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Abstract

According to common judicial standard, judgment in favor of plainti� should be

made if and only if it is \more probable than not" that the defendant's action was

the cause for the plainti�'s damage (or death). This paper provides formal semantics,

based on structural models of counterfactuals, for the probability that event x was a

necessary or su�cient cause (or both) of another event y. The paper then explicates

conditions under which the probability of necessary (or su�cient) causation can be

learned from statistical data, and shows how data from both experimental and nonex-

perimental studies can be combined to yield information that neither study alone can

provide. Finally, we show that necessity and su�ciency are two independent aspects of

causation, and that both should be invoked in the construction of causal explanations

for speci�c scenarios.

1 Introduction

The standard counterfactual de�nition of causation1 (i.e., that E would not have occurred

if it were not for C), captures the notion of \necessary cause." Competing notions such

as \su�cient cause" and \necessary-and-su�cient cause" may be of interest in a number of

applications,2 and these, too, can be given concise counterfactual de�nitions. One advantage

of casting aspects of causation in the language of counterfactuals is that the latter enjoys

natural and formal semantics in terms of structural models [Galles and Pearl, 1997, 1998;

1This de�nition dates back to Hume (1748, p. 115) and Mill (1843) and has been formalized and advocated

in the philosophical work of D. Lewis (1986).
2The distinction between necessary and su�cient causes goes back to J.S. Mill (1843), and has received

semi-formal explications in the 1960s using the syntax of conditional probabilities [Good, 1961] and logical

implications [Mackie, 1965]. The basic limitations of the logical and probabilistic accounts are discussed in

Kim (1971) and Pearl (1996, 1998) and stem primarily from lacking syntactic distinction between formulas

that represent stable mechanisms and those that represent transitory logical or probabilistic relationships.
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Halpern, 1998; Pearl, forthcoming 2000], as well as e�ective procedures for computing prob-

abilities of counterfactual expressions from a given causal theory [Balke and Pearl, 1994,

1995]. These developments are reviewed in Section 2.

The purpose of this paper is to explore the counterfactual interpretation of necessary

and su�cient causes, to illustrate the application of structural-model semantics (of coun-

terfactuals) to the problem of identifying probabilities of causes, and to present, by way of

examples, new ways of estimating probabilities of causes from statistical data. Additionally,

the paper will argue that necessity and su�ciency are two distinct facets of causation that

should be kept apart in any explication of \actual cause" and, using these two facets, we will

show how certain problems associated with the standard counterfactual account of causation

[Lewis, 1986] can be resolved.

The results have applications in epidemiology, legal reasoning, arti�cial intelligence (AI),

and psychology. Epidemiologists have long been concerned with estimating the probability

that a certain case of disease is attributable to a particular exposure, which is normally

interpreted counterfactually as \the probability that disease would not have occurred in the

absence of exposure, given that disease and exposure did in fact occur." This counterfactual

notion, which Robins and Greenland (1989) called the \probability of causation" measures

how necessary the cause is for the production of the e�ect.3 It is used frequently in lawsuits,

where legal responsibility is at the center of contention. We shall denote this notion by the

symbol PN, an acronym for Probability of Necessity.

A parallel notion of causation, capturing how su�cient a cause is for the production of

the e�ect, �nds applications in policy analysis, AI, and psychology. A policy maker may well

be interested in the dangers that a certain exposure may present to the healthy population

[Khoury et al., 1989]. Counterfactually, this notion can be expressed as the \probability that

a healthy unexposed individual would have gotten the disease had he/she been exposed,"

and will be denoted by PS (Probability of Su�ciency). A natural extension would be to

inquire for the probability of necessary-and-su�cient causation, PNS, namely, how likely a

given individual is to be a�ected both ways.

As the examples illustrate, PS assesses the presence of an active causal process capable of

producing the e�ect, while PN emphasizes the absence of alternative processes, not involving

the cause in question, still capable of sustaining the e�ect. In legal settings, where the

occurrence of the cause (x) and the e�ect (y) are fairly well established, PN is the measure

that draws most attention, and the plainti� must prove that y would not have occurred but

for x [Robertson, 1997]. Still, lack of su�ciency may weaken arguments based on PN [Good,

1993; Michie, 1997].

It is known that PN is in general non-identi�able, namely, non-estimatable from fre-

quency data involving exposures and disease cases [Greenland and Robins, 1988; Robins and

Greenland, 1989]. The identi�cation is hindered by two factors:

1. Confounding: exposed and unexposed subjects may di�er in several relevant factors

3Greenland and Robins (1988) further distinguish between two ways of measuring probabilities of causa-

tion: the �rst (called \excess fraction") concerns only whether the e�ect (e.g., disease) occurs by a particular

time, while the second, (called \etiological fraction") requires consideration of when the e�ect occurs. We

will con�ne our discussion here to binary events occurring within a speci�ed time period, hence, will not be

concerned with the temporal aspects of etiological fractions.
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or, more generally, the cause and the e�ect may both be in
uenced by a third factor.

In this case we say that the cause is not exogenous relative to the e�ect.

2. Sensitivity to the generative process: Even in the absence of confounding, prob-

abilities of certain counterfactual relationships cannot be identi�ed from frequency in-

formation unless we specify the functional relationships that connect causes and e�ects.

Functional speci�cation is needed whenever the facts at hand (e.g., disease) might be

a�ected by the counterfactual antecedent (e.g., exposure) [Balke and Pearl, 1994b] (see

example in Section 4.1).

Although PN is not identi�able in the general case, several formulas have nevertheless

been proposed to estimate attributions of various kinds in terms of frequencies obtained in

epidemiological studies [Breslow and Day, 1980; Hennekens and Buring, 1987; Cole, 1997].

Naturally, any such formula must be predicated upon certain implicit assumptions about

the data-generating process. This paper explicates some of those assumptions and explores

conditions under which they can be relaxed.4 It o�ers new formulas for PN and PS in

cases where causes are confounded (with outcomes) but their e�ects can nevertheless be

estimated (e.g., from clinical trials or from auxiliary measurements). We further provide a

general condition for the identi�ability of PN and PS when functional relationships are only

partially known (Section 5).

Glymour (1998) has raised a number of issues concerning the identi�ability of causal

relationships when the functional relationships among the variables are known, but some

variables are unobserved. These issues surfaced in connection with the psychological model

introduced by Cheng according to which people assess the \causal power" between two events

by estimating the probability of the e�ect in a hypothetical model in which certain elements

are suppressed [Cheng, 1997]. In the examples provided, Cheng's \causal power" coincides

with PS and hence lends itself to counterfactual analysis. Accordingly we shall see that

many of the issues raised by Glymour can be resolved and generalized using counterfactual

analysis.

The distinction between necessary and su�cient causes has important implications in AI,

especially in systems that generate verbal explanations automatically. As can be seen from

the epidemiological examples above, necessary causation is a concept tailored to a speci�c

event under consideration, while su�cient causation is based on the general tendency of

certain event types to produce other event types. Adequate explanations should respect both

aspects. If we base explanations solely on generic tendencies (i.e., su�cient causation), we

lose important speci�c information. For instance, aiming a gun at and shooting a person from

1000 meters away will not qualify as an explanation for that person's death, due to the very

low tendency of typical shots �red from such long distances to hit their marks. The fact that

the shot did hit its mark on that singular day, regardless of the reason, should carry decisive

weight when we come to assess whether the shooter is the culprit for the consequence. If, on

the other hand, we base explanations solely on singular-event considerations (i.e., necessary

causation), then various background factors that are normally present in the world would

4A set of su�cient conditions for the identi�cation of etiological fractions are given in Robins and Green-

land (1989). These conditions, however, are too restrictive for the identi�cation of PN, which is oblivious to

the temporal aspects associated with etiological fractions.
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awkwardly qualify as explanations. For example, the presence of oxygen in the room would

qualify as an explanation for the �re that broke out, simply because the �re would not have

occurred if it were it not for the oxygen. Clearly, some balance must be made between

the necessary and the su�cient components of causal explanation, and the present paper

illuminates this balance by formally explicating some of the basic relationships between the

two components. Section 6 further discusses ways of incorporating singular-event information

in the de�nition and evaluation of su�cient causation.

2 Structural Model Semantics (A Review)

This section presents a brief summary of the structural-equation semantics of counterfactuals

as de�ned in Balke and Pearl (1995), Galles and Pearl (1997, 1998), and Halpern (1998).

Related approaches have been proposed in Simon and Rescher (1966), Rubin (1974) and

Robins (1986). For detailed exposition of the structural account and its applications see

[Pearl, 2000].

2.1 De�nitions: Causal models, actions and counterfactuals

A causal model is a mathematical object that assigns truth values to sentences involving

causal and counterfactual relationships. Basic of our analysis are sentences involving actions

or external interventions, such as, \p will be true if we do q" where q is any elementary propo-

sition. Structural models are generalizations of the structural equations used in engineering,

biology, economics and social science.5 World knowledge is represented as a collection of

stable and autonomous relationships called \mechanisms," each represented as an equation,

and changes due to interventions or hypothetical novel eventualities are treated as local

modi�cations of those equations.

De�nition 1 (Causal model)

A causal model is a triple

M = < U; V; F >

where

(i) U is a set of variables, called exogenous, that are determined by factors outside the model.

(ii) V is a set fV1; V2; : : : ; Vng of variables, called endogenous, that are determined by vari-

ables in the model, namely, variables in U [ V .

(iii) F is a set of functions ff1; f2; : : : ; fng where each fi is a mapping from U � (V nVi) to
Vi. In other words, each fi tells us the value of Vi given the values of all other variables

in U [ V . Symbolically, the set of equations F can be represented by writing

vi = fi(pai; ui) i = 1; : : : ; n

5Similar models, called \neuron diagrams" [Lewis, 1986, p. 200; Hall, 1998] are used informally by

philosophers to illustrate chains of causal processes.
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where pai is any realization of the unique minimal set of variables PAi in V=Vi
(connoting parents) that renders fi nontrivial. Likewise, Ui � U stands for the unique

minimal set of variables in U that renders fi nontrivial.

Every causal model M can be associated with a directed graph, G(M), in which each node

corresponds to a variable in V and the directed edges point from members of PAi toward

Vi. We call such a graph the causal graph associated with M . This graph merely identi�es

the endogenous variables PAi that have direct in
uence on each Vi but it does not specify

the functional form of fi.

De�nition 2 (Submodel)

Let M be a causal model, X be a set of variables in V , and x be a particular realization of

X. A submodel Mx of M is the causal model

Mx = < U; V; Fx >

where

Fx = ffi : Vi 62 Xg [ fX = xg (1)

In words, Fx is formed by deleting from F all functions fi corresponding to members of set

X and replacing them with the set of constant functions X = x.

Submodels are useful for representing the e�ect of local actions and hypothetical changes,

including those dictated by counterfactual antecedents. If we interpret each function fi in

F as an independent physical mechanism and de�ne the action do(X = x) as the minimal

change in M required to make X = x hold true under any u, then Mx represents the model

that results from such a minimal change, since it di�ers from M by only those mechanisms

that directly determine the variables in X. The transformation from M to Mx modi�es the

algebraic content of F , which is the reason for the name modi�able structural equations used

in [Galles and Pearl, 1998].6

De�nition 3 (E�ect of action)

Let M be a causal model, X be a set of variables in V , and x be a particular realization of

X. The e�ect of action do(X = x) on M is given by the submodel Mx.

De�nition 4 (Potential response)

Let Y be a variable in V , and let X be a subset of V . The potential response of Y to action

do(X = x), denoted Yx(u), is the solution for Y of the set of equations Fx.
7

6Structural modi�cations date back to Marschak (1950) and Simon (1953). An explicit translation of

interventions into \wiping out" equations from the model was �rst proposed by Strotz and Wold (1960)

and later used in Fisher (1970), Sobel (1990), Spirtes et al. (1993), and Pearl (1995). A similar notion of

sub-model is introduced in Fine (1985), though not speci�cally for representing actions and counterfactuals.
7Galles and Pearl (1998) required that Fx has a unique solution, a requirement later relaxed by Halpern

(1998). In this paper we are dealing with recursive systems (i.e., G(M) is acyclic) where uniqueness of

solution is ensured.
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We will con�ne our attention to actions in the form of do(X = x). Conditional actions, of the

form \do(X = x) if Z = z" can be formalized using the replacement of equations by functions

of Z, rather than by constants [Pearl, 1994]. We will not consider disjunctive actions, of

the form \do(X = x or X = x0)", since these complicate the probabilistic treatment of

counterfactuals.

De�nition 5 (Counterfactual)

Let Y be a variable in V , and let X a subset of V . The counterfactual sentence \The value

that Y would have obtained, had X been x" is interpreted as denoting the potential response

Yx(u).
8

This formulation generalizes naturally to probabilistic systems, as is seen below.

De�nition 6 (Probabilistic causal model)

A probabilistic causal model is a pair

< M;P (u) >

where M is a causal model and P (u) is a probability function de�ned over the domain of U .

P (u), together with the fact that each endogenous variable is a function of U , de�nes

a probability distribution over the endogenous variables. That is, for every set of variables

Y � V , we have

P (y)
�
= P (Y = y) =

X
fu j Y (u)=yg

P (u) (2)

The probability of counterfactual statements is de�ned in the same manner, through the

function Yx(u) induced by the submodel Mx:

P (Yx = y) =
X

fu j Yx(u)=yg

P (u) (3)

Likewise a causal model de�nes a joint distribution on counterfactual statements, i.e.,

P (Yx = y; Zw = z) is de�ned for any sets of variables Y;X; Z;W , not necessarily disjoint. In

particular, P (Yx = y;X = x0) and P (Yx = y; Yx0 = y0) are well de�ned for x 6= x0, and are

given by

P (Yx = y;X = x0) =
X

fujYx(u)=y & X(u)=x0g

P (u) (4)

and

P (Yx = y; Yx0 = y0) =
X

fu j Yx(u)=y & Y
x
0(u)=y0g

P (u): (5)

When x and x0 are incompatible, Yx and Yx0 cannot be measured simultaneously, and it

may seem meaningless to attribute probability to the joint statement \Y would be y ifX = x

and Y would be y0 if X = x0." Such concerns have been a source of recent objections to

treating counterfactuals as jointly distributed random variables [Dawid, 1997]. The de�nition

8The connection between counterfactuals and local actions (sometimes resembling \miracles") is made in

Lewis (1986) and is further elaborated in Balke and Pearl (1994) and Heckerman and Shachter (1995).
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of Yx and Yx0 in terms of two distinct submodels, driven by a standard probability space

over U , explains away these objections (see Appendix A) and further illustrates that joint

probabilities of counterfactuals can be encoded rather parsimoniously using P (u) and F .

In particular, the probabilities of causation analyzed in this paper (see Eqs. (12)-(14))

require the evaluation of expressions of the form P (Yx0 = y0jX = x; Y = y) with x and y

incompatible with x0 and y0, respectively. Eq. (4) allows the evaluation of this quantity as

follows:

P (Yx0 = y0jX = x; Y = y) =
P (Yx0 = y0; X = x; Y = y)

P (X = x; Y = y)

=
X
u

P (Yx0(u) = y0)P (ujx; y) (6)

In other words, we �rst update P (u) to obtain P (ujx; y), then we use the updated distribution
P (ujx; y) to compute the expectation of the index function Yx0(u) = y0.

2.2 Examples

��
��

��	 @@R

X1 SEASON

@@R

��
��
X3SPRINKLER

��	

��
��
X2 RAIN

��
��
X4 WET

?

��
��
X5 SLIPPERY

Figure 1: Causal graph illustrating causal relationships among �ve variables.

Figure 1 describes the causal relationships among the season of the year (X1), whether

rain falls (X2) during the season, whether the sprinkler is on (X3) during the season, whether

the pavement is wet (X4), and whether the pavement is slippery (X5). All variables in this

graph except the root variable X1 take a value of either \True" or \False" (encoded \1"

and \0" for convenience.) X1 takes one of four values: \Spring," \Summer," \Fall," or

\Winter." Here, the absence of a direct link between, for example, X1 and X5, captures

our understanding that the in
uence of the season on the slipperiness of the pavement is

mediated by other conditions (e.g., the wetness of the pavement). The corresponding model
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consists of �ve functions, each representing an autonomous mechanism:

x1 = u1

x2 = f2(x1; u2)

x3 = f3(x1; u3)

x4 = f4(x3; x2; u4)

x5 = f5(x4; u5) (7)

The exogenous variables U1; : : : ; U5, represent factors omitted from the analysis. For exam-

ple, U4 may stand for (unspeci�ed) events that would cause the pavement to get wet (x4 = 1)

when the sprinkler is o� (x2 = 0) and it does not rain (x3 = 0) (e.g., a leaking water pipe).

These factors are not shown explicitly in Figure 1 to communicate, by convention, that the

U 's are assumed independent of one another. When some of these factors are judged to

be dependent, it is customary to encode such dependencies by augmenting the graph with

double-headed arrows [Pearl, 1995].

To represent the action \turning the sprinkler ON," or do(X3 = ON), we replace the

equation x3 = f3(x1; u3) in the model of Eq. (7) with the equation x3 = 1. The resulting

submodel,MX3=ON, contains all the information needed for computing the e�ect of the action

on the other variables. Note that the operation do(X3 = ON) stands in marked contrast to

that of �nding the sprinkler ON; the latter involves making the substitution without removing

the equation for X3, and therefore may potentially in
uence (the belief in) every variable

in the network. In contrast, the only variables a�ected by the action do(X3 = ON) are X4

and X5, that is, the descendants of the manipulated variable X3. This mirrors the di�erence

between seeing and doing: after observing that the sprinkler is ON, we wish to infer that the

season is dry, that it probably did not rain, and so on; no such inferences should be drawn in

evaluating the e�ects of the action \turning the sprinkler ON" that a person may consider

taking.

This distinction obtains a vivid symbolic representation in cases where the Ui's are as-

sumed independent, because the joint distribution of the endogenous variables then admits

the product decomposition

P (x1; x2; x3; x4; x5) = P (x1)P (x2jx1)P (x3jx1)P (x4jx2; x3)P (x5jx4) (8)

Similarly, the joint distribution associated with the submodel Mx representing the action

do(X3 = ON) is obtained from the product above by deleting the factor P (x3jx1) and

substituting x3 = 1.

P (x1; x2; x4; x5jdo(X3 = ON)) = P (x1) P (x2jx1) P (x4jx2; x3 = 1) P (x5jx4) (9)

The di�erence between the action do(X3 = ON) and the observation X3 = ON is thus

seen from the corresponding distributions. The former is represented by Eq. (9), while the

latter by conditioning Eq. (8) on the observation, i.e.,

P (x1; x2; x4; x5jX3 = ON) =
P (x1) P (x2jx1) P (x3 = 1jx1)P (x4jx2; x3 = 1)P (x5jx4)

P (x3 = 1)

8



Note that the conditional probabilities on the r.h.s. of Eq. (9) are the same as those

in Eq. (8), and can therefore be estimated from pre-action observations, provided G(M) is

available. However, the pre-action distribution P together with the causal graph G(M) is

generally not su�cient for evaluating all counterfactuals sentences. For example, the prob-

ability that \the pavement would be slippery if the sprinkler were o�, given that currently

the pavement is slippery," cannot be evaluated from the conditional probabilities P (xijpai)
alone; the functional forms of the fi's (Eq. 7) are necessary for evaluating such queries [Balke

and Pearl 1994; Pearl 1996].

To illustrate the evaluation of counterfactuals, consider a deterministic version of the

model given by Eq. (7) assuming that the only uncertainty in the model lies in the identity

of the season, summarized by a probability distribution P (u1) (or P (x1).) We observe the

ground slippery and the sprinkler on and we wish to assess the probability that the ground

would be slippery had the sprinkler been o�. Formally, the quantity desired is given by

P (X5x3=0
= 1jX5 = 1; X3 = 1)

According to Eq. (6), the expression above is evaluated by summing over all states of U that

are compatible with the information at hand. In our example, the only state compatible

with the evidence X5 = 1 and X3 = 1 is that which yields X1 = Summer _ Spring, and in

this state X2 = no-rain, hence X5x3=0
= 0. Thus, matching intuition, we obtain

P (X5x3=0
= 1jX5 = 1; X3 = 1) = 0:

In general, the conditional probability of a counterfactual sentence \If it were A then B",

given evidence e, can be computed in three steps:

1. Abduction { update P (u) by the evidence e, to obtain P (uje).

2. Action { Modify M by the action do(A), where A is the antecedent of the counter-

factual, to obtain the submodel MA.

3. Deduction { Use the updated probability P (uje) in conjunction with MA to compute

the probability of the counterfactual consequence B.

In temporal metaphors [Thomason and Gupta, 1980], this 3-step procedure can be inter-

preted as follows: Step-1 explains the past (U) in light of the current evidence e, Step-2

bends the course of history (minimally) to comply with the hypothetical condition X = x

and, �nally, Step-3 predicts the future (Y ) based on our new understanding of the past

and our new starting condition, X = x. E�ective methods of computing probabilities of

counterfactuals are presented in Balke and Pearl (1994, 1995).

2.3 Relation to Lewis' counterfactuals

The structural model of counterfactuals is closely related to Lewis's account [Lewis, 1986]9,

but di�ers from it in several important aspects. According to Lewis' account, one orders

possible worlds by some measure of similarity, and the a counterfactual A > B is true in

9Yx(u) = y can be translated to \(X = x) > (Y = y) in world u."
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a world w just in case B is true in all the closest A-worlds to w. This semantics leaves

two questions unsettled and problematic: 1. What choice of similarity measure would make

counterfactual reasoning compatible with ordinary conception of cause and e�ect? 2. What

mental representation of worlds ordering would render the computation of counterfactuals

manageable and practical (in both man and machine.)10

Kit Fine's celebrated example (of Nixon pulling the trigger [Fine, 1975]) demonstrates

that similarity measures could not be arbitrary, but must respect our conception of causal

laws.11 Lewis (1979) has subsequently set up an intricate system of priorities among various

dimensions of similarity: size of miracles (violations of laws), matching of facts, temporal

precedence etc., to bring similarity closer to causal intuition. These di�culties do not enter

the structural account. In contrast with Lewis' theory, counterfactuals are not based on

abstract notion of similarity among hypothetical worlds, but rests directly on the mechanisms

(or \laws," to be fancy) that produce those worlds, and on the invariant properties of those

mechanisms. Lewis' elusive \miracles" are replaced by principled mini-surgeries, do(X = x),

which represent the minimal change (to a model) necessary for establishing the antecedent

X = x (for all u). Thus, similarities and priorities, if they are ever needed, may be read into

the do(�) operator (see [Goldszmidt and Pearl, 1992]), but do not govern the analysis.

The structural account answers the mental representational question by o�ering a par-

simonious encoding of knowledge, from which causes, counterfactual and probabilities of

counterfactuals can be derived by e�ective algorithms. This parsimony is acquired at the

expense of generality; limiting the counterfactual antecedent to conjunction of elementary

propositions prevents us from analyzing disjunctive hypotheticals such as \if Bizet and Verdi

were compatriots."

2.4 Relation to probabilistic causality

The relation between the structural and probabilistic accounts of causality is best demon-

strated when we make the Markov assumption (see De�nition 15): 1. The equations ffig
are recursive (i.e., no feedback), and 2. The exogenous terms ui are mutually independent.

Under this assumption, which implies the \screening-o�" condition in the probabilistic ac-

counts of causality, it can be shown (e.g., [Pearl, 1995]) that the causal e�ect of a set X of

decision variables on outcome variables Y is given by the formula:

P (Y = yjdo(X = x)) =
X
paX

P (yjx; paX)P (paX) (10)

where PAX is the set of all parents of variables in X. Eq. (10) calls for conditioning P (y)

on the event X = x as well as on the parents of X, then averaging the result, weighted by

the prior probabilities of those parents. This operation is known as \adjusting for PAX ."

Variations of this adjustment have been advanced by several philosophers as de�nitions of

causality or of causal e�ects. Good (1961), for example, calls for conditioning on \the state of

the universe just before" the occurrence of the cause. Suppes (1970) calls for conditioning on

the entire past, up to the occurrence of the cause. Skyrms (1980, p. 133) calls for conditioning

10Since matching human intuition is the ultimate success criterion in most philosophical theories of cau-

sation, questions of cognitive compatibility must be considered an integral part of any such theory.
11In this respect, Lewis' reduction of causes to counterfactuals is somewhat circular.
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on \... maximally speci�c speci�cations of the factors outside of our in
uence at the time

of the decision which are causally relevant to the outcome of our actions ...". The aim of

conditioning in these proposals is, of course, to eliminate spurious correlations between the

cause (in our caseX = x) and the e�ect (in our case Y = y) and, clearly, the set PAX of direct

causes accomplishes this aim with great economy. However, the averaged conditionalization

operation is not attached here as an add-on adjustment, aimed at irradicating spurious

correlations. Rather, it emerges purely formally from the deeper principle of discarding the

obsolete and preserving all the invariant information that the pre-action distribution can

provide. Thus, while probabilistic causality �rst confounds causal e�ects P (yjdo(x)) with
epistemic conditionalization P (yjx), then gets rid of spurious correlations through remedial

steps of adjustment, the structural account de�nes causation directly in terms of Nature's

invariants (i.e., submodel Mx in De�nition 3).

One tangible bene�t of this conception is the ability to process commonplace causal

statements in their natural deterministic habitat, without having to immerse them in non-

deterministic decor. In other words, an event X = x for which P (xjpaX) = 1 (e.g., the output

of a logic circuit), may still be a cause of some other event, Y = y. Consequently, probabili-

ties of single-case causation are well de�ned, free of the di�culties that plague explications

based on conditional probabilities. A second bene�t lies in the generality of the structural

equation model vis a vis probabilistic causality; interventions, causation and counterfactuals

are well de�ned without invoking the Markov assumptions. Additionally, and most relevant

to the topic of this paper, such ubiquitous notions as \probability of causation" cannot easily

be de�ned in the language of probabilistic causality (see discussion after Corollary 1, and

Section 4.1).

Finally, we should note that the structural model, as it is presented in Section 2.1,

is quasi-deterministic or Laplacian; chance arises only from unknown prior conditions as

summarized in P (u). Those who frown upon this classical approximation should be able to

extend the results of this paper along more fashionable lines (see appendix for an outline).

However, considering that Laplace's illusion still governs human conception of cause and

e�ect, I doubt that signi�cant insight will be gained by such exercise.

2.5 Relation to Neyman-Rubin model

Several concepts de�ned in Section 2.1 bear similarity to concepts in the potential-outcome

model used by Neyman (1923) and Rubin (1974) in the statistical analysis of treatment ef-

fects. In that model, Yx(u) stands for the outcome of experimental unit u (e.g., an individual,

or an agricultural lot) under experimental condition X = x, and is taken as a primitive, that

is, as an unde�ned relationship, in terms of which one must express assumptions about back-

ground knowledge. In the structural model framework, the quantity Yx(u) is not a primitive,

but is derived mathematically from a set of equations F that is modi�ed by the operator

do(X = x). Assumptions about causal processes are expressed naturally in the form of such

equations. The variable U represents any set of exogenous factors relevant to the analysis,

not necessarily the identity of a speci�c individual in the population.

Using this semantics, it is possible to derive a complete axiomatic characterization of

the constraints that govern the potential response function Yx(u) vis-a-vis those that govern

directly observed variables, such as X(u) and Y (u) [Galles and Pearl, 1998; Halpern, 1998].
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These basic axioms include or imply relationships that were taken as given, and used exten-

sively by statisticians who pursue the potential-outcome approach. Prominent among these

we �nd the consistency condition [Robins, 1987]:

(X = x)) (Yx = Y ) (11)

stating that if we intervene and set the experimental conditions X = x equal to those

prevailing before the intervention, we should not expect any change in the response variable

Y . (For example, a subject who selects treatment X = x by choice and responds with Y = y

would respond in exactly the same way to treatment X = x under controlled experiment.)

This condition is a proven theorem is structural-model semantics [Galles and Pearl, 1998]

and will be used in several of the derivations of Section 3. Rules for translating the topology

of a causal diagram into counterfactual sentences are given in [Pearl, 2000, Chapter 7].

3 Necessary and Su�cient Causes: Conditions of Iden-

ti�cation

3.1 De�nitions, notation, and basic relationships

Using the counterfactual notation and the structural model semantics introduced in Section

2.1, we give the following de�nitions for the three aspects of causation discussed in the

introduction.

De�nition 7 (Probability of necessity (PN))

Let X and Y be two binary variables in a causal model M , let x and y stand for the propo-

sitions X = true and Y = true, respectively, and x0 and y0 for their complements. The

probability of necessity is de�ned as the expression

PN
�
= P (Yx0 = false j X = true; Y = true)
�
= P (y0

x0jx; y) (12)

In other words, PN stands for the probability that event y would not have occurred in the

absence of event x, (y0
x0), given that x and y did in fact occur.

Note a slight change in notation relative to that used Section 2. Lower case letters (e.g.,

x; y) denoted values of variables in Section 2, and now stand for propositions (or events).

Note also the abbreviations yx for Yx = true and y0
x
for Yx = false.12 Readers accustomed

to writing \A > B" for the counterfactual \B if it were A" can translate Eq. (12) to read

PN
�
= P (x0 > y0jx; y).

De�nition 8 (Probability of su�ciency (PS))

PS
�
= P (yxjy

0; x0) (13)

12These were proposed by Peyman Meshkat in class homework, and substantially simplify the derivations.
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PS measures the capacity of x to produce y and, since \production" implies a transition from

the absence to the presence of x and y, we condition the probability P (yx) on situations where

x and y are both absent. Thus, mirroring the necessity of x (as measured by PN), PS gives

the probability that setting x would produce y in a situation where x and y are in fact

absent.

De�nition 9 (Probability of necessity and su�ciency (PNS))

PNS
�
= P (yx; y

0
x0) (14)

PNS stands for the probability that y would respond to x both ways, and therefore measures

both the su�ciency and necessity of x to produce y.

Associated with these three basic notions, there are other counterfactual quantities that

have attracted either practical or conceptual interest. We will mention two such quantities,

but will not dwell on their analyses, since these can be easily inferred from our treatment of

PN, PS, and PNS.

De�nition 10 (Probability of disablement (PD))

PD
�
= P (y0

x0jy) (15)

PD measures the probability that y would have been prevented if it were not for x; it is

therefore of interest to policy makers who wish to assess the social e�ectiveness of various

prevention programs [Fleiss, 1981, pp. 75{76].

De�nition 11 (Probability of enablement (PE))

PE
�
= P (yxjy

0)

PE is similar to PS, save for the fact that we do not condition on x0. It is applicable, for

example, when we wish to assess the danger of an exposure on the entire population of

healthy individuals, including those who were already exposed.

Although none of these quantities is su�cient for determining the others, they are not

entirely independent, as shown in the following lemma.

Lemma 1 The probabilities of causation, PNS, PN and PS satisfy the following relationship:

PNS = P (x; y)PN + P (x0; y0)PS (16)
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Proof of Lemma 1

Using the consistency conditions of Eq. (11),

x) (yx = y); x0 ) (yx0 = y)

we can write

yx ^ y
0
x0 = (yx ^ y

0
x0) ^ (x _ x0)

= (y ^ x ^ y0
x0) _ (yx ^ y

0 ^ x0)

Taking probabilities on both sides, and using the disjointness of x and x0, we obtain:

P (yx; y
0
x0) = P (y0

x0; x; y) + P (yx; x
0; y0)

= P (y0
x0jx; y)P (x; y) + P (yxjx

0; y0)P (x0; y0)

which proves Lemma 1. 2

To put into focus the aspects of causation captured by PN and PS, it is helpful to

characterize those changes in the causal model that would leave each of the two measures

invariant. The next two lemmas show that PN is insensitive to the introduction of potential

inhibitors of y, while PS is insensitive to the introduction of alternative causes of y.

Lemma 2 Let PN(x; y) stand the for the probability that x is a necessary cause of y, and

z = y ^ q a consequence of y, potentially inhibited by q0. If q k fX; Yx; Yx0g; then

PN(x; z)
�
= P (z0

x0jx; z) = P (y0
x0jx; y)

�
= PN(x; y)

Cascading the process Yx(u) with the link z = y ^ q amounts to inhibiting y with proba-

bility P (q0). Lemma 2 asserts that we can add such a link without a�ecting PN, as long as

q is randomized. The reason is clear; conditioning on the event x and y implies that, in the

scenario under consideration, the added link was not inhibited by q0.

Proof of Lemma 2

PN(x; z) = P (z0
x0jx; z) =

P (z0
x0; x; z)

P (x; z)
=

=
P (z0

x0; x; zjq)P (q) + P (z0
x0; x; zjq0)P (q0)

P (z; x; q) + P (z; x; q0)
(17)

Using z = y ^ q, we have

q ) (z = y); q ) (z0
x0 = y0

x0); and q
0 ) z0

therefore

PN(x; z) =
P (y0

x0; x; yjq)P (q) + 0

P (y; x; q) + 0

=
P (y0

x0; x; y)

P (y; x)
= P (y0

x0jxy) = PN(x; y)

2
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Lemma 3 Let PS(x; y) stand the for the probability that x is a su�cient cause of y, and

let z = y _ r be a consequence of y, potentially triggered by r. Then

PS(x; z) = P (zxjx
0; z0) = P (yxjx

0; y0) = PS(x; y)

Lemma 3 asserts that we can add alternative independent causes (r), without a�ecting

PS. The reason again is clear; conditioning on the event x0 and y0 implies that the added

causes (r) were not active. The proof of Lemma 3 is similar to that of Lemma 2.

De�nition 12 (Identi�ability)

Let Q(M) be any quantity de�ned on a causal model M . Q is identi�able in a class M of

models i� any two models M1 and M2 from M that satisfy PM1
(v) = PM2

(v) also satisfy

Q(M1) = Q(M2). In other words, Q is identi�able if it can be determined uniquely from the

probability distribution P (v) of the endogenous variables V .

The class M that we will consider when discussing identi�ability will be determined by

assumptions that one is willing to make about the model under study. For example, if our

assumptions consist of the structure of a causal graph G0,M will consist of all modelsM for

which G(M) = G0. If, in addition to G0, we are also willing to make assumptions about the

functional form of some mechanisms in M ,M will consist of all models M that incorporate

those mechanisms, and so on.

Since all the causal measures de�ned above invoke conditionalization on y, and since y

is presumed a�ected by x, the antecedent of the the counterfactual yx, we know that none

of these quantities is identi�able from knowledge of the structure G(M) and the data P (v)

alone, even under condition of no confounding. Moreover, none of these quantities determines

the others in the general case. However, simple interrelationships and useful bounds can be

derived for these quantities under the assumption of no-confounding, an assumption that we

call exogeneity.

3.2 Bounds and basic relationships under exogeneity

De�nition 13 (Exogeneity)

A variable X is said to be exogenous relative to Y in model M i�

P (yx; yx0jx) = P (yx; yx0) (18)

namely, the way Y would potentially respond to conditions x or x0 is independent of the

actual value of X.

Eq. (18) has been given a variety of (equivalent) de�nitions and interpretations. Epidemi-

ologists refer to this condition as \no-confounding" [Robins and Greenland, 1989], statisti-

cians call it \as if randomized," and Rosenbaum and Rubin (1983) call it \ignorability." A

graphical criterion ensuring exogeneity is the absence of a common ancestor of X and Y
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in G(M). The classical econometric criterion for exogeneity (e.g., Dhrymes (1970, p. 169)

states that X be independent of the error term in the equation for Y .13

The importance of exogeneity lies in permitting the identi�cation of P (yx), the causal

e�ect of X on Y , since (using x) (yx = y))

P (yx) = P (yxjx) = P (yjx) (19)

with similar reduction for P (yx0).

Theorem 1 Under condition of exogeneity, PNS is bounded as follows:

max[0; P (yjx) + P (y0jx0)� 1] � PNS � min[P (yjx); P (y0jx0)] (20)

Both bounds are sharp in the sense that for every joint distribution P (x; y) there exists a

model y = f(x; u), with u independent of x, that realizes any value of PNS permitted by the

bounds.

Proof of Theorem 1:

For any two events A and B we have the tight bounds:

max[0; P (A) + P (B)� 1] � P (A;B) � min[P (A); P (B)] (21)

Eq. (20) follows from (21) using A = yx; B = y0
x0; P (yx) = P (yjx) and P (y0

x0) = P (y0jx0) 2

Clearly, if exogeneity cannot be ascertained, then PNS is bound by inequalities similar

to those of Eq. (20), with P (yx) and P (y
0
x0) replacing P (yjx) and P (y0jx0), respectively.

Theorem 2 Under condition of exogeneity, the probabilities PN, PS, and PNS are related

to each other as follows:

PN =
PNS

P (yjx)
(22)

PS =
PNS

1� P (yjx0)
(23)

Thus, the bounds for PNS in Eq. (20) provide corresponding bounds for PN and PS.

The resulting bounds for PN

max[0; P (yjx) + P (y0jx0)� 1]

P (yjx)
� PN �

min[P (yjx); P (y0jx0)]

P (yjx)
(24)

have signi�cant implications relative to both our ability to identify PN by experimental stud-

ies and the feasibility of de�ning PN in stochastic causal models. Replacing the conditional

probabilities with causal e�ects (licensed by exogeneity), Eq. (24) implies the following:

13This criterion has been the subject of relentless objections by modern econometricians [Engle et al.,

1983; Hendry, 1995; Imbens, 1997], but see Aldrich (1993) and Galles and Pearl (1998) for a reconciliatory

perspective on this controversy.
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Corollary 1 Let P (yx) and P (y
0
x0) be the causal e�ects established in an experimental study.

For any point p in the range

max[0; P (yx) + P (y0
x0)� 1]

P (yx)
� p �

min[P (yx); P (y
0
x0)]

P (yx)
(25)

we can �nd a causal model M that agrees with P (yx) and P (y
0
x0) and for which PN = p.

This corollary implies that probabilities of causation cannot be de�ned uniquely in

stochastic (non-Laplacian) models where, for each u; Yx(u) is speci�ed in probability

P (Yx(u) = y) instead of a single number.14 (See Example-1, Section 4.1.)

Proof of Theorem 2:

Using x) (yx = y), we can write x ^ yx = x ^ y, and obtain

PN = P (y0
x0jx; y) = P (y0

x0; x; y)=P (x; y) (26)

= P (y0
x0; x; yx)=P (x; y) (27)

= P (y0
x0; yx)P (x)=P (x; y) (28)

=
PNS

P (yjx)
(29)

which establishes Eq. (22). Eq. (23) follows by identical steps. 2

For completion, we note the relationship between PNS and the probabilities of enablement

and disablement:

PD =
P (x) PNS

P (y)
; PE =

P (x0) PNS

P (y0)
(30)

3.3 Identi�ability under monotonicity and exogeneity

Before attacking the general problem of identifying the counterfactual quantities in Eqs. (12){

(14) it is instructive to treat a special condition, called monotonicity, which is often assumed

in practice, and which renders these quantities identi�able. The resulting probabilistic ex-

pressions will be recognized as familiar measures of causation that often appear in the liter-

ature.

De�nition 14 (Monotonicity)

A variable Y is said to be monotonic relative to variable X in a causal model M i� the

function Yx(u) is monotonic in x for all u. Equivalently, Y is monotonic relative to X i�

y0
x
^ yx0 = false (31)

14Robins and Greenland (1989), who used a stochastic model of Yx(u), de�ned the probability of causation

as

PN(u) = [P (yjx; u)� P (yjx0; u)]=P (yjx; u)

instead of the counterfactual de�nition in Eq. (12).
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Monotonicity expresses the assumption that a change from X = false to X = true

cannot, under any circumstance make Y change from true to false.15 In epidemiology, this

assumption is often expressed as \no prevention," that is, no individual in the population

can be helped by exposure to the risk factor. Angrist, Imbens, and Rubin (1996) used this

assumption to identify treatment e�ects from studies involving non-compliance (see also

Balke and Pearl (1997)). Glymour (1998) and Cheng (1997) resort to this assumption in

using disjunctive or conjunctive relationships between causes and e�ects, excluding functions

such as exclusive-or, or parity.

Theorem 3 (Identi�ability under exogeneity and monotonicity)

If X is exogenous and Y is monotonic relative to X, then the probabilities PN, PS, and PNS

are all identi�able, and are given by Eqs. (22){(23) with

PNS = P (yjx)� P (yjx0) (32)

The r.h.s. of (32) is called \risk-di�erence" in epidemiology, and is also misnomered \at-

tributable risk" [Hennekens and Buring, 1987, p. 87].

From (22) we see that the probability of necessity, PN, is identi�able and given by the

excess-risk-ratio

PN = [P (yjx)� P (yjx0)]=P (yjx) (33)

often misnomered as the attributable fraction [Schlesselman, 1982], attributable-rate percent

[Hennekens and Buring, 1987, p. 88], attributed fraction for the exposed [Kelsey et al., 1996,

p. 38], or attributable proportion [Cole, 1997]. Taken literally, the ratio presented in (33) has

nothing to do with attribution, since it is made up of statistical terms and not of causal

or counterfactual relationships. However, the assumptions of exogeneity and monotonicity

together enable us to translate the notion of attribution embedded in the de�nition of PN

(Eq. (12)) into a ratio of purely statistical associations. This suggests that exogeneity and

monotonicity were tacitly assumed by authors who proposed or derived Eq. (33) as a measure

for the \fraction of exposed cases that are attributable to the exposure."

Robins and Greenland (1989) have analyzed the identi�cation of PN under the assump-

tion of stochastic monotonicity (i.e., P (Yx(u) = y) > P (Yx0(u) = y)) and have shown that

this assumption is too weak to permit such identi�cation; in fact, it yields the same bounds as

in Eq. (24). This indicates that stochastic monotonicity imposes no constraints whatsoever

on the functional mechanisms that mediate between X and Y .

The expression for PS (Eq. (23)), is likewise quite revealing

PS = [P (yjx)� P (yjx0)]=[1� P (yjx0)]; (34)

as it coincides with what epidemiologists call the \relative di�erence" [Shep, 1958], which is

used to measure the susceptibility of a population to a risk factor x. Susceptibility is de�ned

15Our analysis remains invariant to complementing x or y (or both), hence, the general condition of

monotonicity should read: either y0

x
^ yx0 = false or y0

x0 ^ yx = false . For simplicity, however, we will adhere

to the de�nition in Eq. (31).
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as the proportion of persons who possess \an underlying factor su�cient to make a person

contract a disease following exposure" [Khoury et al., 1989]. PS o�ers a formal counterfac-

tual interpretation of susceptibility, which sharpens this de�nition and renders susceptibility

amenable to systematic analysis. Khoury et al. (1989) have recognized that susceptibility in

general is not identi�able, and have derived Eq. (34) by making three assumptions: no con-

founding, monotonicity,16 and independence (i.e., assuming that susceptibility to exposure

is independent of susceptibility to background not involving exposure). This last assump-

tion is often criticized as untenable, and Theorem 3 assures us that independence is in fact

unnecessary; Eq. (34) attains its validity through exogeneity and monotonicity alone.

Eq. (34) also coincides with what Cheng calls \causal power" (1997), namely, the ef-

fect of x on y after suppressing \all other causes of y." The counterfactual de�nition of

PS; P (yxjx
0; y0), suggests another interpretation of this quantity. It measures the prob-

ability that setting x would produce y in a situation where x and y are in fact absent.

Conditioning on y0 amounts to selecting (or hypothesizing) only those worlds in which \all

other causes of y" are indeed suppressed.

It is important to note, however, that the simple relationships among the three notions of

causation (Eqs. 22{23) only hold under the assumption of exogeneity; the weaker relationship

of Eq. (16) prevails in the general, non-exogenous case. Additionally, all these notions of

causation are de�ned in terms of the global relationships Yx(u) and Yx0(u) which is too

crude to fully characterize the many nuances of causation; the detailed structure of the

causal model leading from X to Y is often needed to explicate more re�ned notions, such as

\actual cause," (see Section 6).

Proof of Theorem 3:

Writing yx0 _ y0
x0 = true, we have

yx = yx ^ (yx0 _ y0
x0) = (yx ^ yx0) _ (yx ^ y

0
x0) (35)

and

yx0 = yx0 ^ (yx _ y
0
x
) = (yx0 ^ yx) _ (yx0 ^ y0

x
) = yx0 ^ yx (36)

since monotonicity entails yx0 ^ y0
x
= false. Substituting (36) into (35) yields

yx = yx0 _ (yx ^ y
0
x0) (37)

Taking the probability of (37), and using the disjointness of yx0 and y0
x0, we obtain

P (yx) = P (yx0) + P (yx; y
0
x0)

or

P (yx; y
0
x0) = P (yx)� P (yx0) (38)

Eq. (38) together with the assumption of exogeneity (Eq. (19)) establish Eq. (32). 2

16Monotonicity is not mentioned in [Khoury et al., 1989], but it must have been assumed implicitly to

make their derivations valid.
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3.4 Identi�ability under monotonicity and non-exogeneity

The relations established in Theorems 1{3 were based on the assumption of exogeneity. In

this section, we relax this assumption and consider cases where the e�ect of X on Y is

confounded, i.e., P (yx) 6= P (yjx). In such cases P (yx) may still be estimated by auxiliary

means (e.g., through adjustment of certain covariates, or through experimental studies)

and the question is whether this added information can render the probability of causation

identi�able. The answer is a�rmative.

Theorem 4 If Y is monotonic relative to X, then PNS, PN, PS are identi�able whenever

the causal e�ect P (yx) is identi�able and are given by

PNS = P (yx; y
0
x0) = P (yx)� P (yx0) (39)

PN = P (y0
x0jx; y) =

P (y)� P (yx0)

P (x; y)
(40)

PS = P (yxjx
0; y0) =

P (yx)� P (y)

P (x0; y0)
(41)

To appreciate the di�erence between Eqs. (40) and (33) we can expand P (y) and write

PN =
P (yjx)P (x) + P (yjx0)P (x0)� P (yx0)

P (yjx)P (x)

=
P (yjx)� P (yjx0)

P (yjx)
+
P (yjx0)� P (yx0)

P (x; y)
(42)

The �rst term on the r.h.s. of (42) is the familiar excess-risk-ratio as in (33), and represents

the value of PN under exogeneity. The second term represents the correction needed to

account for X's non-exogeneity, i.e. P (yx0) 6= P (yjx0).
Eqs. (39){(41) thus provide more re�ned measures of causation, which can be used in

situations where the causal e�ect P (yx) can be identi�ed through auxiliary means (see Ex-

ample 4, Section 4.4). Note however that these measures are no longer governed by the

simple relationships given in Eqs. (22){(23). Instead, the governing relation is Eq. (16).

Remarkably, since PS and PN must be non-negative, Eqs. (40)-(41) provide a simple

necessary test for the assumption of monotonicity

P (yx) � P (y) � P (yx0) (43)

which strengthen the standard inequalities

P (yx) � P (x; y); P (yx0) � P (x0; y)

It can be shown that these inequalities are in fact sharp, that is, every combination of experi-

mental and nonexperimental data that satisfy these inequalities can be generated from some

causal model in which Y is monotonic in X. That the commonly made assumption of \no-

prevention" is not entirely exempt from empirical scrutiny should come as a relief to many
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epidemiologists. Alternatively, if the no-prevention assumption is theoretically unassailable,

the inequalities of Eq. (43) can be used for testing the compatibility of the experimental and

non-experimental data, namely, whether subjects used in clinical trials are representative of

the target population, characterized by the joint distribution P (x; y).

Proof of Theorem 4:

Eq. (39) was established in (38). To prove (41), we write

P (yxjx
0; y0) =

P (yx; x
0; y0)

P (x0; y0)
=
P (yx; x

0; y0
x0)

P (x0; y0)
(44)

because x0 ^ y0 = x0 ^ y0
x0 (by consistency). To calculate the numerator of (44), we conjoin

(37) with x0

x0 ^ yx = (x0 ^ yx0) _ (yx ^ y
0
x0 ^ x0)

and take the probability on both sides, which gives (since yx0 and y0
x0 are disjoint)

P (yx; y
0
x0; x0) = P (x0; yx)� P (x0; yx0)

= P (x0; yx)� P (x0; y)

= P (yx)� P (x; yx)� P (x0; y)

= P (yx)� P (x; y)� P (x0; y)

= P (yx)� P (y)

Substituting in (44), we �nally obtain

P (yxjx
0; y0) =

P (yx)� P (y)

P (x0; y0)

which establishes (41). Eq. (40) follows through identical steps. 2

One common class of models which permits the identi�cation of P (yx) under conditions

of non-exogeneity is called Markovian.

De�nition 15 (Markovian models)

A causal model M is said to be Markovian if the graph G(M) associated with M is acyclic,

and if the exogenous factors ui are mutually independent. A model is semi-Markovian i�

G(M) is acyclic and the exogenous variables are not necessarily independent. A causal model

is said to be positive-Markovian if it is Markovian and P (v) > 0 for every v.

It is shown in Pearl (1993, 1995) that for every two variables, X and Y , in a positive-

Markovian model M , the causal e�ect P (yx) is identi�able and is given by

P (yx) =
X
paX

P (yjpaX; x)P (paX) (45)

where paX are (realizations of) the parents of X in the causal graph associate with M (see

also Spirtes et al. (1993) and Robins (1986)). Thus, we can combine Eq. (45) with Theorem

4 and obtain a concrete condition for the identi�cation of the probability of causation.
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Corollary 2 If in a positive-Markovian model M , the function Yx(u) is monotonic, then the

probabilities of causation PNS, PS and PN are identi�able and are given by Eqs. (39){(41),

with P (yx) given in Eq. (45).

A broader identi�cation condition can be obtained through the use of the back-door and

front-door criteria [Pearl, 1995], which are applicable to semi-Markovian models. These were

further generalized in Galles and Pearl (1995)17 and lead to the following corollary:

Corollary 3 Let GP be the class of semi-Markovian models that satisfy the graphical cri-

terion of Galles and Pearl (1995). If Yx(u) is monotonic, then the probabilities of causation

PNS, PS and PN are identi�able in GP and are given by Eqs. (39){(41), with P (yx) deter-

mined by the topology of G(M) through the GP criterion.

4 Examples and Applications

4.1 Example-1: Betting against a fair coin

We must bet heads or tails on the outcome of a fair coin toss; we win a dollar if we guess

correctly, lose if we don't. Suppose we bet heads and we win a dollar, without glancing

at the outcome of the coin, was our bet a necessary cause (respectively, su�cient cause, or

both) for winning?

Let x stand for \we bet on heads," y for \we win a dollar," and u for \the coin turned

up heads." The functional relationship between y; x and u is

y = (x ^ u) _ (x0 ^ u0) (46)

which is not monotonic but nevertheless permits us to compute the probabilities of causation

from the basic de�nitions of Eqs. (12){(14). To exemplify,

PN = P (y0
x0jx; y) = P (y0

x0ju) = 1

because x ^ y ) u, and Yx0(u) = false. In words, knowing the current bet (x) and current

win (y) permits us to infer that the coin outcome must have been a head (u), from which

we can further deduce that betting tails (x0) instead of heads, would have resulted in a loss.

Similarly,

PS = P (yxjx
0; y0) = P (yxju) = 1

because x0 ^ y0 ) u, and

PNS = P (yx; y
0
x0)

= P (yx; y
0
x0ju)P (u) + P (yx; y

0
x0ju0)P (u0)

= 1
1

2
+ 0

1

2
=

1

2

17Galles and Pearl (1995) provide an e�cient method of deciding from the graph G(M) whether P (yx) is

identi�able and, if the answer is a�rmative, deriving the expression for P (yx).
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We see that betting heads has 50% chance of being a necessary-and-su�cient cause of win-

ning. Still, once we win, we can be 100% sure that our bet was necessary for our win, and

once we lose (say on betting tails) we can be 100% sure that betting heads would have been

su�cient for producing a win. The empirical content of such counterfactuals is discussed in

Appendix A.

Note that these counterfactual quantities cannot be computed from the joint probability

of X and Y without knowledge of the functional relationship in Eq. (46) which tells us the

(deterministic) policy by which a win or a loss is decided. This can be seen, for instance,

from the conditional probabilities and causal e�ects associated with this example

P (yjx) = P (yjx0) = P (yx) = P (yx0) = P (y) =
1

2

because identical probabilities would be generated by a random payo� policy in which y is

functionally independent of x, say by a bookie who watches the coin and ignores our bet.

In such a random policy, the probabilities of causation PN, PS and PNS are all zero. Thus,

according to our de�nition of identi�ability (De�nition 12), if two models agree on P and

do not agree on a quantity Q, then Q is not identi�able. Indeed, the bounds delineated in

Theorem 1 (Eq. (20)) read 0 � PNS � 1
2
, meaning that the three probabilities of causation

cannot be determined from statistical data on X and Y alone, not even in a controlled

experiment; knowledge of the functional mechanism is required, as in Eq. (46).

It is interesting to note that whether the coin is tossed before or after the bet has no

bearing on the probabilities of causation as de�ned above. This stands in contrast with

some theories of probabilistic causality which attempt to avoid deterministic mechanisms

by conditioning all probabilities on \the state of the world just before" the occurrence of

the cause in question (x) (e.g., [Good, 1961]). In the betting story above, the intention is to

condition all probabilities on the state of the coin (u), but it is not ful�lled if the coin is tossed

after the bet is placed. Attempts to enrich the conditioning set with events occurring after

the cause in question have led back to deterministic relationships involving counterfactual

variables (see [Cartwright, 1989; Eells, 1991]).

One may argue, of course, that if the coin is tossed after the bet, then it is not at all clear

what our winning would be had we bet di�erently; merely uttering our bet could conceivably

a�ect the trajectory of the coin [Dawid, 1997]. This objection can be di�used by placing x

and u in two remote locations and tossing the coin a split second after the bet is placed, but

before any light ray could arrive from the betting room to the coin-tossing room. In such

hypothetical situation the counterfactual statement: \our winning would be di�erent had

we bet di�erently" is rather compelling, even though the conditioning event (u) occurs after

the cause in question (x). We conclude that temporal descriptions such as \the state of the

world just before x" cannot be used to properly identify the appropriate set of conditioning

events (u) in a problem; a deterministic model of the mechanisms involved is needed for such

identi�cation.

4.2 Example-2: The �ring squad

Consider a 2-man �ring squad (see Figure 2) in which A and B are ri
emen, C is the squad's

Captain who is waiting for the court order, U , and T is a condemned prisoner. Let u be
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T

x:  A shoots A

(Prisoner)

y:  T dies

B

C (Captain)

(Riflemen)

U (Court order)

Figure 2: Causal relationships in the 2-man �ring squad example.

the proposition that the court has ordered an execution, x the proposition stating that A

pulled the trigger, and y that T is dead. Assume that P (u) = 1
2
, that A and B are perfectly

accurate marksmen who are alert and law abiding, and that T is not likely to die from fright

or other extraneous causes. We wish to compute the probability that x was a necessary (or

su�cient, or both) cause for y (i.e., PN, PS, and PNS).

De�nitions (7){(9) permit us to compute these probabilities directly from the given causal

model, since all functions and all probabilities are speci�ed, with the truth value of each

variable tracing that of U . Accordingly, we can write18

P (yx) = P (Yx(u) = true)P (u) + P (Yx(u
0) = true)P (u0)

=
1

2
(1 + 1) = 1 (47)

Similarly, we have

P (yx0) = P (Yx0(u) = true)P (u) + P (Yx0(u0) = true)P (u0)

=
1

2
(1 + 0) =

1

2
(48)

To compute PNS, we need to evaluate the probability of the joint event yx0 ^ yx. Con-

sidering that these two events are jointly true only when U = true, we have

PNS = P (yx; yx0)

= P (yx; yx0ju)P (u) + P (yx; yx0ju0)P (u0)

=
1

2
(1 + 0) =

1

2
(49)

The calculation of PS and PN, likewise, are simpli�ed by the fact that each of the

conditioning events, x ^ y for PN and x0 ^ y0 for PS, is true in only one state of U . We thus

18Recall that P (Yx(u
0) = true) involves the submodel Mx, in which X is set to true independently of U .

Thus, although under condition u0 the captain has not given a signal, the potential outcome Yx(u
0) calls for

hypothesizing ri
eman-A pulling the trigger (x) despite a court order to stay the execution.

24



have

PN = P (y0
x0jx; y) = P (y0

x0ju) = 0

re
ecting the fact that, once the court orders an execution (u), T will die (y) from the shot

of ri
eman B, even if A refrains from shooting (x0). Indeed, upon learning of T 's death, we

can categorically state that ri
eman-A's shot was not a necessary cause of the death.

Similarly,

PS = P (yxjx
0; y0) = P (yxju

0) = 1

matching our intuition that a shot �red by an expert marksman would be su�cient for

causing the death of T , regardless of the court decision.

Note that Theorems 1 and 2 are not applicable to this example, because x is not

exogenous; events x and y have a common cause (the Captain's signal) which renders

P (yjx0) = 0 6= P (yx0) = 1
2
. However, the monotonicity of Y (in x) permits us to com-

pute PNS, PS and PN from the joint distribution P (x; y) (using Eq. (39){(41)), instead of

consulting the basic model. Indeed, writing

P (x; y) = P (x0; y0) =
1

2
(50)

P (x; y0) = P (x0; y) = 0 (51)

we obtain

PN =
P (y)� P (yx0)

P (x; y)
=

1
2
� 1

2
1
2

= 0 (52)

PS =
P (yx)� P (y)

P (x0; y0)
=

1� 1
2

1
2

= 1 (53)

as expected.

4.3 Example-3: The e�ect of radiation on leukemia

Consider the following data (adapted from Finkelstein and Levin19 (1990)) comparing

leukemia deaths in children in Southern Utah with high and low exposure to radiation from

fallout from nuclear tests in Nevada. Given these data, we wish to estimate the probabilities

that high exposure to radiation was a necessary (or su�cient or both) cause of death due to

leukemia.

Assuming that exposure to nuclear radiation had no remedial e�ect on any individual in

the study (i.e., monotonicity), the process can be modeled by a simple disjunctive mechanism

represented by the equation

y = f(x; u; q) = (x ^ q) _ u (54)

where u represents \all other causes" of y, and q represents all \enabling" mechanisms that

must be present for x to trigger y. Assuming q and u are both unobserved, the question we

19The data in Finkelstein and Levin (1990) are given in person-year units. For the purpose of illustration

we have converted the data to absolute numbers (of deaths and non-deaths) assuming a 10-year observation

period.
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Exposure

High Low

x x0

Deaths y 30 16

Survivals y0 69,130 59,010

Table 1:

ask is under what conditions we can identify the probability of causation, PNS, PN, and PS,

from the joint distribution of X and Y .

Since Eq. (54) is monotonic in x, Theorem 3 states that all three quantities would be

identi�able provided X is exogenous, namely, x should be independent of q and u. Under

this assumption, Eqs. (32){(34) further permit us to compute the probabilities of causation

from frequency data. Taking fractions to represent probabilities, the data in Table 1 imply

the following numerical results

PNS = P (yjx)� P (yjx0) =
30

30 + 69; 130
�

16

16 + 59; 010
= :0001625 (55)

PN =
PNS

P (yjx)
=

PNS

30=(30 + 69; 130)
= :37535 (56)

PS =
PNS

1� P (yjx0)
=

PNS

1� 16=(16 + 59; 010)
= :0001625 (57)

Statistically, these �gures mean: There is a 1.625 in ten thousand chance that a randomly

chosen child would both die of leukemia if exposed and survive if not exposed. There is a

37.535% chance that a child who died from leukemia after exposure would have survived

had he/she not been exposed. There is a 1.625 in ten-thousand chance that any unexposed

surviving child would have died of leukemia had he/she been exposed.

Glymour (1998) analyzes this example with the aim of identifying the probability P (q)

(Cheng's \causal power") which coincides with PS (see Lemma 3). Glymour concludes that

P (q) is identi�able and is given by Eq. (34), provided x, u, and q are mutually independent.

Our analysis shows that Glymour's result can be generalized in several ways. First, since Y is

monotonic inX, the validity of Eq. (34) is assured even when q and u are dependent, because

exogeneity merely requires independence between x and fu; qg jointly. This is important in

epidemiological settings, because an individual's susceptibility to nuclear radiation is likely to

be associated with his/her susceptibility to other potential causes of leukemia (e.g., natural

kinds of radiation).

Second, Theorem 2 assures us that the relationships between PN, PS and PNS (Eqs. (22){

(23)), which Glymour derives for independent q and u, should remain valid even when u and

q are dependent.

Finally, Theorem 4 assures us that PN and PS are identi�able even when x is not indepen-

dent of fu; qg, provided only that the mechanism of Eq. (54) is embedded in a larger causal

structure which permits the identi�cation of P (yx). For example, assume that exposure to
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X

AND

W

U

OR

Q

Y

(Enabling
Factors)

(Confounding
Factors)

(Other
Causes)

(Radiation)

(Leukemia)

Figure 3: Causal relationships in the Radiation-Leukemia example. W represents confound-

ing factors.

nuclear radiation (x) is suspect of being associated with terrain and altitude, which are also

factors in determining exposure to cosmic radiation. A model re
ecting such consideration

is depicted in Figure 3, where W represents factors a�ecting both X and U . A natural way

to correct for possible confounding bias in the causal e�ect of X on Y would be to adjust

for W , that is, to calculate P (yx) using the adjustment formula

P (yx) =
X
w

P (yjx; w)P (w) (58)

(instead of P (yjx)) where the summation runs over levels of W . This adjustment formula,

which follows from Eq. (45), is correct regardless of the mechanisms mediating X and Y ,

provided only that W represents all common factors a�ecting X and Y [Pearl, 1995]. The-

orem 4 instructs us to evaluate PN and PS by substituting (58) into Eqs. (40) and (41),

respectively, and it assures us that the resulting expressions constitute consistent estimates

of PN and PS. This consistency is guaranteed jointly by the assumption of monotonicity and

by the (assumed) topology of the causal graph.

Note that monotonicity as de�ned in Eq. (31) is a global property of all pathways be-

tween x and y. The causal model may include several nonmonotonic mechanisms along these

pathways without a�ecting the validity of (31). Arguments for the validity of monotonicity,

however, must be based on substantive information, as it is not testable in general. For

example, Robins and Greenland (1989) argue that exposure to nuclear radiation may con-

ceivably be of bene�t to some individuals, since such radiation is routinely used clinically in

treating cancer patients.
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4.4 Example-4: Legal responsibility from experimental and non-

experimental data

A lawsuit is �led against the manufacturer of drug x, charging that the drug is likely to have

caused the death of Mr. A, who took the drug to relieve symptom S associated with disease

D. The manufacturer claims that experimental data on patients with symptom S show con-

clusively that drug x may cause only negligible increase in death rates. The plainti� argues,

however, that the experimental study is of little relevance to this case, because it represents

the e�ect of the drug on all patients, not on patients like Mr. A who actually died while

using drug x. Moreover, argues the plainti�, Mr. A is unique in that he used the drug on his

own volition, unlike subjects in the experimental study who took the drug to comply with

experimental protocols. To support this argument, the plainti� furnishes non-experimental

data indicating that most patients who chose drug x would have been alive if it were not for

the drug. The manufacturer counter-argues by stating that: (1) counterfactual speculations

regarding whether patients would or would not have died are purely metaphysical and should

be avoided [Dawid, 1997], and (2) non-experimental data should be dismissed a priori, on

the ground that such data may be highly biased; for example, incurable terminal patients

might be more inclined to use drug x if it provides them greater symptomatic relief. The

court must now decide, based on both the experimental and non-experimental studies, what

the probability is that drug x was in fact the cause of Mr. A's death.

The (hypothetical) data associated with the two studies are shown in Table 2 below.

Experimental Non-Experimental

x x0 x x0

Deaths y 16 14 Deaths y 2 28

Survivals y0 984 986 Survivals y0 998 972

Table 2:

The experimental data provide the estimates

P (yx) = 16=1000 = 0:016 (59)

P (yx0) = 14=1000 = 0:014 (60)

The non-experimental data provide the estimates

P (y) = 30=2000 = 0:015 (61)

P (y; x) = 2=2000 = 0:001 (62)

Assuming that drug x can only cause, never prevent, death, Theorem 4 is applicable and

Eq. (40) gives

PN =
P (y)� P (yx0)

P (y; x)
=

0:015� 0:014

0:001
= 1:00 (63)
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Thus, the plainti� was correct; barring sampling errors, the data provide us with 100% assur-

ance that drug x was in fact responsible for the death of Mr. A. Note that a straightforward

use of the experimental excess-risk-ratio would yield a much lower (and incorrect) result:

P (yx)� P (yx0)

P (yx)
=

0:016� 0:014

0:016
= 0:125 (64)

Evidently, what the experimental study does not reveal is that, given a choice, terminal

patients stay away from drug x. Indeed, if there were any terminal patients who would choose

x (given the choice), then the control group (x0) would have included some such patients (due

to randomization) and then the proportion of deaths among the control group P (yx0) should

have been higher than P (x0; y), the population proportion of terminal patients avoiding x.

However, the equality P (yx0) = P (y; x0) tells us that no such patients were included in the

control group, hence (by randomization) no such patients exist in the population at large

and, therefore, none of the patients who freely chose drug x was a terminal case; all were

susceptible to x.

The numbers in Table 2 were obviously contrived to represent an extreme case, so as to

facilitate a qualitative explanation of the validity of Eq. (40). Nevertheless, it is instructive

to note that a combination of experimental and non-experimental studies may unravel what

experimental studies alone will not reveal and, in addition, that such combination may

provide a test for the assumption of no-prevention, as outlined in Section 3.4 (Eq. (43)).

5 Identi�cation in Non-monotonic Models

In this section we discuss the identi�cation of probabilities of causation without making the

monotonicity assumption. We will assume that we are given a causal model M in which all

functional relationships are known, but since the exogenous variables U are not observed,

their distributions are not known.

A straightforward way to identify any causal or counterfactual quantity (including PN,

PS and PNS) would be to infer the probability distribution of the exogenous variables {

that would amount to inferring the entire model, from which all quantities can be computed.

Thus, our �rst step would be to study under what conditions the function P (u) can be

identi�ed.

IfM is Markovian, the problem can be analyzed by considering each parents-child family

separately. Consider any arbitrary equation in M

y = f(paY ; uY )

= f(x1; x2; : : : ; xk; u1; : : : ; um) (65)

where UY = fU1; : : : ; Umg is the set of exogenous, possibly dependent variables that appear

in the equation for Y . In general, the domain of UY can be arbitrary, discrete, or continuous,

since these variables represent unobserved factors that were omitted from the model. How-

ever, since the observed variables are binary, there is only a �nite number (2(2
k)) of functions

from PAY to Y and, for any point UY = u, only one of those function is realized. This de�nes

a partition of the domain of UY into a set S of equivalence classes, where each equivalence
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class s 2 S induces the same function f (s) from PAY to Y . Thus, as u varies over its domain,

a set S of such functions is realized, and we can regard S as a new exogenous variable, whose

values are the set ff (s) : s 2 Sg of functions from PAY to Y that are realizable in UY . The

number of such functions will usually be smaller than 2(2
k).20

For example, consider the model described in Figure 3. As the exogenous variables

(q; u) vary over their respective domains, the relation between X and Y spans three distinct

functions

Y = true; Y = false; and Y = X

The fourth possible function, Y = not-X, is never realized because fY (�) is monotonic. The

cells (q; u) and (q0; u) induce the same function between X and Y , hence they belong to the

same equivalence class.

If we are given the distribution P (uY ), we can compute the distribution P (s) and this will

determine the conditional probabilities P (yjpaY ) by summing P (s) over all those functions

f (s) that map paY into the value true,

P (yjpaY ) =
X

s:f(s)(paY ) = true

P (s) (66)

To insure model identi�ability it is su�cient that we can invert the process and determine

P (s) from P (yjpaY ). If we let the set of conditional probabilities P (yjpaY ) be represented
by a vector p (of 2k), and P (s) by a vector q, then the relation between q is p is linear and

can be represented as a matrix multiplication [Balke and Pearl, 1994b]

p = Rq (67)

whereR is a 0-1 matrix, with dimension 2k�jSj. Thus, a su�cient condition for identi�cation

is simply that R, together with the normalizing equation
P

j qj = 1, be invertible.

In general, R will not be invertible because the dimensionality of q can be much larger

than that of p. However, in many cases, such as the Noisy-OR mechanism

Y = U0

_
i=1;:::;k

(Xi ^ Ui); (68)

symmetry permits q to be identi�ed from P (yjpaY ) even when the exogenous variables

U0; U1; : : : ; Uk are not independent. This can be seen by noting that every point u for which

U0 = false de�nes a unique function f (s) because, if T is the set of indices i for which Ui is

true, the relationship between PAY and Y becomes

Y = U0

_
i2T

Xi (69)

and, for U0 = false, this equation de�nes a distinct function for each T . The number of

induced functions is 2k + 1, which (subtracting 1 for normalization) is exactly the number

of distinct realizations of PAY . Moreover, it is easy to show that the matrix connecting p

and q is invertible. We thus conclude that the probability of every counterfactual sentence

20Balke and Pearl (1994) called these S variables \response variables," and Heckerman and Shachter (1995)

called them \mapping variables."
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can be identi�ed in any Markovian model composed of Noisy-OR mechanisms, regardless

of whether the exogenous variables in each family are mutually independent. The same

holds of course for Noisy-AND mechanisms or any combination thereof, including negating

mechanisms, provided that each family consists of one type of mechanism.

To generalize this results to mechanisms other than Noisy-OR and Noisy-AND, we note

that although fY (�) in this example was monotonic (in each Xi), it was the redundancy of

fY (�), not its monotonicity, that ensured identi�ability. The following is an example of a

monotonic function for which the R matrix is not invertible

Y = (X1 ^ U1) _ (X2 ^ U1) _ (X1 ^X2 ^ U3)

It represents a Noisy-OR gate for U3 = false, and becomes a Noisy-AND gate for

U3 = true; U1 = U2 = false. The number of equivalence-classes induced is six, which

would require �ve independent equations to determine their probabilities; the data P (yjpaY )
provide only four such equations.

In contrast, the mechanism governed by the equation below, although non-monotonic, is

invertible:

Y = XOR(X1; XOR(U2; : : : ; XOR(Uk�1; XOR(Xk; Uk)))));

where XOR(�) stands for Exclusive-OR. This equation induces only two functions from

PAY to Y ;

Y =

(
XOR(X1; :::; Xk) if XOR(U1; : : : ; Uk) = false

:XOR(X1; : : : ; Xk) if XOR(U1; : : : ; Uk) = true

A single conditional probability, say P (yjx1; : : : ; xk), would therefore su�ce for computing

the one parameter needed for identi�cation: P [XOR(U1; : : : ; Uk) = true].

We summarize these considerations with a theorem.

De�nition 16 (Local invertability)

A model M is said to be locally invertible if for every variable Vi 2 V the set of 2k + 1

equations

P (yjpai) =
X

s:f(s)(pai)= true

qi(s) (70)

X
s

qi(s) = 1 (71)

has a unique solution for qi(s), where each f
(s)
i
(pai) corresponds to the function fi(pai; ui)

induced by ui in equivalence-class s.

Theorem 5 Given a Markovian model M =< U; V; ffig > in which the functions ffig are

known and the exogenous variables U are unobserved, if M is locally invertible, then the

probability of every counterfactual sentence is identi�able from the joint probability P (v).

Proof:

If Eq. (70) has a unique solution for qi(s), we can replace U with S and obtain an equivalent

model

M 0 =< S; V; ff 0
i
g > where f 0

i
= f

(s)
i
(pai):
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M 0 together with qi(s) completely speci�es a probabilistic model < M 0; P (s) > (due to the

Markov property) from which probabilities of counterfactuals are derivable by de�nition. 2

Theorem 5 provides a su�cient condition for identifying probabilities of causation, but

of course does not exhaust the spectrum of assumptions that are helpful in achieving iden-

ti�cation. In many cases we might be justi�ed in hypothesizing additional structure on the

model, for example, that the U variables entering each family are themselves independent.

In such cases, additional constraints are imposed on the probabilities P (s) and Eq. (70) may

be solved even when the cardinality of S far exceeds the number of conditional probabilities

P (yjpaY ).

6 From Necessity and Su�ciency to \Actual Cause"

6.1 The Role of Structural Information

In Section 3, we alluded to the fact that both PN and PS are global (i.e., input-output)

features of a causal model, depending only on the function Yx(u), but not on the structure

of the process mediating between the cause (x) and the e�ect (y). That such structure plays

a role in causal explanation is seen in the following example.

Consider an electric circuit consisting of a light bulb and two switches, and assume that

the light is turned on whenever either switch-1 or switch-2 is on. Assume further that,

internally, when switch-1 is on it not only activates the light, but also disconnects switch-

2 from the circuit, rendering it inoperative. From an input-output viewpoint, the light

responds symmetrically to the two switches; either switch is su�cient to turn the light on.

However, with both switches on, we would not hesitate to proclaim switch-1 as the \actual

cause" of the current 
owing in the light bulb, knowing that, internally, switch-2 is totally

disconnected in this particular state of a�airs. There is nothing in PN and PS that could

possibly account for this asymmetry; each is based on the response function Yx(u), and is

therefore oblivious to the internal workings of the circuit.

This example is isomorphic to Suppes' Desert Traveler, and belongs to a large class of

counterexamples that were brought up against Lewis' counterfactual account of causation.

It illustrates how an event (e.g., switch-1 being on) can be considered a cause although the

e�ect persists in its absence. Lewis' (1986) answer to such counterexamples was to modify

the counterfactual criterion and let x be a cause of y as long as there exists a counterfactual-

dependence chain of intermediate variables between x to y, that is, the output of every link

in the chain is counterfactually dependent on its input. Such a chain does not exist for

switch-2, since it is disconnected when both switches are on.

Lewis' chain criterion retains the connection between causation and counterfactuals, but

it is rather ad-hoc; after all, why should the existence of a counterfactual-dependence chain

be taken as a de�ning test for such crucial concepts as \actual cause," by which we decide the

guilt or innocence of defendants in a court of law? Another problem with Lewis' chain is its

failure to capture symmetric cases of overdetermination. For example, consider two switches

connected symmetrically, such that each participates equally in energizing the light bulb. In

this situation, our intuition regards each of the switches as a contributory actual cause of
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the light, though none passes the counterfactual test and none supports a counterfactual-

dependence chain in the presence of the other.

An alternative way of using counterfactuals to de�ne actual causes is proposed in

[Pearl, 1998]. An event x is de�ned as the \actual cause" of event y (in a world u), if x

passes the standard counterfactual test (i.e., Yx0(u) = false) in some mutilated model M 0,

minimally removed from M . In the symmetric two-switch example, we declare each switch

to be an actual cause of the light because the light would be o� if that switch were o�, when

we consider a slightly mutilated circuit, one in which the other switch is disconnected from

the power source. The mutilated modelM 0, called a \causal beam," is carefully constructed

in [Pearl, 1998] to ensure minimal deviation from the actual causal model M , considering

the actual history of the world u.

The concept of causal su�ciency o�ers yet a third way of rescuing the counterfactual

account of causation. Consider again the symmetric two-switch example (or the �ring squad

example of Section 4.2). Both switches enjoy high PS value, because each would produce

light from a state (u0) of darkness, namely, a state in which the other switch is o�. Likewise,

the shot of each ri
emen in Example-2 (Section 4.2) enjoys a PS value of unity (see Eq. (53)),

because each shot would cause the prisoner's death in the state u' in which the prisoner is

alive, namely, the court orders no execution. Thus, if our intuition is driven by some strange

mixture of su�ciency and necessity considerations, it seems plausible that we could formulate

an adequate criterion for actual causation using the right mixture of PN and PS components.

Similar expectations are expressed in Hall (1998). In analyzing problems faced by the

counterfactual approach, Hall makes the observation that there are two concepts of causation,

only one of which is captured by the counterfactual account, and that failure to capture the

second concept may well explain its clashes with intuition. Hall calls the �rst concept

\dependence" and the second \production." In the symmetrical two-switch example (an

instance of \over-determination"), intuition considers each switch to be an equal \producer"

of the light, while the counterfactual account tests for \dependence" only, and fails because

the light does not \depend" on either switch alone.

The notions of dependence and production closely parallel those of necessity and suf-

�ciency, respectively. Thus, our formulation of PS could well provide the formal basis for

Hall's notion of production, and serve as a step toward the formalization of actual causation.

For this program to succeed, several hurdles must be overcome, the most urgent being the

problems of incorporating singular event information and structural information into PS.

These will be discussed next.

6.2 Singular su�cient causes

So far we have explicated the necessity and su�ciency conceptions of causation in terms of

their probabilities, but not as properties of a given speci�c scenario, dictated by a speci�c

state of U . This stands in contrast with standard practice of �rst de�ning truth values of

sentences in each speci�c world, then evaluating probabilities of sentences from probabilities

of worlds. Lewis (1986) counterfactual account of causation, for example, assigns a truth

value to the sentence \x is a cause of y" in each speci�c world (u), given by the conjunction

x^ y ^ y0
x0. The question arises whether sentences about su�cient causation can likewise be

given world-level truth values and, if they do, which worlds should provide those values, and

33



how evidential information about those worlds should enter probability calculations.

Necessary causation can be formulated deterministically (at the world-level) in the stan-

dard counterfactual way:

De�nition 17 (Deterministic necessity)

Event x is said to be a necessary cause of event y in a world u just in case the following hold

in u:

1. Y (u) = y and X(u) = x

2. Yx0(u) 6= y for every x0 = x.

Accordingly, if additional evidence e is available about our current world, it can easily

be incorporated into the evaluation of PN as follows:

PN(x! yje) = P (y0
x0jx; y; e)

where PN(x! yje) is the probability that x was a necessary cause of y, given evidence e.

Su�cient causation, on the other hand, requires a nonstandard deterministic (i.e., world-

level) formulation.

De�nition 18 (Deterministic su�ciency)

Event x is said to be a su�cient cause of event y in a world u just in case the following hold

in u:

1. Y (u) 6= y and X(u) 6= x

2. Yx(u) = y

In words, x is a su�cient cause for y if x would produce y (counterfactually) in world u

in which x and y are absent.

The nonstandard feature of this de�nition lies in requiring both the explanation (x)

and the explanadum (y) to be false in any world u where the former pertains to cause the

latter. Thus, it appears that nothing could possibly explain (by consideration of su�ciency)

events that happened to materialize in the actual world. This feature re
ects, of course, our

commitment to interpret su�ciency as the capacity to produce an e�ect and, as strange as

it may sound, it is indeed impossible to talk about \x producing y" in a world (say ours) in

which x and y are already true. The word \production" implies the establishment of new

facts. Therefore, to test production, we must step outside our world momentarily, imagine

a new world with x and y absent, apply x, and see if y sets in.

This peculiar feature of su�ciency leads to di�culties in incorporating world-speci�c

�ndings into the analysis. Consider a 1-man �ring squad in which ri
eman A has a hit rate

of 99% and the prisoner has a small chance p of dying from fear. Our analysis of Section

3 indicates that PS equals 99%, independent of p. Now suppose we �nd that the bullet

�red hit the prisoner's leg, from which we conclude that the prisoner must have died from

fear. Would this �nding change our assessment of how su�cient A's shot was for causing

T 's death? There are grounds for arguing that it should: although, in general, a shot from
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a ri
eman like Mr. A would be 99% su�cient for the job, this particular shot was evidently

of a di�erent type, a peculiar type that scores zero on the accuracy and su�ciency scale.

However it is not at all trivial to formalize this argument using the logical machinery at

our disposal. First, to properly incorporate the new piece of evidence, e: \The bullet was

found in the prisoner's leg" we need to know the structure of the causal process; the function

Yx(u) in itself would be insu�cient, for it does not tell us how the location of the bullet

alters the chance of death. But even given the structure, say in the form of an intermediate

variable denoting \Location of bullet," we cannot simply add e to the conditioning part in

the expression for PS, forming P (yxjx
0; y0; e), as we did for PN. The location of the bullet was

observed in the actual world, that is, after x was enacted and y veri�ed, while the conditioning

events, x0 and y0, pertain to hypothetical world that existed prior to the action (x). Mixing

the two without making this distinction leads to contradictions and misinterpretations. The

expression P (yxjx
0; y0; e) amounts to evaluating the probability that a living prisoner carrying

a bullet in his leg would die if shot by Mr. A. This is certainly not the intended interpretation

of PS and would not evaluate to zero as it should. As another example, if e stands for \bullet

in the heart," which con
icts with y0, we would be instructed into conditioning P (yx) on a

contradictory event.

An attempt to place e in the consequent part of the counterfactual, forming P (yx; ejx
0; y0),

again does not accomplish our mission.21 It expresses the probability that, both, the shot

would be su�cient to cause death and that a living prisoner would have a bullet in his leg;

still far from the probability that a shot in the leg will su�ce to cause death.

These di�culties stem from dealing with the dynamic process of \production" using a

syntax that does not allow explicit reference to time. Fortunately, the di�culty can be

resolved even in the con�nes of this syntax. Since the evidence e was obtained in a world

created by the action x, and since events in such worlds are governed by the submodel Mx

(see Section 2.1), the proper syntax for introducing such evidence would be to condition on

the subscripted symbol ex. This leads to:

De�nition 19 (Singular-event su�ciency)

The probability that x was a su�cient cause of y given evidence e is de�ned as
22
:

PS(x! yje) = P (yxjex; x
0; y0) (72)

To illustrate, assume Z stands for a 2-state variable \Location of bullet," with z denoting

\bullet in chest" and z0 denoting \bullet not in chest." Assuming further that the 
ow of

causation is governed by the causal chain X ! Z ! Y , and that a bullet would cause death

if and only if it ends up in the chest. It is not hard to show that De�nition 19 yields

PS(x ! yjz) = 1

21Related attempt to modify the consequent part is reported in Michie (1997), using an adaptation of

Good's measure of causal su�ciency, Qsuf .
22Other expressions are also possible, for example, P (yx; exjx

0; y0), which captures the capacity of x to

produce both y and e. This expression su�ers, however, from sensitivity to detail; elaborate descriptions of

e would yield extremely low probabilities.
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PS(x ! yjz0) = 0

PN(x ! yjz) = 1

PN(x ! yjz0) = 1� P (death from fear) (73)

as expected.

The next subsection illustrates the role of singular event information in a probabilistic

analysis of Suppes' desert traveler story.

6.3 Example: The Desert Traveler (after P. Suppes)

A desert traveler T has two enemies. Enemy-1 poisons T 's canteen, and Enemy-2, unaware

of Enemy-1's action, shoots and empties the canteen. A week later, T is found dead and the

two enemies confess to action and intention. A jury must decide whose action was the cause

of T 's death.

Let u be the proposition that traveler's �rst need of drink occurred after the shot was

�red. Let x and p be the propositions \Enemy-2 shot", and \Enemy-1 poisoned the water,"

respectively, and let y denote \T is dead." In addition to these events we will make informal

use of possible exceptions to the normal story, such as T surviving the ordeal or T suspecting

that the water is poisoned.

The causal model underlying the story is depicted in Figure 4. The model is completely

Enemy-2
shoots canteen

needing drink
after the shot

Enemy-1
poisons water

deathy

D

x u

C cyanide intakedehydration

P

Figure 4: Causal relationships in the Desert-Traveler example.

speci�ed through the functions fi(pai; u) which are not shown explicitly in Fig. 4, but are

presumed to determine the value of each child variable from those of its parent variables in

the graph, in accordance with our usual understanding of the story:

c = p ^ (u0 _ x0)
d = x ^ (u _ p0)
y = c _ d

(We assume that T will not survive with empty canteen (x) even after drinking some unpoi-

soned water before the shot (p0 ^ u0).)
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6.3.1 Necessity and Su�ciency Ignoring Internal Structure

The global function Y (x; p; u) is given by

y = x _ p

which is symmetric in x and p.

The calculations of PS(x ! y) = PS(p ! y) and PN(p ! y) = PN(x ! y), can

proceed directly from their de�nitions, without resorting to structural information.

PS(x! y) = P (yxjx
0; y0) = 1

because (x0; y0) implies that no poison was added (p0), in which case P (yx) is 1, barring the

unlikely event that T manages to survive with an empty canteen.

Similarly,

PN(x! y) = P (y0
x0jx; y) = 0

If we wish to include the possibility of T surviving with either an empty canteen or a

poisoned canteen, we have:

PS(x! y) = P (yxjx
0; y0)

= 1� P (survival with empty canteen)

PS(p! y) = P (ypjp
0; y0)

= 1� P (survival with poisoned water) (74)

Note that PN(x! y) and PN(p! y) remain zero, una�ected by the possibility of survival,

because T 's death (y) is taken as evidence that conditions necessary for survival did not in

fact materialize (see Lemma 2).

6.3.2 Su�ciency and Necessity given Forensic Reports

Let c stand for: \Cyanide was found in T 's body" and d for: \T 's body showed signs of

dehydration."

Incorporating the �rst evidence into the probability of su�ciency (Eq. 72), we have

PS(x! yjc) = P (yxjx
0; y0; cx)

The conditioning part instructs us to imagine a scenario in which Enemy-2 did not shoot,

T did not die and cyanide would be found in T 's body if Enemy-2 were to shoot. The one

scenario which complies with these conditions is as follows: The water was poisoned, T drank

the water before the time Enemy-2 was about to shoot (u0), (thus cx is true despite x), and

T was somehow rescued (y0). Under such scenario, Enemy-2 shooting would not produce T 's

death, hence, PS(x ! yjc) = 0. This matches our intuition; upon learning that T 's body

contains cyanide, emptying the canteen is no longer considered the cause of death.

Now consider the evidence d: \dehydration." To evaluate

PS(x! yjd) = P (yxjx
0; y0; dx)
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we need �rst list all scenarios compatible with (x0; y0; dx), namely: no shot �red, T is alive

and T would be dehydrated if Enemy-2 were to shoot. Two scenarios come to mind, one

natural, the other bizarre.

Scenario-1: No shot �red, the water is poisoned, the poisoned water would be emptied

if Enemy-2 were to shoot (u), and T would su�er dehydration. In this scenario x would

produce death, unless T is rescued.

Scenario-2: No shot was �red, T would come to drink before the shot (if any) but would

somehow suspect that the water is poisoned and refrain from drinking. This would cause

dehydration by choice, and death unless rescued.

Summing over both scenarios, we obtain

PS(x! yjd) = 1� P (T survives in dehydration):

To summarize, we now have

PS(x! y) = 1� P (survival with empty canteen)

PS(x! yjc) = 0

PS(x! yjd) = 1� P (T will be rescued after dehydration): (75)

Now consider the su�ciency of Enemy-1's action, in light of the two forensic reports.

The conditioning part in

PS(p! yjc) = P (ypjp
0; y0; cp)

instructs us to imagine a scenario in which Enemy-1 did not poison the water, T did not die,

but cyanide would be found in T 's body if Enemy-1 were to poison the water. This is the

natural scenario to evolve if Enemy-2 did not shoot { T would die if the water were poisoned

(yp) unless rescued before the cyanide exerts its e�ect. Thus,

PS(p! yjc) = 1� P (rescued after drinking cyanide)

Finally, consider the evidence d: \dehydration"

PS(p! yjd) = P (ypjp
0; y0; dp)

We need �rst to list all scenarios compatible with (p0; y0; dp), namely: no poisoning occurred,

T is alive and T would be dehydrated if enemy-1 were to poison the water. This is a bit hard

to imagine, but not totally infeasible if we allow a special rescue operation: Enemy-2 shoots,

the container is empty, T comes to drink after the shot is �red, dehydration occurs regardless

of Enemy-1 action (dp), but a rescue team revives T despite his state of dehydration.

In this scenario survival would occur even under p, therefore

PS(p! yjd) = 0

Summarizing:

PS(p! y) = 1� P (survival with poisoned canteen)

PS(p! yjc) = 1� P (rescue after drinking cyanide)

PS(p! yjd) = 0 (76)
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6.3.3 Necessity given Forensic reports

The probabilities associated with necessary causation are usually easier to evaluate than their

su�ciency counterparts, because the former call for scenarios that actually materialized in

the story. To illustrate, let us evaluate the probability that Enemy-2 was a necessary cause

of T 's death, given that cyanide was found in T 's body,

PN(x! yjc) = P (y0
x0jx; y; c)

The condition (x; y; c) can materialize only in state u0, where T drinks the poisoned water

before the shot. Assuming this state, it is clear that T is doomed regardless of Enemy-2

action, and y0
x0 is false. Thus,

PN(x! yjc) = 0

Prospects of rescue, as we have mentioned before, do not alter this conclusion, because those

are ruled out by the conditioning part.

A dehydration report would evoke the normal scenario, since

PN(x! yjd) = P (y0
x0jx; y; d)

and condition (x; y; d) can materialize in state u: T reaches for drink after the shot is

�red, �nds the canteen empty, and su�ers dehydration. In this state, y0
x0 is again false,

because death would occur (from poison) even if Enemy-2 refrains from action (x0). Thus,

as expected,

PN(x! yjd) = 0

For completeness, we evaluate the necessity ascribed to Enemy-1 action,

PN(p! yjc) = P (y0
p0jp; y; c)

= P (T survives if not pju0) = 0 (77)

because (p; y; c) implies that T drank the poisoned water before Enemy-2 �red and, in this

state (u0), he would have died (from dehydration) even if Enemy-1 had not poisoned the

water.

PN(p! yjd) = P (y0
p0jp; y; d) =

= P (T survives if not pju) = 0 (78)

because (p; y; d) implies that T reached for drink after Enemy-2 �red (u) and, in this state

would have died (from dehydration) even if Enemy-1 had not poisoned the canteen.

Note that if we are not given any forensic report but assume, nevertheless, that such

reports were available from the natural scenario in the story (i.e. u; x; p; d; y), then the

probabilities of su�ciency would be (barring considerations of survival):

PS(x! yjd) = 1

PS(p! yjd) = 0 (79)

These results coincide with those obtained from Lewis' analysis, using counterfactual-

dependence chains. Whether this coincidence is universal, and whether it could serve as

the basis for improving Lewis' account of causation remain a topic for future investigation.
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7 Conclusion

This paper explicates and analyzes the necessary and su�cient components of causation. Us-

ing counterfactual interpretations that rest on structural-model semantics, the paper demon-

strates how simple techniques of computing probabilities of counterfactuals can be used in

computing probabilities of causes, deciding questions of identi�cation, de�ning conditions

under which probabilities of causes can be estimated from statistical data, and uncovering

tests for assumptions that are routinely made (often unwittingly) by analysts and investiga-

tors.

On the practical side, the paper o�ers several useful tools to epidemiologists and health

scientists. It formulates and calls attention to basic assumptions that must be ascertained

before statistical measures such as excess-risk-ratio could represent causal quantities such as

attributable-risk or probability of causes. It shows how data from both experimental and

non-experimental studies can be combined to yield information that neither study alone can

reveal. Finally, it provides tests for the commonly made assumption of \no prevention,"

and for the often asked question of whether a clinical study is representative of its target

population.

On the conceptual side, we have seen that both the probability of necessity (PN) and

probability of su�ciency (PS) play a role in our understanding of causation, and that both

components have their logics and computational rules. Although the counterfactual concept

of necessary cause (i.e., that an outcome would not have occurred \but for" the action) is

predominant in legal settings [Robertson, 1997] and in ordinary discourse, the su�ciency

component of causation has a de�nite in
uence on causal thoughts.

The su�ciency component plays a major role in scienti�c and legal explanations, as can

be seen from examples where the necessary component is dormant. Why do we consider

striking a match to be a more adequate explanation (of a �re) than the presence of oxygen?

Recasting the question in the language of PN and PS, we note that, since both explanations

are necessary for the �re, each will command a PN of unity. (In fact PN is higher for

the oxygen, if we allow for alternative ways of igniting a spark). Thus, it must be the

su�ciency component alone that endows the match with greater explanatory power than

the oxygen. If the probabilities associated with striking a match and the presence of oxygen

are pm and po, respectively, the PS measures associated with these explanations evaluate to

PS(match) = po and PS(oxygen) = pm, clearly favoring the match when po >> pm. Thus,

a robot instructed to explain why a �re broke out has no choice but to consider both PN

and PS in its deliberations.

Should PS enter legal considerations in criminal and tort law? I believe that it should, (as

does I.J. Good (1993)), because attention to su�ciency implies attention to the consequences

of one's action. The person who lighted the match ought to have anticipated the presence

of oxygen, whereas the person who supplied (or who could but failed to remove) the oxygen

is not generally expected to have anticipated match-striking ceremonies.

However, what weight should the law assign to the necessary versus the su�cient compo-

nent of causation? This question obviously lies beyond the scope of our investigation, and it

is not at all clear who would be quali�ed to tackle the question or whether our legal system

would be prepared to implement the recommendation. I am hopeful, however, that whoever

undertakes to consider such questions will �nd the analysis in this paper to be of some use.
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A APPENDIX: The empirical content of counterfac-

tuals

The word \counterfactual" is a misnomer, as it connotes a statement that stands contrary to

facts or, at the very least, a statement that escapes empirical veri�cation. Counterfactuals

are in neither category; they are fundamental to scienti�c thought and carry as clear an

empirical message as any scienti�c law.

Consider Ohm's law V = IR. the empirical content of this law can be encoded in two

alternative forms.

1. Predictive form: If at time t0 we measure current I0 and voltage V0 then, ceteras

paribum, at any future times t > t0, if the current 
ow will be I(t) the voltage drop

will be:

V (t) =
V0

I0
I(t):

2. Counterfactual form: If at time t0 we measure current I0 and voltage V0 then, had

the current 
ow at time t0 been I 0, instead of I0, the voltage drop would have been:

V 0 =
V0I

0

I0

On the surface, it seems that the predictive form makes meaningful and testable empirical

claims while the counterfactual form merely speculates about events that have not, and could

not have occurred; as it is impossible to apply two di�erent currents into the same resistor

at the same time. However, if we interpret the counterfactual form to mean no more nor less

than a conversational short hand of the predictive form, the empirical content of the former

shines through clearly. Both enable us to make an in�nite number of predictions from just

one measurement (I0; V0), and both derive their validity from a scienti�c law (Ohm's law)

which ascribes a time-invariant property (the ratio V=I) to any physical object.

I will adapt this predictive interpretation when I speak of counterfactuals, and I base

this interpretation on the observation that counterfactuals, despite their a-temporal appear-

ance, are invariably associated with some law-like, persistent relationships in the world. For

example, the statement \had Germany not been punished so severely at the end world-war

I, Hitler would not have come to power" would sound bizarre to anyone who does not share

our understanding that, as a general rule, \humiliation breeds discontent."

But if counterfactual statements are merely a round-about way of stating sets of predic-

tions, why do we resort to such convoluted modes of expression instead of using the predictive

mode directly? The answer, I believe, rests with the quali�cation \ceteras paribum" that

accompanies the predictive claim, which is not entirely free of ambiguities. What should be

held constant when we change the current in a resistor? The temperature? the laboratory

equipments? the time of day? Certainly not the reading on the voltmeter? Such matters

must be carefully speci�ed when we pronounce predictive claims and take them seriously.

Many of these speci�cations are implicit (hence super
uous) when we use counterfactual

expressions, especially when we agree over the underlying causal model. For example, we

do not need to specify under what temperature and pressure future predictions should hold
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true; these are implied by the statement \had the current 
ow at time t0 been I 0, instead

of I0." In other words, we are referring to precisely those conditions that prevailed in our

laboratory at time t0. That statement also implies that we do not really mean for anyone

to hold the reading on the voltmeter constant { only variables that, according to our causal

model, are not a�ected by the counterfactual antecedent (I) are expected to remain constant

for the predictions to hold true.

To summarize, I interpret a counterfactual statement to convey a set of predictions under

well de�ned set of conditions, those prevailing in the factual part of the statement. For these

predictions to be valid, two components must remain invariants: the laws (or mechanisms)

and the boundary conditions. Cast in the language of structural models, the laws correspond

to the equations ffig and the boundary conditions correspond to the state of the exogenous

variables U . Thus, a precondition for the validity of the predictive interpretation of a coun-

terfactual statement is the assumption that U will remain the same at the time where our

predictive claim is to be applied or tested.

This is best illustrated using the betting example of Section 4.1. The predictive interpre-

tation of the counterfactual \Had I bet di�erently I would have lost a dollar" is the claim:

\If my next bet is tails, I will lose a dollar." For this claim to be valid, two invariants must

be assumed: the payo� policy and the outcome of the coin. While the former is a plausible

assumption in betting context, the latter would be realized in only rare circumstances. It

is for this reason that the predictive utility of the statement \Had I bet di�erently I would

have lost a dollar" is rather low, and some would even regard it as hind-sighted nonsense.

(It is not hard however to imagine a lottery in which the payo� policy and the outcome of

the random device remain constant for a short period of time, during which additional bets

are accepted and processed. Most those who play the stock market believe in strategies that

allow an investor to quickly recover from a bad move.) At any rate, it is the persistence

across time of U and f(x; u) that endows counterfactual expressions with predictive power;

take this persistence away, and the counterfactual loses its obvious economical utility.

I said \obvious" because there is an element of utility in counterfactuals that does not

translate immediately to predictive payo�, and may explain, nevertheless, the ubiquity of

counterfactuals in human discourse. I am thinking of explanatory value. Suppose, in the

betting story, coins were tossed afresh for every bet. Is there no value whatsoever to the

statement \Had I bet di�erently I would have lost a dollar?" I believe there is; it tells us

that we are not dealing here with a whimsical bookie like the one who decides which way

to spin our atoms and electrons, but one who at least glances at the bet, compares it to

some standard, and decides a win or a loss using a consistent policy. This information may

not be very useful to us as players, but it may be useful to say state inspectors who come

every so often to calibrate the gambling machines to ensure the State's take of the pro�t.

More signi�cantly, it may be useful to us players, too, if we venture to cheat slightly, say by

manipulating the trajectory of the coin, or by installing a tiny transmitter to tell us which

way the coin landed. For such cheating to work, we should know the policy y = f(x; u) and

the statement \Had I bet di�erently I would have lost a dollar?" reveals important aspects

of that policy.

Is it far fetched to argue for the merit of counterfactuals by hypothesizing unlikely sit-

uations where players cheat and rules are broken? I submit that such unlikely operations

are the norm in gauging the explanatory value of sentences. In fact, it is the nature of any
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explanation, especially causal, that its utility be amortized not over standard situations but,

rather, over novel settings which require innovative manipulation of one's environment.

Recapping our discussion, we see that counterfactuals may earn predictive value under

two conditions; (1) when the unobserved uncertainty-producing variables (U) remain con-

stant (until our next prediction or action), (2) when the uncertainty-producing variables

o�er the potential of being observed sometime in the future (before our next prediction or

action.) In both cases we also need to ensure that the outcome-producing mechanism f(x; u)

persists unaltered.

These conclusions raise interesting questions on the use of counterfactuals in microscopic

phenomena, as none of these conditions holds for the type of uncertainty that we encounter

in quantum theory. Heisenberg's dice is rolled afresh billions of times each second, and our

measurement of u will never be �ne enough to remove all uncertainty from the response

equation y = f(x; u). Thus, when we include quantum-level processes in our analysis we

face a dilemma; either we disband all talk of counterfactuals (a strategy recommended by

some researchers [Dawid, 1997]) or we continue to use counterfactuals but limit their usage

to situations where they assume empirical meaning. This amounts to keeping in the anal-

ysis only U 's that satisfy conditions (1) and (2) above. Instead of hypothesizing U 's that

completely remove all uncertainties, we admit only those U's that are either (1) persistent

or (2) potentially observable.

Naturally, coarsening the granularity of the exogenous variables has its price tag; the

mechanism equations y = f(x; u) lose their deterministic character and should be made

stochastic. Instead of constructing causal models from a set of deterministic equations ffig
we should consider models made up of stochastic functions ff �

i
g, where each f �

i
is a mapping

from V [U to some intrinsic probability distribution P �(vi) over the states of Vi. This option

lies beyond the scope of the present paper, but its basic character should follow from the

three steps of abduction-action-deduction, outlined in Section 2.2.
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