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ABSTRACT
Since its inception, underwater digital acoustic communication
has required custom hardware that neither has the economies of
scale nor is pervasive. We present the first acoustic system that
brings underwater messaging capabilities to existing mobile devices
like smartphones and smart watches. Our software-only solution
leverages audio sensors, i.e., microphones and speakers, ubiquitous
in today’s devices to enable acoustic underwater communication
between mobile devices. To achieve this, we design a communi-
cation system that in real-time adapts to differences in frequency
responses across mobile devices, changes in multipath and noise
levels at different locations and dynamic channel changes due to
mobility. We evaluate our system in six different real-world un-
derwater environments with depths of 2-15 m in the presence of
boats, ships and people fishing and kayaking. Our results show that
our system can in real-time adapt its frequency band and achieve
bit rates of 100 bps to 1.8 kbps and a range of 30 m. By using a
lower bit rate of 10-20 bps, we can further increase the range to
100 m. As smartphones and watches are increasingly being used in
underwater scenarios, our software-based approach has the poten-
tial to make underwater messaging capabilities widely available to
anyone with a mobile device.
Project page with open-source code and data can be found here:

https://underwatermessaging.cs.washington.edu/
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Figure 1: Mobile devices for underwater messaging.

1 INTRODUCTION
Each year, tens of millions take part in underwater activities like
snorkeling in lakes, rivers, and oceans [14]. Millions more partic-
ipate in recreational scuba diving in the United States alone [15].
Underwater exploration is also important in observation of marine
life, water pollution and to document the biological, geological, and
archaeological aspects of underwater environments [23]. Effective
communication during these underwater activities is critical for
safety and navigation [4, 18, 19]. Hand signals are commonly used
to communicate intention, convey direction and maintain safety.
In addition to the 10-20 signals commonly used in recreational set-
tings [18], professional divers use more than 200 hand signals to
communicate with each other or with surface members of the dive
team [19]. This includes information about oxygen level, aquatic
life or operations that require cooperation [4]. Given the number of
hand signals and their visual nature, however, this mode of commu-
nication is ineffective in low-visibility scenarios (e.g., turbid waters)
and is limited in its communication range and reliability.

To address this problem, commercial efforts have designed hard-
ware that enables two-way text messaging to send from a set of
pre-defined messages or SOS beacons [1]. DARPA also initiated the
AMEBA effort to build custom hardware that would enable divers
to communicate at a low bit-rate with each other via text messages
or with nearby relay buoys [3]. These prior efforts require custom
hardware that is neither ubiquitous nor has the economies of scale.

In this paper, we take a different approach and explore if one
can enable underwater messaging capabilities on mobile devices
like smartphones and smartwatches. Smartphones are increasingly
being used with diving-proof cases ($30-40) for underwater photog-
raphy, video logging and in lieu of a dive computer [12, 13]. These
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Figure 2: User interface of ourmessaging system on a phone
within a water-proof case.

diving-proof smartphone cases are rated to work at depths of 15-
40 m depending on their price [11, 21]. The latest smartwatches are
also water-resistant and can be used during shallow water activities
like snorkeling [6, 10]. Ideally, anyone with a mobile device should
be able to download a software app and communicate underwa-
ter during snorkeling, recreational diving or scientific exploration,
without additional hardware. Such an approach would leverage the
ubiquity of mobile devices to democratize underwater communica-
tion and make it available to anyone with a mobile device.1

We present AquaApp, the first software-only solution that en-
ables underwater acoustic communication and networking on com-
modity mobile devices. While the most common communication
modality on mobile devices is to use radios (e.g., Wi-Fi and LTE),
these frequencies are not suitable for underwater communication
— 2.4 GHz Wi-Fi signals can attenuate as much as 169 dB per meter
in seawater [36, 46]. Our experiments show that two smartphones
separated by just a few inches in fresh water could not connect
using Wi-Fi or Bluetooth. Our solution instead is to leverages au-
dio sensors, i.e., microphones and speakers, that are ubiquitous in
today’s devices to enable acoustic underwater communication. In
contrast to RF signals, acoustic signals have much better propaga-
tion properties underwater [36].

Repurposing microphones and speakers on commodity mobile
devices for underwater communication is challenging for three
reasons: (1) Unlike custom hydrophone hardware that is specially
designed to operate underwater, acoustic sensors in smartphones
and watches are designed for in-air operation and the hardware
components used can vary across device manufacturers. This re-
sults in different frequency responses across devices (Fig. 3a,b). The
transmit power on these mobile devices is also typically limited
compared to underwater hydrophones. In addition, the severe mul-
tipath in underwater scenarios can result in the signal strength
varying by as much as 10-20 dB within a few kHz. (2) Even with the
same smartphone model used across users, the SNR profiles on the
forward and backward paths can be different (Fig. 3c,d), resulting in
the need to use different frequency bands on the two paths. (3) The
bit rate can vary an order-of-magnitude from 100 bps to 1.8 kbps
with distance and multipath, requiring an adaptation algorithm to
minimize packet error rate. However, mobility inherent to diving
and snorkeling results in varying channel across packets, making
adaptation challenging. This requires a real-time protocol to pick
1Recent reports note Apple’s R&D interest in enabling iPhones to communicate in
underwater environments [7, 8].

the correct bit rate before transmitting data, without incurring
significant overhead.

At a high level, we use orthogonal frequency division multiplex-
ing (OFDM) to communicate underwater between mobile devices.
Our real-time system adapts the acoustic frequencies used to en-
code data in each packet transmission, as a function of frequency
response, distance and signal-to-noise ratio (SNR) of each frequency
bin. This ensures that when the devices are a few meters apart and
have a high SNR, the system adapts in real-time to use all the OFDM
bins to encode data and achieve a high bit rate. On the other hand,
it uses a smaller frequency band as the distance increases. This
ensures that more power is allocated to a right set of frequencies,
thus, increasing the SNR and the packet delivery rate.

Our design has three key components:
• Post-preamble feedback. In high-data rate systems (e.g., Wi-Fi),
rate adaptation is performed across packets since packet sizes are
less than amillisecond, and the channel coherent time is more than a
few packets. In contrast, our underwater acoustic system is low rate
making packets much longer and resulting in the channel changing
between consecutive packets. To do this, we perform per-packet
adaptation by splitting the preamble/header and data portions of
each packet. Say Alice wants to send a packet to Bob. In our design,
Alice first broadcasts the preamble and header with Bob’s address
and stays silent for Bob’s feedback before transmitting the data
portion of the packet (Fig. 5). Bob estimates the SNR for each OFDM
bin using the preamble, runs a frequency adaptation algorithm and
in real-time sends information back to Alice, embedded in a single
OFDM symbol. Alice uses this feedback to transmit the data portion
of the packet using the right frequency band.
• Frequency band adaptation. Per-frequency rate adaptation is ide-
ally performed using the water-filling algorithm to allocate different
power and modulation to each OFDM bin [65]. In a low-data rate
system, however, conveying fine-grained feedback about 60 OFDM
bins requires at least O(60) bits which is a significant overhead.
To minimize the feedback Bob sends back to Alice, we design a
low-overhead frequency band adaptation algorithm (§2.2.2). At a
high level, we first compute the SNR in each bin using the received
preamble. If not all the OFDM bins are above an SNR threshold,
we drop the lowest SNR bin and reallocate power to the remaining
bins. We repeat this process until we find the largest contiguous
band where all frequencies are above the SNR threshold. Bob sends
back only information about the start and end frequencies, 𝑓𝑠𝑡𝑎𝑟𝑡
and 𝑓𝑒𝑛𝑑 , of this contiguous band.
• Feedback encoding method. Bob encodes this feedback using a sin-
gle OFDM symbol. Our encoding method allocates all the power to
the two OFDM bins corresponding to the start and end frequencies,
𝑓𝑠𝑡𝑎𝑟𝑡 and 𝑓𝑒𝑛𝑑 , output by our frequency band adaptation algorithm.
Alice can extract this information by performing a sliding window
and picking the top-2 OFDM bins with the highest power. This is
a reliable encoding method since all the transmit power is being
allocated to these two OFDM bins. Alice then uses this band to send
data by setting the OFDM bins outside it to zero.

We implemented our software system in real-time on the An-
droid platform so it can be used with various smartphone models
and smart watches. Since underwater multipath can have a large
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Figure 3: (a,b) Frequency selectivity underwater in a lake at a 5mdistance across devices and locations. (c,d) Channel reciprocity
on the forward and backward path in (c) air and (d) water separated by 2 m.

delay spread, we implement time-domain equalization to reduce
the cyclic prefix duration to only 7% of the OFDM symbol. To ad-
dress mobility, we use differential coding across consecutive OFDM
symbols to reduce errors (§2.3). We also design a carrier sense
based MAC protocol to support a network of multiple underwater
mobile devices (§2.4). Using our communication system, we im-
plement a messaging app where users can transmit one of the 240
common messages. Finally, by using a lower bit rate, we design a
longer-range SoS beacon messaging system.

We evaluate our system in six different real-world underwater
environments. Our findings are as follows.
• Our system adapts the frequency band to achieve bit rates of
100 bps-1.8 kbps at distances up to 30 m. The bit rate scales with
distance and multipath. By reducing the bit rate to 10-20 bps, our
system can increase its range to 100 m.
• Our real-time adaptation algorithm reduces the average packet
error rate (PER) from 38-70% to 3% compared to fixed bandwidth
schemes across 5 to 30 m.
• Our system achieves a PER of 4% and 7% in the presence of slow
and fast motion. Further, it adapts its frequency band to operate
reliably with different phone orientations.

Contributions. The last few decades have shown that software
can bring technology to the masses more rapidly than custom
hardware. We present the first acoustic-based system that enables
underwater messaging on commodity mobile devices, using only
software. To this end, we designed a communication system that in
real-time adapts to variations in frequency responses across mobile
devices, changes in multipath due to mobility and SNR variations
from severe frequency diversity, to minimize packet error rate.
We evaluated our system in underwater environments and built a
messaging app that allows users to send messages and SoS beacons.
Finally, by making our system code publicly available at publication,
we believe that this work has the potential to make underwater
communication technology accessible to everyone with a mobile
device, by just downloading software.

2 SYSTEM DESIGN
We first characterize the properties of acoustic signals from mobile
devices in water. We then present our real-time protocol as well as
our data encoding and decoding algorithms. We open-source our
code and data at https://underwatermessaging.cs.washington.edu/.

Figure 4: Underwater ambient noisemeasurements. Normal-
ization is done across plots in the same graph.

2.1 Characterizing mobile devices in water
We characterize the acoustic properties of commodity smart devices
(e.g., phones, watches) in underwater scenarios.
Frequency selectivity. As the speakers and microphones differ be-
tween smart devices, the frequency selectivity of an acoustic signal
can vary between different transmitting and receiving phones. To
evaluate this, we selected four different smart devices: Samsung
Galaxy S9, Google Pixel 4, OnePlus 8 Pro, and Samsung Galaxy
Watch 4. We placed each device pair underwater 5 m away from
each other. We placed each smartphone in a waterproof pouch [22]
and submerged the device to a depth of 1 m in a 2 m deep lake. The
transmitter sends a 1–5 kHz chirp with a duration of 500 ms. Fig. 3a
shows that the frequency response varies between device pairs. It
is uneven and exhibits deep notches with the frequencies where
notches occur varying across device. The plot also shows that the
frequency response diminished above 4 kHz, which suggests that
acoustic communication above this frequency on mobile devices
may be challenging.

Next, we fix the transmitting and receiving smart devices to both
be a SamsungGalaxy S9.We repeat the same experiment as before at
a distance of 10 m. Fig. 3b shows the variation in frequency response
as a result of the multipath characteristics at the different locations.
Specifically, we observe that multipath causes the notches of the
response to occur at different frequencies. Thus the frequencies
ideal for underwater communication may vary with location.
Channel reciprocity. Next, we analyze the frequency response of
the forward and backward channel in air and underwater. We use
two smartphones of the same model (Samsung Galaxy S9) and
measure the frequency response of a 1–3 kHz chirp with a 1 s
duration. The first phone is set to send a chirp to the second phone,
and two seconds later, the second phone sends a chirp back to

https://underwatermessaging.cs.washington.edu/
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the first phone. We separate the phones by 2 m and perform the
measurement over the air and underwater. In Fig. 3c we see that
the frequency response of the chirp sent over the air is similar
across both phones. However, the frequency response of the chirp
underwater in Fig. 3d differs significantly. This suggests that the
optimal frequencies for communication are different for the forward
and backward channel. So an explicit feedback signal would need
to be sent from the receiving device to the transmitting device.
Ambient noise. Finally, we measure underwater ambient noise as
recorded on different smart devices for five seconds at the same
location. Fig. 4a shows the ambient noise across these devices for
different frequencies. Each noise profile is normalized to the maxi-
mum amplitude across all measured frequencies. The plot shows
that across devices, the amplitude of noise is high below 1 kHz.
Furthermore, noise can also be seen at higher frequencies up to
4.5 kHz. In our measurement location, underwater noise was due
to the sound of water flowing and the movement of air bubbles.
Additionally, the plot shows that the noise profiles vary across
smartphones. We also measured the level of ambient noise at dif-
ferent locations using a Samsung Galaxy S9. Fig. 4b shows that the
level of noise between 0–6 kHz can vary by 9 dB between locations.
This is expected as the amount of water flowing or other acoustic
interference will vary across locations. Across both these exper-
iments, the high noise level below 1 kHz suggests that acoustic
communication in that frequency range may be challenging. This
suggests that we need to measure both signal strength and noise
across frequencies to determine the right frequencies.
Design requirements. So our requirements are:
• Works across smart devices with different frequency responses. Our
system should work across speakers and microphones on smart
devices with different frequency responses.
• Robust to multipath across different locations and distances. Un-
derwater environments can have challenging multipath due to
reflections from the surface, floor and from the coast. Our system
should be robust to these effects.
• Tolerates mobility. Strong water currents or waves can cause
devices to drift away quickly or toward each other within a few
seconds, resulting in Doppler shifts. Our system should be able to
work in these real world environments.
• Adapts to different noise profiles across environments. The under-
water environments can suffer from significant noise from ships,
boats and animals. Loud sounds outside the water such as airplanes
or helicopters also contribute to the noise.

2.2 Post-preamble feedback protocol
Fig. 5 shows our protocol that splits the packet into preamble/header
and data. Alice first sends the preamble and the receiver ID. Alice
remains silent for feedback from Bob but keeps its OFDM symbol
timer ON. The preamble is composed of eight OFDM symbols from
1 to 4 kHz. When Bob detected this preamble, we first check the
ID. It then runs our SNR estimation algorithm on the preamble for
each subcarrier between 1-4 kHz, which it uses in our frequency
band adaptation algorithm. Instead of a fine-grained adaptation
for each bin, we select a contiguous band and send back only the
start and end frequencies of this band to reduce overhead. Alice

Figure 5: Protocol sequence diagram.

uses this information to encode bits within this selected frequency
band and transmits data to Bob. To do this, Alice transmits the data
symbols at the beginning of the next OFDM time interval as deter-
mined by its OFDM symbol clock. This ensures that the preamble
synchronization performed by Bob can also be used for data. The
first OFDM symbol in the data transmitted by Alice however is a
known training symbol to track changes in channel since preamble
transmission. In practice, the post-preamble silence period at Alice
is assigned zero values to keep the speaker buffer full. This ensures
that the symbol timing can be maintained for data symbols. Bob
uses cross-correlation and energy detection in every OFDM symbol
interval to detect the arrival of the first known data symbol from
Alice. Bob can use the preamble to synchronize the data symbols
since the propagation time for preamble and data symbols is sim-
ilar. Note that safe human motion under water is usually lower
than 1− 2𝑚/𝑠 [86] and the time interval between the preamble and
data transmission in Alice side is several OFDM symbols (including
feedback propagation, processing time). Assuming the interval is
5-symbol, the change in the propagation time is only 0.6% of the
OFDM symbol duration.

2.2.1 Preamble design. The preamble has three purposes: packet
detection, symbol synchronization, and channel estimation. For a
real-time system, the preamble design and detection algorithm
have two main requirements: detection robustness and low com-
putational burden. Linear frequency modulation (LFM) signals and
cross-correlation-based detection are proposed for underwater com-
munication [58, 79, 88]. However, in our real-world experiments,
LFM was not robust enough at long distances or with severe mul-
tipath. We instead use a data-aided approach [53] where we fill
the OFDM bins with a CAZAC sequence. These sequences have
a very good auto-correlation property and have unit Peak to Av-
erage Power Ratio (PAPR) [85]. Further, the good autocorrelation
properties of a CAZAC sequence also makes it suitable to be used
for channel estimation [90]. We concatenate eight such identical
OFDM symbols and multiply each with a PN sequence with differ-
ent signs ([-1, 1, 1, 1, 1, 1, -1, 1]), to provide steeper fall off to the
correlation timing metric and alleviate the side-lobes problem for a
more robust detection and accurate synchronization [85].

Preamble detection and synchronization. Our detection algorithm
is composed of two parts: coarse detection and fine-grained de-
tection. The coarse detection algorithm applies cross-correlation
between the received signal and preamble. In the presence of a
preamble, this results in a correlation peak. However, the cross-
correlation peak varies with SNR and spiky noise like underwater
bubbles could also cause a very high correlation peak. To address
this, we also use sliding correlation [53] where instead of calculat-
ing the correlation between the transmitted preamble and received
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Algorithm 1: Frequency band selection algorithm
for 𝐿 ← 𝑁0 to 1 do

for𝑚 ← 0 to 𝑁0 − 𝐿 do

𝑆𝑁𝑅𝑚𝑖𝑛 = min
𝑚≤𝑘<𝑚+𝐿

{𝑆𝑁𝑅𝑘 + 𝜆 · 10𝑙𝑜𝑔10 (
𝑁0
𝐿
)}

if 𝑆𝑁𝑅𝑚𝑖𝑛 > 𝜖𝑆𝑁𝑅 then
𝑛 ←𝑚 + 𝐿 − 1
return (𝑚,𝑛)

signal, we apply a sliding window on the received signal and divide
the sliding windows into 8 segments each the length of an OFDM
symbol. Then we multiply each segment by the PN sequence and
calculate the correlation between the two nearby segments. Finally,
we sum them up and divide the sum by the received energy within
this sliding window. When the real preamble arrives, the sliding
correlation would have a high peak (> 0.6). The peak height of
this normalized sliding correlation is not sensitive to SNR changes.
Moreover, spiky noise is unlikely to have this specific encoded data
pattern and thus its sliding correlation value is low (< 0.2).

However, the sliding correlationmethod increases computational
burden. So we perform the sliding correlation on the candidate
signals only after the coarse detection. In addition, we increase the
step size of sliding correlation to 8 to balance the computational
burden and synchronization resolution. When a valid preamble is
detected, we select the peak index in the sliding correlation curve
as the beginning of the preamble for synchronization. Even if our
preamble structure can improve the peak prominence in sliding
correlation, a synchronization offset is still inevitable, which may
affect OFDM data transmission quality [54]. As described later, we
use time-domain equalization in our decoder and a cyclic prefix in
our encoder to address this issue.

2.2.2 Frequency band adaptation algorithm. Our frequency band
adaptation algorithm is composed of two main steps.

SNR estimation per frequency bin.We use the 8 OFDM sym-
bols in the preamble to estimate the channel. We compute the SNR
for each subcarrier by applying frequency-domain channel estima-
tion. Specifically, we denote the transmitted data in subcarrier 𝑘 of
the eight preamble symbols by a vector 𝑥 (𝑘) and the received data
in subcarrier 𝑘 of 8 training symbols by a vector 𝑦 (𝑘). We apply
a minimum mean square error (MMSE) estimator to compute the
channel response 𝐻 (𝑘) for each subcarrier 𝑘 . We then compute the
SNR in the 𝑘𝑡ℎ bin as, 𝑆𝑁𝑅𝑘 = 20𝑙𝑜𝑔10 ∥𝐻 (𝑘)𝑥 (𝑘) ∥2

∥𝑦 (𝑘)−𝐻 (𝑘)𝑥 (𝑘) ∥2
Frequency band selection. Our goal is to find the optimal fre-

quency range based on the SNR distribution between 1-4 kHz. The
basic idea is that we drop the bin with the lowest SNR and reallocate
power to the remaining bins until the SNR in all remaining bins
surpass the preset SNR threshold. Say, there are totally 𝑁0 bins
between 1-4 kHz, and the estimated SNR in the 𝑘𝑡ℎ bin is 𝑆𝑁𝑅𝑘 .
When we only select bins between𝑚 and 𝑛, the power in the dis-
carded bins could be re-allocated to the remaining bins. Hence, the
SNR value in the remaining bins increases by 10𝑙𝑜𝑔10 ( 𝑁0

𝐿
), where

Figure 6: Data encoding and decoding.

𝐿 = 𝑛 −𝑚 + 1. So, our optimization problem is as follows,

max
𝑚,𝑛

𝐿 = 𝑛 −𝑚 + 1

𝑠 .𝑡 . 𝑆𝑁𝑅𝑘 + 𝜆 · 10𝑙𝑜𝑔10 ( 𝑁0
𝐿
) > 𝜖𝑆𝑁𝑅,∀𝑘 ∈ [𝑚,𝑛]

where 𝜖𝑆𝑁𝑅 is the preset SNR threshold (in our implementation we
set 𝜖𝑆𝑁𝑅 to 7). 𝜆 is a conservative factor between 0 to 1 (we select
it empirically to 0.8), since in real-world implementation the power
re-allocation is not exact. We set, 𝜖𝑆𝑁𝑅 and 𝜆, a bit conservatively
since we need to account for imperfect SNR estimation and because
the channel may still change due to mobility. 𝑚 and 𝑛 from the
above optimization give us 𝑓𝑏𝑒𝑔𝑖𝑛 and 𝑓𝑒𝑛𝑑 .

2.2.3 Encoding feedback. We encode the frequency bins 𝑓𝑏𝑒𝑔𝑖𝑛
and 𝑓𝑒𝑛𝑑 , in a single OFDM symbol by assigning all the power
only to the two corresponding bins. By allocating all the power
from the transmitter into two frequency bins, Alice can still decode
the feedback signal reliably even when channel estimates of the
backward path from Bob to Alice are unknown. Specifically, Alice
can decode the signal by extracting the frequencies with the top-2
SNRs. The OFDM symbol from Bob would arrive at Alice after a
delay of around a round-trip time. Since this specific OFDM symbol
is effectively the same as transmitting two frequency tones, Alice
performs an FFT over a sliding window with the same length as the
OFDM symbol. The sliding window computation is performed up
to the maximum round trip time corresponding to 30 m, to search
for Bob’s OFDM symbol.

2.3 Data transmission
Multi-path can be severe under water due to reflections from the
surface, floor and other objects [74] causing inter-symbol inter-
ference (ISI). To address ISI without sacrificing bit rate, we apply
time-domain MMSE equalization instead of increasing the cyclic
prefix. Dynamic channel changes due to motion of humans, waves
and other underwater objects is another challenge. Even within a
packet, the channel for the first OFDM symbol may differ from the
last symbol, which may deteriorate the equalizer’s performance.
Here, describe our encoding and decoding mechanisms to address
these issues.

2.3.1 Data encoding. Alice encodes the transmitted bits and
generates OFDM symbols between 𝑓𝑏𝑒𝑔𝑖𝑛 and 𝑓𝑒𝑛𝑑 . The duration
of each OFDM symbol is 960 samples (20 ms duration and 50 Hz
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subcarrier spacing with 48000 kHz sampling rate). We also add a
67 sample cyclic prefix (6.9% overhead).
• Convolutional coding. We first apply 2/3 convolutional coding
with constraint length 𝐾 = 7 to encode data bits. These codes are
widely used in GSM and satellite networks [28, 38].
• Interleaving bits. The next step is to assign the coded bits to
OFDM symbols. Our algorithm has two main rules: (1) assign bits
to OFDM bins between 𝑓𝑏𝑒𝑔𝑖𝑛 and 𝑓𝑒𝑛𝑑 and set the remaining bins
to zeros and (2) interleave the bits to avoid consecutive bit errors
which could cause unresolved errors after convolutional decoding.
Our empirical observations show that bit errors usually happen in
the OFDM packets at a specific subcarrier or nearby two subcarriers.
Our interleaving strategy is to first fill one symbol until all selected
subcarriers in this symbol have bits, and then fill the next symbol to
avoid consecutive bit errors in a single subcarrier. Within a symbol,
after assign a bit in a subcarrier, we leave some subcarriers for the
next bit with a step size is one-third of the selected bins. If we use
less than three bins then this defaults to not using interleaving.
• Differential coding. In our system, we use differential encoding
across consecutive OFDM symbols to alleviate the time-varying
channel effects. Specifically, say the data in subcarrier 𝑘 of symbol
𝑖 − 1 is 𝑦𝑖−1 (𝑘) and 𝑏 is a coded bit intended for transmission. Then,
we apply differential coding by setting the data in subcarrier 𝑘 of
the next symbol 𝑖 as, 𝑦𝑖 (𝑘) = 𝑦𝑖−1 (𝑘)

⊕
𝑏. Thus, the bit is encoded

as an XOR between two consecutive OFDM symbols. Since channel
variations across two consecutive symbols is small, differential
coding provides resilience to channel variations, as long as the
coherence time is larger than one OFDM symbol.

After assigning the bits to the OFDM subcarriers, we demodulate
the bits in each subcarrier using BPSK and use IFFTs to generate
the time-domain OFDM signal.

2.3.2 Data decoding. To decode data, Bob first applies a 128 or-
der FIR bandpass filter, with a passband of 1–4 kHz, on the received
signal to filter out ambient noise.
• MMSE Equalization. Time domain equalization utilizes the equal-
izer coefficients to recover the transmitted signal and address inter-
symbol interference (ISI). The equalizer coefficients is estimated
using preset training symbols and the MMSE algorithm. The com-
munication channel model can be written as 𝑦 = ℎ ∗ 𝑥 + 𝑛, where 𝑥
is the transmitted signal, 𝑦 is the received signal, ℎ is the channel
coefficient vector with length 𝐿, and ∗ is the convolution operator.
The time-domain equalization model can be written as, 𝑥 = 𝑔 ∗ 𝑦,
where 𝑥 is the recovered signal, 𝑦 is the received signal, and 𝑔 is
the equalizer coefficient with length 𝐿. MMSE equalizers [69] mini-
mize the mean square error between the transmitted signal and the
recovered signal, i.e. min ∥𝑥 −𝑥 ∥22. In our system, a known training
symbol is appended to the front of the data symbols. We utilize this
training symbol to estimate our MMSE equalizer with the channel
length 𝐿 of 480 samples. Finally, we apply the estimated equalizer to
each received OFDM data symbol for transmitted signal recovery.
• Differential & convolutional decoding.After equalization, we apply
an FFT on each symbol and acquire the data in the frequency bins.
We calculate the phase difference of two consecutive symbols on
each OFDM bin within the frequency range of our frequency band

adaptation algorithm. By measuring the phase difference, we can
extract the coded bits, 0 or 1.We then re-interleave the bits following
the order of the pre-determined interleaver. Finally, we use the
Viterbi algorithm with constraint length 7. This provides maximum
likelihood values for the data bits.

We note the following points about our design.
• Doppler shifts. A concern is that motion could also cause Doppler
shifts, leading to inter-channel interference (ICI) within the OFDM
symbol. Since our system mainly focuses on underwater human
communication, the safe motion speed for humans during scuba
diving is usually slower than 1 m/s [86]. Even if the transmitter and
receiver are moving in opposite directions, their relative speed is 2
m/s. The typical underwater acoustic speed is 1500 m/s. This results
in a Doppler shift of around 5 Hz at our maximum operational
frequency. We however note that our OFDM subcarrier spacing is
50Hz, which is much higher than this Doppler shift and thus does
not cause significant ICI.
• Encoding ID and ACKs.We use a single frequency in the OFDM
symbol to encode device ID as well as the ACKs. Specifically, ACKs
are encoded by assigning the OFDM bin corresponding to 1 kHz to
denote successful packet reception. This mechanism is reliable and
does not require a long preamble since it assigns all the transmit
power to a single OFDM bin. We also encode the device ID using
the different subcarriers in the OFDM symbol. We have a total of
60 subcarriers and when the device transmits the OFDM symbol
encoding its ID, it allocated all the power to the corresponding
subcarrier. This limits the number of devices in our local network to
60 users, which may be acceptable for underwater human activities
like scuba diving and snorkeling. These IDs can be assigned using
the app across devices in-air.

2.4 MAC protocol
In a typical use case, we expect our network to be operating in a
low load scenario where not all transmitters send data at the same
time. However, to support multiple devices that may operate at the
same time, we also use carrier sense, similar to Wi-Fi, as a means
of mediating access to the channel between multiple transmitters.
We implement our carrier sense in realtime using energy detec-
tion by measuring the average energy level in the 1–4 kHz band,
which is the frequency range used for communication in our system.
We perform this measurement every 80 ms. Prior to transmission,
each phone measures if the energy level on the channel exceeds
a predefined threshold. If it detects that the energy level exceeds
the threshold, the phone waits for a random backoff period that
is defined in multiples of the packet duration. During this backoff
period, the phone continues to listens to the channel. If it detects
energy on the channel during this backoff period, it will increase
the backoff time by the duration of one packet to ensure the backoff
period will not elapse while a packet is being transmitted on the
channel. After this additional time has elapsed, the phone will again
check if the energy on the channel is below the threshold. After the
remainder of the backoff time has elapsed and the channel is idle,
the phone is then clear to send a packet. The threshold is computed
by measuring the average noise level for a few seconds in each
environment before use.
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Figure 7: Different experimental environments. (a) Bridge: a quiet environment. (b) Park: A busy location with boats and
kayaks passing by regularly. (c) Lake: a busy and noisy location by a fishing dock with animals and other water activity. (d)
Beach: a waterfront with a length around 100 m for long range experiments. (e) Museum: a highly occupied location used
to dock ships and boats with a depth of 9 m for depth experiments. (f) Bay: a location with 15 m depth for deeper water
experiments.

We note two points: 1) In addition to energy detection, Wi-Fi
receivers also use preamble detection as part of carrier sense, which
we could also incorporate to improve noise resilience. 2) Our post-
preamble feedback mechanism can be considered as a light-weight
version of RTS-CTS. So we can add a preamble to Bob’s feedback
which could be used in lieu of a CTS message to address the hidden
terminal problem. Our current implementation does not include
either features.

3 EVALUATION
Our communication system has been implemented to run on An-
droid devices with preamble detection running continuously in real-
time. The runtime to execute our channel estimation, frequency
adaptation, and feedback decoding algorithm are each on average
1–2 ms on a Galaxy S9. Our decoder can perform equalization and
Viterbi decoding for each symbol in less than 20 ms, which is the
duration for an OFDM symbol. Fig. 2 shows our app interface where
users can select from a list of 240 messages corresponding to hand
signals used by professional divers. Users can filter the list of mes-
sages based on eight different categories. Additionally, the 20 most
commonly used hand signals are displayed more prominently for
selection by users. Pictorial representations of hand signals are
included for reference in the app. The size of our data packet is
16 bits, 24 bits after applying a 2/3 convolutional code. With this,
users can choose to send two hand signals in a single packet.

Our system also encodes a user’s 6-bit ID into an SoS beacon
using frequency-shift keying. Specifically, we encode a 0 bit with a
single frequency tone 𝑓0 and a 1 bit with a single frequency tone 𝑓1.
We design our system to support data rates of 5, 10, and 20 bps and
use frequencies in 1.5–4 kHz to transmit these beacons over longer
ranges. Using this scheme we may also encode an 8-bit hand signal,
which can be transmitted in around a second at these rates.

We evaluated our system in four underwater environments with
different multipath effects and noise levels (Fig 7).
• Bridge. Under the water of a bridge with a horizontal distance of
20 m. This is a quiet location with still waters.
• Park. By the waterfront of a park with a length of 40 m. This is a
busy location with boats and strong currents.
• Lake. Fishing dock by lake with a 30 m length. The lake had a 5 m
depth. This is a busy location with people fishing and kayaking.
• Beach. The length of the water here is around 100 m.
• Museum. This location has a depth of 9 m. This is a highly occu-
pied location used as a dock for different boats and ships.

Figure 8: BERmeasurements are from distances of 5, 10, and
20 m with bandwidth of 1-4 kHz.

• Bay. This location has a depth of 15 m. There were a lot of waves
at this location and experiments were performed on a kayak.

BER versus SNR. First, we evaluate our decoding algorithm by
computing the BER at different subcarrier SNRs. Given the fre-
quency fading nature of underwater links, BER can be different
at each of the OFDM subcarriers depending on its SNR. In these
experiments we use our real-time implementation on two Samsung
Galaxy S9 phones. In all experiments, the phone speaker is set to
its maximum volume. The phones were placed in a waterproof case
and submerged at a depth of 1 m using a selfie stick as an extension
pole. We perform the experiments at a distance of 5, 10, and 20 m at
the bridge location. At each distance, we configure the transmitter
to send a total of 500 OFDM symbols on the subcarriers between
the 1–4 kHz and the modulation scheme for each subcarrier is set
to BPSK. We computed the BER as the fraction of mistakenly de-
coded bits (without coding) to the total transmitted bits over 500
symbols. Fig. 8 plots the BER curve obtained in our experiments
in comparison to the theoretical curve for BPSK. The plot shows
that the empirical data for our design follows a similar trend to the
theoretical estimates.
Effect of different environments. We evaluate our system in
three locations: the bridge, park, and lake. These range from quiet
and still to noisy and busy, and capture a diversity of environmental
effects. We report the bitrate picked by our real-time algorithm and
the PER of our system at 5 m.

During the experiment, our system runs in real-time where the
transmitting smartphone first sends the preamble and header to the
receiver. The receiver continuously listens for the preamble, when it
detects it, performs SNR estimation on each OFDM subcarrier, runs
our frequency band adaptation algorithm and sends back 𝑓𝑏𝑒𝑔𝑖𝑛
and 𝑓𝑒𝑛𝑑 frequencies to the transmitting phone in a single OFDM
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Figure 9: Effect of different environments. (a) CDF of bitrates selected by our algorithm. (b,c) Example frequency responses
from two locations. Dashed lines indicate the range of selected frequencies by our algorithm. (d) A PER value computed using
all packets at each location for our system and fixed bandwidth schemes.

symbol. The transmitting phone then sends data using OFDM sub-
carriers between 𝑓𝑏𝑒𝑔𝑖𝑛 and 𝑓𝑒𝑛𝑑 . Each data packet contains 2 bytes
of data (24 bits after applying a 2/3 convolutional code) on the se-
lected OFDM frequency bins. This is more than sufficient to be able
to encode the range of hand signals used by professional divers. We
compare the performance of our frequency adaptation scheme to
fixed-rate bandwidth schemes, where the transmitting phone sends
the same bits using a fixed bandwidth of 1–4 kHz, 1–2.5 kHz and
1–1.5 kHz, which correspond to 60, 30, and 10 OFDM bins respec-
tively. This procedure was set to repeat 100 times at each of the
three locations tested. Every 25 packets, we would pause measure-
ments on the smartphone, retrieve it from the water, and submerge
it again, until all 100 packets were transmitted. Even if one bit error
occurs at the decoder output, we mark it as an erroneous packet.
Fig. 9a shows that the selected bit rate varies across location as
well as runs. Within the same location, the selected bitrate changes
as the multipath changes with time. The average selected bitrate
was highest at the bridge location which is likely because the en-
vironmental noise and water currents are lowest in this setting.
In comparison, at the park and lake environments, people fishing
and kayaking nearby may have affected the channel, resulting in
a selection of lower bitrates. Fig. 9b,c shows an example received
frequency spectrum in the bridge and lake locations. The dashed
lines indicate the range of frequencies selected by our algorithm
for sending data. In contrast to the bridge location, the spectrum at
the lake location exhibit more frequent and deeper dips. In the lake
location, the wall and pillars underwater would reflect the acoustic
signals resulting in more frequency selectivity.

Fig. 9d plots the PER obtained for our system, as well as the
three fixed bandwidth schemes at the three environments. The plot
shows that the PER for the fixed bandwidth schemes increases in
response to larger multipath in the environment. The PER is larger
in the lake environment which exhibits the highest variability in
the received spectrum. In contrast, the PER of our system remains
low across all three locations with an average value of 1%. The PER
obtained by our system is also lower than those obtained by the
fixed bandwidth schemes at the park and lake location.
Effect of different depths. Multipath can change at different
depths — close to the surface, multipath interference from the
surface of the water can be strong. Similarly, close to the bottom of
the water body, it may experience significant multipath from the
floor. We perform our experiments in the museum location, which

Figure 10: Effect of depth. (a) CDF of selected coded bitrate.
(b) PER our system compared to fixed bandwidth schemes.
A PER value is computed at each depth location using all
packets sent at the location.

a b

Figure 11: Testing in deeperwaters. (a) CDF of selected coded
bitrates. (b) Waterproof casing rated for a depth of 15 m.

had a total depth of 9 m. Our experiments were performed at a fixed
horizontal distance of 5 m between the two smartphones.

Fig. 10a shows the bitrates selected by our system for three
depths of 2, 5 and 7 m and Fig. 10b shows the PER. The PER for our
system and the 0.5 kHz fixed bandwidth scheme was highest at a
depth of 2 m when the phones are close to the water surface. For
the 1.5 and 3 kHz fixed bandwidth scheme, the PER was highest at
a depth of 7 m when the phones are close to the bottom of the lake.
These results suggest that the environments at a depth of 2 and 7 m
are the most challenging multipath environments. This is likely
because there are more objects for the signal to reflect from at the
surface and bottom of the lake including ducks, fish, and kayaks.
At all depths, our system obtained significantly lower PERs than
the fixed bandwidth schemes.
Testing in deeperwaters.To evaluate our system at deeper depths,
we performed an experiment at the bay location with a total depth
of 15 m and submerged the phones to a depth of around 12 m.
We note that 12 m is in the range of depths associated with basic
recreational scuba dives [20]. In this experiment, we used a differ-
ent waterproof pouch [12] (Fig. 11b) which was rated to work at a



Underwater Messaging Using Mobile Devices SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Figure 12: Range evaluation. (a) CDF of selected bitrates. (b,c) BER and PER of our system versus fixed bandwidth schemes. A
PER value is computed from all packets at the location. (d) Longer ranges using lower bit rates.

Figure 13: (a,b) Our system uses a smaller band in response
to increased attenuation at larger distances.

maximum depth of 15 m. We note that this pouch was made of a
hard plastic casing (polycarbonate and thermoplastic polyurethane)
which attenuated the sound more than the thin flexible plastic ma-
terial (polyvinyl chloride) used in the pouch for other experiments.
We positioned the transmitter and receiver phone on either side of
a two-person kayak (3.5 m length), and weighed down the phones
using a pouch of sand to ensure the phones would submerge un-
derwater. Fig. 11a shows that the median bitrate selected by our
system at a depth of 12 m was 133 bps. This suggests the phones
are able to communicate even at these deeper depths and with a
hard plastic casing.
Range evaluation.We perform our range evaluation in the lake
location since it had a comparatively long distance of 30 m. We
performed our measurements at a depth of 1 m, which as we note
in the previous evaluation, has empirically more challenging mul-
tipath at the lake location. The phones were submerged into the
water using a rope, which caused the phone to sway and rotate
slowly during measurements, i.e., the phones were not static.

Fig. 12a shows the bit rate after coding selected by our system
at different distances. The plot shows that the selected bitrate gen-
erally decreases with distance, with the largest drop occurring
between 5 and 10 m. At a distance of 5 m and 30 m, the median
selected bitrate was 633.3 and 133.3 bps respectively. In Fig. 12b
we also show the BERs for the coded bits transmitted at different
distances for our frequency adaptation scheme and the fixed band-
width schemes. The BERs for the fixed adaptation schemes increase
quickly with distance. This is because the fixed schemes will con-
tinue to naively transmit bits on low SNR subcarriers and increase
the likelihood of bit errors. This is clearer in Fig. 12c where we plot
the PERs for these schemes over distance. The plots show that the

PER for the fixed adaptation schemes reach 100%when using a fixed
bandwidth of 1.5 and 3 kHz. In contrast, our frequency adaptation
scheme has a PER of 7% at a distance of 30 m. This demonstrates that
to minimize PER it is essential to pick the appropriate frequency
band since even with a fixed low bandwidth of 0.5 kHz, it is likely
that some of the frequencies in this narrowband signal are in a deep
fade resulting in sustained packet losses despite using coding. In
contrast, our real-time adaptive system picks a conservative set of
frequencies depending on the frequency profile and SNRs as shown
in Fig. 13 which allows it to minimize the packet error rate.

In the above design, each OFDM symbol had a 20 ms duration,
limiting the minimum symbol rate to 50 bps. To further reduce the
bit rate, we increase the symbol duration to 50, 100 and 200 ms and
use a single frequency within each symbol to encode data. This
results in a bit rate of 20, 10 and 5 bps respectively, which may result
in a longer range. To evaluate this, we perform our experiments
in the beach location. Testing was performed at a fixed depth of
1 m. We compute BER as the number of bits that were correctly
decoded over all the bits transmitted at each location at each of the
three bit rates. Fig. 12d shows the uncoded BER of our system up
to a distance of 113 m. The plot shows that the BER is less than 1%
for bitrates of 5 and 10 bps up to the maximum tested distance of
113 m. This demonstrates that our system enables communication
between smartphones underwater at long ranges albeit at lower bit
rates. We also note that a bit rate of 10 bps is sufficient to transmit
SoS beacons which would be important at these long ranges during
underwater activities. Similarly transmitting a 8 bit packet that is
sufficient to encode the 200 hand signals can also be done in around
a second after accounting for coding.
Effect of mobility. We perform mobility evaluation in the lake
location at a fixed horizontal distance of 5 m and at a depth of 1 m. In
this experiment, we measure system performance when the phones
are static, and when the transmitting phone is moving slowly and
moving quickly. To do this, we move the phone horizontally back
and forth, and vertically up and down. Since the phone is attached to
the rope, the phones will also rotate randomly during themovement.
During these measurements, the raw accelerometer readings on
the phone after compensating for gravity were on average, 2.5 and
5.1𝑚/𝑠2 for slow and fast motion, respectively.

In Fig. 14c, we calculate the uncoded BER with and without
differential coding. Specifically, for received packets without differ-
ential coding, we only apply the equalizer to each OFDM symbol
and compare the decoded bits with the original bits. The plot shows
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Figure 14: Effect of mobility. (a) CDF of selected bitrates in a static scenario versus one of the smartphones moving slow
(2.5𝑚/𝑠2) and fast (5.1𝑚/𝑠2). (b,c) PER and uncoded BER of our system versus other configurations.

that with mobility, the BER without differential coding increases
rapidly and easily surpass 10%. When we apply differential coding,
the BER decreases dramatically and could still keep around 1% in
the fast motion scenario. Fig. 14a shows the CDF of the coded bitrate
across these three mobility scenarios. We see that the coded bitrate
is highest in the static situation with a median bitrate of 640 bps.
In contrast, the median bitrates in the slow and fast moving case
decrease to 433 and 336 bps respectively. Fig. 14b shows that our
PER increases from 1.2 to 7.6% as mobility increases.
Effect of phone orientation. For this evaluation, we ran our sys-
tem at the bridge environment with a fixed distance of 5 m and a
depth of 1 m. The phones were submerged with the screen facing
towards the water surface, and were first set so the speaker and
microphones of each phone are directly facing each other. We rotate
one phone in the azimuth angle from 0 to 180° in increments of
45°. Fig. 15a shows that the median bitrate decreases with phone
orientation from 1067 bps at 0° to 567 bps at 180°. Fig. 15b shows
that while the fixed bandwidth schemes have a higher PER at large
angles, our frequency adaptation scheme achieves a low PER. This
is because our system is able to select a better frequency band and
adapt to the channel at different orientations.
Channel stability and SNR.We take a closer look at the effects
of mobility from the perspective of channel stability and SNR. Mo-
bility has two effects on our system: (1) the channel may change
between the preamble and the data symbols, leading to a different
bandwidth selection and, (2) the channel between the first and the
last data symbol may be different. For the second effect, as shown in
Fig. 14(c), differential coding addresses the channel changes within
the data packet. Here, we investigate the stability of the underwater
channel between the preamble and data symbols in different motion
scenarios. In our system, Alice first transmits a preamble to Bob
and Bob selects the bandwidth. To verify the channel stability and
its effects on SNR, instead of transmitting the data symbols, we con-
figure Alice to transmit another preamble; Bob used the bandwidth
from the first preamble to compute the SNRs of the corresponding
OFDM bins using the second preamble. Now, we can evaluate the
effect of channel stability on our bandwidth selection algorithm.
Specifically, when the SNRs in some of the subcarriers within the
selected bandwidth are very low, packet errors can happen. Hence,
we select the minimum SNR computed using the second pream-
ble within the selected bandwidth as the metric to evaluate the
performance of our bandwidth selection algorithm.

Figure 15: Effect of phone orientation. (a) CDF of selected bi-
trates for different azimuth offsets between a pair of smart-
phones. (b) PER at a distance of 5m for our system and other
fixed frequency band schemes.

We performed this experiment at a horizontal distance of 10 m
at the lake location when both phones were held static, and when
moving them at slow and fast speeds similar to our mobility evalua-
tions. The x-axis in Fig. 16 represents the experiment index number,
and the y-axis is the minimum SNR computed using the second
preamble within the selected bandwidth. The dashed SNR line of
4 dB is the reference for subcarrier quality evaluation (4 dB may
cause 1% BER according to the SNR-BER curve).

In the static scenario, the minimum SNRs are high, likely due to
the conservative parameter settings used in our bandwidth adaptive
algorithm. In the slow and fast motion scenario, the fluctuation of
the minimum SNR values increase and sometimes the bad subcar-
riers appear in the bandwidth selection algorithm, leading to an
increasing PER during fast motion. Despite the existence of channel
variance with motion, two components in our system help alleviate
the effects of mobility and keep the PER low: (1) the conservative
parameter settings of our bandwidth adaptive algorithm with a
high SNR threshold and conservative factor 𝜆 allows for some room
for safe bandwidth selection albeit the inaccurate SNR estimation
due to mobility. Due to these conservative settings, only a small
proportion of packets would pick up the bad subcarrier (<4 dB). (2)
In scenarios where our conservative parameters can fail when the
change of channel is very large, convolution coding helps reduce
the bit errors. However, when channel drastically changes leading
to more deep drops in the selected bandwidth, packet error can
occur, which accounts for the increasing PER during fast motion. In
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Figure 16: Channel stability and SNR. For consecutively transmitted pairs of preamble signals separated by the feedback
duration, the figure shows the minimum SNR computed using the second preamble over the bandwidth picked from the
first preamble. We run these experiments in (a) static scenarios and with (b) slow and (c) fast motion. The dashed line at 4 dB
marks the SNR threshold at which BER will theoretically be at 1%, representing the threshold for a stable communication
link.

Figure 17: Effect of OFDM subcarrier spacing. CDF of selected bitrates for different subcarrier spacing values at a distance of
(a) 5 and (b) 20 m. (c) PER for our system at different subcarrier spacings.

future work, further improvements can be used to make the band-
width selection algorithm to be even more conservative, which can
lead to lower data rates. Another approach to improving the PER is
to apply non-linear equalization techniques, which perform better
for signal recovery in poor channels with severe distortion [57].
Effect of OFDM subcarrier spacing. Next, we perform experi-
ments with three different OFDM subcarrier spacing: 50 Hz (length
of OFDM symbol is 20 ms), 25 Hz (40 ms), and 10 Hz (100 ms). We
do not select the OFDM subcarrier spacing lower than 10 Hz due to
Doppler shifts as described in §2.3. We perform these experiments
in the lake location at a horizontal distance of 5 m and 20 m. During
the experiment, for each subcarrier spacing, the OFDM symbol
length in the preamble is kept the same as the length of data OFDM
symbol to maintain the same frequency resolution. Fig. 17(c) shows
that at 5 m, all the PERs are around 1%. At 20 m, the PER with
50 Hz spacing increases to 4.6%, while PERs for 25 Hz and 10 Hz
spacings are lower than 1%. Smaller subcarrier spacing can improve
PER because (1) smaller spacing can provide high-resolution SNR
estimation and more accurate bandwidth selection and (2) smaller
spacing can also improve the equalization performance due to the
higher frequency-resolution in the training symbol.
Effect of air in water-proof case. To evaluate this, we first ex-
pelled as much air as we can from the water-proof case before
putting the phones into the water and then measure the frequency
response. We then filled the case with air before putting the phones
in the water and then analyzed the frequency response. Fig. 18

shows that even if the frequency response of the two curves has
some difference, the average power within 1-4 kHz was not signifi-
cantly different.
Preamble & feedback signal evaluation. We also perform pre-
amble evaluation in the lake location at a depth of 1 m. We trans-
mit 180 preambles at each distance and evaluated the probability
that our system could successfully detect the preamble. Our mea-
surements show that our detection rate defined as the fraction of
detected and transmitted preambles was 0.99, 1.0, 1.0 and 0.96 at 5,
10, 20 and 30 m. We also measured our system’s ability to correctly
decode the feedback signal containing the result of our frequency
adaptation algorithm at all the above distances. Frequency error
rate is computed as the fraction of feedback signals where the de-
coded frequencies did not match the transmitted values. Across all
tested distances, the error rate was around 0.01, i.e., 1 in 100 packets
across all these distances. This is because we allocate all the power
to these two frequencies making the signal strength much higher
which allows reliable decoding even with frequency fading. In the
cases where there are errors, the system confuses it to the adjacent
OFDM bins.
MAC protocol evaluation. Finally, we measure the effectiveness
of carrier sense at supporting multiple devices underwater. We
consider two network deployments with four phones (three trans-
mitters, and one receiver) and three phones (two transmitters, and
one receiver) placed underwater in the bridge location at a depth of
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Figure 18: Effect of air in waterproof case.

1 m at distances in the range of 5-10 m from the receiver. As men-
tioned before, we expect that not all devices will be transmitting
continuously underwater. But to test the effectiveness of carrier
sense in a heavily used network, we configure the transmitters to
send continuously after a random backoff period of multiple sec-
onds, up to a maximum of 120 packets per transmitter. We repeat
the experiments with and without carrier sense.

We measure the fraction of collisions for each of the transmitter.
To calculate this fraction, we first logged the timestamps at when the
transmitting phones sent a packet. Packets that were transmitted
within one packet duration of each other was marked as a collision.
The fraction of collisions in the network was defined as the number
of packets that were involved in a collision divided by the total
number of packets sent by all transmitters (dotted horizontal lines).
Fig. 19 shows that without carrier sense, the collision rate in the
three transmitter network is high with an average of 53%, however,
our carrier sense mechanism is able to reduce this to an average
of 7%. The figure shows a similar collision reduction for the two
transmitter network from 33% to 5%.

4 RELATEDWORK
Underwater networking is an active research area where topics
across the network stack continue to be explored for custom acous-
tic modems and sensor networks [24]. There is also prior work in
localization and ranging [35, 50], which is not in scope of our work.
Below we describe the prior work in more detail.
Acoustic modem hardware. Since acoustic signals propagate
well underwater, unlike RF, the common approach is to design
custom acoustic modem hardware and use custom amplifiers at
high power to achieve long ranges. Given the lack of economies of
scale, much of this hardware can be expensive or not as accessible
as in-air radios. All prior works that present underwater network
simulators [32–34] or protocol stacks [29, 61, 63] use custom hard-
ware with amplifiers and (de)modulators. Recent work integrates
a custom acoustic modem with software radios (e.g., USRPs) to
design a software-defined platform for underwater networking re-
search [55, 72]. The closest to our work is iSonar [66] that designs
a custom acoustic OFDM modem hardware that can connect to the
smartphone using its audio jack. In addition to requiring additional
hardware, it neither supports band adaptation nor is evaluated with
mobility. In contrast, we design the first underwater acoustic com-
munication system that operates on mobile devices without any
additional hardware.
Modulation, rate adaptation and MAC protocols. Prior work
makes contributions at the physical and MAC layers. [70, 73, 77]
have analyzed various modulation techniques. There has also been
work on underwater channel estimation for OFDM [56, 82], the use

Figure 19: MAC protocol with multiple transmitters.

of pilot symbols to track channel estimates within a packet [44, 76],
Doppler estimation [39, 49, 81] and bit rate adaptation [25, 59, 67, 71,
75, 78] for underwater sensor networks. Various hardwareMACpro-
tocols [24] have also been explored in prior work. There have also
been interest in cognitive underwater spectrum access [9, 26, 89].
All this existing work has been designed for custom underwater
hardware. In contrast, we design adaptation algorithms and proto-
cols that can run on commodity mobile devices and operate with a
large diversity of frequency responses across hardware.
Underwater sensor networks/IoT. Underwater sensor networks
have been an active research area and uses custom sensor hard-
ware [60, 87]. Recent work has designed novel IoT hardware that
uses backscatter communication [41, 47] and acoustic energy har-
vesting to design battery-free underwater wireless sensors [37, 40].
Recent work has also designed creative hardware to communicate
across the water and air interface [30, 80]. Optical approaches have
also been proposed for short-range underwater communication
at 1–2 m [48]. We build on this sensing work but focus instead of
using commodity devices to enable underwater communication
capabilities without additional hardware. Further, in contrast to
prior work that is designed for underwater sensors, our goal is to
enable humans to message underwater using their smart devices.
In-air acoustic communication. Priorwork has used smartphones
to enable acoustic communication and tracking in air at close
ranges [45, 51, 52, 68, 83, 84]. However enabling underwater com-
munication using smartphones is challenging for multiple reasons,
1) multipath in underwater environments can be more severe in
comparison to in air, 2) even the frequencies that can be used on the
forward and backward paths can be different underwater (see §2.1),
3) in-air acoustic systems have a limited communication range of a
few meters. Designing an underwater communication protocol that
can adapt for a wide range of bit rates and achieve much longer
range requires designing a different system.

5 DISCUSSION
We discuss various system-level aspects of our system.
Battery life. To measure the power consumption of our system,
we considered a setup with two Samsung Galaxy S9 smartphones
as the transmitter and the receiver. We ran our system continuously
at maximum sound volume with the screen on and found that the
battery power reduced by 32% after a duration of 4 hours. This is
sufficient for the application of recreational scuba diving, which
have a maximum recommended dive time less than this [16, 17].
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Messaging latency. A question that the reader may have is if the
bit rates in our design are sufficient for underwater messaging.
Since typing underwater may be uncomfortable, our app interface
has the user select from one of 240 messages, which translates to
around 8 bits (and 12 bits after coding). It takes close to half a second
to send this message at 25 bps. At 1 kbps, we can even send a 50
character message in half a second.
Range versus power. The range achieved by custom hydrophones
depends on their transmit power. Commercial hydrophones that
have a kilometer or more range typically have a high transmit
power [37]. The 30 m range for messaging and 100 m range for SoS
beacons that we achieve with mobile devices is sufficient for many
recreational and professional underwater activities.
Audibility. Underwater acoustic modems use a range of frequen-
cies from multiple kHz to 100s of kHz. Our results show that 1-
4 kHz is the optimal set of frequencies for use on commodity smart
phones and watches. These are in the audible range of human
hearing, which is also true for some of the commercial modems
that operate in 7-17 kHz [5, 27]. Also note that human hearing
underwater occurs through bone conduction rather than through
the air pocket in the ear canal [64]. As a result, some prior stud-
ies observe that human hearing extends to ultrasonic frequencies
underwater [2, 64]. While fish and sharks have limited sensitivity
for frequencies far above 10 kHz [31, 62], sea mammals, e.g., dol-
phins, seals, and whales are highly sensitive to frequencies up to
150 kHz [42, 43]. Transmissions from every acoustic modem are
assumed to be audible to sea mammals in the vicinity [70].

6 CONCLUSION
The last few decades have shown that software-based solutions
can transform industries and bring technology to the masses more
rapidly than custom hardware. We present the first acoustic system
that uses software to bring underwater communication capabilities
to commodity mobile devices. We believe that since our system
can be downloaded as a mobile software app on billions of devices,
it can help democratize underwater communication and has the
potential to be used by tens of millions of people who participate in
underwater activities like scuba divers and snorkeling every year.
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