
MIT Open Access Articles

Elliptical Slice Sampling for Probabilistic Verification of
Stochastic Systems with Signal Temporal Logic Specifications

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Scher, Guy, Sadraddini, Sadra, Tedrake, Russ and Kress-Gazit, Hadas. 2022. "Elliptical
Slice Sampling for Probabilistic Verification of Stochastic Systems with Signal Temporal Logic
Specifications."

As Published: https://doi.org/10.1145/3501710.3519506

Publisher: ACM|25th ACM International Conference on Hybrid Systems: Computation and
Control

Persistent URL: https://hdl.handle.net/1721.1/146288

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/146288

Elliptical Slice Sampling for Probabilistic
Verification of Stochastic Systems with Signal

Temporal Logic Specifications
Guy Scher

gs679@cornell.edu

Sibley School of Mechanical and Aerospace Engineering,

Cornell University

Ithaca, NY, USA

Sadra Sadraddini

sadra@dexai.com

Dexai Robotics

Boston, MA, USA

Russ Tedrake

russt@mit.edu

Computer Science and Artificial Intelligence Laboratory

(CSAIL), Massachusetts Institute of Technology

Cambridge, MA, USA

Hadas Kress-Gazit

hadaskg@cornell.edu

Sibley School of Mechanical and Aerospace Engineering,

Cornell University

Ithaca, NY, USA

ABSTRACT
Autonomous robots typically incorporate complex sensors in their

decision-making and control loops. These sensors, such as cameras

and lidars, have imperfections in their sensing and are influenced

by environmental conditions. In this paper, we present a method

for probabilistic verification of linearizable systems with Gaussian

and Gaussian mixture noise models (e.g. from perception modules,

machine learning components). We compute the probabilities of

task satisfaction under Signal Temporal Logic (STL) specifications,

using its robustness semantics, with a Markov Chain Monte-Carlo

slice sampler. As opposed to other techniques, our method avoids

over-approximations and double-counting of failure events. Central

to our approach is a method for efficient and rejection-free sampling

of signals from a Gaussian distribution that satisfy or violate a given

STL formula. We show illustrative examples from applications in

robot motion planning.

CCS CONCEPTS
• Computer systems organization → Robotics; • Theory of
computation →Modal and temporal logics.

KEYWORDS
Probabilistic verification, Signal Temporal Logic

ACM Reference Format:
Guy Scher, Sadra Sadraddini, Russ Tedrake, and Hadas Kress-Gazit. 2022.

Elliptical Slice Sampling for Probabilistic Verification of Stochastic Sys-

tems with Signal Temporal Logic Specifications. In 25th ACM Interna-
tional Conference on Hybrid Systems: Computation and Control (HSCC ’22),

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HSCC ’22, May 4–6, 2022, Milan, Italy
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9196-2/22/05. . . $15.00

https://doi.org/10.1145/3501710.3519506

May 4–6, 2022, Milan, Italy. ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/3501710.3519506

1 INTRODUCTION
To deploy autonomous robots, such as self-driving cars or assistive

robots, we seek formal guarantees that they can operate safely

and reliably. Providing such guarantees is challenging due to the

sheer amount of non-determinism in the world including noisy

sensors, uncontrolled environment (humans, other robots) and

different environment conditions (such as lighting, occlusions, etc.).

Modern systems also include machine learning components [7]

that can contribute to the uncertainty since they might be deployed

in different settings than the ones they were trained on.

Sensors, from proprioceptive ones that sense the robot’s internal

values such as speed or joint angles, to exteroceptive ones that

sense the environment such as range finders and cameras, are

usually modeled with errors coming from a Gaussian distribution

or bounded noises. The system designer needs to reason about

the likelihood that the system will successfully perform a task

and re-design it if needed. The general approach is to find all the

states (e.g. the robot’s positions) that the robot may reach under all

circumstances, i.e. the “reachable set”, and reason about the safety

and task completion. Testing with hardware is limiting, impractical

and intractable because of the variability of tests and environmental

conditions. Finding rigorous formal mathematical guarantees is

usually infeasible for complicated systems performing complex

tasks. Verifying systems using simulations may be the only way, but

they suffer from long computation times, especially when searching

for rare and hard to find events [5, 26, 35].

Several techniques exist for verifying systems with uncertainty.

Imposing hard constraints on the state will always result in viola-

tion when dealing with unbounded non-determinism such as the

Gaussian noise model. As such, it makes sense to describe the con-

straints with the probability of satisfying them - probabilistic state

constraints. One common approach to verifying such robotic sys-

tems is with chance constraints [3, 12]. In these formulations, it is

common to do risk allocation and use Boole’s inequality, which allo-

cates the level of uncertainty for each constraint component [22], or

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3501710.3519506
https://doi.org/10.1145/3501710.3519506
https://doi.org/10.1145/3501710.3519506

HSCC ’22, May 4–6, 2022, Milan, Italy Guy Scher, Sadra Sadraddini, Russ Tedrake, and Hadas Kress-Gazit

use ellipsoidal approximations. However, both are considered to be

conservative [3, 16], as they over approximate failure probabilities.

A known issue with these approaches is “double counting”. A con-

straint violation of a trajectory at time t might yield a violation at

t + 1 as well, and they will be considered as two separate violations

because of the way they are constructed. In reality, we would like

to consider that trajectory as only one failure.

Another common approach is to use Monte-Carlo methods
to verify systems. These methods are attractive because they can

be applied to non-linear systems, intricate noise models and black-

box simulators. However, they can be computationally inefficient,

especially when trying to detect rare events [4]. The verification

process needs to iterate through many (guided) simulations to find

rare events [11, 26, 29] in order to produce an accurate estimate of

the probability. Other more generic techniques also exist to improve

the performance of a Monte-Carlo simulation [32].

An issue with Monte-Carlo simulations is when there are many

non-deterministic parameters [15]; in such cases, Monte-Carlo tech-

niques may require a prohibitively large number of simulations to

adequately represent the posterior distribution. In our case, a dy-

namic system with multiple noise sources and a long time horizon

can grow to a large parametric space quickly. We, and the work in

[15] which we extend upon, show that our method can yield accu-

rate integrations for Gaussians in high dimensions independent of

the probability mass of the posterior.

Optimization techniques have been used extensively in the lit-

erature to verify systems with uncertainty. There exist numerous

verification algorithms that deal with machine learning compo-

nents in the loop (e.g. [31]). The authors in [33] consider dynamic

systems with a neural network component as the controller. In that

setting, the inputs to the neural network are discretized and a linear

program over-approximates the output. With that, they compute

the over-approximation of the complete system’s reachable set. In

[7], the authors use robust control theory to provide guarantees for

a system where the perception errors can be bounded using some

assumptions on the data used during the training process versus

the data that is collected in real-time.

Another line of work can be categorized as geometric algo-

rithms. Set propagation techniques have been applied to reacha-

bility analysis. Except for a limited number of systems, these tech-

niques always deal with under or over-approximations because

finding the reachable sets is undecidable [2]. These techniques pro-

vide efficient computation frameworks; however, they work only on

uni-model disturbances such as a Gaussian model, or a bounded dis-

turbance. When discussing systems with a large number of states,

one must employ other methods, such as decomposition of the

system dynamics, for the methods to be tractable. The authors in

[1] combined zonotopes and support functions to create an efficient

framework for calculating the reachable sets of linear and switched

dynamics systems. It considers only bounded disturbances.

In this work, we focus on the verification of properties that can

be expressed using Signal Temporal Logic (STL) [10] for linear or

linearizable time-variant systems with Gaussian error models. We

show how our verification technique performs with a Gaussian

mixture noise model (Section 4.7), where the weights of each Gauss-

ian could be either static, come from a choice model like a Markov

chain, or from a black-box choice model. We provide a verification

method for generic STL formulae. We also describe a special case

of reach-avoid [14] type specifications for which we propose an

alternate solution that, in some cases, is more computationally effi-

cient. We leverage and extend the framework in [15] to compute

the probability that the robot satisfies its task specification.

Our main contribution is a computation framework for verify-

ing and computing the probability of a high-dimensional system

to satisfy (or violate) complex STL specifications within a finite

horizon using the STL quantitative semantics. The technique is

especially useful (accurate and tractable) when dealing with low

probability events and displays the following properties: 1. We pro-

vide an efficient computation framework that does not suffer from

the combinatorial nature of representing the signals that satisfy

an STL specification. 2. Failure modes are not double-counted and

not over-approximated. The computational framework is solved

efficiently and can be parallelized. 3. Sampling is done from the pos-

terior distribution in a rejection-free manner. Thus, we can sample

new trajectories efficiently from the target distribution for analysis

purposes, control synthesis, etc. 4. The algorithm is parameter-free;

no fine-tuning of hyper-parameters is required. 5. It can verify sys-

tems with more intricate noises than Gaussian errors thus capturing

realistic perception models.

2 PRELIMINARIES
In this section, we provide the necessary background on elliptical

slice sampling and Signal Temporal Logic.

2.1 Elliptical Slice Sampling (ESS) and the
Holmes-Diaconis-Ross (HDR) algorithm

An adaptive elliptical slicing method is used to sample from a

linearly constrained domain under Gaussian distributions in [15].

We describe the main idea here for clarity and completeness. We

extend [15] to compute the probability that the robot trajectories,

represented as a multivariate Gaussian, satisfy a specification.

Elliptical slice sampling (ESS) [20] is a Markov Chain Monte

Carlo technique (MCMC) for sampling from a posterior when the

prior is a multivariate Gaussian N(µ, Σ). In our case, the posterior

will be a Gaussian under constrained linear domains (a truncated

Gaussian). Given a single sample x0 ∈ Rn inside the linear con-

strained domain L ⊆ Rn , and a new auxiliary point sampled from

the same Gaussian ν ∼ N(µ, Σ), the approach constructs an ellipse

x(θ) = x0 cos(θ) + ν sin(θ), parameterized by the scalar θ ∈ [0, 2π].
Using a closed-form solution to the intersections between the aux-

iliary ellipse and the hyperplanes that confine the linear domain L,

we can sample θ∗ from a Uniform distribution over the ellipse arc

lengths that lie within the domain, and thus obtain a new sample

x(θ∗) ∈ L. A point on the ellipse is in the domain L, when the

intersection between alld constraints exceed zero,Ax+b ≥ 0 where

A ∈ Rd×n ,b ∈ Rd . This process is depicted in Fig.1a where the new

sample x is sampled from the constrained Gaussian distribution

N(µ, Σ) (for proof, see [15, 20]).
The Holmes-Diaconis-Ross (HDR) algorithm [8], a multi-level

splitting algorithm, estimates the probability of sampling from

a constrained region under any distribution. Direct Monte-Carlo

methods may be inefficient because most candidate samples may be

rejected (low probability distribution function or high dimensional

Elliptical Slice Sampling for Probabilistic Verification of Stochastic Systems with Signal Temporal Logic Specifications HSCC ’22, May 4–6, 2022, Milan, Italy

(a) Elliptical slice sampling (b) HDR

Figure 1: (a) Sampling a new point x (θ∗) from the con-
strained domain (blue grid) given an initial point x0, an aux-
iliary point ν ∼ N(µ, Σ) and θ∗ ∼ U(θmin ,θmax). The active
intersection is the bold blue line section of the ellipse where
all points within [θmin ,θmax] are in the linearly constrained
domain. (b) Original constrained domainLK in the blue grid
and shifted domain LK−1 in yellow divot after producing
samples from N(µ, Σ) using the ESS procedure under LK−1.

domain). With HDR, the probabilityp(L) of sampling fromL ⊆ Rn

is estimated using the product of conditional probabilities:

p(L) = p(L0)

K∏
k=1

p(Lk |Lk−1
) (1)

where L0 = R
n , p(L0) = 1. Each domain Lk (also referred to

as a nesting) is shifted (enlarged, see Fig.1b) to Lk−1
by a scalar

γk > 0 such that the conditional probabilities p(Lk |Lk−1
) ≈ 0.5

andγK = 0 is exactly the target domainLK = L. Fig.1b depicts this

process where the target domain L (blue grid) is expanded until it

contains enough samples - when the probability to sample from the

shifted region is about 0.5. Then, the algorithm iteratively shrinks

the shifted region to keep the proportion of samples within the

new domain to the previous domain at about half. nk samples are

drawn from each domain Lk−1
with the ESS algorithm. The proba-

bility p(Lk |Lk−1
) = N (k)/nk , is the ratio between the number of

samples N (k) =
∑nk
j=1

I (x j ∈ Lk) (I is the indicator function, equals

one if the argument is true, zero otherwise) to the total number of

samples, nk , drawn at that nesting.

General closed-form solutions to the integral of a Gaussian under

a linear constrained domain do not exist when the domain is not

axis-aligned with the Gaussian. Numerical methods, such as quad-

rature algorithms, do not scale with the problem dimension [24].

2.2 Signal Temporal Logic
Signal temporal logic (STL) [19] enables specifying a broad range

of temporal constraints over real-valued signals. Here we consider

STL for discrete-time signals. Continuous-time logics and their

properties can be found in, e.g., [10, 13].

Consider a discrete-time real-valued signal s = s0, s1, s2, · · · ,

where st ∈ Rn ,∀t ∈ N. A predicate over Rn is denoted by µ =
(h(s) ≥ 0), where h : Rn → R. A predicate is called linear if h is

an affine function of s . Given a set of predicates, STL formulae are

defined recursively using the following operators:

µ | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1U[t1,t2]φ2 | ^[t1,t2]φ | □[t1,t2]φ (2)

where φ,φ1,φ2 are STL formulae, ¬ is the negation opera-

tor, ∧,∨ are conjunction and disjunction, respectively, and

U[t1,t2],^[t1,t2],□[t1,t2] are bounded temporal operators, over the

time interval [t1, t2], that stand for “until”, “eventually”, and “al-

ways”, respectively.

Example 2.1. Consider a signal with values in R2
, where s =

(s(1), s(2))
′
. The specification

φ = □[0,9](s(1) + s(2) − 10 ≥ 0) ∨ ^[0,15]□[0,5](−s(1) ≥ 0)

encodes “for all times in the interval [0,9], the value of s(1) + s(2)
stays above 10, or, for some time in the interval [0, 15], the value of

s(1) stays below 0 for 5 consecutive time steps".

Definition 2.2. The STL score, or quantitative semantics [9],
ρ(s,φ, t) is recursively defined as:
• ρ(s, µ, t) = h(st),
• ρ(s,¬φ, t) = −ρ(s,φ, t),
• ρ(s,φ1 ∧ φ2, t) = min(ρ(s,φ1, t), ρ(s,φ2, t)),
• ρ(s,φ1 ∨ φ2, t) = max(ρ(s,φ1, t), ρ(s,φ2, t)),
• ρ(s,^[t1,t2]φ, t) = max

τ ∈t+[t1,t2]
ρ(s,φ,τ),

• ρ(s,□[t1,t2]φ, t) = min

τ ∈t+[t1,t2]
ρ(s,φ,τ),

• ρ(s,φ1U[t1,t2]φ2, t) =

max

τ ∈t+[t1,t2]
(min

(
ρ(s,φ2,τ), min

τ ′∈[t,τ]
ρ(s,φ1,τ

′))).

The STL score provides a metric for the distance to satisfaction

of an STL formula. A positive STL score indicates satisfaction and a

negative one stands for violation. To remove ambiguity, we consider

the STL score of ρ(s,φ, t) = 0 as satisfying. We define the STL score

of a signal s and specification φ as ρ(s,φ, 0).

Example 2.3. In Example 2.1, let st = (t −8, 2)′,∀t ∈ N. Applying
Definition 2.2, we obtain

ρ(s,□[0,9](s(1) + s(2) − 10 ≥ 0), 0) = min

t ∈[0,9]
(t − 16) = −16

ρ(s,^[0,15]□[0,5](−s(1) ≥ 0), 0) = max

t ∈[0,15]
min

τ ′∈[0,5]
(8 − (t + τ ′)) = 3,

thus ρ(s,φ, 0) = max(−16, 3) = 3. Therefore signal s satisfies φ and

its STL score is 3.

Definition 2.4. The ϱ-level set of an STL formula φ is defined as:

L(φ, ϱ) = {s|ρ(s,φ, 0) ≥ ϱ}. (3)

Definition 2.5. The horizon of the STL formula φ, denoted by
Hφ , is the minimum length of truncated signal s = s0, s1, · · · , sHφ−1

that is required to evaluate ρ(s,φ, 0). It is recursively given by:

• H (h(s)≥0) = 1,
• H¬φ = Hφ ,
• Hφ1∧φ2 = Hφ1∨φ2 = max(Hφ1 ,Hφ2),
• H^[t

1
,t

2
]φ = H□[t1,t2]φ = t2 + H

φ

• Hφ1U[t
1
,t

2
]φ2 = t2 +max(Hφ1 ,Hφ2).

Example 2.6. In Example 2.1, Hφ = max(9 + 1, 15 + 5 + 1) = 21.

The values of s21, s22, · · · do not affect ρ(s,φ, 0).

Given φ, we only need the truncated signal s0, s1, · · · , sHφ−1 to

check whether it satisfies φ. Thus, we can stack the truncated signal

into a vector denoted by sφ := (s ′
0
, s ′

1
, · · · , s ′Hφ−1

)′ ∈ Rn ·H
φ
. With

HSCC ’22, May 4–6, 2022, Milan, Italy Guy Scher, Sadra Sadraddini, Russ Tedrake, and Hadas Kress-Gazit

a slight abuse of notation we extend the STL score and level-set

definitions to the following function and set in Rn ·H
φ
:

ρ(sφ) := ρ(s,φ, 0). (4)

L(φ, ϱ) := {sφ ∈ Rn ·H
φ
|ρ(sφ) ≥ ϱ}. (5)

It is straightforward to show that given φ with linear predicates on

Rn , we have the following properties:

• ρ : Rn ·H
φ
→ R is piecewise affine and Lipschitz continuous.

• For a given ϱ, the set L(φ, ϱ) is a union of polyhedra in Rn ·H
φ
.

3 PROBLEM SETUP
3.1 System
We consider discrete linear(izable), possibly time-varying, systems

(LTV) with the dynamic and measurement equations:

xt+1 = Atxt + Btut +wt , (6)

yt = Ctxt +vt

where xt ∈ Rn is the state at time t , ut ∈ Rm is the control input

and yt ∈ R
q
is the measurement vector. The process noisewt ∈ Rn

and the measurement noise vt ∈ R
q
are described in more detail in

Section 3.2. At ,Bt andCt are the mappings between the states and

measurements and are assumed known. The discrete system has

a time step ∆t . The system can be open loop (6), or have a linear

state observer and a closed loop feedback controller for tracking a

reference trajectory rt :

x̂t+1 = At x̂t + Btut + Lt (yt −Ct x̂t) (7)

ut = rt − Kt x̂t (8)

or, directly using the measurement for feedback:

ut = rt − Ktyt . (9)

3.2 Noise model
In this paper we focus on Gaussian errors, vt ∼ N(µvt , Σ

v
t) and

wt ∼ N(µwt , Σ
w
t). We assume that all the noises are independent

and identically distributed (iid). Note that one can augment the

system’s states if the noise is colored.

In Sec. 4.7 we consider noise modelled as a Gaussian mixture,

vt ∼
∑Mv
m=1

πvmN(µvm , Σ
v
m)where πvm is the probability of choosing

Gaussian distributionm (similarly forwt). While a single Gaussian

is a special case of the mixture, we separate the discussion because

we can provide stricter guarantees for this case.

3.3 Specification
We consider STL specifications where the underlying signal is the

system trajectories: x = x0,x1, · · · We consider only linear pred-

icates on the system’s state µ = (a′x + b ≥ 0),a ∈ Rn ,b ∈ R.
The assumption of linearity is essential since later in the paper we

will use a closed-form solution for intersections of an ellipse and a

hyperplane (Section 4.4). While it is possible to consider specific

forms of nonlinear predicates and still retain closed-form solutions,

we leave that to future work.

Example 3.1. A common STL formula in robotics is reach-avoid:

φR/A := ϕ0 ∧

Nunsafe∧
i=1

□[0,T]¬ϕunsafe,i ∧

Ngoals∧
j=1

^[T0j ,T1j]
ϕ
goal, j , (10)

here T ≥ T1j , j = 1, · · · ,N
goals

, and ϕ0 =
∧N0

i=1
(a′0i x + b0

i ≥ 0)

defines a polyhedron in the state-space with N0 hyperplanes each

represented by a linear predicate. Similar notation is used to define

sets of polyhedra for the unsafe sets (e.g. obstacles) and the goals.

In words, the system satisfies the specification when it is able to

start in the set defined by ϕ0, avoid all obstacles ϕ
unsafe,i for the

entire trajectory and reach each ϕ
goal, j at some t ∈ [T0j ,T1j]. Given

∆t and T , a trajectory of the system contains tH = ⌈T /∆t⌉ discrete
time steps. To verify the specification φ, we require tH ≥ Hφ

.

Given the number of possible ways to satisfy this formula, a

strength of our approach is the ability to efficiently address the

combinatorial aspect of all possible trajectory classes that may

satisfy or violate the specification, without double counting them.

3.4 Problem formulation
Problem 1. Given a linear system in the form of (6)-(9), a Gauss-

ian (mixture) noise model and an STL formulaφ with linear predicates
over x , find the probability that φ is satisfied.

4 APPROACH
We illustrate our approach through an example of a holonomic

robot navigating in a 2-D workspace (Fig. 2).

Example 4.1. A holonomic robot’s state is ξ = [x ,y, Ûx , Ûy]′ with
the discrete-time dynamics:

ξt+1 =


1 0 ∆t 0

0 1 0 ∆t
0 0 1 0

0 0 0 1

 ξt +

∆t 2/2m 0

0 ∆t 2/2m

∆t/m 0

0
∆t/m

 ut +wt (11)

ut =rt − Kf bηt

We use the discrete Linear Quadratic Regulator (LQR) algorithm

[17] with the desired ∆t to compute the optimal controller Kf b . We

assume full-state measurement:

ηt = ξt +vt (12)

The noise vt is normally distributed andwt is omitted for brevity.

We consider an arbitrary STL specification φ for the rest of the

section unless otherwise specified.

4.1 Integral over Trajectory Space
The first step is to incorporate process and measurement noises

into system trajectories by turning the trajectories into Gaussians

in a higher dimensional space xtraj ≜ [x ′
0
, . . . ,x ′tH−1

]′ ∈ Rn ·tH . In

our robot example, this means the concatenated states for every

time step in the horizon, xtraj ∈ R4·tH
. We consider wt = 0 and

At = A,Bt = B and Ct = C without loss of generality to simplify

the following expressions. Based on Eq. (6)-(9), we can express the

full trajectory in vector form with (13) by iteratively substituting

the states and controls:

xtraj = Φ0x0 + ΦrR + ΦvV (13)

Where R = [r ′
0
, . . . , r ′tH−1

]′ ∈ Rm ·tH
, and V = [v ′

0
, . . . ,v ′

tH−1
]′ ∈

Rq ·tH . Φ0,Φr ,Φv are the matrix coefficients that transfer the initial

state, the extended reference inputs and measurement noises to the

Elliptical Slice Sampling for Probabilistic Verification of Stochastic Systems with Signal Temporal Logic Specifications HSCC ’22, May 4–6, 2022, Milan, Italy

full trajectory, respectively. All components in (13) are deterministic

except for the stochastic V with the noise model:

V ∼ N([µv
′

0
, · · · , µv

′

tH−1
]′,diaд([Σv

0
, · · · , ΣvtH−1

]) (14)

We can extract the multivariate Gaussian in the trajectory space

which is the distribution over which we integrate:

xtraj ∼ N
(
Φ0x0 + ΦrR + Φv M,ΦvΣΦ

′
v
)

(15)

M = [µv
′

0
, · · · , µv

′

tH−1
]′. Similarly, it is possible to derive the Gauss-

ian of a trajectory with both vt andwt (and possibly, x0 ∼ N).

Other work, e.g. chance constraints that are typically imple-

mented and over-approximated with Boole’s inequality, deal with

constraints on the state-level. We work with the full trajectory.

This difference is one of the reasons we do not double count events.

When computing the probability of failures, the trajectory Gaussian

is integrated with respect to the trajectory-level constraints.

The evaluation of the probability in Problem 1 is equivalent to

computing the following integral:

p(φ) =

∫
xφ ∈L(φ,0)

pdf(xφ)dxφ , (16)

where pdf(xφ) is the probability density function of the trajectories,
the Gaussian in this case from (15). L(φ, 0) is the set where the

trajectories satisfy the specification φ.

4.2 Monte-Carlo Sampling
We propose a guided Monte-Carlo approach for verifying a dynam-

ical system with fixed controls (they can be time-varying but not

state-dependent) and Gaussian noise sources over a fixed horizon

with respect to STL specification. We represent the full trajectories

as Gaussian, and use the HDR and ESS algorithms to integrate the

probability density function under the domains that satisfy the STL

formula.

The advantages of the approach are threefold: 1. Efficient

(rejection-free and parameter-free) sampling of trajectories that

satisfy an STL specification and computation of the probability of

satisfaction, without over-approximations and double-counting,

such as with the use of Boole’s inequality on each separate state

in the trajectory. 2. Efficiently finding events with low probability

that would be otherwise intractable to compute with naive Monte-

Carlo simulations. 3. It enables longer horizons and more random

variables without suffering from the dimension explosion problem

(the ill-sampling of the posterior distribution).

The first point is achieved by sampling, with ESS, trajectories

that are within the set of trajectories that satisfy the specification.

The second point is achieved using the HDR algorithm as we can

construct the required number of nestings to evaluate the prob-

ability. In fact, once all nestings are set up, the sampling time of

the rejection-free ESS algorithm is not influenced by the probabil-

ity mass. Regarding the third point, the variance of the error of

the quantity we wish to estimate with a Monte-Carlo simulation

σ 2

x̄ = σ 2

x /nsim decreases with the number of simulations nsim .

However, we cannot accurately estimate the value of σ 2

x from the

sampled simulations when we ill-sample the posterior distribu-

tion. We do not know the true variance a priori and in fact, the

variance itself may increase rapidly as the number of variables

Figure 2: Example of a robot in 2-D. The initial, unsafe and
goal sets are depicted in the figure. Successful and failed tra-
jectories of a 5-step horizon are shown with an added inter-
mediate point.We define failed trajectories that hit an obsta-
cle, but reach the goal on time, as type a, and those that do
not reach the goal on time as type b. In Section 4.5 we make
use of these failures for reach-avoid specifications.

increase. Intuitively, there are more combinations of noise errors

which may cause the robot to violate the specification and it is

harder to sample “useful” (for the purpose of correctly estimating

the probability) combinations. Our approach, on the other hand, is

sampling rejection-free from the constrained posterior distribution

to the requisite level of accuracy.

4.3 STL-Score-Guided Elliptical Slice Sampling
Here we describe how we draw sample points from pdf(x) that
are inside L(φ, ϱ) - trajectories that have an STL score ≥ ϱ. As
mentioned earlier, the naive way is to draw samples from pdf(x) and
reject those that fall outside of L(φ, ϱ). However, if the probability
mass inside L(φ, ϱ) is too small, the procedure will be inefficient

as most of the samples will be rejected.

We use ESS as described in Section 2. The explicit representa-

tion of L(φ, 0) - the domain of the integral in (16) - as a union of

polyhedra requires an enumeration of all of the possible convex

sets. The number of such sets can grow exponentially in the size of

the formula (see, e.g., [28]). We avoid explicit enumeration of the

polyhedra in L(φ, 0) while computing the integral in (16). The key

insight is that we only need the STL score function [21].

Theorem 4.2. Given an STL formula φ with a set of linear predi-
cates µi = (a′ix + bi ≥ 0), i = 1, · · · ,Nφ , where Nφ is the total num-
ber of predicates. Given an existing sample trajectory xφe ∈ L(φ, ϱ)
and free sample trajectory xφf (not necessarily in L(φ, ϱ)), construct

the ellipse E = {x
φ
e cosθ + x

φ
f sinθ | θ ∈ [0, 2π]} in Rn .H

φ
. Then

construct the following sorted list of real numbers in [0, 2π]:

Θ = sorted
{

θ | ∃t ∈ {0, 1, · · · ,Hφ − 1}, i ∈ {1, · · · ,Nφ },

s.t. a′ixt + bi = ±ϱ, xφ = x
φ
e cosθ + x

φ
f sinθ ,

xφ = (x ′
0
,x ′

1
, · · · ,x ′Hφ−1

)′
}
.

(17)

HSCC ’22, May 4–6, 2022, Milan, Italy Guy Scher, Sadra Sadraddini, Russ Tedrake, and Hadas Kress-Gazit

Figure 3: Hyperplanes, representing predicates in the STL
formula, projected on the ellipse. Some may not intersect,
and some may intersect but not change L(φ, ϱ) thus are in
the domain. Dashed lines represent hyperplanes of predi-
cates that are not in the time bounds described in φ.

Then for any two consecutive elements θ1,θ2 ∈ Θ (cyclic), one of the
following statements is correct:

∀θ ∈ [θ1,θ2], ρ(x
φ
e cosθ + x

φ
f sinθ) ≥ ϱ, or (18)

∀θ ∈ [θ1,θ2], ρ(x
φ
e cosθ + x

φ
f sinθ) ≤ ϱ . (19)

Proof. In order for ρ(xφ) = ϱ, the value inside the function of at

least one of the predicates should be equal to ±ϱ - this predicate

becomes the maximizer/minimizer in the STL score function. Note

that we have ± as negation might be in the formula. Therefore,

the set Θ contains all the roots for ρ(xφ) − ϱ = 0 but can contain

spurious elements. Since ρ is Lipschitz continuous, ρ(xφ) − ϱ is

sign-stable on E between two consecutive roots. □
Theorem 4.2 paves our way to compute portions of the ellipse

that fall into L(φ, 0) by only computing the roots of the robustness

function on the ellipse. Furthermore, (17), provides all the candi-

dates with the complexity of solving 2 · HφNφ intersections of the

ellipse with a hyperplane, for which closed-form solutions exist

[15]. Then, using Theorem 4.2, we can sample θ ∈ [θ1,θ2] within

each pair, to assign if [θ1,θ2] is in L(φ, 0). Fig. 3 illustrates the ad-
justed ESS procedure. The complexity of intersecting the ellipse

and L(φ, ϱ) is O(HφNφ), and we avoid the exponential blow up

associated with explicit representation of L(φ, ϱ).

4.4 Holmes-Diaconis-Ross for STL
Now that we have a method to draw samples from L(φ, ϱ), we use
it for our HDR-based Monte-Carlo method.

4.4.1 Nesting partitioning. To perform HDR where the probability

density function is low, we need to account for the multi-level

splitting described in the preliminaries. This means that when

sampling from the nesting k , a larger domain than what we would

like to evaluate, we shift ϱ to a new value (usually it will be a

negative value, allowing more trajectories that violate φ, where
about half the trajectories have robustness greater than ϱ) as the
new cutoff level instead of 0. On the other hand, we also need to

shift the linear predicates, to get the new intersections of L(φ, ϱ).
For a general specification, we do not know whether to shift the

predicates with a positive or a negative ϱ due to the structure of the

sub-formulas. For example, consider the difference between φ1 := µ
versus φ2 := ¬µ. If ρ(x ,φ1, 0) < 0, we must enlarge µ to allow more

“satisfying” trajectories while if ρ(x ,φ2, 0) < 0, we must make µ
smaller. Instead of analyzing each component of the specification,

we shift each predicate by +ϱ and by −ϱ as shown in (17).

4.4.2 Error Analysis. Monte-Carlo methods by nature give differ-

ent results every time they are performed. It is necessary to have an

estimate on the variance of the computed probability p(φ). For the
HDR nesting k , we samplenk samples, and as discussed in Section 2,

we aim for the conditional probability to be pk | k−1
≈ 0.5. In prin-

cipal, ESS is a MCMC method, thus the samples are by definition

dependent and the central limit theorem (CLT) does not apply. To

mitigate this limitation, we keep only every nd -th sample from the

ESS, thus making the dependency between the sampled xi to xi+nd
practically non-existent (in all our examples we used nd = 4). This

is sometimes referred to as the “burn-in” phase, and its purpose

here is to weaken the dependency between samples. In practice,

our experience shows (see Fig. 6) that the dependency is weak,

due to the “burn-in” process and sampling θ independently from a

uniform distribution, and the following error analysis applies.

Using the CLT (nkpk |k−1
≫ 1), we can assess that the vari-

ance for nesting k is σ 2

k ≈ pk |k−1
(1 − pk |k−1

)/nk where pk |k−1
=

N(k)/nk and N(k) is the number of points sampled within Lk .

Therefore, for nestings k = {1, . . . ,K − 1}, a good approximation

for the variance is σ 2

k ≈ 1

4nk
, such that pk |k−1

∼ N(1

2
, 1

4nk
). With

a slight abuse of notation, we define pk ≡ pk | k−1
for clarity. Each

pk is a Gaussian iid, therefore we can compute the variance of the

product of the conditionals:

Var[p1 · · ·pK] = E[(p1 · · ·pK)
2] − (E[p1 · · ·pK])

2
(20)

= E[p2

1
· · ·p2

K] − (E[p1] · · ·E[pK])
2

= E[p2

1
] · · ·E[p2

K] − (E[p1])
2 · · · (E[pK])

2

=

K∏
k=1

(
Var[pk] + (E[pk])

2

)
−

K∏
k=1

(E[pk])
2

Substituting for our nominal parameters we obtain the approxima-

tion:

Var[p1 · · ·pK] =
K∏
k=1

(
1

4nk
+

1

4

)
−

K∏
k=1

(
1

4

)
(21)

In practice, we compute the variance with the actual sampled values

and not (21). The key point is that when the number of points in a

nesting is large enough, the variance is proportional to (1/4)K−1
.

For example, selecting 64 points per nesting with K = 5 yields a

standard deviation σ = 0.031.

4.4.3 Adaptive nesting samples. Using (20), we can compute an

expected minimal number of samples for a desired value of

p(Lk |Lk−1
). Fig.4a shows how increasing the number of samples

decreases the uncertainty. Increasing the number of nestings, de-

creases the uncertainty as well; however, the number of nestings is

not a design parameter but rather depends on the problem at hand.

The number of nestings is approximately K = ⌈− log
2
p⌉. We can

automatically select the number of samples to use per nesting by

Elliptical Slice Sampling for Probabilistic Verification of Stochastic Systems with Signal Temporal Logic Specifications HSCC ’22, May 4–6, 2022, Milan, Italy

1 2 3 4 5 6 7 8 9 10
10

-4

10
-3

10
-2

10
-1

10
0

5

10

15

20

25

30

(a) (b)

Figure 4: (a) The effect of the number of nestings and the
number of sampled points on the confidence interval of the
HDR algorithm on a nominal pk = 0.5. (b) Extending [15] to
a union of polytopes.

utilizing (20) and Fig.4a. The benefit of using this is shorter compu-

tation times; in problems with many nestings (i.e. low probability),

we can get the desired confidence interval with less samples.

4.5 Special case: Reach-avoid specifications
In Eq. (10) we showed a common specification for robotic appli-

cations. In some cases, it might be more efficient to construct the

union of polyhydra that represent the predicates in φR/A explicitly,

rather than use the STL score-based ESS and HDR (due to the num-

ber of hyperplanes and STL score computations discussed in Section

4.3). Consider finding the probability of violating Example 3.1, i.e.

L(¬φR/A, 0). We define two possible ways of violatingφR/A (i) type

a:φa := ϕ0∧^[0,T]ϕunsafe∧^[T0,T1]ϕgoal, “hit an obstacle and reach
the goals on time”. (ii) type b: φb := ϕ0 ∧ □[T0,T1]¬ϕgoal, “do not

reach the goals on time”. Thus, L(φa , 0)
⋃

L(φb , 0) = L(¬φR/A, 0).
We compute the integral of the Gaussian under the constrained

domain by modifying the procedure in [15]; we consider a union

of polytopes instead of only one. This means that as long as ∃l ∈
Set(poly) such that the intersection of all its constraints exceed

zero, then it is a valid point in the domain. There may be numerous

intersections of the constructed ellipse with the faces of the different

polytopes. We extend [15] (Fig. 4b) to find the active segments of

the union of polytopes and sample points from the active domain.

4.6 Discrete-time implementation
We consider discrete time systems; however, there is a gap when

verifying the system that is in fact continuous. There could be

situations where all the discrete states in the horizon satisfy the

specification, yet the system might collide with an obstacle in be-

tween the states. See Fig. 2 for an example near the obstacle.

There are several ways to address this. First, we can either in-

crease the sampling rate or bloat the obstacles. The former will

increase the dimension of the problem, while the latter would con-

strain the problem even more. In both cases, it will increase the

computational load by increasing the dimensions in the trajectory

space or by reducing the probability mass function under the do-

mains (need more nestings).

The second approach, if we assume constant velocity between

two consecutive states (valid in short time spans), we can introduce

more constraints without increasing the problem dimensions. These

intermediate points will add robustness by adding more area of

the polytopes without as many computations as increasing the

number of states. It can also be introduced only in parts of the

trajectory that are susceptible to failure. Fig. 2 shows an example

of a point added in the middle between t2 to t3 and the numerical

simulation in Sec. 5.1. This additive technique can also be applied to

compute ρ(xφ) if the STL library can compute the score of signals

with dense time steps. The added constraints for an intermediate

point is a′i (0.5xt + 0.5xt+1) + bi ≥ 0

4.7 Gaussian Mixture models
Our approach may also be used to verify systems where the under-

lying noise model is better described with a Gaussian mixture. For

example, a common model for range finders is the Beam model [30]

(Ch. 6). It incorporates several modes of sensing errors that depend

on the physical interaction of the sensor with its environment and

may be approximated by a Gaussian mixture. Another example

is a camera that is tracking cars but due to occlusions or errors

in its neural net, it starts to track clutter or a different car in its

field of view. The noise distribution at time t might depend on the

distribution at t − 1, making πvm come from a Markov chain or a

black-box choice model:

vt ∼
M∑

m=1

πvmN(µvm , Σ
v
m) (22)

WhereM is the number of distributions; it can vary between time

steps. In this case, computing the tree of possible combinations of

the Gaussian distributions and noises throughout the trajectory,

and their weights, is intractable. However, we provide a proce-

dure for computing the total probability. The first step samples

just the mixing factors πm from their underlying distributions, for

the entire horizon. When the mixing factors are fixed, the problem

reduces to Problem 1. We compute the probability p(φ) and vari-

ance, and repeat this procedure for N iterations. Then, we compute

the unbiased mean estimate and the variance of the N iterations.

This method still relies on Monte-Carlo simulation to compute the

probability and variance estimation; however, only the trajectory

modes are sampled, thus reducing the problem’s input dimensions

considerably. A full Monte-Carlo simulation will have the modes

and the actual values to sample from and can thus be susceptible

to the curse of dimensionality. We show an example with Gaussian

Mixture noises in Sec. 5.2.

5 CASE STUDIES
We implemented the following simulations on a standard desktop

Linux machine using Python. The robustness score is calculated

with the rtamt library [21]. We compare our results with the MC

approach because at the limit it provides the ground truth.

5.1 Robot navigation - reach-avoid
We demonstrate verification for Example 4.1 withvx ∼ N(0, 0.06

2),

vy ∼ N(0, 0.06
2), v Ûx ∼ N(0.0, 0.04

2), v Ûy ∼ N(0.0, 0.04
2) and

wt = 0. Fig. 5a presents the static obstacles, goal, and the reference

HSCC ’22, May 4–6, 2022, Milan, Italy Guy Scher, Sadra Sadraddini, Russ Tedrake, and Hadas Kress-Gazit

(a) Scenario 1: ∆t = 1sec.
p(f ail) = 7.43% ± 0.8%.

(b) Scenario 2: ∆t = 0.1sec.
p(f ail) = 0.83% ± 0.26%.

Figure 5: X-Y projection of a robot maneuvering in a field
with obstacles (red) and goal (green). In orange, the failing
trajectories of type (a). In gray, the failing trajectories of
type (b). In black, the reference trajectory.

trajectory. To increase the fidelity of the simulation, we add inter-

mediate points as discussed in Section 4.5. In the first scenario, the

horizon T = 5sec with ∆t = 1sec. The STL specification:

φ1 := ϕ0 ∧ □[0,5]¬ϕobs1 ∧ ^[5,5]ϕgoal (23)

Where ϕz = True if the intersection of all predicates of z over

the state x is greater than zero. In this case, ϕobs1
is non-convex

thus we use Delaunay triangulation [18] to decompose it into two

convex polytopes ϕobs1:1,ϕobs1:2 . We have not considered any other

restrictions on the state except on the pose.

5.1.1 Setup. We compute p(f ail) = p(¬φ1). We construct a dis-

junction between the trajectory-spaceH -polytopes of failing tra-

jectories of type L(φa , 0) and L(φb , 0) as discussed in Section 4.5.

5.1.2 Results. Fig.5a shows a sample of the trajectories of both fail-

ure modes. Computing the probability with our proposed algorithm

yieldsp(f ail) = 7.43%±0.8% and took 18sec. Verifying the same sys-

tem with Monte-Carlo simulations yields pMC (f ail) = 7.66%±0.5%

and took 13.0sec. To estimate the probability of failing with Monte-

Carlo, we use nMC = 2400 simulations, where σ 2 = p̂(1 − p̂)/nMC .

We use nk = n = 256 samples in each nesting of the HDR algorithm

(to get a comparable standard deviation). Monte-Carlo yields faster

results because the probability to fail is relatively high.

Using a horizon of 5 steps yields a simulation of 20 random

variables which can be considered a relatively small parameter

space. Fig.5b depicts the second scenario with similar settings (ini-

tial conditions were changed to induce failures because the LQR

controller with the new time step performs differently) for a hori-

zon of T = 5sec and ∆t = 0.1sec. This time, the problem dimension

is 200. With our algorithm, p(f ail) = 0.83%±0.26% and took 110sec

to complete with nk = 64. Monte-Carlo simulation takes 327sec and

yields pMC (f ail) = 1.2% ± 0.2% in 2400 simulations. Fig.6 shows

the distribution of running our algorithm and MC 100 times with

different seeds and the results match for p̄(¬φ1), σ depends on nk .

5.2 Car passing an intersection - reach-avoid
5.2.1 Setup. We consider a controlled car (Ego-vehicle, E) driv-
ing along the x-axis and an uncontrolled car (Other vehicle, O)
driving along the y-axis, as shown in Fig. 7a. Each car’s dynamic

Figure 6: Running our approach (HDR) and MC (mean of
2400 runs) a 100 times each, and the comparison of themean
p̄(f ail) estimation and its standard deviation.

equations follow the holonomic robot in (11). Since O is uncon-

trolled wemodel its dynamics with a process noisewO
Ûy ∼ N(0, 0.22).

E is measuring the distance d to O using a Lidar and has errors

[30]. The error modes are a Gaussian about the true value, and

a maximum range error, vEd ∼ π1N(0, 0.04
2) + π2N(5, 0.62). The

transitions between the Gaussians are expressed with a Markov

chain p(π1(t) | π1(t − 1)) = 0.98, p(π2(t) | π1(t − 1)) = 0.02,

p(π1(t) | π2(t − 1)) = 0.6, p(π2(t) | π2(t − 1)) = 0.4 indicat-

ing the probability of having a bad measurement after a previ-

ous bad measurement is higher (occlusion, multipath). E needs

to cross the intersection safely and uses the control law: uEt =

u0 −Kd = u0 −K(
√
(xOt − xEt)

2 − (yOt − yEt)
2 +vd). The time hori-

zon is T = 3sec and ∆t = 0.1sec. The cars’ lengths are L = 1.0m

and widthsW = 0.5m. K = −0.1 and u0 = 0.075 such that when

the distance between the cars d ≤ 0.5(L +W), the control yields

uk = 0 and E stops until O crosses the intersection.

We derive a new state variable z = [xEk − xOk ,y
E
k − yOk , Ûx

E
k −

ÛxOk , Ûy
E
k − ÛyOk]′ with the initial conditions z0 = [−5, 5, 2,−2]′, as

shown in Fig. 7a. Given this new state variable, it is easy to show

that the unsafe set (the “obstacle”) is a square centered at the origin

of zx , zy where the lengths of all the sides are L +W . The goal is

for E to cross to the other side, i.e. zx ≥ 0.5(L +W). The polytope

sets are shown in Fig. 7b. The STL specification:

φint := □[0,30]¬ϕunsafe ∧ ^[29,30]ϕgoal (24)

Here, the measurement equation is non-linear. We find the trajec-

tory’s Gaussian distribution by linearizing the distance measure-

ment in (25) evaluated at the expected value of the state, (26).

Ct =
∂d

∂z
| z=E[zt] =

1

d
[zx , zy , 0, 0] (25)

E[zt+1] =(A − BKCt)E[zt] + Bu0 + E[w
O
t] − BK E[vEt] (26)

5.2.2 Results. Fig. 7c shows the failing trajectory samples of one

iteration of sampled noise mixing factors (Sec. 4.7). Total probability

to fail p(f ail) = 54.68% with 95% confidence level [52.73%, 56.63%].

We compare with Simple Random Sampling (SRS) with nMC = 2500

for the Monte-Carlo simulations of the full non-linear system. The

Elliptical Slice Sampling for Probabilistic Verification of Stochastic Systems with Signal Temporal Logic Specifications HSCC ’22, May 4–6, 2022, Milan, Italy

(a) (b)

(c)

Figure 7: (a) Controlled car (yellow, left) entering an inter-
section with an uncontrolled car (black, bottom). (b) A sat-
isfying trajectory (z1), and a violating trajectory (z2) in the
Z coordinate frame. (c) A single noise sequence example of
failing trajectories that intersect with the unsafe set.

probability estimate pMC (f ail) = 54.08% ± 1.0% took T = 32sec to

run, while using our method took T = 130sec (again, the times are

due to the high probability of failure).

5.3 Data-based simulation - reach-avoid
In this example we show how this technique can be used in a

scenario where the noises or system dynamics are not known.

For this demonstration we run the Jackal [6] robot in the Gazebo

simulator [25] with the Robot Operating System (ROS) [23]. We use

the built-in controllers and estimation algorithms provided with

and for the robot, and send it a goal command. With probability of

5%, a maximum range noise [30] is injected to any of the Lidar’s ray

measurements. Fig. 8 shows the environment the robot is navigating

through. Our purpose is to verify that the system can reach the goal

safely. Since a single run takes approximately 15sec, Monte-Carlo

simulation becomes intractable when the failure rate is low.

In our approach, we first run n simulations and fit a multivariate

Gaussian (e.g. robustcov in Matlab) to the set of (ground truth)

trajectories. n must be at least twice the number of variables (states

times time steps, [27]). We now have xtraj ∼ N(µ, Σ) and we

directly compute the probability to collide with a tree, miss the goal

or violate any other temporal constraint.

In Fig. 9 we show the verification results for the system with

φGazebo := □[0,33] (¬Tree1 ∧¬Tree2) ∧ □[33,33] Goal

where Goal is the region defined by the box 5.5 ≤ x ≤ 7.5, 0 ≤

y ≤ 0.5. The time step in this scenario is ∆t = 0.4sec and the

horizon 13.2sec. We see that 16.0% of the trajectories fail to reach

the goal on time (or overshoot it). We stopped the computation of

Figure 8: Jackal navigating in the environment (left). Lidar
measurements and robot’s current mapping (right).

Figure 9: Data-based verification - xφ comes from simula-
tions. 16.0% of the trajectories are not at the goal at 13.2sec.

the probability of hitting a tree (“type a”) at k = 24 nestings, which

means that a crash is less likely than about 6 · 10
−6

%.

5.4 Robot navigation - Full STL
In this example we consider the robot in Example 4.1 and a complex

STL specification:

φST L :=□[0,T]¬
(
ϕ

Obs1
∨ ϕ

Obs2

)
∧ (27)

□[0,T](ϕGoal1
=⇒ ^[0,0.25]ϕGoal2

)

where (a =⇒ b) = (¬a ∨ b). Since our technique computes the

probability of satisfying the STL formula, to find the probability of

failure, we use ¬φST L in our computations. Following a single run

of our method, we are able to find violating trajectories (Fig. 10a)

even though p(f ail) = 0.027%. To find just one event with this

probability we would need to run approx. 4000 simulations with

MC. We ran 100 trials with our technique, and 100 trials with MC

with 10
4
simulations each. The results are shown in Fig. 10b. 60%

of the MC runs end with no failing examples, and about a third end

with one failing example. The mean time to run MC is 626 ± 10sec

and our method is 333 ± 35sec. The minimal probability computed

by our method is p(f ail) = 0.001%.

Due to the use of the STL score for full STL, one cannot identify

the specific cause of the failure. Furthermore, the sampled trajec-

tories that fail the specification do not necessarily represent the

proportions of the different failure causes. This is due to two rea-

sons - first, we cannot guarantee how many trajectories are present

in the final nesting, as explained in Section 2. Second, because this

is a MCMC approach, the samples might be biased towards a cer-

tain region given an initial sample within that region. However, we

show that if we sample new trajectories, we will get the correct

HSCC ’22, May 4–6, 2022, Milan, Italy Guy Scher, Sadra Sadraddini, Russ Tedrake, and Hadas Kress-Gazit

(a) (b)

Figure 10: (a) Failing trajectories of the STL formula φST L .
(b) Statistics for a 100 trials for HDR, and for 100 MC, each
with 10

4 simulations.

proportions on average given enough samples. For example, in

the previous scenario, the ratio between the probability mass for

hitting the obstacle at t14 and not making the second goal on time,

is approximately 4:1. We ran our approach 100 times. After each

iteration finished, we sampled five sets of 1000 samples that violate

φST L and computed how many of those hit the obstacle and how

many violated the goal requirement. Results are shown in Fig. 11;

although at specific instances we can get even more trajectories

of goal violations than obstacle violations, we see that on aver-

age, we sample the correct proportions. This means that with our

method, we are able to “jump” from an active domain to another

active domain even if it is clearly distinct (different predicates and

different time bounds). Of course, regions may be overshadowed

by regions with considerably higher probability mass and if one

wants to check those too, then they might need to decompose the

specification to capture only those.

5.5 Adversarial Scenarios - Full STL
In [34] the authors developed a synthesis guided approach to find

adversarial examples that falsify a dynamical system with respect

to reach-avoid type specifications. An example from that paper

(Example 2) finds a series of measurement noises that causes the

system (28) and its regulator to enter the unsafe zone.

ξt+1 =

[
0.9745 0.2132

0.002547 1.151

]
ξt +

[
0.01959

0.1961

]
ut +

[
0.01959

−0.04509

]
wt

(28)

ut = −
[
1 1

]
ηt ; ηt = ξt +vt

In [34], the noises vt = [−0.1, 0.1]2 and wt = [−0.2, 0.2] are uni-

form and bounded. Here we approximate them with an appropriate

Gaussian. The unsafe set is defined as Unsafe(ξ) = [1, 2]×[−0.5, 0.5]

and the system starts in Init(ξ) = [−0.15×0.15]2. To find adversarial

trajectories, we consider the STL formula:

φadv := Init(ξ) ∧ ^[0,115] Unsafe(ξ) (29)

In addition to finding the probability, our approach can find adver-

sarial examples, as done in [34]. In Fig. 12 we show a trajectory,

sampled from the set of satisfying trajectories, that eventually en-

ters the unsafe zone. In this example, the probability that the system

may enter the unsafe zone is 0.09% where the different trajectories

0 20 40 60 80 100

0

20

40

60

80

100

Figure 11: The assignation between trajectories that fail due
to obstacle collision and due to missing the goal in time. We
collect five ×1000 new trajectories with ESS after each round
ofp(φST L) computation. Themarkers are themeans, and the
error bars are 1 standard deviation.

Figure 12: Discovering adversarial noise sequences that lead
to unsafe behaviors.

may enter the unsafe zone at different times; our apporach can

provide several such examples.

6 DISCUSSIONS AND CONCLUSIONS
In this paper we introduced a method to accurately compute the

probability that a linearizable system will satisfy an STL specifi-

cation. The framework is general and can accommodate various

sensor, estimator and perception errors. We provide two methods

for calculating the probability - for full STL and for reach-avoid

specifications.

Our method, while including computation overhead, is scalable

to high dimensions (longer horizons or models with more states)

and its computational complexity does not depend on the com-

binatorially many solutions of the specification. The sampling is

efficient, especially in low probability events where a naive Monte-

Carlo approach may not be tractable. The latter may suffer from

dimension explosion, leading to the need for a large number of

simulations to adequately sample the posterior. Our method is sam-

pling from the posterior in a rejection-free and parameter-free (no

hyper parameters needed for the slice sampler) manner.

Our method lends itself to parallel implementation, thereby re-

ducing the computation time. Every nesting from the ESS and HDR

can be run in parallel. By increasing the computation speed, our

method can potentially be used as a step in motion planning, where,

Elliptical Slice Sampling for Probabilistic Verification of Stochastic Systems with Signal Temporal Logic Specifications HSCC ’22, May 4–6, 2022, Milan, Italy

for example, we can check the output of a rapidly exploring ran-

dom tree (RRT) generated path to check feasibility given noises or

complex specifications.

In future work we will use this framework to synthesize con-

trollers that can minimize the probability of failure. Another di-

rection is to use the sampled failed trajectories to gain insight and

requirements on the perception system that would be the most

beneficial in reducing failure.

ACKNOWLEDGMENTS
This work is supported by ONR PERISCOPE MURI award N00014-

17-1-2699.

REFERENCES
[1] Matthias Althoff and Goran Frehse. 2016. Combining zonotopes and support

functions for efficient reachability analysis of linear systems. In 2016 IEEE 55th
Conference on Decision and Control (CDC). IEEE, Las Vegas, NV, USA, 7439–7446.
https://doi.org/10.1109/CDC.2016.7799418

[2] Matthias Althoff, Goran Frehse, and Antoine Girard. 2021. Set propagation

techniques for reachability analysis. Annual Review of Control, Robotics, and
Autonomous Systems 4 (2021), 369–395.

[3] Lars Blackmore and Masahiro Ono. 2009. Convex chance constrained predictive

control without sampling. In AIAA Guidance, Navigation, and Control Conference.
AIAA, Chicago, IL, USA, 5876.

[4] Drive Tesla Canada. 2021. Tesla Q1 2021 Safety Report: Autopilot nearly 10X safer
than Humanpilot. https://driveteslacanada.ca/news/tesla-q1-2021-safety-report-

autopilot-nearly-10x-safer-than-humanpilot

[5] Glen Chou, Yunus Emre Sahin, Liren Yang, Kwesi J Rutledge, Petter Nilsson, and

Necmiye Ozay. 2018. Using control synthesis to generate corner cases: A case

study on autonomous driving. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 37, 11 (2018), 2906–2917.

[6] Clearpath Robotics. 2020. Jackal UGV - Small Weatherproof Robot - Clearpath.

https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle

[7] Sarah Dean, Nikolai Matni, Benjamin Recht, and Vickie Ye. 2020. Robust Guar-

antees for Perception-Based Control. In Proceedings of the 2nd Conference on
Learning for Dynamics and Control (Proceedings of Machine Learning Research,
Vol. 120), Alexandre M. Bayen, Ali Jadbabaie, George Pappas, Pablo A. Parrilo,

Benjamin Recht, Claire Tomlin, and Melanie Zeilinger (Eds.). PMLR, 350–360.

https://proceedings.mlr.press/v120/dean20a.html

[8] Persi Diaconis and Susan Holmes. 1995. Three Examples of Monte-Carlo Markov

Chains: At the Interface Between Statistical Computing, Computer Science, and

Statistical Mechanics. In Discrete Probability and Algorithms, David Aldous, Persi

Diaconis, Joel Spencer, and J. Michael Steele (Eds.). Springer New York, New

York, NY, 43–56.

[9] Alexandre Donzé, Thomas Ferrère, and Oded Maler. 2013. Efficient Robust

Monitoring for STL. In Computer Aided Verification, Natasha Sharygina and

Helmut Veith (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 264–279.

[10] Alexandre Donzé and Oded Maler. 2010. Robust Satisfaction of Temporal Logic

over Real-Valued Signals. In Formal Modeling and Analysis of Timed Systems, Kr-
ishnendu Chatterjee and Thomas A. Henzinger (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 92–106.

[11] Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Hadi Ra-

vanbakhsh, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia. 2019. VerifAI: A

Toolkit for the Formal Design and Analysis of Artificial Intelligence-Based Sys-

tems. In Computer Aided Verification, Isil Dillig and Serdar Tasiran (Eds.). Springer
International Publishing, Cham, 432–442.

[12] Noel E Du Toit and Joel W Burdick. 2011. Probabilistic collision checking with

chance constraints. IEEE Transactions on Robotics 27, 4 (2011), 809–815.
[13] Georgios E Fainekos and George J Pappas. 2009. Robustness of temporal logic

specifications for continuous-time signals. Theoretical Computer Science 410, 42
(2009), 4262–4291.

[14] Chuchu Fan, Umang Mathur, Sayan Mitra, and Mahesh Viswanathan. 2018. Con-

troller Synthesis Made Real: Reach-Avoid Specifications and Linear Dynamics.

In Computer Aided Verification, Hana Chockler and Georg Weissenbacher (Eds.).

Springer International Publishing, Cham, 347–366.

[15] Alexandra Gessner, Oindrila Kanjilal, and Philipp Hennig. 2020. Integrals over

Gaussians under Linear Domain Constraints. In Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics (Proceedings of
Machine Learning Research, Vol. 108), Silvia Chiappa and Roberto Calandra (Eds.).

PMLR, 2764–2774. https://proceedings.mlr.press/v108/gessner20a.html

[16] Nikolaos Kariotoglou, Sean Summers, Tyler Summers, Maryam Kamgarpour,

and John Lygeros. 2013. Approximate dynamic programming for stochastic

reachability. In 2013 European Control Conference (ECC). IEEE, Zurich, Switzerland,
584–589. https://doi.org/10.23919/ECC.2013.6669603

[17] Huibert Kwakernaak and Raphael Sivan. 1972. Linear optimal control systems.
Vol. 1. Wiley-interscience New York.

[18] Der-Tsai Lee and Bruce J Schachter. 1980. Two algorithms for constructing a

Delaunay triangulation. International Journal of Computer & Information Sciences
9, 3 (1980), 219–242.

[19] Oded Maler and Dejan Nickovic. 2004. Monitoring temporal properties of con-

tinuous signals. In Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems. Springer, 152–166.

[20] Iain Murray, Ryan Adams, and David MacKay. 2010. Elliptical slice sampling.

In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics (Proceedings of Machine Learning Research, Vol. 9), Yee Whye Teh

and Mike Titterington (Eds.). PMLR, Chia Laguna Resort, Sardinia, Italy, 541–548.

https://proceedings.mlr.press/v9/murray10a.html

[21] Dejan Ničković and Tomoya Yamaguchi. 2020. RTAMT: Online robustness

monitors from STL. In International Symposium on Automated Technology for
Verification and Analysis. Springer, 564–571.

[22] Masahiro Ono and Brian C. Williams. 2008. An Efficient Motion Planning Algo-

rithm for Stochastic Dynamic Systems with Constraints on Probability of Failure.

In Proceedings of the 23rd National Conference on Artificial Intelligence - Volume 3
(Chicago, Illinois) (AAAI’08). AAAI Press, 1376–1382.

[23] Open Robotics. 2020. ROS.org | Powering the world’s robots. https://www.ros.org

[24] Ramón Orive, Juan C Santos-León, and Miodrag M Spalević. 2020. Cubature

formulae for the Gaussian weight. Some old and new rules. Electronic Transactions
on Numerical Analysis 53 (2020), 426–439.

[25] OSRF. 2020. Gazebo. http://gazebosim.org

[26] Matthew O' Kelly, Aman Sinha, Hongseok Namkoong, Russ Tedrake, and John C

Duchi. 2018. Scalable End-to-End Autonomous Vehicle Testing via Rare-event

Simulation. In Advances in Neural Information Processing Systems, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.),

Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/file/

653c579e3f9ba5c03f2f2f8cf4512b39-Paper.pdf

[27] Peter J Rousseeuw and Katrien Van Driessen. 1999. A fast algorithm for the

minimum covariance determinant estimator. Technometrics 41, 3 (1999), 212–223.
[28] Sadra Sadraddini and Calin Belta. 2016. Feasibility envelopes for metric temporal

logic specifications. In 2016 IEEE 55th Conference on Decision and Control (CDC).
IEEE, 5732–5737.

[29] Edward Schmerling and Marco Pavone. 2016. Evaluating trajectory collision

probability through adaptive importance sampling for safe motion planning.

arXiv preprint arXiv:1609.05399 (2016).
[30] Sebastian Thrun. 2002. Probabilistic robotics. Commun. ACM 45, 3 (2002), 52–57.

[31] Hoang-Dung Tran, Weiming Xiang, and Taylor T. Johnson. 2020. Verification

Approaches for Learning-Enabled Autonomous Cyber-Physical Systems. IEEE
Design Test (2020), 1–1. https://doi.org/10.1109/MDAT.2020.3015712

[32] Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood.

2018. An Introduction to Probabilistic Programming. arXiv e-prints, Article
arXiv:1809.10756 (Sept. 2018), arXiv:1809.10756 pages. arXiv:1809.10756 [stat.ML]

[33] Weiming Xiang and Taylor T. Johnson. 2018. Reachability Analysis and

Safety Verification for Neural Network Control Systems. arXiv e-prints, Article
arXiv:1805.09944 (May 2018), arXiv:1805.09944 pages. arXiv:1805.09944 [cs.SY]

[34] Liren Yang and Necmiye Ozay. 2021. Synthesis-Guided Adversarial Scenario

Generation for Gray-Box Feedback Control Systems with Sensing Imperfections.

ACM Trans. Embed. Comput. Syst. 20, 5s, Article 102 (Sept. 2021), 25 pages. https:

//doi.org/10.1145/3477033

[35] Huafeng Yu, Xin Li, Richard MMurray, S Ramesh, and Claire J Tomlin. 2018. Safe,
Autonomous and Intelligent Vehicles. Springer.

https://doi.org/10.1109/CDC.2016.7799418
https://driveteslacanada.ca/news/tesla-q1-2021-safety-report-autopilot-nearly-10x-safer-than-humanpilot
https://driveteslacanada.ca/news/tesla-q1-2021-safety-report-autopilot-nearly-10x-safer-than-humanpilot
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle
https://proceedings.mlr.press/v120/dean20a.html
https://proceedings.mlr.press/v108/gessner20a.html
https://doi.org/10.23919/ECC.2013.6669603
https://proceedings.mlr.press/v9/murray10a.html
https://www.ros.org
http://gazebosim.org
https://proceedings.neurips.cc/paper/2018/file/653c579e3f9ba5c03f2f2f8cf4512b39-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/653c579e3f9ba5c03f2f2f8cf4512b39-Paper.pdf
https://doi.org/10.1109/MDAT.2020.3015712
https://arxiv.org/abs/1809.10756
https://arxiv.org/abs/1805.09944
https://doi.org/10.1145/3477033
https://doi.org/10.1145/3477033

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Elliptical Slice Sampling (ESS) and the Holmes-Diaconis-Ross (HDR) algorithm
	2.2 Signal Temporal Logic

	3 Problem setup
	3.1 System
	3.2 Noise model
	3.3 Specification
	3.4 Problem formulation

	4 Approach
	4.1 Integral over Trajectory Space
	4.2 Monte-Carlo Sampling
	4.3 STL-Score-Guided Elliptical Slice Sampling
	4.4 Holmes-Diaconis-Ross for STL
	4.5 Special case: Reach-avoid specifications
	4.6 Discrete-time implementation
	4.7 Gaussian Mixture models

	5 Case studies
	5.1 Robot navigation - reach-avoid
	5.2 Car passing an intersection - reach-avoid
	5.3 Data-based simulation - reach-avoid
	5.4 Robot navigation - Full STL
	5.5 Adversarial Scenarios - Full STL

	6 Discussions and Conclusions
	Acknowledgments
	References

