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Abstract

The inverse geodesic length of a graph G is the sum of the inverse of the distances between
all pairs of distinct vertices of G. In some domains it is known as the Harary index or the
global efficiency of the graph. We show that, if G is planar and has n vertices, then the inverse
geodesic length of G can be computed in roughly O(n9/5) time. We also show that, if G has n
vertices and treewidth at most k, then the inverse geodesic length of G can be computed in
O(n logO(k) n) time. In both cases we use techniques developed for computing the sum of the
distances, which does not have “inverse” component, together with batched evaluations of
rational functions.

Keywords: IGL, distances in graphs, planar graphs, bounded treewidth, algebraic tools

1 Introduction

Let G = (V, E) be an undirected graph with n vertices and (abstract) positive edge-lengths
λ: E → R>0. The length of a walk in G is the sum of the edge-lengths along the walk. The
distance between two vertices u and v of G, denoted by dG(u, v), is the minimum length over all
paths in G from u to v. A particularly important case is when λ(e) = 1 for all edges e ∈ E. In this
case, the distance between two vertices u and v is the minimum number of edges over the u-v
paths in G. (Usually this is called the unweighted case or unit-length case.)

In this paper we are interested in the inverse geodesic length of G, defined as

IGL(G) =
∑

uv∈(V2)

1
dG(u, v)

,

where
�V

2

�

denotes all the unordered pairs of vertices of G. In this definition we use the convention
that 1/dG(u, v) = 0 when there is no path from u to v. As a consequence, IGL(G) is equal to the
sum of the inverse geodesic length over its connected components.

The inverse geodesic length has been considered in different contexts. In Chemical Graph
Theory it is considered for unit-length edges and called the Harary index of graph G, a common
topological index [11, 24]; sometimes it is defined as twice IGL(G). In the context of Network
Analysis, the inverse geodesic length goes under the name of efficiency, a concept introduced
by Latora and Marchiori [20, 21] that has been heavily used. In this context, IGL(G) is usually
normalized dividing by

�n
2

�

, that is, the average inverse geodesic length is considered. The author
learned the concept with the algorithmic work of Gaspers and Lau [14] and refers to the more
careful discussion about related work therein.
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The problem is related to but different from the computation of the Wiener index W (G) and
the diameter diam(G), defined as

W (G) =
∑

uv∈(V2)
dG(u, v), diam(G) = max{dG(u, v) | uv ∈

�

V
2

�

}.

Our contribution. We present algorithms to efficiently compute IGL(G) for two standard graph
classes. The challenge to obtain efficient algorithms is to avoid computing the distance between
all pairs of vertices. More precisely, we show the following results, where n denotes the number
of vertices of the graph:

• For each fixed k ≥ 1, the inverse geodesic length of graphs with treewidth at most k can be
computed in O(n logk+2 n loglog n) time. Thus, the running time is near-linear for graphs of
bounded treewidth.

• When we consider the running time parameterized by n and the treewidth k, the inverse
geodesic length can be computed in n1+ε2Oε(k) time, for any ε > 0.1

• For planar graphs, the inverse geodesic length can be computed in Õ(n9/5) time2.

To achieve these results we build on the techniques used to compute the Wiener index and
the diameter in planar graphs [8, 16], namely the use of additively-weighted Voronoi diagrams in
planar graphs, and in graphs with small treewidth [1, 7, 9], namely the use of orthogonal range
searching.

Previous papers computing the Wiener index or the diameter rely on the fact that the length
of a shortest path is the sum of the lengths of subpaths that compose it. This is not true for
the inverse of distances. More precisely, those works decompose the problem into subproblems
described by a triple (a, s, U), where a and s are vertices, U is a subset of vertices, and the shortest
path from a to each vertex of U goes through vertex s. Moreover, a preprocessing step is used to
construct a data structure so that |U |,

∑

u∈U dG(s, u) and maxu∈U dG(s, u) are obtained in sublinear
time (in |U |). This preprocessing pays off because there are several subproblems with triples of
the form (·, s, U) for the same s and U . Then we use that

∑

u∈U

dG(a, u) =
∑

u∈U

�

dG(a, s) + dG(s, u)
�

= |U | · dG(a, s) +
∑

u∈U

dG(s, u) and

max
u∈U

dG(a, u) = dG(a, s) +max
u∈U

dG(s, u) .

There is no such simple decomposition of

∑

u∈U

1
dG(a, u)

=
∑

u∈U

1
dG(a, s) + dG(s, u)

that would be useful for IGL(G). That is the main obstacle to apply the techniques.
Our main new technique is to associate to (·, s, U) a rational function

ρs,U(x) =
∑

u∈U

1
x + dG(s, u)

.

Then, for the triple (a, s, U), we are interested in evaluating ρs,U(dG(a, s)). We use computer
algebra to make such evaluations at several values in near-liner time, as done by Aronov, Katz and

1The constants hidden in the Oε-notation depend on ε.
2Here and in the rest of the paper we use the notation Õ to hide logarithmic factors.
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Moroz [3, 23] in completely different settings. The key insight is that ρs,U(x) can be computed
efficiently because, after expansion, it is a rational function whose numerator and denominator
have degree |U |. Note that all the evaluations of ρs,U(x) are computed simultaneously, which is
also a change in the approach compared to previous works for the Wiener index or the diameter.
Thus, we do not use a data structure to handle each triple (a, s, U), but we treat all the triples of
the form (·, s, U) batched.

We believe that the use of tools from Computational Geometry and Computer Algebra for
solving graph-distance problems, such as computing the IGL, shows an appealing interaction
between different areas.

Comparison to related work. The efficient computation of IGL for graphs with small treewidth
was considered by Gaspers and Lau [14]. They show that IGL(G) for graphs with unit-length
edges and treewidth at most k can be computed in 2O(k)n3/2+ε. In the case of unit-length trees
the running time is reduced to O(n log2 n). Their approach is based on computing the distance
distribution: for any positive integer P, one can compute the number of pairs of vertices at
distance i for i = 1, . . . , P in 2O(k)n1+εpP time. In the case of trees the distance distribution can
be computed O(n log n+ P log2 n) time. From the distance distribution it is easy to compute the
IGL(G) in linear time.

We improve the result of Gaspers and Lau in two ways. First, we reduce the degree of the
main polynomial term of the running time from roughly 3/2 to 1 for graphs of small treewidth.
Second, our results work for arbitrary (positive) weighted graphs, not only unit length (or small
integers). For the case of unit-length trees, their result is stronger than ours. Our algorithm does
not compute the distance distribution. In fact, for arbitrary weights it would be too large. Their
algorithm for computing the distance distribution relies on the fast product of polynomials. They
do not use rational functions, which is a key insight in our approach. They use the degree to
encode distances, so the edge lengths must be small positive integers, while in our approach the
degree of the rational functions depends (implicitly) on the number of vertices.

For graphs with small treewidth, our algorithm to compute the IGL has a few more logarithmic
factors than the algorithms to compute the Wiener index or the diameter [7, 9]. This slight
increase in the running time is due to the manipulation and evaluation of rational functions.

We are not aware of any previous algorithmic result for computing the IGL of planar graphs.
Since the distance between all pairs of vertices in a planar graph can be computed in O(n2)
time [13, 17], the IGL of planar graphs can be computed in O(n2) time. We provide the first
algorithm computing the IGL of planar graphs in subquadratic time, even in the special case of
unit-length edges.

For planar graphs, the running time of computing the IGL is Õ(n9/5), while the Wiener index
and the diameter can be computed in Õ(n5/3) time with the algorithm of Gawrychowski et al. [16].
The difference is quite technical and difficult to explain at this level of detail. For readers familiar
with that work, we can point out that, to apply our new approach, the dynamic tree used in [16]
to encode the bisectors should be combined with the rational functions. The natural way to do
this would be to associate a rational function to each node of the dynamic tree, and that leads to
an overhead of O(r) when working with a piece of an r-division. A more careful treatment of
the dynamic tree may lead to an improvement, but we do not see how. The approach we use to
manipulate (the inverse of) the distances for each piece is similar to the one used in Cabello [8],
where the bisectors are computed and manipulated explicitly. It should be noted that, at this
point, the bottleneck in our algorithm is not the computation of the Voronoi diagram, but the
time to manipulate the outcome of the Voronoi diagram.

For arbitrary graphs, there is no constant δ0 > 0 such that the IGL can be computed in
O(n2−δ0) time, unless the strong exponential time hypothesis (SETH) fails. This holds also for

3



sparse graphs. Indeed, Roditty and Vassilevska Williams [25] show that, for arbitrary graphs with
n vertices and O(n) edges, one cannot compute the diameter in O(n2−δ0) time, for some constant
δ0 > 0, unless the SETH fails. In fact, their proof shows that for undirected, unweighted graphs
we cannot distinguish in O(n2−δ0) time between sparse graphs that have diameter 2 or larger.
Since a unit-length graph G = (V, E) has diameter 2 if and only if

IGL(G) =
1
2

∑

u∈V

�

degG(u) + (n− 1− degG(u))
1
2

�

=
n(n− 1)

2
−

3|E(G)|
4

,

we cannot compute the IGL in O(n2−δ0) time, unless SETH fails.

Computation model. We assume a model of computation where each arithmetic operation in
the ring generated by the edge-lengths takes constant time and can be carried out exactly. Since
we are using the Fast Fourier Transform (FFT), the actual running time depends on whether we
assume that the ring has primitive roots of the unit available. The assumptions are explained in
more detail in Section 2.1.

The output and several intermediate computations are represented as fractions, that is, as
pairs (a, b) of numbers representing the fraction a/b. The numerators and the denominators of
these fractions are in the ring generated by the edge-lengths. Thus, if we assume that the input
edge-lengths are integers, the fractions will have integer numerators and denominators, if the
input edge-lengths are rationals, the fractions will have rational numerators and denominators,
and if the edge-lengths are arbitrary real numbers, then the fractions will have numerators and
denominators with real numbers.

The model of computation used by Gaspers and Lau [14] is Word RAM, which is a weaker
model and thus a stronger result. They can use this model because they assume graphs with small
integer edge-weights and they compute, for each possible distance, the number of pairs of nodes
at such distance. After this, one still has to compute IGL(G) explicitly and it is not obvious how to
bound the bit-length of the computation. In our approach, we should also bound the bit-length of
intermediate integers appearing through the computation. This is not straightforward. To get a
feeling of this endeavor, note for example that we should understand the number of bits needed
to write expressions like the Harmonic numbers Hn =

∑n
i=1

1
i exactly as a single fraction an/bn.

Roadmap. We provide some common preliminaries in the next section. In Section 3 we provide
the algorithm for graphs with small or bounded treewidth, while in Section 4 we provide the
algorithm for planar graphs. Sections 3 and 4 are independent and can be read in any order. The
structure of the exposition in both cases is parallel. We suggest to the readers to start with the
section dedicated to graphs that are closer to their expertise.

2 Preliminaries

For each positive integer k we use the notation [k] = {1, . . . , k}.
Let G be a graph with positive edge lengths. Since the graph G under consideration will

always be clear from the context, we will often drop the dependency on G from the notation. (We
do keep using dG(·, ·) for the distance.)

Let A and B be disjoint subsets of vertices in G. We define

IGL(A, B) =
∑

a∈A,b∈B

1
dG(a, b)

.
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For the special case when one of the sets has a single element, for example B = {b}, we write

IGL(A, b) = IGL(A, {b}) =
∑

a∈A

1
dG(a, b)

.

A separation in G is a partition of V (G) into pairwise disjoint sets of vertices A, B, S such that
there is no edge of G with one vertex in A and the other vertex in B. The set S is the separator.
We will systematically use a for vertices in A, b for vertices in B, and s for vertices in S. Note that
any path from a ∈ A to b ∈ B must necessarily pass through a vertex of S. In particular,

∀a ∈ A, b ∈ B : d(a, b) =min{dG(a, s) + dG(s, b) | s ∈ S}.

We use t to denote the disjoint union. Thus, if we write A= ti∈IAi , this means that the sets
in {Ai | i ∈ I} are pairwise disjoint and A= ∪i∈IAi .

2.1 Algebraic computations.

A polynomial P(x) =
∑d

i=0 ai x
i given in coefficient representation is the list of coefficients

(a0, . . . , ad) of length 1 + deg(P). A rational function R(x) is a function R(x) = P(x)
Q(x) where

P(x) and Q(x) are polynomials. The coefficient representation of such rational function is just
the coefficient representation of P(x) and R(x). The following result is obtained by using fast
multiplication of polynomials followed by fast multipoint evaluation of polynomials. We refer to
the book by von zur Gathen and Gerhard [15, Chapters 8 and 10] for a comprehensive treatment
of the tools of Computer Algebra that we will use.

Lemma 1 (Corollary A.4 in Aronov and Katz [3]; see also Lemmas 6 and 7 in Moroz and
Aronov [23]). Given a set of n rational functions Ri(x) = Pi(x)/Q i(x) of constant degree each, in
coefficient representation, and a set of m values x j , one can compute the m values

∑

i Ri(x j) in time
O((n+m) log2 n loglog n).

We provide the proof to be able to discuss the model of computation in more detail.

Proof. As a first step, we compute polynomials P(x) and Q(x) such that

P(x)
Q(x)

=
n
∑

i=1

Ri(x) =
n
∑

i=1

Pi(x)
Q i(x)

.

More precisely, we will compute

P(x) =
n
∑

i=1

 

Pi(x) ·
∏

j 6=i

Q j(x)

!

and Q(x) =
n
∏

i=1

Q i(x).

We do this using a recursive algorithm. If n= 1, we then have P(x) = P1(x) and Q(x) =Q1(x).
If n≥ 2, we compute, for each j = 1, . . . , bn/2c, the rational function

R̃ j(x) := R2 j−1(x) + R2 j(x) =
P2 j−1(x)Q2 j(x) + P2 j(x)Q2 j−1(x)

Q2 j−1(x)Q2 j(x)

in coefficient representation. If n is odd we set R̃dn/2e(x) = Rn(x). We then compute recursively

the rational function
∑dn/2e

j=1 R̃ j(x) and return it.

To analyze the running time note that, after k levels of the recursion, we have O(n/2k) rational
functions, each with a denominator and a numerator of degree O(2k) and coefficients in the ring
generated by the coefficients of ∪i{Pi(x),Q i(x)}. Let Tprod(d) be the time needed to multiply two
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polynomials of degree d in coefficient representation, assuming that each arithmetic operation in
a ring that contains the coefficients of the polynomials takes constant time. Using the Fast Fourier
Transform we have Tprod(d) = O(d log d loglog d); see [15, Theorem 8.23]. The time needed to

compute P(x)
Q(x) =

∑

i Ri(x) is then

O

 

dlog2 ne
∑

k=1

� n
2k
·
�

2k + Tprod(2
k)
�

�

!

= O(n log n) +O(n) ·
dlog2 ne
∑

k=1

�

(2k log 2k loglog2k)/2k
�

= O(n) ·
dlog2 ne
∑

k=1

(k log k)

= O(n log2 n loglog n).

Once we have the polynomials P(x) and Q(x) such that P(x)
Q(x) =

∑

i Ri(x) in coefficient
representation, we evaluate P(x) and Q(x) at x = x j for all j. Note that P(x) and Q(x) have
degree O(n). Evaluating a polynomial of degree d at d points takes O

�

Tprod(d) · log d
�

time;
see [15, Corollary 10.8]. To evaluate P(x) and Q(x) at x = x j for all j, we make dm/ne groups of
n values each, and evaluate at each group. The running time for this is

O(1+m/n)O
�

Tprod(d) · log d
�

= O(1+m/n) ·O(n log2 n loglog n)

= O((n+m) log2 n loglog n).

Note: the loglog n term may seem superfluous, but this depends on the assumptions. If we
assume that the ring supports the FFT, that is, we can manipulate primitive roots of the unity
in constant time, and divisions can be carried out exactly, then Tprod(d) = O(d log d); see [15,
Theorem 8.18]. In this case the loglog n factor in the final running time disappears. If we are
assuming that the coefficients and the values x j are arbitrary real numbers, this assumption would
mean that arithmetic operations involving the complex roots of the unit cos(π/2k) + i sin(π/2k)
can be manipulated exactly in constant time. In our stated running times we are making the more
conservative assumption that only operations in the ring generated by {dG(u, v) | u, v ∈ V (G)} are
available, and divisions are not performed.

All our use of computer algebra is encoded in Lemma 1. More precisely, we will be using
Lemma 1 for rational functions of the form

Ri(x) =
1

dG(ui , vi) + x
for some ui , vi ∈ V (G)

and we will be evaluating
∑

i Ri(x) at values of the form x = dG(u j , v j) for some u j , v j ∈ V (G).
Thus, looking into the proof of Lemma 1 and the proofs in [15, Chapters 8 and 10], we see that
we are making arithmetic operations in the ring generated by {dG(u, v) | u, v ∈ V (G)}, without
computing inverses and without ever simplifying fractions. Thus, we carry exact results, assuming
that arithmetic operations are performed exactly. The running times are expressed assuming that
each such arithmetic operation in the ring takes constant time.

3 Bounded treewidth

In this section we provide the near-linear time algorithm for graphs with bounded treewidth. First
we review what we need for the usual orthogonal range searching queries, and then we extend
this to provide our new, key data structure for so-called inverse shifted queries. We describe how
to compute the interaction across a separator, and finally apply the divide-and-conquer approach
of Cabello and Knauer [9] to derive the final result.
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3.1 Preliminaries on orthogonal range searching

In our algorithm for small treewidth we will use the range trees used for orthogonal range searching.
They are explained in the textbook [10, Chapter 5] or the survey [2], but the usual analysis in
Computational Geometry assumes constant dimension. We use the analysis by Bringmann et
al. [7], which uses the dimension d as a parameter and is based on the results of Monier [22].

A box in Rd is the product of intervals, some of them possibly infinite and some of them
possibly open or closed. (We only consider such axis-parallel boxes in this paper.) We will use
B(n, d) =

�d+dlog ne
d

�

to bound the time and size of the range trees. First we note a bound on
B(n, d), and then provide a multivariate bound on range trees. Note that the stated bounds do
not assume that d is constant.

Lemma 2 (Lemma 5 in Bringmann et al. [7]). B(n, d) = O(logd n) and B(n, d) = nε2Oε(d) for each
ε > 0.

Theorem 3. Given a set P of n points in Rd , there is a family of sets P = {Pi | i ∈ I} and a data
structure with the following properties:

• Pi ⊆ P for each Pi ∈ P ;

• all the sets of P together have O(nd · B(n, d)) points, counting with multiplicity; that is,
∑

Pi∈P |Pi|= O(nd · B(n, d));

• for each box R ⊂ Rd , the data structure finds in O(2d B(n, d)) time indices IR ⊂ I such that
|IR|= O(2d B(n, d)) and P ∩ R=

⊔

i∈IR
Pi;

• the family P and the data structure can be computed in O(nd · B(n, d)) time.

Proof. We consider the following variant of range trees. We assume that the reader is familiar
with range trees and provide only a sketchy description. We describe a tree T (d,Q) that is defined
recursively on the dimension d and size of the point set Q ⊂ Rd under consideration. When the
dimension d is 1, we make a balanced binary search tree T (1,Q) that stores the elements of Q at
the leaves.

When d > 1 and |Q|> 1, we split Q into two sets Q` and Qr of roughly the same size, such that
each element of Q` has smaller d-coordinate than each element of Qr . We recursively construct
T (d,Q`), T (d,Qr) and T (d − 1,Q). Finally, we make a node, the root of T (d,Q), whose left child
is the root T(d,Q`), its right child is the root of T(d,Qr), and its associated data structure is
T (d − 1,Q). When d > 1 and |Q| = 1, we make a node without children and with a pointer to the
associated data structure T (d − 1,Q), which is built recursively.

The data structure is T(d, P). For each node v of T(d, P), let P(v) denote the set of points
stored in T (d, P) under v. This is a so-called canonical subset. (In fact it suffices to consider nodes
v in trees T (1,Q), but that is not really relevant in our discussion.) For each node v of T (d, P),
we add the canonical subset P(v) to P .

The analysis by Bringmann et al. [7, Lemma 6] shows that
∑

v

|P(v)| = O(nd · B(n, d)),

where the sum is over all the nodes v of T(d, P). This gives an upper bound on the size of the
data structure and the construction time. (For the construction, instead of computing medians, as
Bringmann et al. suggest, it is better to sort the points once in each dimension and pass to the
recursive calls the points sorted in d lists, one for each dimension.)

The analysis of Bringmann et al. for queries [7, Lemma 8] identifies for each box R the nodes
of the tree such that P ∩ R is the disjoint union of O(2d B(n, d)) canonical subsets from P and
they can be found in O(2d B(n, d)) time.
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3.2 Inverse shifted queries

Let P be a set of n points in Rd and assume that each point p of P has a positive weight ω(p). An
inverse shifted-weight query (ISW query) is specified by a pair (R,δ), where R is an (axis-parallel)
box and δ is a non-negative value, the shift. We want to compute

ISW(R,δ) =
∑

p∈P∩R

1
δ+ω(p)

.

Since ω(p) is positive and δ ≥ 0, no fraction has 0 in the denominator and ISW(R,δ) is well
defined.

We do not know how to answer ISW queries online, but we can solve the batched version.

Theorem 4. Let P be a set of n points in Rd and assume that each point p ∈ P has a positive weight
ω(p). Consider ISW queries specified by (R1,δ1), . . . , (Rm,δm), where each R j is a box and δ j ≥ 0.
The values ISW(R1,δ1), . . . , ISW(Rm,δm) can be computed in O((n+m)2d ·B(n, d) · log2 n loglog n)
time.

Proof. We compute the family P = {Pi | i ∈ I} and the data structure given in Theorem 3. This
takes O(nd · B(n, d)) = O(n2d · B(n, d)) time. For each R j we use the data structure to compute
the set I j of O(2d · B(n, d)) indices such that P ∩ R j =

⊔

i∈I j
Pi . For all j ∈ [m] together this takes

O(m2d · B(n, d)) time.
Define the pairs Π = {(i, j) ∈ I × [m] | i ∈ I j} and, for each i ∈ I , let Ji = { j ∈ [m] | i ∈ I j}.

Note that I j are the fibers of Π when we fix the second coordinate, while Ji are the fibers of Π
when we fix the first coordinate. From the data structure we can compute Π and thus also the
fibers Ji for all i. We have

∑

i∈I

|Ji| = |Π| =
∑

j∈[m]

|I j| =
∑

j∈[m]

O(2d B(n, d)) = O(2d m · B(n, d)).

For each i ∈ I we define the rational function

ρi(x) =
∑

p∈Pi

1
x +ω(p)

.

For each i ∈ I , we use Lemma 1 to evaluate ρi(δ j) for each j ∈ Ji . This means that, for each i ∈ I ,
we spend

O((|Pi|+ |Ji|) log2 |Pi| loglog |Pi|) = O((|Pi|+ |Ji|) log2 n loglog n)

time. For all i ∈ I together we spend a total time of

∑

i∈I

O(|Pi|+ |Ji|) log2 n loglog n) =

�

∑

i∈I

|Pi|+
∑

i∈I

|Ji|

�

O(log2 n loglog n)

=
�

O(nd · B(n, d)) +O(2d m · B(n, d))
�

O(log2 n loglog n)

= O((n+m)2d B(n, d) log2 n loglog n).

For each query (R j ,δ j), since P ∩ R j =
⊔

i∈I j
Pi , we have

ISW(R j ,δ j) =
∑

p∈P∩R j

1
δ j +ω(p)

=
∑

i∈I j

∑

p∈Pi

1
δ j +ω(p)

=
∑

i∈I j

ρi(δ j).

Since the values ρi(δ j) have been already computed for all (i, j) ∈ Π, the computation of
ISW(R j ,δ j) for all j takes additional O(|Π|) = O(2d m · B(n, d)) time.
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3.3 Across a separation

Let G be a graph with n vertices and let A, B, S be a separation of G. Let k be the size of the
separator; thus k = |S|. Our objective here is to compute IGL(A, B) efficiently. For the rest of the
section, we assume that G and the partition A, B, S are fixed.

We fix an order on the vertices of the separator S and denote them by s1, . . . , sk. For each
b ∈ B, we want to partition A into groups depending on which vertices of S belong to a shortest
path from b. To obtain a partition, we have to be careful to assign each vertex of A to one group.
For this we use the minimum index of the vertex in the separator that is contained in some shortest
path. More precisely, for each b ∈ B and each i ∈ [k] we define the set

A(b, i) := {a ∈ A |dG(a, b)< dG(a, s j) + dG(s j , b) ∀ j < i,

dG(a, b) = dG(a, si) + dG(si , b),

dG(a, b)≤ dG(a, s j) + dG(s j , b) ∀ j > i}.

It is easy to see that the sets A(b, i), i ∈ [k], form a partition of A for each b ∈ B.
Consider some index i ∈ [k]. Define the map φ(i) = (φ(i)j ) j∈[k] by

φ(i) = (φ(i)j ) j∈[k] : A→ Rk

a 7→ (dG(a, si)− dG(a, s j)) j∈[k]

Note that the i-th coordinate of φ(i)(a) is always 0, and thus it does not provide any information.
We keep it to maintain slightly simpler notation.

For each vertex b ∈ B, we define the box R(i)(b) = I (i)1 (b)× · · · × I (i)k (b) ⊂ R
k, where I (i)j (b) is

I (i)j (b) =











�

−∞, dG(b, s j)− dG(b, si)
�

if j < i,

R if j = i,
�

−∞, dG(b, s j)− dG(b, si)
�

if j > i.

Lemma 5. A vertex a ∈ A belongs to A(b, i) if and only if φ(i)(a) ∈ R(i)(b).

Proof. Vertex a belongs to A(b, i) if and only if

dG(a, b) < dG(a, s j) + dG(s j , b) ∀ j < i,

dG(a, b) = dG(a, si) + dG(si , b),

dG(a, b) ≤ dG(a, s j) + dG(s j , b) ∀ j > i.

Since each path from a to b passes through some vertex of S, this can be rewritten as

dG(a, si) + dG(si , b) < dG(a, s j) + dG(s j , b) ∀ j < i,

dG(a, si) + dG(si , b) ≤ dG(a, s j) + dG(s j , b) ∀ j > i.

Rearranging terms this is equivalent to

φ
(i)
j (a) = dG(a, si)− dG(a, s j) < dG(s j , b)− dG(si , b) ∀ j < i,

φ
(i)
j (a) = dG(a, si)− dG(a, s j) ≤ dG(s j , b)− dG(si , b) ∀ j > i.

This last condition is precisely the condition for φ(i)(a) ∈ R(i)(b).

Lemma 6. Given a graph G with n vertices and m edges, and a separation A, B, S of G, where S is
the separator and has size |S| = k ≥ 2, we can compute IGL(A, B) in O(km+ n2kk · B(n, k − 1) ·
log2 n loglog n) time.
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Proof. Let s1, . . . , sk be an enumeration of the vertices of S. We compute shortest path trees from
each vertex si of S. This takes O(k(m+ n log n)) time. After this, each distance dG(si , v), where
si ∈ S and v ∈ V (G), is available in constant time.

Consider a fixed index i ∈ [k]. We compute the set of points P(i) = φ(i)(A) and assign to point
φ(i)(a) weight ω(φ(i)(a)) = dG(si , a). For each b ∈ B we compute the description of the box
R(i)(b). This takes O(kn) time, for a single i ∈ [k].

Since for each b ∈ B and each a ∈ A(b, i) the shortest path from b to a goes through si, we
have

IGL(b, A(b, i)) =
∑

a∈A(b,i)

1
dG(a, b)

=
∑

a∈A(b,i)

1
dG(a, si) + dG(si , b)

=
∑

a∈A(b,i)

1
ω(φ(i)(a)) + dG(si , b)

= ISW(R(i)(b), dG(si , b)).

Recall that P(i) is effectively a point set in k−1 dimensions because the i-th coordinate is identically
0. Using Theorem 4 for P(i) we can compute IGL(b, A(b, i)) = ISW(R(i)(b), dG(si , b)) for all points
b ∈ B together in

O((|A|+ |B|)2k · B(n, k− 1) · log2 n loglog n) = O(n2k · B(n, k− 1) · log2 n loglog n)

time. We repeat the procedure for each i ∈ [k], which adds a multiplicative factor of O(k) to the
running time. After this, we have the values IGL(b, A(b, i)) for all i ∈ [k] and b ∈ B.

Finally we use that, for each b ∈ B, the sets A(b, i), i ∈ [k], form a partition of A to obtain

IGL(A, B) =
∑

b∈B

∑

a∈A

1
dG(a, b)

=
∑

b∈B

∑

i∈[k]

∑

a∈A(b,i)

1
dG(a, b)

=
∑

b∈B

∑

i∈[k]

IGL(b, A(b, i)).

Since the O(k|B|) = O(kn) values used in the last expression are already available, the result
follows.

Note that in the proof of the previous Lemma we can actually compute the values IGL(b, A)
for all b ∈ B within the same time bound.

3.4 Final algorithm

We use the recursive approach of Cabello and Knauer [9]. The idea is that graphs of small
treewidth have small, balanced separators with the property that adding edges between all pairs
of vertices of the separator does not increase the treewidth. Given such a separation A, B, S of the
graph we use Lemma 6 to compute IGL(A, B), we also compute IGL(S, V (G) \ S) using shortest
paths from S, and then solve recursively the problems for A and B. For the recursive problems,
we add edges between the vertices of the separator S whose length is equal to the length of the
shortest path in G. Thus, the distances between vertices in A and B are correct in the recursive
calls. Also, adding those edges does not increase the treewidth of the graphs used in the recursion.
A bit of care is needed to avoid that distances between vertices of S are counted more than once;
it is easy to handle this by subtracting the terms that are counted twice.

Now we have two regimes depending on whether we want to assume that the treewidth is
constant, as done in [9], or whether we want to consider the treewidth a parameter, as done
in [7]. This difference affects the time to find a tree decomposition and a balanced separator. In
both cases we use that an n-vertex graph with treewidth k has O(kn) edges [5].

Theorem 7. Let k ≥ 2 be an integer constant. For graphs G with n vertices and treewidth at most k,
we can compute IGL(G) in O(n logk+2 n loglog n) time.
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Proof. We obtain a tree decomposition of width k in O(n) time using the algorithm of Bod-
laender [4], which takes O(2O(k3 log k)n) = O(n) time, when k is a constant. From the tree
decomposition we can obtain a separation A, B, S, such that A and B contain Θ(n) vertices each,
the separator S has size k, and adding edges between the vertices of S does not increase the
treewidth; see [9, Lemma 3]. We use Lemma 6 to compute IGL(A, B). Using the estimate of
Lemma 2 and that the number of edges is m= O(kn) = O(n), we spend

O(km+ n2kk · B(n, k− 1) · log2 n loglog n) = O(n · logk−1 n · log2 n loglog n)

= O(n logk+1 n loglog n)

time to compute IGL(A, B). Because of the divide-and-conquer approach and because each A and
B have a constant fraction of the vertices, the recursion increases the running time by another
logarithmic factor.

Theorem 8. For graphs G with n vertices and treewidth at most k, we can compute IGL(G) in
n1+ε2Oε(k) time, for any ε > 0.

Proof. Bodlaender et al. [6] give an algorithm that, for graphs of treewidth at most k, finds a
tree decomposition of width 3k + 4 in 2O(k)n log n time. Given such a decomposition, we can
obtain a separation A, B, S, such that A and B contain Θ(n− k) vertices each, the separator S has
size k′ = (3k+ 4) + 1= O(k), and adding edges between the vertices of S does not increase the
treewidth; see for example [5, Theorem 19]. We use Lemma 6 to compute IGL(A, B). Using the
estimate of Lemma 2 and that the number of edges is m= O(kn), we spend

O(k′m+ n2k′k′ · B(n, k′ − 1) · log2 n loglog n) = O(k2n+ n2O(k) · nε2Oε(k′) · log2 n loglog n)

= n1+ε2Oε(k)

time to compute IGL(A, B), for each ε > 0. The recursive calls add another logarithmic factor,
which is absorbed by the polynomial term n1+ε. (Actually, the logarithmic factor does not appear
because the exponent of the polynomial is a constant strictly larger than 1 and that term dominates
the recursive formulation of the running time.)

4 Planar graphs

First we provide some tools for planar graphs, including r-divisions, duality and Voronoi diagrams.
Then we introduce a data structure to compute inverse shifted queries; this is our essential, new
contribution. Finally we explain how to combine the data structure with pieces of an r-division,
and how the whole algorithm works.

In the following we assume that G = (V, E) is a fixed planar (or plane) graph and often drop
the dependency on G in the notation.

4.1 Preliminaries on planar graphs

A planar graph with n vertices has O(n) edges. An embedding of a planar graph in the plane can
be computed in linear time. A plane graph is a planar graph together with a fixed embedding.
The embedding is usually described combinatorially using rotation systems: it specifies for each
vertex the circular ordering (clockwise, say) of the edges incident to the vertex. Adding edges
of sufficiently large length to G, so that the distances between vertices are not changed, we can
assume that G is triangulated, that is, all faces of G are triangles. Such addition of edges, without
introducing parallel edges, can be done in linear time. Henceforth, we will assume that the planar
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graph G is triangulated, and thus 3-connected. (When n= 3, the graph is not 3-connected, but
the case n= O(1) is trivial.)

Let G be a plane graph. A piece of G is a subgraph of G without isolated vertices. We assume
in P the embedding inherited from G. The boundary of P, denoted by ∂ P, is the set of vertices
of P that are incident to some edge of E \ E(P). The interior of P is V (P) \ ∂ P. Each path from
a vertex of P to a vertex of V \ V (P) passes through some vertex of the boundary, ∂ P. Thus,
V \ V (P), V (P) \ ∂ P, ∂ P is a separation of G. (It may be very unbalanced.) A hole in a piece P is
a face of P that is not a face of G. Note that each boundary vertex of a piece P must be incident
to some hole.

For any positive integer r, an r-division with few holes of an n-vertex plane graph G is a
collection P = {P1, . . . , Pk} of pieces of G with the following properties:

• each edge of G belongs to precisely one piece Pi ∈ P ;

• each piece Pi ∈ P has at most r vertices, O(
p

r) boundary vertices, and O(1) holes;

• k = |P |= O(n/r), that is, there are O(n/r) pieces in P .

The first item implies that, if a vertex v ∈ ∂ Pi ∈ P , then v belongs to the boundary of each
piece that contains it. Indeed, if such vertex v belongs to two distinct pieces Pi , Pj ∈ P , then v
is incident to an edge of Pi and an edge of Pj (pieces do not have isolated vertices), and thus
belongs to the boundary of Pj and the boundary of Pi . As a consequence, the interiors of distinct
pieces are disjoint. In particular, the sets V (P1) \ ∂ P1, . . . , V (Pk) \ ∂ Pk and

⋃

i∈[k] ∂ Pi, form a
pairwise disjoint partition of V .

Klein, Mozes and Sommer [18] give an algorithm to compute in O(n) time an r-division with
few holes, given a plane, triangulated graph G and a value r. A simpler algorithm with running
time O(n log n) was already known before [12, 19].

e

f
g

p f

pg

e∗

Figure 1: Embedding of the dual graph (in blue).

Let G be a plane graph and denote by F(G) its set of faces. The dual (multi)graph of G,
denoted as G∗, has vertex set V (G∗) = F(G) and edge set

E(G∗) = {e∗ = f g | f , g ∈ F(G), faces f and g of G share an edge e ∈ E(G)}.

We use e∗ to denote the edge of G∗ dual to the edge e ∈ E(G). The embedding of G defines
naturally an embedding of the dual graph G∗, as follows. Each face f ∈ F(G) is represented by a
point p f chosen inside the face f , and the dual edge f g = e∗ is drawn as a curve with endpoints
p f and pg that crosses the embedding of G exactly once, namely in the interior of the drawing
of e. See Figure 1. In general plane graphs, the dual graph is a multigraph because two faces
can share several edges. To keep the notation simpler, we will talk about G∗ as a simple graph;
adapting it to multigraphs is straightforward.
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Let γ be a cycle in the dual graph G∗ and let s be a vertex of G. Let A and B be the two
connected components of R2 \ γ, and assume without loss of generality that s belongs to A. We
define the exterior of γ with respect to s as extG(γ, s) = V (G)∩B. See Figure 2. Thus, the exterior
of γ (with respect to s) is the set of vertices of G such that any path connecting them to s must
intersect γ. While in the plane there is a usual meaning of exterior and interior of a closed Jordan
curve, our definition is the natural parallel to the concept in the 2-dimensional sphere and will be
more convenient in our application.

γ
γ

s

s

Figure 2: Two examples showing the region that would contain the vertices extG(γ, s). In the
left, this would be the unbounded region of R2 \ γ, while in the right this would be the bounded
region. (The red dashed line shows the clipping of R2 for the drawing.)

4.2 Voronoi diagrams in plane graphs

The following material is taken from Gawrychowski et al. [16], where there is a comprehensive
treatment. See also Cabello [8] for the initial treatment, where only a particular case is discussed.

Let G be a plane graph with (abstract) edge lengths and let P be a piece of G. (In fact, the
graph G is irrelevant for the forthcoming discussion; we use P and G to be consistent with the
use later.) Let S be a subset of vertices of P, the sites, and let δ : S→ R≥0 assign non-negative
weights to the sites. Usually we only talk about S and treat δ as implicitly given with S. The
(additively-weighted) Voronoi diagram of P with respect to S (and δ) is the family of subsets of
vertices

cellP(s, S) = {v ∈ V (P) | ∀s′ ∈ S : δ(s) + dP(s, v)≤ δ(s′) + dP(s
′, v)} for all s ∈ S.

Here, cellP(s, S) is the Voronoi cell for s. Note that we are using the distances in P; the graph G
is irrelevant. A Voronoi cell may be the empty set.

It is convenient that the cells of the Voronoi diagram form a partition of V (P). For this, we
can break ties in several consistent ways. For example, we may index the sites and say that, in
case of ties, the vertex gets assigned to the closest site with smallest index. (There are other
valid options.) Formally, we would enumerate S as S = {s1, . . . , sk} and define for each site si the
Voronoi cell

cellP(si , S) = {v ∈ V (P) |∀ j < i : δ(si) + dP(si , v)< δ(s j) + dP(s j , v),

∀ j > i : δ(si) + dP(si , v)≤ δ(s j) + dP(s j , v)}.

It is easy to see that the Voronoi cell for s ∈ S is star-shaped from s: for each vertex v ∈
cellP(s, S), the vertices in any shortest path in P from s to v are also contained in cellP(s, S). In
particular, cellP(s, S) forms a connected subgraph of P. In the forthcoming claims we will assume
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(for simplicity) that each Voronoi cell is nonempty. Empty Voronoi cells have to be treated as a
special, degenerate case.

Since each Voronoi cell is connected, each (non-empty) Voronoi cell can be described by a
collection of cycles in the dual graph P∗, as follows. Here it is important that P is a plane graph,
not just planar. For each site s ∈ S, there is a family of cycles HP(s, S) in the dual graph P∗ such
that

cellP(s, S) = V (P) \

 

⊔

γ∈HP (s,S)

extP(γ, s)

!

.

See Figure 3. Recall that t denotes that the sets in {extP(γ, s) | γ ∈ HP(s, S)} are pairwise disjoint
(for each single s). We call the family of cycles HP(s, S) the dual description of cell(s, S). (We
use HP(s, S) because of their role as “holes”.) The existence of such cycles follows from the
following fact for planar graphs P: the removal of E′ ⊂ E(P) in P leaves exactly two connected
components if and only if the dual edges (E′)∗ = {e∗ | e ∈ E′} define a simple cycle in the dual
graph P∗. More precisely, a dual edge e∗ belongs to some cycle of HP(s, S) if and only if e has
one vertex in cellP(s, S) and one vertex outside cellP(s, S). Thus, each connected component of
G − cellP(s, S) defines one cycle of HP(s, S). The behavior is parallel to what occurs with Voronoi
diagrams in the plane for some non-Euclidean metrics; think for example of a Voronoi diagram in
triangulated terrain, where some Voronoi cells may have holes. (Voronoi cells are not necessarily
simply connected in such an scenario.) A Voronoi cell in such a Voronoi diagram is described by a
collection of curves, where each curve describes a “hole”, that is, a part that does not belong to
the Voronoi cell.

γ1 γ2γ3

γ1

s

γ3

γ2s

Figure 3: Two examples showing how the cycles of HP(s, S) define cellP(s, S). In both examples
HP(s, S) = {γ1,γ2,γ3} and the vertices of cellP(s, S) would be contained in the marked region.
(The red dashed line shows the clipping of R2 for the drawing.)

A bisector is the cycle in the dual graph separating the two (non-empty) Voronoi cells of a
two-site Voronoi diagram. That is, given two additively weighted sites s and t, we observe that
HP(s, {s, t}) consists of a single cycle because both cellP(s, {s, t}) and cellP(t, {s, t}) are connected.
We denote such bisector as β(s, t) and note that it consists of the set of edges dual to

{uv ∈ E(P) such that |{u, v} ∩ cellP(s, {s, t})|= 1} .

When we have multiple sites, the cycles in the dual representation HP(s, S) describing the
boundary of cell(s, S) are made of portions of bisectors. (Portions in general, but some of them
could be a whole bisector.) This is the case because, for each dual edge e∗ belonging to some
cycle in HP(s, S), one vertex of e belongs to cellP(s, S) while the other vertex of e lies in cellP(t, S)
for some t ∈ S \ {s}. Each cycle in HP(s, S) can be described by a sequence of patches, where
each patch is a maximal portion of a bisector β(s, t) for some site t ∈ S \ {s}. Such a patch is
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described by a tuple (s, t, e1, e2), where t ∈ S \ {s} and where e1, e2 ∈ β(s, t) are the first and last
edge, respectively, in the portion of the bisector (in some prescribed direction for β(s, t)). Thus,
the description of one patch requires O(1) space.

The combinatorial complexity of HP(s, S) or cellP(s, S) is the number of patches required for
all cycles in HP(s, S). The combinatorial complexity of the Voronoi diagram defined by the
sites S is the sum of the combinatorial complexities of HP(s, S) over all s ∈ S. Using properties of
planar graphs one can see that the combinatorial complexity of Voronoi diagram of S is O(|S|).
Here it is important to note that the size of the piece is not relevant. By the computation of the
Voronoi diagram we mean the computation of the cycles HP(s, S) for all s ∈ S, where each cycle
of each HP(s, S) is given as a sequence of patches. (In the description of the Voronoi diagram one
usually considers also the adjacency relations between cells; we will not use such information
explicitly in our algorithm, but it is implicit in the description of the patches because they contain
information about which bisectors are being used.)

Cabello provided a randomized algorithm to compute Voronoi diagrams efficiently, after
an expensive preprocessing, in a particular case when the sites are cofacial. Gawrychowski et
al. improved the result in several aspects, allowing more general families of sites, making the
preprocessing faster and the construction deterministic, as follows.

Theorem 9 (Gawrychowski et al. [16]). Let P be a plane graph with r vertices, let S be a set of b
vertices in P, assume that the vertices of S can be covered with O(1) faces of P, and such covering
with O(1) faces is given. After Õ(r b2) preprocessing time we can handle the following queries: for
any given weights δ(s) assigned to each s ∈ S at query time, the additively-weighted Voronoi diagram
of P with respect to S can be computed in Õ(b) time.

We will be using the result for pieces P in an r-division of a plane graph G. In such case
we will have b = O(

p
r), the preprocessing will take Õ(r2) time, and the computation of each

Voronoi diagram takes Õ(
p

r) time.

4.3 Inverse shifted queries

Let P be a piece with r vertices in a plane graph G, and let s be a fixed vertex of P. Assume that
each vertex v of P has a prescribed non-negative weight ω(v). As a warm up for the forthcoming
technique, we provide the following result.

Lemma 10. For t given positive values δ1, . . . ,δt , we can compute the values

∑

v∈V (P)

1
δi +ω(v)

for all i ∈ [t].

in O((r + t) log2 r loglog r) time.

Proof. Consider the rational function ρ(x) =
∑

v∈V (P)
1

x+ω(v) . We evaluate ρ(x) at x = δi for all

i ∈ [t]. Using Lemma 1, we can compute all these values in O((r + t) log2 r loglog r) time.

In general we will be considering similar sums as in the previous result, but for subsets of
vertices defined by cycles in the dual graph. Recall that for a cycle γ in the dual graph P∗ and a
vertex s in P, extP(γ, s) is the set of vertices of P that are on the opposite side of γ than s.

Given a cycle γ in P∗, and a positive weight δ (the shift), we define the inverse shifted-weight
(ISW) values

ISWP,s(γ,δ) =
∑

v∈extP (γ,s)

1
δ+ω(v)

.
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Note that we are adding the inverse of δ+ω(v), and we are only taking into account the vertices
of P outside γ. Since ω(v) is non-negative an δ is positive, the denominator is always positive,
and thus the fractions are well-defined.

We are interested in the efficient computation of the values ISWP,s for several pairs of the form
(γ,δ). More precisely, we will handle the batched version: computing ISWP,s(γ,δ) for several
given pairs (γ,δ), where P and s remain constant.

In our application we will consider only cycles γ with a particular structure that we explain
now. A cycle γ in P∗ is s-star-shaped if the following holds: for each u, v ∈ V (P), if u belongs to
the shortest path in P from s to v and u ∈ extP(γ, s), then v ∈ extP(γ, s). (The intuition is that the
interior of γ with respect to s has to be star-shaped from s.)

Let Ξ(s) be the family of cycles in P∗ that are s-star-shaped. We will be interested in ISWP,s
queries for some cycles in Ξ(s). We will assume that the cycles γ in Ξ(s) are oriented in such a way
that s lies in the region of R2 \γ to the right of γ, as we walk along γ. Thus, if s is in the bounded
region of R2 \ γ, then γ is oriented clockwise, and otherwise γ is oriented counterclockwise.

In the following we consider the dual graph P∗ as an oriented graph that contains both
orientations of each edge. The word arc is used for oriented edges. For a primal arc u�v with
face a to the left and face b to the right, we define its dual arc (u�v)∗ = a�b. Thus, the dual arc
crosses the primal arc from left to right. See Figure 4. For simplicity we assume that each arc has
different endpoints. It is easy to enforce this or modify the discussion to the general case. Recall
that r is the number of vertices in P.

upa

pb

(u�v)∗

va bb

upa

pb

(v�u)∗

va bb

Figure 4: Duality for arcs. In the left we have (u�v)∗ and in the right (v�u)∗.

Lemma 11. We can associate to each dual arc a�b of P∗ a set U(a�b) of vertices of P with the
following properties:

• For each oriented cycle γ ∈ Ξ(s),

extP(γ, s) =
⊔

a�b∈E(γ)

U(a�b).

• The sets U(a�b) for all a�b ∈ E(P∗) together can be computed in O(r2) time.

Proof. Fix a shortest path tree Ts from s in P and orient the edges as arcs away from the root s.
For each arc u�v of Ts, let Tu�v be the subtree of Ts − uv that contains v. For each arc u�v of
Ts, we define U((u�v)∗) = V (Tu�v). For all other arcs a�b of P∗ we define U(a�b) = ;. See
Figure 5 for the definition and intuition in the forthcoming argument.

The description of the sets U(·) we gave readily leads to an algorithm to compute them with
time complexity O(r2) because P has O(r) edges.

Consider a cycle γ ∈ Ξ(s), that is, γ is s-star-shaped. Then the edges of Ts crossed by γ are not
in any ancestor-descendant relation. That is, in any s-to-leaf path in Ts there is at most one edge
whose dual edge appears in γ. Indeed, if there would be two edges e1 and e2 of Ts crossed by γ,
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u

Tu�v

v

(u�v)∗

s

path in Ts

s

a
b

U(a�b)

c

U(b�c)

U(a�b)

ab

Ts

d

Figure 5: Left: The definition of Tu�v and U((u�v)∗) = U(a�b) for an arc u�v of P and
the dual arc a�b in P∗. Right: The intuition in the construction. The blue clockwise cycle
γ = a�b, b�c, . . . is in the dual graph P∗. In this example s is in the bounded region of R2 \ γ
and U(c�d) = ;.

then along the path in Ts between e1 and e2 would get an alternation interior-exterior-interior
with respect to γ and s, and we would get a contradiction with the property that γ is s-star-shaped.

Since the edges of Ts crossed by γ ∈ Ξ(s) are not in any ancestor-descendant relation, it
follows from the construction that the sets U(a�b) for all a�b ∈ E(γ) are pairwise disjoint.

Consider any vertex v ∈ V (P). If v ∈ extP(γ, s), then the path in Ts from s to v crosses γ
exactly once, and thus v belongs to exactly one set U(a�b) with a�b ∈ E(γ). If v /∈ extP(γ, s),
then the path in Ts from s to v does not cross γ, and thus v does not belong to any U(a�b) with
a�b ∈ E(γ).

Using ideas similar to those used in segment trees [10, Section 10.3] we obtain the following.

Lemma 12. Assume that the sets U(a�b) of Lemma 11 are already computed. Let γ be an oriented
cycle in Ξ(s). Assume that we are given t pairs (π1,δ1), . . . , (πt ,δt), such that each πi is a subpath
of γ specified by the starting and ending arc, and each δi > 0. In O((r + t) log3 r loglog r) time we
can compute the values

partsum(πi ,δi) :=
∑

a�b∈E(πi)

 

∑

v∈U(a�b)

1
δi +ω(v)

!

for all i ∈ [t].

Proof. Let e1, . . . , em be the arcs along γ, and note that m = O(r). We make a rooted balanced
binary search tree T with m leaves such that the leaf storing ei has search key i. A left-to-right
traversal of T traverses the leaves containing e1, . . . , em in that order. See Figure 6. Each node
z of T represents a subpath of γ, denoted by γ[z], which is the concatenation of arcs stored in
leaves under z. Alternatively, we can define γ[z] recursively: for each leaf z that stores ei, we
define γ[z] = ei , and for an internal node z with left child z′ and right children z′′ the path γ[z]
is the concatenation of γ[z′] and γ[z′′]. The paths γ[z] for all nodes z of T are called canonical
subpaths of γ.

For each node z of T , let rz be
∑

ei∈γ[z] |U(ei)|. Note that for each leaf z of T that stores
ei we have rz = |U(ei)|, while for each internal node z of T with children z′ and z′′ we have
rz = rz′ + rz′′ . Since the sets U(e1), . . . , U(em) are pairwise disjoint because of Lemma 11 and
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e1 e2 e3 e4 e5 e6 e7 e8

z1

z2

z3

z4

Figure 6: Portion of the tree T for the part e1, e2, . . . , e8 of γ. In this example, γ[z1] = e4,
γ[z2] = e3, e4, γ[z3] = e5, . . . , e8 and γ[z4] = e1, . . . , e8.

canonical paths for nodes at the same level of the tree T are arc-disjoint, we have rz ≤ r for all z
and

∑

z∈V (T ) rz = O(r log m) = O(r log r).
Each subpath πi of γ is the union of O(log m) = O(log r) canonical subpaths. That is, for each

subpath πi there is a subset Zi of O(log r) nodes in T such that πi is the concatenation of the
canonical subpaths γ[z], z ∈ Zi . Furthermore, the nodes Zi describing those canonical subpaths
can be identified in O(log r) time with a bottom-up traversal from the first and the last arcs of
πi. (Recall that we assume that πi is specified by the starting and ending arc.) This property is
parallel to the property often used for segment trees [10, Lemma 10.10]. We compute in O(t log r)
time the sets Z1, . . . , Zt . For each node z of T , let Iz = {i ∈ [t] | z ∈ Zi}. The non-empty sets Iz for
all nodes z together can be computed also in O(t log r) time. Note that

∑

z∈V (T )

|Iz| =
∑

i∈[t]

|Zi| =
∑

i∈[t]

O(log r) = O(t log r).

For each node z of T we define the rational function

ρz(x) =
∑

a�b∈E(γ[z])

∑

v∈U(a�b)

1
x +ω(v)

.

Note that ρz is the sum of
∑

ei∈E(γ[z])

|U(ei)| = rz

rational functions, each of bounded degree.
For each node z of T we compute ρz(δi) for each i ∈ Iz; that is, we evaluate ρz(x) at x = δi

for all i ∈ Iz . Using Lemma 1 this takes O((|Iz|+ rz) log2 rz loglog rz) = O((|Iz|+ rz) log2 r loglog r)
time for each node z of T . Thus, for all nodes z of T and all i ∈ Iz together, we compute ρz(δi) in
time

∑

z∈V (T )

O((|Iz|+ rz) log2 r loglog r) = O(log2 r loglog r)
∑

z∈V (T )

(|Iz|+ rz)

= O(log2 r loglog r)
�

O(t log r) +O(r log r)
�

= O((r + t) log3 r loglog r).

Note that for each given pair (πi ,δi), since πi is the concatenation of γ[z], z ∈ Zi , we have

∑

a�b∈E(πi)

 

∑

v∈U(a�b)

1
δi +ω(v)

!

=
∑

z∈Zi

∑

a�b∈E(γ[z])

∑

v∈U(a�b)

1
δi +ω(v)

=
∑

z∈Zi

ρz(δi).
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Since the values ρz(δi) are already available, for each i ∈ [t] we spend O(|Zi|) = O(log r)
additional time. The result follows.

Here we have the final result that we will use.

Theorem 13. Let P be a piece with r vertices in a plane graph G, and let s be a vertex of P.
Let Γ = {γ1, . . . ,γ`} be a family of oriented cycles in Ξ(s). Assume that we are given t pairs
(π1,δ1), . . . , (πt ,δt), where each δi > 0, each πi is an element of Ξ(s), and each πi is given as a con-
catenation of ki subpaths of cycles from Γ . Set k =

∑

i ki . We can compute ISWP,s(π1,δ1), . . . ISWP,s(πt ,δt)
in O(r2 + (k+ `r) log3 r loglog r) time.

Proof. Let Πi be the family of subpaths of cycles from Γ that are given to describe πi . Let Π = ∪iΠi
be all the subpaths used in the description; we consider Π as a multiset. For each $ ∈ Π, let
i($) ∈ [t] be the index such that $ ∈ Πi($) and let j($) ∈ [`] be the index such that $ is a
subpath of γ j($). Let Γ j = {$ ∈ Π | j($) = j}, that is, the subpaths of γ j that appear in the
description of some πi . Note that

∑

j∈[`]

|Γ j| =
∑

i∈[t]

|Πi| =
∑

i∈[t]

ki = k.

First we compute the sets U(a�b) described in Lemma 11 for all dual arcs a�b in P∗. This
takes O(r2) time.

For each j ∈ [`], we use Lemma 12 with the cycle γ j and the pairs ($,δi($)), for all$ ∈ Γ j .
This means that in time O((r + |Γ j|) log3 r loglog r) we compute the sums

partsum($,δi($)) =
∑

a�b∈E($)

 

∑

v∈U(a�b)

1
δi($) +ω(v)

!

for all $ ∈ Γ j .

For all j ∈ [`] together we spend
∑

j∈[`]

O((r + |Γ j|) log3 r loglog r) = O(log3 r loglog r)
∑

j∈[`]

(|Γ j|+ r)

= O((k+ `r) log3 r loglog r)

time and we obtain partsum($,δi($)) for all $ ∈ Π. This means that we obtain partsum($,δi)
for all $ ∈ Πi and all i ∈ [t].

For each (πi ,δi), we use the properties of U(a�b) described in Lemma 11, namely that
extP(πi , s) is the disjoint union of the sets U(a�b) over all arcs a�b ∈ E(πi), to obtain

ISWP,s(πi ,δi) =
∑

v∈extP (πi ,s)

1
δ+ω(v)

=
∑

a�b∈E(πi)

 

∑

v∈U(a�b)

1
δi +ω(v)

!

=
∑

$∈Πi

∑

a�b∈E($)

 

∑

v∈U(a�b)

1
δi +ω(v)

!

=
∑

$∈Πi

partsum($,δi).

Thus, we can compute ISWP,s(πi ,δi) using an additional O(|Πi|) = O(ki) time, for each i.

Lemma 10 and Theorem 13 will be combined to compute the sum of inverses over the vertices
of a Voronoi cell using simple inclusion-exclusion; see the end of the proof of Lemma 14.
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Remark. In our discussion we have assumed that we want to add the shifted-inverse over
vertices of V (P) outside γ with respect to a reference s ∈ V (P). In fact, for any fixed U ⊂ V (P),
we could also be considering the inverse-shifted queries

ISWP,s(γ,δ) =
∑

v∈U∩extP (γ,s)

1
δ+ω(v)

.

For example, if we would have red and blue vertices, we could consider sums over only the blue
vertices.

Remark. Similar results hold for arbitrary cycles, not just cycles from Ξ(s), with worse running
time. In Lemma 12 we have used that the sets U(a�b) are pairwise disjoint when the arcs
a�b come from a cycle of Ξ(s). For arbitrary cycles one can use inclusion-exclusion; see for
example Cabello [8, Section 3.1] for the relevant idea. In such case, we can assume only that each
U(a�b) has O(r) vertices and, in the proof of Lemma 12,

∑

z∈V (T ) rz = O(r2). The running time
of Lemma 12 for arbitrary cycles becomes O((r2 + t log r) log2 r loglog r). Similarly, Theorem 13
holds for arbitrary cycles γ1, . . . ,γ`, but the running time becomes O((k log r+`r2) log2 r loglog r).

4.4 Across a separation

The next result handles the interaction between a piece P of a plane graph G and its complement.
The boundary ∂ P of P plays the role of the separation because each path from V (P) \ ∂ P to
V (G) \ V (P) must pass through ∂ P. We use Voronoi diagrams for planar graphs, as Cabello [8] or
Gawrychowski et al. [16], to group the vertices of V (P) depending on which boundary vertex
is used in the shortest path to them (for a fixed source). To collect the relevant data from each
Voronoi cell, we use the data structure developed in Section 4.3.

Lemma 14. Let G be a plane graph with n vertices and let P be a piece of G with r vertices, b
boundary vertices, and O(1) holes. In Õ(bn+ b2r2) time we can compute

IGL
�

a, V (P)
�

=
∑

v∈V (P)

1
dG(a, v)

for all a ∈ V (G) \ V (P).

Proof. First we introduce some notation, express some properties, and then look into the algorith-
mic part. Let A= V (G) \ V (P), S = ∂ P and Ω = A× S. Note that Ω has O(bn) pairs. The set S
is a separator between A and V (P) \ S. We will systematically use a to index vertices of A, s for
vertices of S, and v for vertices of P.

Consider one fixed a ∈ A and assign weight δ(s) = dG(s, a) to each s ∈ S. Consider the
corresponding Voronoi diagram {cellP(s, S) | s ∈ S}, and recall that each Voronoi cell has a dual
description: a family of cycles HP(s, S) in P∗ such that

cellP(s, S) = V (P) \

 

⊔

γ∈HP (s,S)

extP(γ, s)

!

.

This Voronoi diagram depends on a. To make this dependency on a explicit, because we will
be considering several different vertices a ∈ A together, we define X (a, s) = cellP(s, S) and
H(a, s) = HP(s, S). This notation drops the dependency on P and S, which we may assume
constant throughout this proof. On the other hand, the notation makes it clear that we consider a
different Voronoi diagram for each a ∈ A, and each such Voronoi diagram has a cell for each s ∈ S
whose additive weight δ(s) was set to dG(a, s). With the new notation we have

∀(a, s) ∈ Ω : X (a, s) = V (P) \

 

⊔

γ∈H(a,s)

extP(γ, s)

!

. (1)
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As we explained before, we may and we will assume that the Voronoi cells form a partition of
V (P). Therefore, for each a ∈ A, the sets X (a, s), where s ∈ S, form a partition of V (P). Since S
separates A from V (P) \ S, it follows from the definition of additively-weighted Voronoi diagram
that

∀(a, s) ∈ Ω, ∀v ∈ X (a, s) : dG(a, v) = dG(a, s) + dP(s, v). (2)

Note that in the second part we are using distances in P, which is consistent with the distance
used for defining the Voronoi diagram in P. The values we want to compute can be rewritten as

IGL
�

a, V (P)
�

=
∑

v∈V (P)

1
dG(a, v)

=
∑

s∈S

 

∑

v∈X (a,s)

1
dG(a, v)

!

=
∑

s∈S

IGL
�

a, X (a, s)
�

. (3)

We will explain how to compute the values IGL
�

a, X (a, s)
�

for all (a, s) ∈ Ω together in Õ(bn+b2r2)
time. From this, the result follows, as the desired values can be computed in O(|Ω|) = O(bn)
additional time.

For each two distinct boundary vertices s, s′ of S, let Γ̃ (s, s′) be the family of bisectors between s
and s′. Note that Γ̃ (s, s′) ⊂ Ξ(s) because they are bisectors. Define Γ (s) =

⋃

s′∈S,s′ 6=s Γ̃ (s, s′) for each
s ∈ S, that is, all the bisectors in P between s and each possible other boundary vertex. Obviously,
Γ (s) ⊂ Ξ(s). Each cycle in each H(a, s) is described by patches from Γ (s). For each (a, s) ∈ Ω, let
k(a, s) be the number of patches used to describe all the cycles of H(a, s). Since the combinatorial
complexity of each Voronoi diagram is linear in |S|, we have

∑

s∈S k(a, s) = O(|S|) = O(b) for
each a ∈ A.

A simple counting shows that the family Γ (s) has in total O(br2) arcs, counted with multiplicity.
Indeed, each family Γ̃ (s, s′) consists of O(r) cycles in the dual graph P∗, and each such cycle has
O(r) arcs. (Since the cycles of Γ̃ (s, s′) are nested and any two consecutive ones in the nested order
differ by at least one vertex, the bound follows.) Thus, Γ̃ (s, s′) has a total of O(r2) arcs, counted
with multiplicity, which implies that Γ (s) has in total O(br2) arcs because |S|= b.

We move now to the computational part. We will consider the cycles in H(a, s) for all pairs
(a, s) ∈ Ω, first from the perspective of fibers with constant a, and then from the perspective of
fibers with constant s.

First we compute the relevant distances. From each s in S we compute two shortest path
trees, one in G and one in P. This takes Õ(bn) time because |S| = b and G has O(n) edges. Note
that now, we have dG(s, u) for each (s, u) ∈ S × V (G) and dP(s, v) for each (s, v) ∈ S × V (P). We
also compute the cycles in Γ̃ (s, s′) for all s, s′. This can be done in Õ(r2) for each s, s′ ∈ S easily;
see Cabello [8] for an explicit computation or Gawrychowski et al. [16] for a faster, implicit
representation. The idea is that a vertex v ∈ V (P) changes sides of the Voronoi cells when the
additive weights of the sites satisfy δ(s)−δ(s′) = dP(s′, v)− dP(s, v). We easily obtain also Γ (s)
for all s ∈ S. We have spent Õ(bn+ b2r2) time.

We use Theorem 9 to preprocess P in Õ(r b2) time. We can do this because the vertices of
S are incident to the holes of P, and thus S is covered by O(1) faces of P, and those faces can
be computed from the embedding of G in O(n) time. After this preprocessing, we can handle
the following queries: for any given weights δ(s) assigned to each s ∈ S at query time, the
additively-weighted Voronoi diagram of S in P can be computed in Õ(b) time. Note that this
Voronoi diagram uses distances in P

We use the data structure to compute H(a, s) for all (a, s) ∈ Ω. More precisely, for each a ∈ A,
we set the weights δ(s) = dG(s, a) for all s ∈ S, and query the data structure once to obtain H(a, s)
for all s ∈ S. Since we are querying the data structure |A| < n times, we obtain H(a, s) for all
(a, s) ∈ Ω in Õ(bn) time.

Now we switch to the fibers with constant s. Consider one fixed s ∈ S. We assign to each
vertex v of P weight ω(v) = dP(s, v). Consider the family of cycles Γ (s), which has ` = O(br)
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cycles of Ξ(b) with a total of O(br2) arcs, counted with multiplicity. Using Theorem 13 for all the
pairs

(π,δ) ∈
⋃

a∈A

�

H(a, s)× {dG(s, a)}
�

,

we obtain, for each cycle γ ∈ H(a, s), the value

ISWP,s(γ, dG(a, s)) =
∑

v∈extP (γ,s)

1
dG(a, s) +ω(v)

=
∑

v∈extP (γ,s)

1
dG(a, s) + dP(s, v)

in time

Õ

�

r2 +
∑

a∈A

k(a, s) + (br)r

�

= Õ

�

∑

a∈A

k(a, s) + br2

�

.

Still for the same fixed s and the same weightsω(·), we use Lemma 10 with the values {δ1, . . . ,δ|A|} =
{dG(a, s) | a ∈ A} to compute for each a ∈ S the value

∑

v∈V (P)

1
dG(a, s) +ω(v)

=
∑

v∈V (P)

1
dG(a, s) + dP(s, v)

.

Note that dG(a, s) + dP(s, v) is not dG(a, v), in general. This takes Õ(n+ r) = Õ(n) time, for a
fixed s ∈ S.

We repeat the procedure for each s ∈ S. In total, we spend

∑

s∈S

Õ

�

∑

a∈A

k(a, s) + br2

�

= Õ

�

|S|br2 +
∑

a∈A

∑

s∈S

k(a, s)

�

= Õ

�

b2r2 +
∑

a∈A

b

�

= Õ
�

b2r2 + bn
�

time and we obtain the values

σ(γ, a, s) :=
∑

v∈extP (γ,s)

1
dG(a, s) + dP(s, v)

τ(a, s) :=
∑

v∈V (P)

1
dG(a, s) + dP(s, v)

for all γ ∈ H(a, s) and all (a, s) ∈ Ω.
Combining properties (1) and (2), we have for each (a, s) ∈ Ω

IGL
�

a, X (a, s)
�

=
∑

v∈X (a,s)

1
dG(a, v)

=
∑

v∈X (a,s)

1
dG(a, s) + dP(s, v)

=
∑

v∈V (P)

1
dG(a, s) + dP(s, v)

−
∑

γ∈H(a,s)

 

∑

v∈extP (γ,s)

1
dG(a, s) + dP(s, v)

!

= τ(a, s)−
∑

γ∈H(a,s)

σ(γ, a, s).

Thus, we can obtain each single IGL
�

a, X (a, s)
�

in O(1+ |H(a, s)|) time, using the data already
computed. Since

∑

s∈S |H(a, s)| ≤
∑

s∈S k(a, s) = O(b), this computation for all (a, s) ∈ Ω together
takes O(bn) time. With this we have computed IGL

�

a, X (a, s)
�

for all (a, s) ∈ Ω, and we have
finished the proof because of equation (3).
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4.5 Final algorithm

Using Lemma 14 for each piece in a r-division with a few holes, we obtain the final result.

Theorem 15. Let G be a planar graph with n vertices and positive, abstract edge lengths. In Õ(n9/5)
time we can compute

IGL(a, V (G) \ {a}) =
∑

v∈V (G)\{a}

1
dG(a, v)

for all a ∈ V (G).

Proof. First, we compute an r-division of G with few holes. Such division has k = O(n/r) pieces
P = {P1, . . . , Pk}, where each piece Pi ∈ P has O(r) vertices, O(

p
r) boundary vertices, and O(1)

holes. Moreover, different pieces only intersect at boundary vertices. Such an r-division can be
computed in Õ(n) time [12, 18, 19].

Let B be the set of vertices that are boundary vertices in some piece. Note that B contains
O(n/r) · O(

p
r) = O(n/

p
r) vertices. The vertex set V (G) is the disjoint union of B, V (P1) \

∂ P1, . . . , V (Pk) \ ∂ Pk.
We compute a shortest path tree from each vertex of B. Each shortest path tree takes linear

time [17], and thus we spend O(n2/
p

r) time in this computation. After this, for each vertex u of G
and each vertex b of B, we can retrieve dG(u, b) in constant time. In particular, any sum of inverse
of distances between pair of vertices, where are at least one vertex is in B, can be computed in time
proportional to the number of terms in the sum. It follows that the desired values IGL(a, V (G)\{a})
can be computed now for all a ∈ B with additional time O(|B| · |V (G)|) = O(n2/

p
r).

Consider one fixed piece Pi ∈ P . We use Lemma 14 to compute in Õ(r1/2n+ r3) time the
values IGL

�

a, V (Pi)
�

for all a ∈ V (G)\V (Pi). We also compute IGL(a,∂ Pi) by adding the distances
from ∂ Pi ⊂ B; this takes O(r1/2n) time. With this we obtain the values

IGL(a, V (Pi) \ ∂ Pi) = IGL(a, V (Pi))− IGL(a,∂ Pi) for all a ∈ V (G) \ V (Pi).

Finally, we compute the distance (in G) between all pairs of vertices in Pi in Õ(r2) using usual
machinery. For example, we may add edges between the O((

p
r)2) = O(r) pairs of boundary

vertices ∂ Pi and compute distances in the resulting graph, which has O(r) vertices and edges.
Repeating this for the O(n/r) pieces of P together we have spent Õ(n2/

p
r + nr2) time.

Recall that V (G) is the disjoint union of B, V (P1) \ ∂ P1, . . . , V (Pk) \ ∂ Pk. Thus, for each
a ∈ V (G) \ B, there is a unique index j(a) such that a ∈ Pj(a) ∈ P , and therefore

IGL(a, V (G) \ {a}) =
∑

i∈[k]\{ j(a)}

IGL(a, V (Pi) \ ∂ Pi) +
∑

b∈B

1
dG(a, b)

+
∑

v∈V (Pj(a))\∂ Pj(a)

1
dG(a, v)

.

The k− 1= O(n/r) terms in the first sum have been computed, the |B|= O(n/
p

r) terms in the
second sum have also been computed, and the |V (Pj(a))\∂ Pj(a)| = O(r) terms in the last sum have
also been computed. We conclude that, for a single a ∈ V (G)\B, we can recover IGL(a, V (G)\{a})
in O((n/

p
r) + r) time. Doing this for each vertex a ∈ V (G) \ B takes O(n2/

p
r + nr).

The whole algorithm, as explained, takes Õ(n2/
p

r + nr2). Setting r = n2/5 we obtain a
running time of Õ(n9/5).

Corollary 16. Let G be a planar graph with n vertices and positive, abstract edge lengths. In Õ(n9/5)
time we can compute IGL(G).

Proof. We use the Theorem to compute IGL(a, V (G) \ {a}) for all a ∈ V (G). Then we note that

IGL(G) =
1
2

∑

a∈V (G)

IGL(a, V (G) \ {a}).
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5 Conclusions

Let us remark a few extensions of the results we presented. The extensions are applicable for
graphs of bounded treewidth and for planar graphs without affecting the asymptotic running
times of each case.

Firstly, the algorithm can be adapted to work for directed planar graphs. In such case it is
meaningful to compute

∑

uv∈(V (G)2 )

�

1
dG(u, v)

+
1

dG(v, u)

�

.

We provide two clarifying remarks on how to achieve this. The first observation is that distances
to a separator vertex can be computed by reversing the arcs and computing the distances from
the separator vertex. The second observation is that Voronoi diagrams can also be considered for
such "distances" defined in directed graphs; this has been done also in previous works [8, 16].

As a second extension, we note that we can also compute the sum of the distances between
some marked vertices. This means that, for any given U ⊂ V (G), we can compute in the same
asymptotic running time the sum

∑

uv∈(U2)

1
dG(u, v)

or
∑

u∈U

∑

v∈V (G)\{u}

1
dG(u, v)

.

For the case of planar graphs, where this may be less obvious, see the remark after Theorem 13.
As a final extension, note that we can handle any rational function of constant degree that

depends on the distances. For example, the same approach can be used for computing

∑

uv∈(V (G)2 )

dG(u, v)
(1+ dG(u, v))2

or
∑

uv∈(V (G)2 )
(dG(u, v))2.

Indeed, this only affects the rational (or polynomial) functions that we have to consider and
evaluate (at the shifts), but Lemma 1 keeps being applicable. On the other hand, current methods
developed here or in previous works do not seem applicable to compute in subquadratic time
values like

∑

uv∈(V (G)2 )

Æ

dG(u, v) or
∑

uv∈(V (G)2 )

1
p

dG(u, v)
,

even assuming a strong model of computation, like Real RAM, where sums of square roots can be
manipulated in constant time.
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50(2):509–554, 2021, https://doi.org/10.1137/18M1193402.

25

http://doi.acm.org/10.1145/3209678
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1137/130947374
https://doi.org/10.1007/s00453-020-00680-z
https://doi.org/10.1007/s00453-020-00680-z
http://doi.acm.org/10.1145/3218821
http://doi.acm.org/10.1145/3218821
http://dx.doi.org/10.1016/j.comgeo.2009.02.001
http://dx.doi.org/10.1016/j.comgeo.2009.02.001
http://dx.doi.org/10.1007/978-3-540-77974-2
http://dx.doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.1016/j.jcss.2005.05.007
http://doi.org/10.1145/102782.102788
https://doi.org/10.4230/LIPIcs.ISAAC.2019.59
https://doi.org/10.4230/LIPIcs.ISAAC.2019.59
https://doi.org/10.1137/18M1193402


[17] M. R. Henzinger, P. N. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms
for planar graphs. J. Comput. Syst. Sci. 55(1):3–23, 1997, http://dx.doi.org/10.1006/
jcss.1997.1493.

[18] P. N. Klein, S. Mozes, and C. Sommer. Structured recursive separator decompositions
for planar graphs in linear time. Proc. 45th ACM Symposium on Theory of Computing,
STOC 2013, pp. 505–514, 2013, http://doi.acm.org/10.1145/2488608.2488672. See
http://arxiv.org/abs/1208.2223 for the full version.

[19] P. N. Klein and S. Subramanian. A fully dynamic approximation scheme for shortest
paths in planar graphs. Algorithmica 22(3):235–249, 1998, https://doi.org/10.1007/
PL00009223.

[20] V. Latora and M. Marchiori. Efficient behavior of small-world networks. Phys. Rev. Lett.
87:198701, Oct 2001, https://doi.org/10.1103/PhysRevLett.87.198701.

[21] V. Latora and M. Marchiori. Economic small-world behavior in weighted networks. The
European Physical Journal B - Condensed Matter and Complex Systems 32(2):249–263, Mar
2003, https://doi.org/10.1140/epjb/e2003-00095-5.

[22] L. Monier. Combinatorial solutions of multidimensional divide-and-conquer recurrences. J.
Algorithms 1(1):60–74, 1980, https://doi.org/10.1016/0196-6774(80)90005-X.

[23] G. Moroz and B. Aronov. Computing the distance between piecewise-linear bivariate
functions. ACM Trans. Algorithms 12(1):3:1–3:13, 2016, http://doi.acm.org/10.1145/
2847257.
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