standby for region
affected

No

Multi-regional
with DNS LB
(Figure 6)

zone Zonal infra or
managed
services

No Continue operation
from remaining
healthy zones
across the regions

Yes

region Regional infra
or managed
services

No Continue operation
from remaining
regions

No
(DNS TTL)

region Single app
service down

No Load balance traffic
away from the
affected regional
stack to another
region

No
(DNS TTL)

global DNS LB Yes
for new or
expired TTL
clients

Wait until DNS LB
is back

No
(DNS TTL)

Multi-
regional
Database

Yes Wait until database
is back

No

Multi-regional
with DNS LB &
Custom
Multi-regional LB
(Figure 7)

global DNS LB Yes
for new or
expired TTL
clients

Wait until DNS LB
is back

No
(DNS TTL)

Custom LB Yes Mitigate custom LB
failures

No

Multi-
regional
Database

Yes Wait until database
is back

No

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

61:30 A. Berenberg and B. Calder

Table 4. Global Deployment Archetype Comparison of Risks

Deployment
Model

Scope of
Failure

What Failed Application
Down

Mitigation Instantaneous
Recovery

Global Anycast
with Isolated
Stacks and Global
Database
(Figure 8)

Zone Zonal infra or
managed
services

No Continue operation
from remaining
healthy zones
across the regions

Yes

region Regional infra
or managed
services down

No Continue operation
from remaining
regions

Yes

region One instance
of application
microservice
in region
down

No Continue operation
of this
microservice from
remaining regions

Yes

global Global
Anycast

Yes Wait until Global
Anycast recovered,
Unless backup VIPs
can be used for
failover

No (if no
backup VIP)
Yes (with
backup VIPs)

Global
Database

Yes Wait until database
is back

No

Global Services

Stack (Figure 9)

zone Zonal infra or
managed
services

No Continue operation
from remaining
healthy zones
across the regions

Yes

region Regional infra
or managed
services

No Continue operation
from remaining
regions

Yes

region One instance
of application
microservice
in region
down

No Region(s) not
considered down.
Load balance
individual
microservice to
another region

Yes

global Global
Anycast

Yes Wait until global
Anycast recovered,
Unless backup VIPs
can be used for
failover

No (if no
backup VIP)
Yes (with
backup VIPs)

Global
Database

Yes Wait until database
is back

No

Global service
mesh
(proxyless or
sidecar proxy)

No Continue in
degraded using old
endpoints and
health

Yes

infrequently stressed code paths that themselves may cause application outages or delays
during failover.

• A standby stack must be maintained even though it is unused most of the time. In addition,
there is always a risk that the standby stack will not be ready to take on primary responsibil-
ity during an outage event. To avoid this risk, failover systems should be regularly tested by

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

Deployment Archetypes for Cloud Applications 61:31

Table 5. Multi-cloud Deployment Archetype Comparison of Risks

Deployment
Model

Scope of
Failure

What Failed Application
Down

Mitigation Instantaneous
Recovery

Client Side
Load
Balancing

one cloud Global or
multi-regional
issue

No Continue operation
from remaining
cloud

Yes (if using
client-side load
balancing)

DNS Load
Balancing

one cloud Global or
multi-regional
issue

No Continue operation
from remaining
cloud

No (DNS TTL)

promoting the standby stack to the primary stack. Special functionality testing, load testing
and fault injection tools and monitoring must be used to have high confidence in a standby
stack.

• Failover-to-standby models are typically more expensive, as the extra standby serving stack
must be up and running, instead of reusing active additional setups in other zones or regions
via load balancing.

In comparison, an application that is using a load balancing-based deployment model steers
traffic away from the failure domain having an issue. This means the application does not have
to deal with the above issues, because every zone and region is always taking traffic. However, it
does require the application to either provision for N + 1, where 1 is a failure domain and N is
needed to serve traffic for the application, or use auto-scaling with a large enough buffer.

The failover in load balancing is triggered by the change in the health checking results or by
detection of outlier instances that appeared unhealthy. Typically, there is a threshold of unhealthy
endpoints in a failure domain configured, so once a number of unhealthy endpoints crosses the
threshold, traffic starts to be load-balanced away from the failure domain.

Some cloud provider load-balancing products implement the notion of gentle failover, where
instead of moving traffic over in one step, the traffic trickles over to the other zones and regions to
warm up the caches. Even though all locations have warmed up caches for their standard traffic
patterns, when traffic is load-balanced to a new region, there may still be warming up that needs
to occur if this type of traffic is new to that region (e.g., if traffic is language-specific).

8.2 Regional Versus Global Application Stacks

It is also interesting to compare regional application stacks to global application stacks. With a
regional application stack, the whole region has to be pronounced unhealthy if there is an issue
with any part of the application in a region, and that region is removed from serving traffic. This
occurs even if it is only one service in the application stack that is unhealthy for that region.

In comparison, a global application stack is not considered unhealthy if an individual service in
a region has an issue, because each individual service in the application can be independently load-
balanced to another region as needed. Independence of individual service or microservice failover
makes the Global Services Stack deployment model to be the most cost-optimized and have lower
complexity as there is no need to aggregate failures together or propagate them up the stack. This
model also matches the management of the running application where various microservices are
owned and operated by different teams.

In addition, with the Global Service Stack, it is more nimble to expand the service into addi-
tional zones and regions, should the business expand into new geographies. For example, some
applications may need part of the stack to be as close to the consumer as possible and therefore

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

61:32 A. Berenberg and B. Calder

want to serve only part of the stack from edge locations, where the amount of compute resources
and network bandwidth is limited. Because each service and microservice is individually deployed
in a Global Services Stack, this provides the ability to deploy only latency-critical services at the
edge and leave the rest of the stack in cloud provider regions.

Ownership and management of infrastructure, of the outage when infrastructure fails, and the
subsequent recovery is an important dimension to consider. When an application owner needs a
global deployment, but only has access to or decides to use regional cloud infrastructure, this re-
quires the application owner to build custom infrastructure that stitches regions together to create
a seamless global deployment. This custom global infrastructure is complex to build and operate
to achieve high availability, and the ownership falls on the application owner. Using a Global
Services Stack deployment provided by a cloud provider moves the complexity and responsibility
of custom LBs from application owner to the cloud provider, along with the responsibility for the
availability of all the infrastructure needed to provide the global serving stack.

8.3 Instantaneous Recovery

The final column in Tables 1, 2, 3, 4, and 5 examines which cases support instantaneous recovery,
which is the ability to switch away from the failed application stack in a zone or region without
incurring a delay in sending traffic to an available zone or region. Automatic instantaneous re-
covery via load balancing is needed for applications requiring five-nines availability, since they
cannot have manual mitigation with a budget of less than 5.25 min of unavailability per year. To
achieve instantaneous recovery, cloud-native Global Anycast Load Balancing products are prefer-
able to DNS load balancing to avoid delays that the DNS protocol introduces via TTL configuration
and clients (e.g., web browsers) disobeying TTLs, as well as due to Global Anycast Load Balancing
having integrated health checking. Having said that, when using Global Anycast, the availability
of the application is highly dependent on the availability of Global Anycast and its single VIP.
This is why there is significant investment into reliability by Cloud providers for Global Anycast
load balancing. In addition to the ongoing investment in reliability, cloud providers are looking at
providing a backup VIP to the Global Anycast VIP.

8.4 Cost of Availability

When comparing all of these models, every application defines an acceptable probability of failure
that makes sense for the business. Based on the tolerance for failure, application and data needs,
a deployment archetype is chosen. Each archetype has a cost to achieve the desired number of
nines. The higher the desired number of nines, the higher the cost to achieve it. There are multiple
dimensions of cost, ranging from the number of instances per zone, number of zones to use, net-
work bandwidth cost for cross-zonal or cross-regional failover traffic, the cost of synchronous and
asynchronous data replication, the cost of redundant storage, the cost of the software complexity
required to assemble an application within each archetype, the cost of training and professional
skills, and the cost of managing the application.

Zonal and regional archetypes are similar in cost, while deploying an application beyond one re-
gion can add cross-regional network bandwidth costs. Multi-regional and Global archetypes have
even higher cost due to data replication around the world. Hybrid and Multi-cloud deployments
can be even more costly due to egress cost, and data storage and replication costs, as well as the
cost of redundant compute instances that are not exactly the same in each cloud and on-premises
environment, which can result in unutilized resources. For example, the hardware configurations,
memory sizes, networking bandwidths, storage latencies, and more, can be different across clouds
and on-premises, and need to be optimized differently to arrive at efficient deployments across
them. How far the application owner pushes toward using higher availability deployment models

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

Deployment Archetypes for Cloud Applications 61:33

comes at a cost, and is a tradeoff based on what the application needs and the impact on application
users and the business when there is an outage.

When comparing the economics of redundancy in regional and global application stacks, we can
observe that global deployments are cheaper, while providing higher reliability. Let us look at an
example. Multi-regional deployments typically replicate within a region and run three zones for
each region for redundancy with the cost of 3*N, where N is the number of regions. Three zones
should be used, because these are regional vertical stacks (Section 4.3), and you need redundancy
within a region to maintain regional availability when a zone fails, versus having to failover the
regional vertical stack. This model is typically used across two regions. As you increase the number
of regions, the cost goes up dramatically, and it makes sense to move to a global deployment from
a cost perspective. A global deployment requires only one fault domain (zone) within a region, so
the cost is N instead of 3*N for the application serving stack. As more regions are added, the costs
of additional regions are incremental for a global deployment.

8.5 Using Deployment Models

In this section, we compare archetypes and deployment models on geographic redundancy, failover
to standby versus load balancing, instantaneous recovery, ownership of the infrastructure, and
cost. There is no perfect deployment model, and every application owner needs to choose a de-
ployment model(s) that is best for their application, and business. We now summarize the choice
of deployment models and use cases fitting for each deployment model discussed in this article.

• Single Zone—Single-zone model (Section 2.1) is used for development and testing, as high
availability is not required and single zone configurations reduce costs. It also can be used
for high performance processing, or applications that are not user-facing or business-critical
where availability is not a priority. Legacy license-based workloads may also benefit from
this deployment due to license costs.

• Single Zone with Failover Zone—Targets for this deployment model (Section 2.2) are non-
critical services or services that can have a downtime or maintenance window. This includes
off-the-shelf software workloads that cannot be changed or single license workloads. This
deployment model increases availability for a single zone application. It doubles the cost if
configured for instantaneous failover (active-active or hot-standby), but cost could be kept
down if instantaneous failover is not needed and the failover zone is only used when the
primary zone is down. Depending on the choice of standby type [9], the time to recover
changes. In cloud deployments, the time to recovery can be mitigated by modern tooling
[27] (e.g., instance templating, configuration automation and infrastructure as a code), so
the service operator can recreate resources in another zone in a matter of minutes to reduce
recovery time, though it continues to be non-instantaneous.

• Single Region—The Single Region model (Section 3.1) is used for serving localized applica-
tions with their local users, which keeps latency low, data locally replicated within a region
and are naturally single homed. Availability is achieved by replication across three zones.
It also could be part of a larger setup where application owners configure N single regions
independently to serve a worldwide audience in separated regions by issuing different ap-
plication endpoints for the audience in various geographies. If high availability is not an
overriding priority, then two zones within a region could be used for replication to allow
for one zone to be down or one zone to be in maintenance, but not both at the same time.
This balances availability with cost.

• Single Region with Failover Region—When enterprise legacy applications that are de-
signed for a single on-premises region move to the cloud, they want to increase their

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

61:34 A. Berenberg and B. Calder

availability by having a Disaster Recovery (DR) option [131]. There are a range of disas-
ters (e.g., natural disasters, regional network failure, regional system failure, human errors)
where having failover across regions provides protection, as described in Reference [115].
Single Region with Failover Region (Section 3.2) improves availability of a single region
deployment model by keeping an extra region, should the primary region go down. Data is
replicated, usually asynchronously, between two regions and is used for DR. Public cloud
providers (e.g., AWS [12] and GCP [47]) advocate for using multiple regions with DR as
best practice. When using multi-region DR, an important recommendation is to observe the
health of each layer of the application and fail the primary region should any layer (service)
go down across all zones within a region. This recommendation applies to all deployment
models with isolated regional stacks. If instantaneous failover and hence high availability is
not required, then the failover region may be kept dormant (via scaling down) to keep costs
down. The choices of cold versus warm standby described in “Single Zone with Failover”
in this Section apply here as well.

• Multi-regional: Isolated Regional Stacks with Data Sharding—This deployment model
is used by application owners who in case of a region down event are willing to have service
unavailable for users mapped to the affected region, in exchange for keeping the data resi-
dent in the region. An example of an application with this deployment model (Section 4.1) is
banking (“www.us.hsbc.com” for U.S. customers and “www.hsbc.co.uk” for UK customers),
where U.S. customers will only be served from U.S. cloud region due to data locality and lo-
cal regulations. Users use this model via regional API endpoints. For higher availability, the
variation of this deployment model calls for each isolated region to have a failover region,
which increases availability, but it also increases the cost. Data replication across primary
and failover regions is required. This variation can be used when data residency require-
ments are applied to a jurisdiction, where jurisdiction encompasses at least two regions.

• Multi-regional: DNS LB with Isolated Regional Stacks—This deployment model
(Section 4.3) is commonly used to produce a serving application for worldwide users [86].
While it does have regional isolation at each layer, it costs three times of global services stack
(Section 5.3) with a lower potential availability due to the DNS TTL problem in Section 4.3.
In addition to global DNS LB, there are other global services needed such as authentication.
Choice of this deployment is often dictated by the architecture of the cloud provider plat-
form (e.g., AWS encourages designs for isolated regional stacks), so applications on the top
of the platform generally use cloud providers endorsed architecture [12, 44].

• Multi-regional: DNS LB with Custom Multi-region LB—This deployment model, de-
scribed in Section 4.4, is used by application owners [36, 64], who want to use regional
deployments as building blocks to produce a global application with custom logic to stitch
layers of a multi-layered (micro-service) application together. This model is expensive, be-
cause there is an additional cost to maintaining your own custom load balancer across re-
gional/global layers responsible for routing and authentication. Applications that are built
on the top of cloud platforms geared toward regional isolation, should use this architecture
if they want to provide seamless global service.

• Global Anycast LB with Isolated Stacks—Global Anycast LB with Isolated Stacks targets
global highly available applications as described in Section 5.2. Similar to “Multi-regional
DNS LB with Isolated Regional Stacks” (Section 4.3), the benefit of this deployment model
is one VIP that is mapped to a DNS name worldwide. As an example, this model enables ap-
plication use cases described in Reference [4] where for a global application, the data would
be dynamically placed to optimize for user latency. Even as more vertical regional compute
stacks are added in new regions, both front-end serving and dynamic data placement do

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

https://www.us.hsbc.com�egingroup count@ "201D
elax
elax uccode `unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef accent@spacefactor spacefactor }accent 3 count@ egroup spacefactor accent@spacefactor uppercase {gdef ''{{char '176}}}endgroup setbox 	hr@@ hbox {''}@tempdima wd 	hr@@ advance @tempdima ht 	hr@@ advance @tempdima dp 	hr@@ ''
https://www.hsbc.co.uk�egingroup count@ "201D
elax
elax uccode `unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef accent@spacefactor spacefactor }accent 3 count@ egroup spacefactor accent@spacefactor uppercase {gdef ''{{char '176}}}endgroup setbox 	hr@@ hbox {''}@tempdima wd 	hr@@ advance @tempdima ht 	hr@@ advance @tempdima dp 	hr@@ ''

Deployment Archetypes for Cloud Applications 61:35

not need to change as Global Anycast abstracts regional VIPs, and dynamic data placement
abstracts the region where users of the application are mapped to. Combination of Global
Anycast, global dynamic data placement and regional compute is an incremental step from
multi-regional to global architecture. GCP, Azure, and AWS support this deployment model.

• Global Services Stack—The Global Services Stack (Section 5.3) is used for latency sensitive
serving applications with a worldwide audience or even with local users that need to be
served out of more than one region. This model is the cheapest of all multi-region and global
deployment models as it only requires one zone per region, while the rest of deployments
require three zones per region to keep regional availability high. This deployment model
has a risk of a global aspect of the service having an outage, since those global aspects do
not have regional isolation, as we discussed in Section 5.3.

• Hybrid—The Hybrid model, described in Section 6, is used for connecting on-premises ser-
vices with public cloud services and as such is used either for transition of application from
on-premises to public cloud, or when part of application always stays on-premises. If this
deployment consists only of one public cloud, then an application developer has the option
of using the cloud’s APIs while calling from on-premises. Should the hybrid deployment
also contain services from more than one public clouds [19, 119], then the application de-
veloper should consider an abstraction layer to isolate each cloud’s APIs or use portable
solutions [96] across both on-premises and public cloud.

• Multi-cloud—The Multi-cloud model, described in Section 7, relies on composing deploy-
ment out of the above deployment models [5]. The choice of deployment within each cloud
depends on the purpose of multi-cloud deployment. If the purpose is replication with in-
stantaneous failover, then the same deployment models in each cloud are recommended and
developers of such applications should consider feature parity across clouds and as such lean
toward portable products and solutions. If the purpose of deployment is to connect services
in multiple clouds (e.g., due to acquisitions), then the mix and match of deployments work,
and an application owner may choose the deployment model depending on the product
portfolio cloud providers have (e.g., multi-regional on one cloud and global on another).

8.6 Best Practices

Deployment archetype questions come up often during all phases of the application owner’s jour-
ney to cloud: from the design of their first deployment, to scaling the application as traffic grows,
to enforcing consistency of technologies across the teams, and more. While questions are the same,
the answers are different for digital-native versus enterprise application owners. Even within each
category of application owners (e.g., digital natives versus enterprise) the desirable deployment
model depends not only on the type of application but also on philosophy of how teams operate
within the company, what are the principles of availability the application owner subscribes to
and which of them are more important. Some examples of challenges [20] application owners face
are:

• Move from Services to Microservices—If an application owner decides to move their
deployment from monolith or set of services to microservices [7, 45, 110, 61], then it changes
deployment needs and creates a massively distributed system that increases layering and
with it creates requirements in the area of observability [80], service dependency tracking
and reporting [77], and applying security policies across the regional or global stack of
microservices [98].

• Lift and Shift—To simplify the transition from on-premises to public cloud [5], as a first
step an application owner may decide to replicate their on-premises deployment. While the

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

61:36 A. Berenberg and B. Calder

deployment in the on-premises datacenter worked for them, a cloud deployment that mir-
rors on-premises deployment may not be satisfactory, either due to non-optimized costs or
change in operations model, as now the public provider operates the platform and may gen-
erate unanticipated events. The modernization of deployment, including cloud native tech-
nologies such as autoscaling, replication and investing in fault tolerance may be needed.
Authors in Reference [76] examine the pluses and minuses of lift and shift and how to opti-
mize a strategy for a particular deployment. Migration planning to understand enterprise’s
infrastructure readiness, public cloud costs, performance implications, and security are dis-
cussed in Reference [102].

• Organic Growth—as a company grows, it may require changes to the deployment model
of applications [94] either due to (a) scalability challenges a current deployment creates,
(b) a business going global and hence has new geographies where users are accessing this
application from, (c) usage of different storage and database products and solutions, or
(d) the desire to integrate deployments of acquired companies. There are typically two
paths: (i) evolution in place by gradually moving from one deployment model to another, or
(ii) creating brand new deployment strategy and moving services one by one to the new
framework.

These paths are often accompanied by application modernization, and here are three
examples.
(1) Transition from VMs to Containers leads to a transition from services to microservices
described in “Move from services to microservices” in this Section. It will overtime trigger
a change in the existing deployment archetype from one monolithic deployment model to
a purpose-focused collection of deployment models.
(2) Transition from proprietary service to service communication protocols to gRPC results
in a fine-grained, method-based service to service communication paradigm that encour-
ages purpose-focused deployment models.
(3) Transition from self-implemented service discovery to cloud provider’s native solution
modernizes networking toward adoption of service mesh with sidecars or even proxyless
solutions, both of which introduce flexibility in choice of deployment models and an ease
of evolution from one deployment model to another.

• Increased Regulations—Regulatory requirements such as GDPR, impose data residency
and data transfer topology constraints [109]. Application owners need to choose deploy-
ment archetypes to fit into these geographical constraints [13]. As a best practice, users
are mapped to jurisdictions where they live and their data at rest and data in transfer are
contained within that same jurisdiction. Application deployment to address regulation re-
quirements may use Single Region with Failover within the same jurisdiction (e.g., GCP
has Sydney and Melbourne regions in Australia), or any of the Multi-regional archetypes
(Section 4) that are constrained to VIPs and compute resources within the jurisdiction.

• Deployment Archetype Change—Time to market or some other constraints may cause
application owners to choose a deployment archetype that serves them well to get them to
market, but not the desired archetype for the long term. Cloud providers should facilitate
migration of deployments from one archetype to another [94]. This is better done when
products and solutions are built as a set of building blocks instead of monolithic products,
so parts may be exchanged. Every cloud application could be thought of as a combination of
data plane, control plane and management plane. Each of these planes may have different
availability, disaster recovery or regulation requirements. Each plane may have a different
deployment model to satisfy its requirements. As requirements change, each plane can be
evolved from one deployment model to the next one independently from other planes.

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

Deployment Archetypes for Cloud Applications 61:37

• Service Layering Considerations—An application is a collection of services and mi-
croservices built on a mix of Infrastructure-as-a-Service (IaaS), Platform-as-a-Service

(PaaS), Network-as-a-Service (NaaS) service, and cloud delivery models [120], and also
usually includes multiple Software-as-a-Service (SaaS), provided by the cloud provider
and by Independent Software Vendors (ISV). The bottom layer, consisting of IaaS and
NaaS, becomes a foundational deployment model and each layer on the top will inherit
properties of layers below. These concepts are orthogonal to the deployment models de-
scribed in our article. Let us examine how to combine the deployment models in our article
and the layers from Reference [120]. One option could be to assemble Multi-regional with
Isolated Stack and Data Sharding deployment (Section 4.1) from the bottom up, starting with
regional IaaS, and then adding regional Kubernetes cluster as SaaS and regional Serverless
events as PaaS. Another option is to build on the global stack (any deployment models from
Section 5). The option to avoid is the one where layering violates desired properties of isola-
tion, availability, determinism, and RTO/RPO, such using a regional foundation, then adding
global SaaS on the top and still expecting regional isolation and geographical determinism
in request serving. For applications focused on high availability, the weakest link amongst
all included layers and components will define application availability.

• Hybrid and Multi-cloud—This is a deployment composed across multiple clouds or on-
premises and cloud. This presents the question of how to architect each cloud’s deployment
and compose the cross-cloud deployment overall. This usually depends on the purpose of
the application as described in Sections 6 and 7. The typical choices are (a) replication across
clouds for failover [1], (b) ability to run on any cloud to maintain the optionally to exit or
move to any other cloud, (c) connecting clouds due to integration of acquisitions [120], and
(d) using best of breed products on each cloud [97]. Depending on the choice, the deploy-
ment models will be different.

• Organizational Culture—The choice of deployment models often depends on organiza-
tional culture. Usually, the choice is made by the team that either provides (a) blueprints for
application developers on how their applications should be deployed or (b) allows teams
to pick a model that fits their application ((a) assures consistency of deployments across
the company and enforces best practices, while (b) enables flexibility of how teams operate
services, while advising on best practices).

8.7 Deployment Efficiency

Aside from availability, latency and cost, other factors such as sustainability [18], energy efficiency,
and compute and storage resource rightsizing, also contribute to the deployment model decision
process. Below, we look at several factors that contribute to efficiency of application deployment
and how it utilizes resources:

• Preemptable Resources in Non-serving Applications—Data pipelines that process and
analyze the data can achieve greater efficiency and cost by using preemptible VMs or spot
instances [78] either directly or running containers over preemptible VMs. While pre-
emptible VM and spot instances are cost-efficient, they can create uncertainty about com-
pletion of work items. References [82, 107] discuss the tradeoffs for when to choose be-
tween using spot instances versus regular instances. To solve the uncertainty about spot
instances going away, data pipelines can be designed to checkpoint and restart or to have
their task complete in short time periods. Reference [95] describes efficiency gains by run-
ning a music ingestion and analysis data pipeline consisting of multiple microservices, each
of which performs a single task in a time shorter than preemption notice [139–141], and the

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

61:38 A. Berenberg and B. Calder

preemption notice typically gives 30 seconds to a couple of minutes for the task to shut-
down. Microservices can also be designed to be resumed from the last known state to better
utilize preemptible computing. The efficiency gain in cost savings of using preemptible VMs
over regular VMs can be substantial but does require re-architecting applications [95].

• Cost Optimized VMs—GCP’s E2 VMs [74, 134] employ dynamic resource management
by mapping virtual CPU and memory to physical CPU and memory, thus packing more
VMs on fewer but larger physical servers, creating potential savings up to 55% [14]. Cloud
applications that are not latency sensitive and want to run efficiently, should use this type
of VMs.

• Scale Down Unused Resources—There are types of stateless and stateful applications
that can be scaled down to minimum or zero compute consumption when unused [93, 122].
These applications typically perform scheduled tasks and spin up when they need to run, or
the application can tolerate the time to spin up compute when a request arrives. Also, scaling
down of unused resources can be used for the warm standby stack in failover archetypes
described in Sections 2.2 and 3.2.

• Overall Efficient Application Deployment—Applications can get efficiency gains by op-
timizing the choice of the computing platform (VMs, containers, serverless, functions), the
choice of storage and database, and the choice of RPC or work-queue-based service com-
munication [106, 128]. Reference [24] describes the modeling of applications based on the
choice of suitable VM type to meet the deployment constraints for each service in the ap-
plication. The goal is to choose the VMs that consume the minimum number of resources
that provide the performance needed and minimize execution costs. To achieve overall effi-
cient application deployment [106, 128], developers design their application for the tasks to
be accomplished, from serving real time traffic to backend pipeline processing, from mis-
sion critical 24/7 applications to ones that can tolerate some downtime, from daemons or
work-item-based application that run for a short time, and more.

• Sustainable Application Model—[43] suggests that serving applications use thread and
tasks to parallelize execution for efficiency. Similar to applications moving from single
threaded to multi-threaded microservices, the transition from VMs to containers orches-
trates better bin packing. The bin packing increases utilization of underlying VMs by
placing applications that bottleneck on different resources (some applications are memory
intensive, some CPU intensive, and some I/O intensive) on the same VM. Similarly, bursty
applications can utilize compute capacity in close-by zones by reusing existing compute
capacity, while not increasing network costs and still maintaining data locality.

• Minimize Presence in Each Cloud Region—As described in Sections 5.3 and 8.4, the
Global Services Stack minimizes total resource usage, because only one zone within each
region is needed, which in turn can provide up to three times resource savings compared
to Multi-regional deployments.

• Capacity-aware Load Balancing—Reference [41] enables traffic distribution where only
enough traffic is sent to the closest zone or region until target server utilization is reached
and the rest is sent further away. This algorithm improves server utilization as in steady
state it keeps servers highly utilized and reduces the size of the autoscaling buffer needed
and minimizes network costs, because traffic is assigned to the closest zone. Note, while
this algorithm provides savings on compute and network resources during steady state,
during overflows there is a temporary rise in network costs and latency. These algorithms
can be present in multi-regional deployment models for load balancing within a region, but
it is more efficient in the Global Services Stack deployment model. In on-premises environ-
ments capacity can be constrained and capacity aware-load balancing combined with hybrid

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

Deployment Archetypes for Cloud Applications 61:39

deployments can overflow traffic to the cloud. In GCP, capacity aware load balancing can
be configured as described in Reference [72].

• Data Locality—It is important to note that co-location of data and compute resources min-
imizes data transfer [109] and as such contributes to efficiency of application. In all deploy-
ment models, we assumed that compute resources and data are co-located. The choice of
the location of compute resources is driven either by where the majority of the applica-
tion users are located or by regulatory requirements. Once compute resource locations are
chosen, data is co-located with compute by specifying the same locations in multi-regional
storage and database configuration, or alternatively data locality is decided algorithmically
based on what is best for the user [108]. It is possible to have compute resources placed al-
gorithmically based on minimum RTT to the users as well and have data always co-located
with compute resources. To further increase efficiency of data access, caching is used at
multiple layers of the application. Global and Multi-regional deployment archetypes use a
global CDN to bring data as close as possible to the user. Subsequently, each layer caches
to optimize for serving latency as well as for minimizing capacity of compute resources to
serve data from storage and databases.

9 ADDITIONAL RELATED WORK

In this section, we will cover additional related work in areas of building deployment archetypes,
building applications for availability, application delivery using load balancing, autoscaling and
health-checking, and for hybrid and multi-cloud applications.

Reference [20] provides an extensive view of the foundation for cloud computing technologies,
investigates their state-of-the-art solutions, and identifies their limitations. It offers comprehensive
directions, identifies trends, challenges, and solutions needed to produce cloud applications of
different types—from cost sensitive, to scalable global enterprise applications, and to pervasive and
ubiquitous applications that span globe, hybrid, multi-cloud, further spreading to edge to enable
Internet of Things (IoT) and fog computing. Our article adds to this work, by describing in detail
the deployments archetypes spanning zonal, regional, multi-regional, global, hybrid and multi-
cloud and their tradeoffs and implications for application architecture, availability, load balancing
and autoscaling, geographic redundancy and isolation, cost, and best practices.

Architecting for Availability—Reference [137] examines in detail cloud application surviv-
ability concepts such as fault-tolerance, reliability, and availability. They consider failures of soft-
ware components, hardware infrastructure, and a failure of a zone or one or more regions, as events
contributing to cloud application failure, and they describe deployment archetypes to sustain these
failures. Reference [9] proposes models to calculate availability of standby application stacks that
depend on standby modes (cold, warm, hot) and application internal architecture, such as share-
able components. Reference [129] survey classifies layers of resiliency in centralized clouds and
decentralized clouds, such as fog, mist, mobile and edge mobile computing. In comparison, our
article examines the deployment archetypes focused on availability, latency, and geographical re-
dundancy and isolation across zonal, regional, and global deployment models. This is just as im-
portant to the understanding of the overall architecture as choosing the type of infrastructure and
services (e.g., VMs, containers, serverless, microservices) to use to build your application, which
the prior work focuses on.

Pervasive and ubiquitous applications are built on common architecture for application owners
all over the globe. For e-Commerce sites, streaming video services, news sites, gaming platforms,
and IoT services [26] that require 24/7 uptime, a multi-regional architecture is preferred [37] due to
minimized network latency, DR strategy (active-active or active-passive) and meeting regulatory
compliance (build multi-regional architecture in different geographic regions, but store application

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

61:40 A. Berenberg and B. Calder

user related data in the same geographic region as the application user). Estrin surveys 3 public
cloud providers, Amazon Web Services, Microsoft Azure, and Google Cloud, in the areas of DNS,
CDN, DDoS, storage, and databases, while also considering cost and operational aspects [37]. We
build on this work to examine deployment archetypes beyond multi-regional.

References [65] and [133] examine models for estimating availability within a region for dif-
ferent failure types, functionality constraints, redundancy, and interdependency models between
various components. Reference [65] models availability for a multi-tiered application with an ex-
ample of three-tiers with (1) frontend HTTP servers, (2) business logic application as the middle
tier, and (3) a database storing the system state at the back-end. Reference [133] looks at the spec-
trum of deployment stack for stateless versus stateful applications within a zone, within a region
and sustaining regional failures with a failover option to obtain the best possible RPO and RTO.

Automated Data Placement—Reference [4] proposes dynamic data placement for geo dis-
tributed cloud applications using Volley—a system that solves for constraints such as WAN band-
width costs and datacenter capacity limits, while also minimizing user-perceived latency. In
addition, issues of shared data, and data inter-dependencies complicate placement especially for
regulated industries. The Volley system analyzes collected logs to drive data migration to geo-
graphical location closest to each user based on a set of constraints. This approach relates to the
data sharded model in Section 4.1, applying intelligence for moving the data closer to the user.

Traffic Management, Load Balancing and Autoscaling for Cloud Applications—Each of
the deployment archetypes described in this article requires fault tolerance techniques to meet
their needs. The approach needs to make sure geographically distributed services and microser-
vices are not overloaded and the application as a whole is optimized for latency and can sus-
tain faults. The higher the expected availability level [40, 42], the more traffic management sup-
port needed [89], which includes load balancing algorithms discussed in References [85, 92],
health checking for resiliency as described in Reference [46], autoscaling for stateless workloads
[39, 100], health-driven failover, cross-regional overflows, rate limiting [101] and load shedding
[112] to protect service instances from overload. The approaches described in our article are stan-
dard ones existing in the cloud computing industry [41], and we have focused on which ones to
use for the various archetype models described. The following is a set of related work that provides
the details for how these approaches work for DNS, Anycast and health checking.

Authors in Reference [17] described using DNS Load Balancing to distribute internet traffic
to the closest geographically and healthy regional stacks. Such distribution optimizes dynamic
application capacity and instant health status of geographically distributed instances. Authors in
Reference [79] describe how DNS Load Balancing evolved as a traffic management tool for cross
regional traffic management. While there are more dynamic load balancing algorithms for cloud
applications surveyed in Reference [3], it is basic DNS load balancing that is the best fit for vertical
stack failover and an acceptable option for routing between vertical geographically distributed
application stacks.

An important part of load balancing-as-a-solution is health checking. Authors in Reference [108]
describe how Fastly built a distributed health checking system for making a decision about opti-
mal traffic distribution and failover should geo distributed servers become unhealthy. Anycast
Load Balancing [136] described communication paradigm at the application layer as a way to find
latency-optimized replicated servers by having an anycast resolver to map an anycast domain
name and a selection criteria into an IP address.

Tenereillo [116] showed that while DNS is often used for global server load balancing [62],
it is not suitable for global cloud applications that require five nines of availability because of
inherent delays built into DNS protocol. Globally ubiquitous applications that often use CDN [38]
cannot afford DNS slow reaction during failover. Instead they use anycast for geographic routing

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

Deployment Archetypes for Cloud Applications 61:41

of internet traffic to their application stacks that are spread out across regions [66]. Google Cloud
[57], Microsoft Azure [84] and AWS [10] built global anycast products for global applications to
address this.

Defining QoS or SLA for application stack would translate to the need of load balancing to
support QoS and SLA targeted load balancing [88, 121, 135] as intent-based constraints that in-
ternally would need to be translated into signals such as target utilization, number of errors per
type, adjustment to changing health of servers. Load balancing for long (streaming) and short
(request/response) flows discussed in Reference [138] further influence the choice of deployment
archetype for a specific type of traffic an application receives.

Autoscaling is as important as load balancing for an application delivery. In fact, the integration
of load balancing and autoscaling helps multi-regional and global deployments to sustain inorganic
traffic spikes. Authors in Reference [39] describe such integration depending on the performance
and capacity of servers and desired level of QoS to sustain events such as the death of celebrities
[81, 130], which can send internet serving infrastructure and services into overload across many
companies. Authors in Reference [100] define autoscaling taxonomy and survey autoscaling algo-
rithms based on architecture of application (single tier versus multi-tier), reaction type to event
(proactive or reactive), scaling method and other factors that contribute to multi-tier cloud appli-
cation. In our article, we build on prior work by discussing how Global Services Stack archetype
(Section 5.3) combined with autoscaling based on load balancing signals, creates a deployment that
can withstand such inorganic traffic spikes by trading latency for availability.

Service-oriented Architecture and Hybrid Applications—The architecture used for cloud
applications has evolved from monolith into service-oriented architecture (SOA). The authors
in Reference [70] present a review of cloud application architectures and its evolution that results
in a decentralized, distributed system [114] with large numbers of moving parts of services and
microservices, each of which has a deployment mode. An application that is split between on-
premise data centers and a public cloud faces the pressure of how to evolve the application parts
that reside on-premises (whether legacy applications or newly written) to work with cloud as
described in References [7, 87, 113]. An approach often taken is to evolve the application to a
service-oriented architecture through partial, in-place re-architecture and rewrite, or building the
bridge to service-based application deployment [60].

We view on-premises datacenters evolving into a private region in a multi-regional deployment
of inter-connected cloud as authors in Reference [119] propose. The hybrid application is then
built using the desired regional with failover deployment archetype, using cross cloud autoscaling
[19], multi-regional or global deployment archetypes. As enterprises bring critical workloads to
public clouds, multi-tenancy of public clouds and single tenancy of on-premises can create SLA
challenges for overall hybrid deployment as discussed in Reference [30].

Multi-cloud Applications—A multi-cloud application can potentially gain the benefit of im-
proved availability by using independent cloud stacks, that do not share failures due to software
bugs, and wider geographical reach and presence. This cannot be achieved without application
services using cross-cloud APIs and portable open source solutions as discussed in References
[31, 96] to assure that the parts of application can be either replicated or interconnected across
the clouds. Multi-cloud orchestration via automation and declarative configuration [6] simplifies
topology and configuration of multi-cloud applications. Authors in Reference [125] describe an ap-
proach of cloud federation using service layers (Infrastructure, Middleware, and Application) that
would make an application cloud independent, but it requires all cloud providers to collaborate on
federation APIs and protocols at each service layer. Multi-cloud applications can attain optimized
latency [132] via extending deployments that have mobile and IoT components to edge and fog
environments as discussed in References [15, 16, 111]. While edge, fog and mobile deployments

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

61:42 A. Berenberg and B. Calder

minimize user-perceived latency, they also come with limited capacity, storage, and available en-
ergy as discussed in Reference [126]. These limitations create new deployment archetypes where
computations are offloaded from mobile to edge cloud, where a cloud application stack goes all
the way from cloud to edge to the mobile devices.

10 SUMMARY

In this article, we examined several deployment archetypes for Cloud applications. The deploy-
ment archetypes are evolutionary, from zonal, to regional, to multi-regional, to global, to hybrid,
and to multi-cloud, where each step progressively provides increasing higher availability and bet-
ter end-user latency.

Each archetype has its place and importance according to unique application requirements and
the tradeoffs it provides. Applications will want to push as far up the deployment archetypes as
possible. For user facing-applications, DNS Load Balancing with separate stacks is the standard
and familiar approach for multi-regional and cross-cloud deployments.

For applications that want to achieve the highest level of availability, the Global Services Stack
deployment model is preferable to stitching isolated regional service stacks together with DNS
Load Balancing, due to its ability to load-balance with fully integrated health monitoring and un-
derstanding capacity management. Multi-cloud with load balancing is the deployment model to
watch as it evolves, with related technologies also rapidly evolving. This model drives the impor-
tance of open APIs and client-side traffic management.

ACKNOWLEDGMENTS

We thank Andi Gutmans, Geoff Voelker, Amit Ganesh, Kara Moscoe, Sachin Gupta, Ben Treynor,
John Laham, Sam Greenfield, Chris Taylor, Dave Nettleton, Nirav Mehta, Olaf Schnapauff, Ines
Evid, Davis Hart, Michael Abd-El-Malek, Sameet Agarwal, Zach Seils, Jai Haridas, James Duncan,
Barbara Stanley, Uday Naik, Mike Dahlin, Amin Vahdat, Philippe Poutonnet, and the anonymous
reviewers for providing valuable feedback on this article, and we thank everyone working on Cloud
whose work informed and inspired this survey.

REFERENCES

[1] I. D. Addo, S. I. Ahamed, and W. C. Chu. 2014. A reference architecture for high-availability automatic failover

between PaaS cloud providers. In Proceedings of the International Conference on Trustworthy Systems and Their Ap-

plications. 14–21. DOI:10.1109/TSA.2014.12

[2] A. Adya, D. Myers, J. Howell, J. Elson, C. Meek, V. Khemani, S. Fulger, P. Gu, L. Bhuvanagiri, J. Hunter, R. Peon, L.

Kai, A. Shraer, A. Merchant, and K. Lev-Ari. 2016. Slicer: Auto-sharding for datacenter applications. In Proceedings

of the USENIX Conference on Operating Systems Design and Implementation.

[3] S. Afzal and G. Kavitha. 2019. Load balancing in cloud computing–A hierarchical taxonomical classification. J. Cloud

Comp. 8, 22 (2019). https://doi.org/10.1186/s13677-019-0146-7

[4] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan. 2010. Volley: Automated data placement

for geo-distributed cloud services. In Proceedings of the Conference on Network System Design and Implementation

(NSDI’10).

[5] N. Ahmad, Q. N. Naveed, and N. Hoda. 2018. Strategy and procedures for migration to the cloud computing. In

Proceedings of the IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS’18).

1–5. DOI:10.1109/ICETAS.2018.8629101

[6] K. Alexander, C. Lee, E. Kim, and S. Helal. 2017. Enabling end-to-end orchestration of multi-cloud applications. IEEE

Access 5 (2017), 18862–18875. DOI:10.1109/ACCESS.2017.2738658

[7] A. A. Almonaies, J. R. Cordy, and T. R. Dean. 2010. Legacy system evolution towards service-oriented architecture.

In Proceedings of the International in Workshop SOA Migration and Evolution.

[8] M. M. Alshammari, A. A. Alwan, A. Nordin, and I. F. Al-Shaikhli. 2017. Disaster recovery in single-cloud and multi-

cloud environments: Issues and challenges. Proceedings of the 4th IEEE International Conference on Engineering Tech-

nologies and Applied Sciences (ICETAS’17). 1–7. DOI:10.1109/ICETAS.2017.8277868

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

https://doi.org/10.1109/TSA.2014.12
https://doi.org/10.1186/s13677-019-0146-7
https://doi.org/10.1109/ICETAS.2018.8629101
https://doi.org/10.1109/ACCESS.2017.2738658
https://doi.org/10.1109/ICETAS.2017.8277868

Deployment Archetypes for Cloud Applications 61:43

[9] S. V. Amari and G. Dill. 2009. A new method for reliability analysis of standby systems. In Proceedings of the Annual

Reliability and Maintainability Symposium. 417–422. DOI:10.1109/RAMS.2009.4914713

[10] Amazon Web Services. 2018. Global Accelerator. Retrieved from https://aws.amazon.com/global-accelerator/.

[11] Amazon Web Services. 2021. Amazon Route 53 Application Recovery Controller. Retrieved from https://aws.amazon.

com/route53/application-recovery-controller/.

[12] Amazon Web Services. 2021. Multi-Region Application Architecture. Retrieved from https://aws.amazon.com/

solutions/implementations/multi-region-application-architecture/.

[13] C. R. Baudoin. 2018. The impact of data residency on cloud computing. In Proceedings of the 32nd International

Conference on Advanced Information Networking and Applications Workshops (WAINA’18). 430–435. DOI:10.1109/

WAINA.2018.00124

[14] N. Bavis. 2021. Google cloud machine types comparison. Retrieved from https://www.parkmycloud.com/blog/

google-cloud-machine-types/.

[15] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar. 2017. Mobility-aware application scheduling

in fog computing. IEEE Cloud Comput. 4, 2 (Mar./Apr. 2017), 26–35. DOI:10.1109/MCC.2017.27

[16] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. 2012. Fog computing and its role in the internet of things. In Proceedings

of the 1st Edition of the MCC Workshop on Mobile Cloud Computing (MCC’12). ACM, New York, NY, 13–16. DOI:https:

//doi.org/10.1145/2342509.2342513

[17] T. Brisco. 1995. RFC 1794. DNS Support for Load Balancing. IETF.

[18] R. Buyya and S. S. Gill. 2018. Sustainable cloud computing: Foundations and future directions. Business Technology

& Digital Transformation Strategies. Cutter Consort. 21, 6 (2018), 1–10.

[19] R. Buyya, R. Ranjan, and R. N. Calheiros. 2010. InterCloud: Utility-oriented federation of cloud computing environ-

ments for scaling of application services. Algor. Architect. Parallel Process. (2010), 6081.

[20] R. Buyya, S. N. Srirama, G. Casale, R. Calheiros, Y. Simmhan, B. Varghese, E. Gelenbe, B. Javadi, L. M. Vaquero, M.

A. S. Netto, A. N. Toosi, M. A. Rodriguez, I. M. Llorente, S. De Capitani Di Vimercati, P. Samarati, D. Milojicic, C.

Varela, R. Bahsoon, M. Dias De Assuncao, O. Rana, W. Zhou, H. Jin, W. Gentzsch, A. Y. Zomaya, and H. Shen. 2018.

A manifesto for future generation cloud computing: Research directions for the next decade. ACM Comput. Surv. 51,

5, Article 105 (Jan. 2019), 38 pages. DOI:https://doi.org/10.1145/3241737

[21] C. Bethea, G. Sheerin, J. Mace, R. King, G. Luo, and G. O’Connor. 2018. The site reliability workbook. Retrieved from

https://sre.google/workbook/managing-load/.

[22] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T. Kraska. 2008. Building a database on S3. In Proceedings of the

ACM SIGMOD International Conference on Management of Data. 251–264.

[23] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas,

C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal, M. F. ul Haq, M. I. ul Haq, D.

Bhardwaj, S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran, K. Manivannan, and L. Rigas. 2011. Windows azure

storage: A highly available cloud storage service with strong consistency. In Proceedings of the 23rd ACM Symposium

on Operating Systems Principles (SOSP’11).

[24] M. Ciavotta, G. P. Gibilisco, D. Ardagna, E. Di Nitto, M. Lattuada, and M. A. Almeida da Silva. Architectural design

of cloud applications: A performance-aware cost minimization approach. IEEE Trans. Cloud Comput. 10.1109/TCC.

2020.3015703

[25] J. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W.

Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M.

Szymaniak, C. Taylor, R. Wang, and D. Woodford. Spanner: Google’s globally distributed database. In Proc. USENIX

Conference on Operating Systems Design and Implementation (2012). USENIX, 251–264.

[26] L. Chen et al. 2021. IoT microservice deployment in edge-cloud hybrid environment using reinforcement learning.

IEEE Internet Things J. 8, 16 (15 Aug. 2021), 12610–12622. DOI:10.1109/JIOT.2020.3014970

[27] DarylsCorner. 2016. Using terraform across multiple cloud providers. http://darylscorner.com/2016/11/using-

terraform-across-multiple-cloud-providers/.

[28] F. Denis. 2019. Stop using ridiculously low DNS TTLs. APNIC Blog (Nov. 2019). https://blog.apnic.net/2019/11/12/

stop-using-ridiculously-low-dns-ttls/.

[29] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,

and W. Vogels. 2007. Dynamo: Amazon’s highly available key-value store. In Proceedings of the ACM Symposium on

Operating Systems Principles.

[30] L. Dhirani and T. Newe. 2020. Hybrid cloud SLAs for industry 4.0: Bridging the gap. Ann. Emerg. Technol. Comput.

4 (2020), 41–60.

[31] B. Di Martino, G. Cretella, and A. Esposito. 2015. Advances in applications portability and services interoperability

among multiple clouds. IEEE Cloud Comput. 2, 2 (Mar./Apr. 2015), 22–28.

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

https://doi.org/10.1109/RAMS.2009.4914713
https://aws.amazon.com/global-accelerator/
https://aws.amazon.com/route53/application-recovery-controller/
https://aws.amazon.com/route53/application-recovery-controller/
https://aws.amazon.com/solutions/implementations/multi-region-application-architecture/
https://aws.amazon.com/solutions/implementations/multi-region-application-architecture/
https://doi.org/10.1109/WAINA.2018.00124
https://doi.org/10.1109/WAINA.2018.00124
https://www.parkmycloud.com/blog/google-cloud-machine-types/
https://www.parkmycloud.com/blog/google-cloud-machine-types/
https://doi.org/10.1109/MCC.2017.27
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/3241737
https://sre.google/workbook/managing-load/
https://doi.org/10.1109/TCC.2020.3015703
https://doi.org/10.1109/TCC.2020.3015703
https://doi.org/10.1109/JIOT.2020.3014970
http://darylscorner.com/2016/11/using-terraform-across-multiple-cloud-providers/
http://darylscorner.com/2016/11/using-terraform-across-multiple-cloud-providers/
https://blog.apnic.net/2019/11/12/stop-using-ridiculously-low-dns-ttls/
https://blog.apnic.net/2019/11/12/stop-using-ridiculously-low-dns-ttls/

61:44 A. Berenberg and B. Calder

[32] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-Hielscher, A. Cilingiroglu, B. Cheyney, W.

Shang, and J. D. Hosein. 2016. Maglev: A fast and reliable software network load balancer. In Proceedings of the

USENIX Symposium on Networked Systems Design and Implementation (NSDI’16).

[33] C. Engelmann and S. L. Scott. 2005. Concepts for high availability in scientific high-end computing. In Proceedings

of High Availability and Performance Workshop (HAPCW’05).

[34] Envoy Proxy APIs. Retrieved from https://www.envoyproxy.io/docs/envoy/latest/api/api#.

[35] Envoy Proxy Mobile. Retrieved from https://envoy-mobile.github.io/.

[36] J. Evans. 2016. #NetflixEverywhere global architecture. QCon London (Mar. 2016). https://www.infoq.com/

presentations/netflix-failure-multiple-regions/.

[37] E. Estrin. 2020. Using the cloud to build multi-region architecture (May 2020). https://www.europeclouds.com/blog/

using-the-cloud-to-build-multi-region-architecture.

[38] A. Flavel, P. Mani, D. Maltz N. Holt, J. Liu, Y. Chen, and O. Surmachev. 2015. FastRoute: A scalable load-aware anycast

routing architecture for modern CDNs. In Proceedings of the USENIX Symposium on Networked Systems Design and

Implementation (NSDI’15).

[39] H. Fernandez, G. Pierre, and T. Kielmann. 2014. Autoscaling web applications in heterogeneous cloud infrastructures.

In Proceedings of the IEEE International Conference on Cloud Engineering. 195–204. DOI:10.1109/IC2E.2014.25

[40] P. Garraghan et al. 2018. Emergent failures: Rethinking cloud reliability at scale. IEEE Cloud Comput. 5, 5 (Sep./Oct.

2018), 12–21. DOI:10.1109/MCC.2018.053711662

[41] P. Geetha and C. R. R. Robin. 2017. A comparative-study of load-cloud balancing algorithms in cloud environ-

ments. In Proceedings of the International Conference on Energy, Communication, Data Analytics and Soft Computing

(ICECDS’17). 806–810. DOI:10.1109/ICECDS.2017.8389549

[42] R. Gensh, A. Rafiev, A. Romanovsky, A. Garcia, F. Xia, and A. Yakovlev. 2017. Architecting holistic fault tolerance.

In Proceedings of the IEEE 18th International Symposium on High Assurance Systems Engineering (HASE’17). 5–8.

DOI:10.1109/HASE.2017.13

[43] S. S. Gill and R. Buyya. 2018. A taxonomy and future directions for sustainable cloud computing: 360 degree view.

ACM Comput. Surv. CSUR. 51 (2018), 1–33. https://arxiv.org/pdf/1712.02899.pdf.

[44] T. Golding. 2018. Architecting multi-region SaaS solutions on AWS. AWS Partner Network (APN) Blog. Mar. 2018.

Retrieved from https- aws.amazon.com/blogs/apn/architecting-multi-region-saas-solutions-on-aws/.

[45] B. Götz, D. Schel, D. Bauer, C. Henkel, P. Einberger, and T. Bauernhansl. 2018. Challenges of production microser-

vices. Procedia CIRP. 67 (2018), 167–172. https://doi.org/10.1016/j.procir.2017.12.194.

[46] M. K. Gokhroo, M. C. Govil, and E. S. Pilli. 2017. Detecting and mitigating faults in cloud computing environment. In

Proceedings of the 3rd International Conference on Computational Intelligence & Communication Technology (CICT’17).

1–9. DOI:10.1109/CIACT.2017.7977362

[47] Google Cloud. Architecting disaster recovery for cloud infrastructure outages. Retrieved from https://cloud.google.

com/architecture/disaster-recovery.

[48] Google Cloud Solutions. Hybrid and multi-cloud network topologies. Retrieved from https://cloud.google.com/

solutions/hybrid-and-multi-cloud-network-topologies.

[49] Google Cloud SQL. Cross Region Replicas. Retrieved from https://cloud.google.com/sql/docs/mysql/replication#

cross-region-read-replicas.

[50] Google Cloud SQL. Failover. Retrieved from https://cloud.google.com/sql/docs/mysql/high-availability#failover.

[51] Google Cloud SQL. Failover Process. Retrieved from https://cloud.google.com/sql/docs/mysql/high-availability#

failover-process.

[52] Google Cloud SQL. High Availability. Retrieved from https://cloud.google.com/sql/docs/mysql/high-availability.

[53] Google Cloud SQL. Promoting replicas for regional migration or disaster recovery. Retrieved from https://cloud.

google.com/sql/docs/mysql/replication#cross-region-read-replicas.

[54] Google Cloud SQL. Replicating from an external server to Cloud SQL (v1.1). Retrieved from https://cloud.google.

com/sql/docs/mysql/replication/replication-from-external.

[55] Google Cloud Storage. Retrieved from https://cloud.google.com/storage.

[56] Google Cloud TPU Pods. Retrieved from https://cloud.google.com/tpu/docs/training-on-tpu-pods.

[57] Google Cloud Global load balancing with single anycast IP. Retrieved from https://cloud.google.com/load-balancing.

[58] Google Vitess. A database clustering system for horizontal scaling of MySQL. https://vitess.io.

[59] R. Govindan et al. 2016. Evolve or Die: High-availability design principles drawn from googles network infrastruc-

ture. In Proceedings of the ACM SIGCOMM 2016.

[60] A. Gunka, S. Seycek, and H. Kuhn. 2013. Moving an application to the cloud—An evolutionary approach. In Proceed-

ings of the International Workshop on Multi-cloud Applications and Federated Clouds. ACM. 35–42

[61] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann. 2016. Service cutter: A systematic approach to service

decomposition. In Proceedings of the European Conference on Service-oriented and Cloud Computing (ESOCC’16), M.

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

https://www.envoyproxy.io/docs/envoy/latest/api/api#
https://envoy-mobile.github.io/
https://www.infoq.com/presentations/netflix-failure-multiple-regions/
https://www.infoq.com/presentations/netflix-failure-multiple-regions/
https://www.europeclouds.com/blog/using-the-cloud-to-build-multi-region-architecture
https://www.europeclouds.com/blog/using-the-cloud-to-build-multi-region-architecture
https://doi.org/10.1109/IC2E.2014.25
https://doi.org/10.1109/MCC.2018.053711662
https://doi.org/10.1109/ICECDS.2017.8389549
https://doi.org/10.1109/HASE.2017.13
https://arxiv.org/pdf/1712.02899.pdf
https- aws.amazon.com/blogs/apn/architecting-multi-region-saas-solutions-on-aws/
https://doi.org/10.1016/j.procir.2017.12.194
https://doi.org/10.1109/CIACT.2017.7977362
https://cloud.google.com/architecture/disaster-recovery
https://cloud.google.com/architecture/disaster-recovery
https://cloud.google.com/solutions/hybrid-and-multi-cloud-network-topologies
https://cloud.google.com/solutions/hybrid-and-multi-cloud-network-topologies
https://cloud.google.com/sql/docs/mysql/replication#cross-region-read-replicas
https://cloud.google.com/sql/docs/mysql/replication#cross-region-read-replicas
https://cloud.google.com/sql/docs/mysql/high-availability#failover
https://cloud.google.com/sql/docs/mysql/high-availability#failover-process
https://cloud.google.com/sql/docs/mysql/high-availability#failover-process
https://cloud.google.com/sql/docs/mysql/high-availability
https://cloud.google.com/sql/docs/mysql/replication#cross-region-read-replicas
https://cloud.google.com/sql/docs/mysql/replication#cross-region-read-replicas
https://cloud.google.com/sql/docs/mysql/replication/replication-from-external
https://cloud.google.com/sql/docs/mysql/replication/replication-from-external
https://cloud.google.com/storage
https://cloud.google.com/tpu/docs/training-on-tpu-pods
https://cloud.google.com/load-balancing
https://vitess.io

Deployment Archetypes for Cloud Applications 61:45

Aiello, E. B. Johnsen, S. Dustdar, I. Georgievski. (eds.). LNCS. Springer, Cham, 185–200. https://doi.org/10.1007/978-

3-319-44482-6_12

[62] Y. S. Hong, J. H. No, and S. Y. Kim. 2006. DNS-based load balancing in distributed Web-server systems. In Proceed-

ings of the 4th IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems and the 2nd

International Workshop on Collaborative Computing, Integration, and Assurance (SEUS-WCCIA’06). 4. DOI:10.1109/

SEUS-WCCIA.2006.23

[63] Istio APIs. Retrieved from https://istio.io/latest/docs/concepts/what-is-istio/.

[64] Y. Izrailevsky and C. Bell. 2018. Cloud reliability. IEEE Cloud Comput. 5, 3 (May/Jun. 2018), 39–44.

[65] M. Jammal, A. Kanso, P. Heidari, and A. Shami. 2016. A formal model for the availability analysis of cloud de-

ployed multi-tiered applications. In Proceedings of the IEEE International Conference on Cloud Engineering Workshop

(IC2EW’16). 82–87. DOI:10.1109/IC2EW.2016.21

[66] H. Jamous. A reference architecture for building highly available and scalable cloud application. https:

//scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=H.+Jamous.+A+reference+architecture+for+building+

highly+available+and+scalable+cloud+application.&btnG=.

[67] M. Jayadevan and D. Wetherall. 2020. Getting higher MPI performance for HPC applications on Google Cloud.

Dec. 2020. https://cloud.google.com/blog/products/compute/how-to-reduce-mpi-latency-for-hpc-workloads-on-

google-cloud.

[68] L. Johansson. 2018. Database multi-cloud strategy. Retrieved from https://www.elephantsql.com/blog/2018-11-19-

multi-cloud-postgresql.html.

[69] M. Jung, S. Mallering, P. Dalbhanjan, P. Chapman, and C. Kassen. 2016. Microservices on AWS. https://d1.awsstatic.

com/whitepapers/microservices-on-aws.pdf.

[70] N. Kratzke. 2018. A brief history of cloud application architectures. Appl. Sci. 8 (2018), 1368.

[71] Kubernetes APIs. Retrieved from https://kubernetes.io/docs/concepts/overview/kubernetes-api/.

[72] Google Cloud Backend Services Traffic Distribution. Retrieved from https://cloud.google.com/load-balancing/docs/

backend-service?hl=bg#traffic_distribution.

[73] P. Lewandowski. 2016. Load balancing at the frontend. Retrieved from https://sre.google/sre-book/load-balancing-

frontend/.

[74] A. Liberman and T. Sanderson. 2019. Performance-driven dynamic resource management in E2 VMs. Google

Cloud Blog. Retrieved from https://cloud.google.com/blog/products/compute/understanding-dynamic-resource-

management-in-e2-vms.

[75] J. Lin and E. Brewer. 2019. Application modernization and the decoupling of infrastructure services and teams.

Retrieved from https://services.google. com/fh/files/blogs/anthos_white_paper.pdf.

[76] D. S. Linthicum. 2017. Cloud-native applications and cloud migration: The good, the bad, and the points between.

IEEE Cloud Comput. 4, 5 (Sept./Oct. 2017), 12–14. DOI:10.1109/MCC.2017.4250932

[77] S. Ma, C. Fan, Y. Chuang, W. Lee, S. Lee, and N. Hsueh. 2018. Using service dependency graph to analyze and test

microservices. In Proceedings of the IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC’18).

81–86. DOI:10.1109/COMPSAC.2018.10207

[78] G. D. Maayan. 2021. The complete guide to spot instances on AWS, Azure and GCP. Retrieved from https://www.

datacenterdynamics.com/en/opinions/complete-guide-spot-instances-aws-azure-and-gcp/.

[79] L. MacVittie. 2015. Cloud balancing: The evolution of global server load balancing. F5 Networks.

[80] N. Marie-Magdelaine, T. Ahmed, and G. Astruc-Amato. 2019. Demonstration of an observability framework for

cloud native microservices. In Proceedings of the IFIP/IEEE Symposium on Integrated Network and Service Management

(IM’19). 722–724.

[81] R. Marshall. 2009. Michael Jackson’s death overloads Google, Twitter. Retrieved from http://www.mtv.com/news/

1614812/michael-jacksons-death-overloads-google-twitter/.

[82] R. G. Martinez, A. Lopes, and L. Rodrigues. 2019. Planning workflow executions when using spot instances in the

cloud. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (SAC’19). ACM, New York, NY.

310–317. DOI:https://doi.org/10.1145/3297280.3297313

[83] Microsoft Azure Cosmos DB. Retrieved from https://azure.microsoft.com/en-us/services/cosmos-db/.

[84] Microsoft Azure Front Door. Retrieved from https://docs.microsoft.com/en-us/azure/frontdoor/front-door-

overview.

[85] S. K. Mishra, B. Sahoo, and P. P. Parida. 2020. Load balancing in cloud computing: A big picture. J. King Saud Univ.

Comput. Info. Sci. 32, 2 (2020), 149–158. https://doi.org/10.1016/j.jksuci.2018.01.003.

[86] Daniel Mittelman. 2021. Retrieved from https://engineering.monday.com/monday-coms-multi-regional-

architecture-a-deep-dive/.

[87] P. Mohagheghi and T. Sæther. 2011. Software engineering challenges for migration to the service cloud paradigm:

Ongoing work in the REMICS project. In Proceedings of the IEEE World Congress on Services.

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

https://doi.org/10.1007/978-3-319-44482-6_12
https://doi.org/10.1007/978-3-319-44482-6_12
https://doi.org/10.1109/SEUS-WCCIA.2006.23
https://doi.org/10.1109/SEUS-WCCIA.2006.23
https://istio.io/latest/docs/concepts/what-is-istio/
https://doi.org/10.1109/IC2EW.2016.21
https://scholar.google.com/scholar?hl$=$en&as_sdt$=$0%2C5&q$=$H.+Jamous.+A+reference+architecture+for+building+highly+available+and+scalable+cloud+application.&btnG$=$
https://scholar.google.com/scholar?hl$=$en&as_sdt$=$0%2C5&q$=$H.+Jamous.+A+reference+architecture+for+building+highly+available+and+scalable+cloud+application.&btnG$=$
https://scholar.google.com/scholar?hl$=$en&as_sdt$=$0%2C5&q$=$H.+Jamous.+A+reference+architecture+for+building+highly+available+and+scalable+cloud+application.&btnG$=$
https://cloud.google.com/blog/products/compute/how-to-reduce-mpi-latency-for-hpc-workloads-on-google-cloud
https://cloud.google.com/blog/products/compute/how-to-reduce-mpi-latency-for-hpc-workloads-on-google-cloud
https://www.elephantsql.com/blog/2018-11-19-multi-cloud-postgresql.html
https://www.elephantsql.com/blog/2018-11-19-multi-cloud-postgresql.html
https://d1.awsstatic.com/whitepapers/microservices-on-aws.pdf
https://d1.awsstatic.com/whitepapers/microservices-on-aws.pdf
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://cloud.google.com/load-balancing/docs/backend-service?hl$=$bg#traffic_distribution
https://cloud.google.com/load-balancing/docs/backend-service?hl$=$bg#traffic_distribution
https://sre.google/sre-book/load-balancing-frontend/
https://sre.google/sre-book/load-balancing-frontend/
https://cloud.google.com/blog/products/compute/understanding-dynamic-resource-management-in-e2-vms
https://cloud.google.com/blog/products/compute/understanding-dynamic-resource-management-in-e2-vms
https://services.google. com/fh/files/blogs/anthos_white_paper.pdf
https://doi.org/10.1109/MCC.2017.4250932
https://doi.org/10.1109/COMPSAC.2018.10207
https://www.datacenterdynamics.com/en/opinions/complete-guide-spot-instances-aws-azure-and-gcp/
https://www.datacenterdynamics.com/en/opinions/complete-guide-spot-instances-aws-azure-and-gcp/
http://www.mtv.com/news/1614812/michael-jacksons-death-overloads-google-twitter/
http://www.mtv.com/news/1614812/michael-jacksons-death-overloads-google-twitter/
https://doi.org/10.1145/3297280.3297313
https://azure.microsoft.com/en-us/services/cosmos-db/
https://docs.microsoft.com/en-us/azure/frontdoor/front-door-overview
https://docs.microsoft.com/en-us/azure/frontdoor/front-door-overview
https://doi.org/10.1016/j.jksuci.2018.01.003
https://engineering.monday.com/monday-coms-multi-regional-architecture-a-deep-dive/
https://engineering.monday.com/monday-coms-multi-regional-architecture-a-deep-dive/

61:46 A. Berenberg and B. Calder

[88] S. M. Moghaddam, M. O’Sullivan, C. P. Unsworth, S. F. Piraghaj, and C. Walker. 2021. Metrics for improving the

management of Cloud environments—Load balancing using measures of Quality of Service, Service Level Agreement

Violations and energy consumption, Future Gen. Comput. Syst. 123 (2021), 142–155, ISSN 0167–739X. https://doi.org/

10.1016/j.future.2021.04.010.

[89] R. Moreno-Vozmediano, R. S. Montero, E. Huedo, et al. 2018. Orchestrating the deployment of high availability

services on multi-zone and multi-cloud scenarios. J. Grid Comput. 16 (2018), 39–53. https://doi.org/10.1007/s10723-

017-9417-z

[90] Multi-cloud MongoDB. Retrieved from https://www.mongodb.com/multicloud.

[91] P. Namuag. 2019. Deploying secure multicloud MySQL replication on AWS and GCP with VPN. https://severalnines.

com/database-blog/deploying-secure-multicloud-mysql-replication-aws-and-gcp-vpn.

[92] A. A. Neghabi, N. Jafari Navimipour, M. Hosseinzadeh, and A. Rezaee. 2018. Load balancing mechanisms in

the software defined networks: A systematic and comprehensive review of the literature. IEEE Access. 6 (2018),

14159–14178. DOI:10.1109/ACCESS.2018.2805842

[93] S. M. R. Nouri, H. Li, S. Venugopal, W. Guo, M. He, and W. Tian. 2019. Autonomic decentralized elasticity based

on a reinforcement learning controller for cloud applications. Future Gen. Comput. Syst. 94 (2019), 765–780. https:

//doi.org/10.1016/j.future.2018.11.049.

[94] C. Pahl, P. Jamshidi, and D. Weyns. 2017. Cloud architecture continuity: Change models and change rules for sus-

tainable cloud software architectures. J. Softw. Evol. Proc. 29 (2017), e1849. https://doi.org/10.1002/smr.1849

[95] A. Pettersson. 2019. Music to their ears: Microservices on GKE, Preemptible VMs improved Musiio’s efficiency

by 7000%. Retrieved from https://cloud.google.com/blog/products/containers-kubernetes/microservices-on-gke-

preemptible-vms-improved-musiios-efficiency-by-7000.

[96] D. Petcu, G. Macariu, S. Panica, and C. Crăciun. 2013. Portable cloud applications—From theory to practice. Future

Gen. Comput. Syst. 29, 6 (2013).

[97] B. Power. 2018. Digital transformation through SaaS multiclouds. IEEE Cloud Comput. 5, 3 (May/June 2018), 27–30.

DOI:10.1109/MCC.2018.032591613

[98] D. Preuveneers and W. Joosen. 2019. Towards multi-party policy-based access control in federations of cloud

and edge microservices. In Proceedings of the IEEE European Symposium on Security and Privacy Workshops

(EuroS&PW’19). 29–38. DOI:10.1109/EuroSPW.2019.00010

[99] W. Qiu, Z. Zheng, X. Wang, X. Yang, and M. R. Lyu. 2014. Reliability-based design optimization for cloud migration.

IEEE Trans. Serv. Comput. 7, 2 (April–June 2014), 223–236. DOI:10.1109/TSC.2013.38

[100] C. Qu, R. N. Calheiros, and R. Buyya. 2018. Auto-scaling web applications in clouds: A taxonomy and survey. ACM

Comput. Surv. 51, 4, Article 73 (Sept. 2018), 33 pages. DOI:https://doi.org/10.1145/3148149

[101] B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and A. C. Snoeren. 2007. Cloud control with distributed rate

limiting. SIGCOMM Comput. Commun. Rev. 37, 4 (Oct. 2007), 337–348. DOI:https://doi.org/10.1145/1282427.1282419

[102] K. Ramchand, M. Baruwal Chhetri, and R. Kowalczyk. 2021. Enterprise adoption of cloud computing with application

portfolio profiling and application portfolio assessment. J. Cloud Comp. 10, 1 (2021). https://doi.org/10.1186/s13677-

020-00210-w

[103] S. Reichling and S. Polavarapu. 2020. Traffic director and gRPC-proxyless services for your service mesh. Retrieved

from https://cloud.google.com/blog/products/networking/traffic-director-supports-proxyless-grpc.

[104] Y. Rekhter, T. Li, and S. Hares. 2006. A border gateway protocol 4 (BGP-4). RFC 4271 (Jan. 2006).

[105] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear. 1996. RFC 1918 address allocation for private

internets. Best Curr. Pract. (Feb. 1996), 1–9.

[106] D. Riane and A. Ettalbi. 2018. A graph-based approach for composite infrastructure service deployment in multi-

cloud environment. In Proceedings of the International Conference on Advanced Communication Technologies and

Networking (CommNet’18). 1–7. DOI:10.1109/COMMNET.2018.8360254

[107] M. Ribas, C. G. Furtado, J. Neuman de Souza, G. Cordeiro Barroso, A. Moura, A. S. Lima, and F. R.C. Sousa. 2015.

A Petri net-based decision-making framework for assessing cloud services adoption: The use of spot instances for

cost reduction. J. Netw. Comput. Appl. 57 (2015), 102–118. https://doi.org/10.1016/j.jnca.2015.07.002.

[108] L. Saino. 2018. Stable and accurate health-checking of horizontally scaled services. https://www.usenix.org/

conference/srecon18americas/presentation/saino.

[109] M. Abu Sharkh, M. Jammal, A. Shami, and A. Ouda. 2013. Resource allocation in a network-based cloud computing

environment: Design challenges. IEEE Commun. Mag. 51, 11 (Nov. 2013), 46–52. DOI:10.1109/MCOM.2013.6658651

[110] D. Shadija, M. Rezai, and R. Hill. 2017. Towards an understanding of microservices. In Proceedings of the 23rd Inter-

national Conference on Automation and Computing (ICAC’17). 1–6. DOI:10.23919/IConAC.2017.8082018

[111] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. 2016. Edge computing: vision and challenges. IEEE Internet Things J. 3, 5

(Oct. 2016), 637–646. DOI:10.1109/JIOT.2016.2579198

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

https://doi.org/10.1016/j.future.2021.04.010
https://doi.org/10.1016/j.future.2021.04.010
https://doi.org/10.1007/s10723-017-9417-z
https://doi.org/10.1007/s10723-017-9417-z
https://www.mongodb.com/multicloud
https://severalnines.com/database-blog/deploying-secure-multicloud-mysql-replication-aws-and-gcp-vpn
https://severalnines.com/database-blog/deploying-secure-multicloud-mysql-replication-aws-and-gcp-vpn
https://doi.org/10.1109/ACCESS.2018.2805842
https://doi.org/10.1016/j.future.2018.11.049
https://doi.org/10.1016/j.future.2018.11.049
https://doi.org/10.1002/smr.1849
https://cloud.google.com/blog/products/containers-kubernetes/microservices-on-gke-preemptible-vms-improved-musiios-efficiency-by-7000
https://cloud.google.com/blog/products/containers-kubernetes/microservices-on-gke-preemptible-vms-improved-musiios-efficiency-by-7000
https://doi.org/10.1109/MCC.2018.032591613
https://doi.org/10.1109/EuroSPW.2019.00010
https://doi.org/10.1109/TSC.2013.38
https://doi.org/10.1145/3148149
https://doi.org/10.1145/1282427.1282419
https://doi.org/10.1186/s13677-020-00210-w
https://doi.org/10.1186/s13677-020-00210-w
https://cloud.google.com/blog/products/networking/traffic-director-supports-proxyless-grpc
https://doi.org/10.1109/COMMNET.2018.8360254
https://doi.org/10.1016/j.jnca.2015.07.002
https://www.usenix.org/conference/srecon18americas/presentation/saino
https://www.usenix.org/conference/srecon18americas/presentation/saino
https://doi.org/10.1109/MCOM.2013.6658651
https://doi.org/10.23919/IConAC.2017.8082018
https://doi.org/10.1109/JIOT.2016.2579198

Deployment Archetypes for Cloud Applications 61:47

[112] R. Stanojevic and R. Shorten. 2009. Load balancing vs. distributed rate limiting: An unifying framework for cloud

control. In Proceedings of the IEEE International Conference on Communications. 1–6. DOI:10.1109/ICC.2009.5199141

[113] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, et al. 2020. CockroachDB: The resilient geo-distributed SQL

database. In Proceedings of the ACM International Conference on Management of Data (SIGMOD’20). ACM, 1493–1509.

[114] A. S. Tanenbaum and M. Van Steen. 2002. Distributed Systems. Prentice Hall.

[115] A. A. Tamimi, R. Dawood, and L. Sadaqa. 2019. Disaster recovery techniques in cloud computing. In Proceedings

of the IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT’19).

845–850. DOI:10.1109/JEEIT.2019.8717450

[116] P. Tenereillo. 2004. Why DNS based global server load balancing (GSLB) doesn’t Work. Retrieved from http:

//tenereillo.com/GSLBPageOfShame.htm.

[117] CoreSite. The Importance of Uptime and All Those Nines. Retrieved from, 2021. https://www.coresite.com/blog/the-

importance-of-uptime-and-all-those-nines.

[118] Microsoft. 2021. Troubleshoot transient connection errors in SQL Database and SQL Managed Instance. Retrieved

from https://docs.microsoft.com/en-us/azure/azure-sql/database/troubleshoot-common-connectivity-issues.

[119] A. N. Toosi, R. N. Calheiros, and R. Buyya. 2014. Interconnected cloud computing environments: Challenges, taxon-

omy, and survey. ACM Comput. Surv. 47, 1, Article 7 (July 2014), 47 pages. DOI:https://doi.org/10.1145/2593512

[120] S. Totman. 2019. Merging companies, merging clouds. Retrieved from https://www.darkreading.com/cloud/

merging-companies-merging-clouds.

[121] A. Tsagkaropoulos, Y. Verginadis, N. Papageorgiou, et al. 2021. Severity: A QoS-aware approach to cloud application

elasticity. J. Cloud Comp. 10, 45 (2021). https://doi.org/10.1186/s13677-021-00255-5

[122] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek. 2021. A Kubernetes controller for managing the availability

of elastic microservice based stateful applications. J. Syst. Softw. 175 (2021), 0164–1212. https://doi.org/10.1016/j.jss.

2021.110924

[123] C. Viles and J. French. 1994. Availability and latency of world-wide web information servers. University of Virginia

Department of Computer Science Technical Report CS-94-36.

[124] C. Villamizar, R. Chandra, and R. Govindan. 1998. BGP route flap damping. RFC 2439, IETF https://datatracker.ietf.

org/doc/rfc2439/.

[125] D. Villegas, N. Bobroff, I. Rodero, J. Delgado, Y. Liu, A. Devarakonda, L. Fong, S. Masoud Sadjadi, and M. Parashar.

2012. Cloud federation in a layered service model. J. Comput. Syst. Sci. 78, 5 (2012), 1330–1344. https://doi.org/10.

1016/j.jcss.2011.12.017

[126] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra. 2019. Edge cloud offloading algorithms: Issues,

methods, and perspectives. ACM Comput. Surv. 52, 1, Article 2 (Feb. 2019), 23 pages. DOI:https://doi.org/10.1145/

3284387

[127] J. Weil, V. Kuarsingh, C. Donley, C. Liljenstolpe, and M. Azinger. 2012. RFC 6598 IANA-Reserved IPv4 Prefix for

Shared Address Space, Best Current Practice (Apr. 2012). 1–11.

[128] E. Weintraub and Y. Cohen. 2017. Multi objective optimization of cloud computing services for consumers. Int. J.

Adv. Comput. Sci. Appl. 8, 2 (2017), 139–147.

[129] T. Welsh and E. Benkhelifa. 2020. On resilience in cloud computing: A survey of techniques across the cloud domain.

ACM Comput. Surv. 53, 3, Article 59 (June 2020), 36 pages. DOI:https://doi.org/10.1145/3388922

[130] West.andrew.g, Milowen. Examining the popularity of Wikipedia articles: Catalysts, trends, and applications.

Retrieved from https://en.wikipedia.org/wiki/Wikipedia:Wikipedia_Signpost/2013-02-04/Special_report.

[131] T. Wood, E. Cecchet, K. K. Ramakrishnan, P. Shenoy, J. V. D. Merwe, and A. Venkataramani. 2010. Disaster recovery

as a cloud service: Economic benefits & deployment challenges. In Proceedings of the 2nd USENIX Conference on Hot

topics in cloud computing (HotCloud’10).

[132] Z. Wu and H. V. Madhyastha. 2013. Understanding the latency benefits of multi-cloud webservice deployments.

SIGCOMM Comput. Commun. Rev. 43, 2 (2013), 13–20

[133] X. Xu, Q. Lu, L. Zhu, Z. Li, S. Sakr, H. Wada, and I. Webber. 2013. Availability analysis for deployment of in-

cloud applications. In Proceedings of the 4th International ACM SIGSOFT Symposium on Architecting Critical Systems

(ISARCS’13). ACM, 11–16. DOI:https://doi.org/10.1145/2465470.2465472

[134] J. Yang. 2019. Introducing E2, new cost-optimized general purpose VMs for Google Compute Engine. Google Cloud.

https://cloud.google.com/blog/products/compute/google-compute-engine-gets-new-e2-vm-machine-types.

[135] K. Yoshida, K. Fujiwara, A. Sato, and S. Sannomiya. 2019. Spread of anycast and GSLB. In Proceedings of the IEEE 43rd

Annual Computer Software and Applications Conference (COMPSAC’19). 30–35. DOI:10.1109/COMPSAC.2019.10179

[136] E. W. Zegura, M. H. Ammar, Zongming Fei, and S. Bhattacharjee. 2000. Application-layer anycasting: A server

selection architecture and use in a replicated Web service. IEEE/ACM Trans. Network. 8, 4 (Aug. 2000).

[137] Mohamed Faten Zhani and R. Boutaba 2015. Survivability and Fault Tolerance in the Cloud. Wiley Online Library.

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

https://doi.org/10.1109/ICC.2009.5199141
https://doi.org/10.1109/JEEIT.2019.8717450
http://tenereillo.com/GSLBPageOfShame.htm
http://tenereillo.com/GSLBPageOfShame.htm
https://www.coresite.com/blog/the-importance-of-uptime-and-all-those-nines
https://www.coresite.com/blog/the-importance-of-uptime-and-all-those-nines
https://docs.microsoft.com/en-us/azure/azure-sql/database/troubleshoot-common-connectivity-issues
https://doi.org/10.1145/2593512
https://www.darkreading.com/cloud/merging-companies-merging-clouds
https://www.darkreading.com/cloud/merging-companies-merging-clouds
https://doi.org/10.1186/s13677-021-00255-5
https://doi.org/10.1016/j.jss.2021.110924
https://doi.org/10.1016/j.jss.2021.110924
https://datatracker.ietf.org/doc/rfc2439/
https://datatracker.ietf.org/doc/rfc2439/
https://doi.org/10.1016/j.jcss.2011.12.017
https://doi.org/10.1016/j.jcss.2011.12.017
https://doi.org/10.1145/3284387
https://doi.org/10.1145/3284387
https://doi.org/10.1145/3388922
https://en.wikipedia.org/wiki/Wikipedia:Wikipedia_Signpost/2013-02-04/Special_report
https://doi.org/10.1145/2465470.2465472
https://cloud.google.com/blog/products/compute/google-compute-engine-gets-new-e2-vm-machine-types
https://doi.org/10.1109/COMPSAC.2019.10179

61:48 A. Berenberg and B. Calder

[138] T. Zhang, Y. Lei, Q. Zhang, et al. 2021. Fine-grained load balancing with traffic-aware rerouting in datacenter net-

works. J. Cloud Comp. 10, 37 (2021). https://doi.org/10.1186/s13677-021-00252-8

[139] Google Cloud Platform Blog. 2015. Introducing Preemptible VMs, a new class of compute available at 70% off stan-

dard pricing. Retrieved from https://cloudplatform.googleblog.com/2015/05/Introducing-Preemptible-VMs-a-new-

class-of-compute-available-at-70-off-standard-pricing.html.

[140] AWS Blog. 2015. Amazon Web Services EC2 Spot Instance Termination Notices. Retrieved from https://aws.amazon.

com/blogs/aws/new-ec2-spot-instance-termination-notices.

[141] Azure Blog. 2020. Announcing the general availability of Azure Spot Virtual Machines. Retrieved from https://azure.

microsoft.com/en-us/blog/announcing-the-general-availability-of-azure-spot-virtual-machines.

Received April 2021; revised September 2021; accepted November 2021

ACM Computing Surveys, Vol. 55, No. 3, Article 61. Publication date: February 2022.

https://doi.org/10.1186/s13677-021-00252-8
https://cloudplatform.googleblog.com/2015/05/Introducing-Preemptible-VMs-a-new-class-of-compute-available-at-70-off-standard-pricing.html
https://cloudplatform.googleblog.com/2015/05/Introducing-Preemptible-VMs-a-new-class-of-compute-available-at-70-off-standard-pricing.html
https://aws.amazon.com/blogs/aws/new-ec2-spot-instance-termination-notices
https://aws.amazon.com/blogs/aws/new-ec2-spot-instance-termination-notices
https://azure.microsoft.com/en-us/blog/announcing-the-general-availability-of-azure-spot-virtual-machines
https://azure.microsoft.com/en-us/blog/announcing-the-general-availability-of-azure-spot-virtual-machines

