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Abstract 

The direct effect of one event on another can 
be defined and measured by holding constant 
all intermediate variables between the two. 
Indirect effects present conceptual and prac­
tical difficulties (in nonlinear models), be­
cause they cannot be isolated by holding cer­
tain variables constant. This paper presents 
a new way of defining the effect transmit­
ted through a restricted set of paths, without 
controlling variables on the remaining paths. 
This permits the assessment of a more nat­
ural type of direct and indirect effects, one 
that is applicable in both linear and nonlinear 
models and that has broader policy-related 
interpretations. The paper establishes con­
ditions under which such assessments can 
be estimated consistently from experimen­
tal and nonexperimental data, and thus ex­
tends path-analytic techniques to nonlinear 
and nonparametric models. 

1 INTRODUCTION 

The distinction between total, direct, and indirect ef­
fects is deeply entrenched in causal conversations, and 
attains practical importance in many applications, in­
cluding policy decisions, legal definitions and health 
care analysis. Structural equation modeling (SEM) 
(Goldberger 1972) , which provides a methodology of 
defining and estimating such effects, has been re­
stricted to linear analysis, and no comparable method­
ology has been devised to extend these capabilities 
to models involving nonlinear dependencies,1 as those 

1 A notable exception is the counterfactual analysis of 
Robins and Greenland (1992) which is applicable to non­
linear models, but does not incorporate path-analytic tech­
niques. 

commonly used in AI applications (Hagenaars 1993, p. 
17). 

The causal relationship that is easiest to interpret, 
define and estimate is the total effect. Written as 
P(Y"' = y), the total effect measures the probability 
that response variable Y would take on the value y 
when X is set to x by external intervention.2 This 
probability function is what we normally assess in a 
controlled experiment in which X is randomized and 
in which the distribution of Y is estimated for each 
level x of X. 

In many cases, however, this quantity does not ade­
quately represent the target of investigation and at­
tention is focused instead on the direct effect of X on 
Y. The term "direct effect" is meant to quantify an 
influence that is not mediated by other variables in 
the model or, more accurately, the sensitivity of Y to 
changes in X while all other factors in the analysis are 
held fixed. Naturally, holding those factors fixed would 
sever all causal paths from X to Y with the exception 
of the direct link X ---t Y, which is not intercepted by 
any intermediaries. 

Indirect effects cannot be define in this manner, be­
cause it is impossible to hold a set of variables con­
stant in such a way that the effect of X on Y mea­
sured under those conditions would circumvent the di­
rect pathway, if such exists. Thus, the definition of 
indirect effects has remained incomplete, and, save for 
asserting inequality between direct and total effects, 
the very concept of "indirect effect" was deemed void 
of operational meaning (Pearl 2000, p. 165). 

This paper shows that it is possible to give an op­
erational meaning to both direct and indirect effects 

2The substripted notation Y, is borrowed from the 
potential-outcome framework of Rubin (1974). Pearl 
(2000) used, interchangeably, P, (y), P(yido(x)), P(yix), 
and P(yx), and showed their equivalence to probabilities of 
subjunctive conditionals: P((X = x) 0--t (Y = y)) (Lewis 
1973). 
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without fixing variables in the model, thus extending 
the applicability of these concepts to nonlinear and 
nonparametric models. The proposed generalization 
is based on a more subtle interpretation of " effects" , 
here called "descriptive" (see Section 2.2), which con­
cerns the action of causal forces under natural, rather 
than experimental conditions, and provides answers to 
a broader class of policy-related questions. This inter­
pretation yields the standard path-coefficients in linear 
models, but leads to different formal definitions and 
different estimation procedures of direct and indirect 
effects in nonlinear models. 

Following a conceptual discussion of the descriptive 
and prescriptive interpretations (Section 2.2) , Section 
2.3 illustrates their distinct roles in decision-making 
contexts, while Section 2.4 discusses the descriptive 
basis and policy implications of indirect effects. Sec­
tions 3.2 and 3.3 provide, respectively, mathematical 
formulation of the prescriptive and descriptive inter­
pretations of direct effects, while Section 3.4 estab­
lishes conditions under which the descriptive (or "nat­
ural") interpretation can be estimated consistently 
from either experimental or nonexperimental data. 
Sections 3.5 and 3.6 extend the formulation and iden­
tification analysis to indirect effects. In Section 3. 7, we 
generalize the notion of indirect effect to path-specific 

effects, that is, effects transmitted through any speci­
fied set of paths in the model. 

2 CONCEPTUAL ANALYSIS 

2.1 Direct versus Total Effects 

A classical example of the ubiquity of direct effects 
(Hesslow 1976) tells the story of a birth-control pill 
that is suspect of producing thrombosis in women and, 
at the same time, has a negative indirect effect on 
thrombosis by reducing the rate of pregnancies (preg­
nancy is known to encourage thrombosis). In this ex­
ample, interest is focused on the direct effect of the 
pill because it represents a stable biological relation­
ship that, unlike the total effect, is invariant to mar­
ital status and other factors that may affect women's 
chances of getting pregnant or of sustaining pregnancy. 
This invariance makes the direct effect transportable 
across cultural and sociological boundaries and, hence, 
a more useful quantity in scientific explanation and 
policy analysis. 

Another class of examples involves legal disputes over 
race or sex discrimination in hiring. Here, neither the 
effect of sex or race on applicants' qualification nor 
the effect of qualification on hiring are targets of lit­
igation. Rather, defendants must prove that sex and 
race do not directly influence hiring decisions, what-

ever indirect effects they might have on hiring by way 
of applicant qualification. This is made quite explicit 
in the following court ruling: 

"The central question in any employment­
discrimination case is whether the employer 
would have taken the same action had the 
employee been of a different race (age, sex, 
religion, national origin etc.) and everything 
else had been the same." (Carson versus 
Bethlehem Steel Corp., 70 FEP Cases 921, 
7th Cir. (1996), Quoted in Gastwirth 1997.) 

Taking this criterion as a guideline, the direct effect 
of X on Y (in our case X =gender Y =hiring) can 
roughly be defined as the response of Y to change in 
X (say from X = x• to X = x) while keeping all 
other accessible variables at their initial value, namely, 
the value they would have attained under X = x• .3 
This doubly-hypothetical criterion will be given pre­
cise mathematical formulation in Section 3, using the 
language and semantics of structural counterfactuals 
(Pearl 2000; chapter 7). 

As a third example, one that illustrates the policy­
making ramifications of direct and total effects, con­
sider a drug treatment that has a side effect -
headache. Patients who suffer from headache tend to 
take aspirin which, in turn may have its own effect on 
the disease or, may strengthen (or weaken) the impact 
of the drug on the disease. To determine how bene­
ficial the drug is to the population as a whole, under 
existing patterns of aspirin usage, the total effect of 
the drug is the target of analysis, and the difference 
P(Yx = y) - P(Yx• = y) may serve to assist the de­
cision, with x and x• being any two treatment levels. 
However, to decide whether aspirin should be encour­
aged or discouraged during the treatment, the direct 
effect of the drug on the disease, both with aspirin and 
without aspirin, should be the target of investigation. 
The appropriate expression for analysis would then be 
the difference P(Yxz = y) - P(Yx•z = y), where z 
stands for any specified level of aspirin intake. 

In linear systems, direct effects are fully specified by 
the corresponding path coefficients, and are indepen­
dent of the values at which we hold the the interme­
diate variables (Z in our examples). In nonlinear sys­
tems, those values would, in general, modify the effect 
of X on Y and thus should be chosen carefully to rep­
resent the target policy under analysis. This lead to a 
basic distinction between two types of conceptualiza­
tions: prescriptive and descriptive. 

3Robins and Greenland (1992) have adapted essentially 
the same criterion (phrased differently) for their interpre­
tation of "direct effect" in epidemiology. 
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2.2 Descriptive versus prescriptive 

interpretation 

We will illustrate this distinction using the treatment­
aspirin example described in the last section. In the 
prescriptive conceptualization, we ask whether a spe­
cific untreated patient would improve if treated, while 
holding the aspirin intake fixed at some predetermined 
level, say Z = z. In the descriptive conceptualization, 
we ask again whether the untreated patient would im­
prove if treated, but now we hold the aspirin intake 
fixed at whatever level the patient currently consumes 
under no-treatment condition. The difference between 
these two conceptualizations lies in whether we wish to 
account for the natural relationship between the direct 
and the mediating cause (that is, between treatment 
and aspirin) or to modify that relationship to match 
policy objectives. We call the effect computed from 
the descriptive perspective the natural effect, and the 
one computed from the prescriptive perspective the 
controlled effect. 

Consider a patient who takes aspirin if and only if 
treated, and for whom the treatment is effective only 
when aspirin is present. For such a person, the treat­
ment is deemed to have no natural direct effect (on 
recovery), because, by keeping the aspirin at the cur­
rent, pre-treatment level of zero, we ensure that the 
treatment effect would be nullified. The controlled di­
rect effect, however, is nonzero for this person, because 
the efficacy of the treatment would surface when we 
fix the aspirin intake at non-zero level. Note that the 
descriptive formulation requires knowledge of the in­
dividual natural behavior�in our example, whether 
the untreated patient actually uses aspirin-while the 
prescriptive formulation requires no such knowledge. 

This difference becomes a major stumbling block when 
it comes to estimating average direct effects in a pop­
ulation of individuals. At the population level, the 
prescriptive formulation is pragmatic; we wish to pre­
dict the difference in recovery rates between treated 
and untreated patients when a prescribed dose of as­
pirin is administered to all patients in the population­
the actual consumption of aspirin under uncontrolled 
conditions need not concern us. In contrast, the de­
scriptive formulation is attributional; we ask whether 
an observed improvement in recovery rates (again, be­
tween treated and untreated patients) is attributable 
to the treatment itself, as opposed to preferential use 
of aspirin among treated patients. To properly distin­
guish between these two contributions, we therefore 
need to measure the improvement in recovery rates 
while making each patient take the same level of as­
pirin that he/she took before treatment. However, as 
Robins and Greenland (1992) pointed out, such con­
trol over individual behavior would require testing the 

same group of patients twice (i.e., under treatment and 
no treatment conditions), and cannot be administered 
in experiments with two different groups, however ran­
domized. (There is no way to determine what level 
of aspirin an untreated patient would take if treated, 
unless we actually treat that patient and, then, this 
patient could no longer be eligible for the untreated 
group.) Since repeatable tests on the same individu­
als are rarely feasible, the descriptive measure of the 
direct effect is not generally estimable from standard 
experimental studies. In Section 3.4 we will analyze 
what additional assumptions are required for consis­
tently estimating this measure, the average natural di­
rect effect, from either experimental or observational 
studies. 

2.3 Policy implications of the Descriptive 

interpretation 

Why would anyone be interested in assessing the aver­
age natural direct effect? Assume that the drug manu­
facturer is considering ways of eliminating the adverse 
side-effect of the drug, in our case, the headache. A 
natural question to ask is whether the drug would still 
retain its effectiveness in the population of interest. 
The controlled direct effect would not give us the an­
swer to this question, because it refers to a specific 
aspirin level, taken uniformly by all individuals. Our 
target population is one where aspirin intake varies 
from individual to individual, depending on other fac­
tors beside drug-induced headache, factors which may 
also cause the effectiveness of the drug to vary from 
individual to individual. Therefore, the parameter we 
need to assess is the average natural direct effect, as 
described in the Subsection 2.2. 

This example demonstrates that the descriptive inter­
pretation of direct effects is not purely "descriptive"; 
it carries a definite operational implications, and an­
swers policy-related questions of practical significance. 
Moreover, note that the policy question considered in 
this example cannot be represented in the standard 
syntax of do(x) operators�it does not involve fixing 
any of the variables in the model but, rather, modify­
ing the causal paths in the model. Even if "headache" 
were a genuine variable in our model, the elimination 
of any drug-induced headache is not equivalent to set­
ting any "headache" to zero, since a person might get 
headache for reason other than the drug. Instead, the 
policy option involves the de-activation of the causal 
path from "drug" to "headache" . 

In general, the average natural direct effect would be 
of interest in evaluating policy options of a more re­
fined variety, ones that involve, not merely fixing the 
levels of the variables in the model, but also deter­
mining how these levels would influence one another. 
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Typical examples of such options involve choosing the 
manner (e.g., instrument, or timing) in which a given 
decision is implemented, or choosing the agents that 
should be informed about the decision. A firm of­
ten needs to assess, for example, whether it would 
be worthwhile to conceal a certain decision from a 
competitor. This amounts, again, to evaluating the 
natural direct effect of the decision in question, un­
mediated by the competitor's reaction. Theoretically, 
such policy options could conceivably be represented 
as (values of) variables in a more refined model, for 
example one where the concept "the effect of treat­
ment on headache" would be given a variable name, 
and where the manufacturer decision to eliminate side­
effects would be represented by fixing this hypothetical 
variable to zero. The analysis of this paper shows that 
such unnatural modeling techniques can be avoided, 
and that important nonstandard policy questions can 
be handled by standard models, where variables stands 
for directly measurable quantities. 

2.4 Descriptive interpretation of indirect 

effects 

The descriptive conception of direct effects can eas­
ily be transported to the formulation of indirect ef­
fects; oddly, the prescriptive formulation is not trans­
portable. Returning to our treatment-aspirin exam­
ple, if we wish to assess the natural indirect effect of 
treatment on recovery for a specific patient, we with­
hold treatment and ask, instead, whether that patient 
would recover if given as much aspirin as he/she would 
have taken if he/she had been under treatment. In this 
way, we insure that whatever changes occur in the pa­
tient's condition are due to treatment-induced aspirin 
consumption and not to the treatment itself. Similarly, 
at the population level, the natural indirect effect of 
the treatment is interpreted as the improvement in re­
covery rates if we were to withhold treatment from all 
patients but, instead, let each patient take the same 
level of aspirin that he/she would have taken under 
treatment. As in the descriptive formulation of di­
rect effects, this hypothetical quantity involves nested 
counterfactuals and will be identifiable only under spe­
cial circumstances. 

The prescriptive formulation has no parallel in indi­
rect effects, for reasons discussed in the introduction 
section; there is no way of preventing the direct effect 
from operating by holding certain variables constant. 
We will see that, in linear systems, the descriptive and 
prescriptive formulations of direct effects lead, indeed, 
to the same expression in terms of path coefficients. 
The corresponding linear expression for indirect ef­
fects, computed as the difference between the total 
and direct effects, coincides with the descriptive for-

mulation but finds no prescriptive interpretation. 

The operational implications of indirect effects, like 
those of natural direct effect, concern nonstandard pol­
icy options. Although it is impossible, by controlling 
variables, to block a direct path (i.e., a single edge), 
if such exists, it is nevertheless possible to block such 
a path by more refined policy options, ones that de­
activate the direct path through the manner in which 
an action is taken or through the mode by which a 
variable level is achieved. In the hiring discrimination 
example, if we make it illegal to question applicants 
about their gender, (and if no other indication of gen­
der are available to the hiring agent), then any residual 
sex preferences (in hiring) would be attributable to the 
indirect effect of sex on hiring. A policy maker might 
well be interested in predicting the magnitude of such 
preferences from data obtained prior to implementing 
the no-questioning policy, and the average indirect ef­
fect would then provide the sought for prediction. A 
similar refinement applies in the firm-competitor ex­
ample of the preceding subsection. A firm might wish 
to assess, for example, the economical impact of bluff­
ing a competitor into believing that a certain deci­
sion has been taken by the firm, and this could be 
implemented by (secretly) instructing certain agents 
to ignore the decision. In both cases, our model may 
not be sufficiently detailed to represents such policy 
options in the form of variable fixing (e.g., the agents 
may not be represented as intermediate nodes between 
the decision and its effect) and the task amounts then 
to evaluating the average natural indirect effects in a 
coarse-grain model, where a direct link exists between 
the decision and its outcome. 

3 FORMAL ANALYSIS 

3.1 Notation 

Throughout our analysis we will let X be the control 
variable (whose effect we seek to assess), and let Y be 
the response variable. We will let Z stand for the set of 
all intermediate variables between X and Y which, in 
the simplest case considered, would be a single variable 
as in Figure 1 (a). Most of our results will still be 
valid if we let Z stand for any set of such variables, in 
particular, the set of Y's parents excluding X. 

We will use the counterfactual notation Yx (u) to de­
note the value that Y would attain in unit (or situa­
tion) U = u under the control regime do(X = x). See 
Pearl (2000, Chapter 7) for formal semantics of these 
counterfactual utterances. Many concepts associated 
with direct and indirect effect require comparison to a 
reference value of X, that is, a value relative to which 
we measure changes. We will designate this reference 
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value by x*. 

3.2 Controlled Direct Effects (review) 

Definition 1 (Controlled unit-level direct-effect; 
qualitative) 

A variable X is said to have a controlled direct effect 
on variable Y in model M and situation U = u if 
there exists a setting Z = z of the other variables in 
the model and two values of X, x"' and x, such that 

(1) 

In words, the value of Y under X = x* differs from its 
value under X = x when we keep all other variables Z 
fixed at z. If condition ( 1) is satisfied for some z, we 
say that the transition event X = x has a controlled 
direct-effect on Y, keeping the reference point X = x* 
implicit. 

Clearly, confining Z to the parents of Y (excluding X) 
leaves the definition unaltered. 

Definition 2 (Controlled unit-level direct-effect; 
quantitative) 
Given a causal model M with causal graph G, the 
controlled direct effect of X = x on Y in unit U = u 
and setting Z = z is given by 

CDEz(x,x*;Y,u) = Yxz(u)- Yx•z(u) (2) 

where Z stands for all parents of Y (in G) excluding 
X. 

Alternatively, the ratio Yxz(u)/Yx•z(u), the propor­
tional difference (Yxz(u)- Yx•z(u))/Yx•z(u), or some 
other suitable relationship might be used to quantify 
the magnitude of the direct effect; the difference is 
by far the most common measure, and will be used 
throughout this paper. 

Definition 3 (Average controlled direct effect) 
Given a probabilistic causal model (M, P(u)), the con­
trolled direct effect of event X = x on Y is defined 
as: 

CDEz(x, x*; Y) = E(Yxz - Yx•z) (3) 

where the expectation is taken over u. 

The distribution P(Yxz = y) can be estimated consis­
tently from experimental studies in which both X and 
Z are randomized. In nonexperimental studies, the 
identification of this distribution requires that certain 
"no-confounding" assumptions hold true in the pop­
ulation tested. Graphical criteria encapsulating these 
assumptions are described in Pearl (2000, Sections 4.3 
and 4.4). 

3.3 Natural Direct Effects: Formulation 

Definition 4 (Unit-level natural direct effect; 
qualitative) 
An event X = x is said to have a natural direct effect 
on variable Y in situation U = u if the following 
inequality holds 

(4) 

In words, the value of Y under X = x* differs from its 
value under X = x even when we keep Z at the same 
value ( Zx· ( u)) that Z attains under X = x*. 

We can easily extend this definition from events to 
variables by defining X as having a natural direct effect 
on Y (in model M and situation U = u) if there exist 
two values, x* and x, that satisfy ( 4). Note that this 
definition no longer requires that we specify a value z 
for Z; that value is determined naturally by the model, 
once we specify x, x*, and u. Note also that condition 
( 4) is a direct literal translation of the court criterion of 
sex discrimination in hiring (Section 2.1) with X = x* 
being a male , X =: x a female, Y = 1 a decision to 
hire, and Z the set of all other attributes of individual 
u. 

If one is interested in the magnitude of the natural 
direct effect, one can take the difference 

Yx,z •• (u)(u)- Yx·(u) (5) 

and designate it by the symbol N DE(x, x*; Y, u) 
(acronym for Natural Direct Effect). If we are further 
interested in assessing the average of this difference in 
a population of units, we have: 

Definition 5 (Average natural direct effect) 
The average natural direct effect of event X = x on 
a response variable Y, denoted N DE(x, x*; Y), is de­
fined as 

NDE (x, x * ; Y) = E(Yx,z • •  )- E(Yx•) (6) 

Applied to the sex discrimination example of Section 
2.1, (with x * = male, x = female, y = hiring, z = 
qualifications) Eq. (6) measures the expected change 
in male hiring, E(Y,. ), if employers were instructed to 
treat males' applications as though they were females'. 

3.4 Natural Direct Effects: Identification 

As noted in Section 2, we cannot generally evaluate 
the average natural direct-effect from empirical data. 
Formally, this means that Eq. (6) is not reducible to 
expressions of the form 

P(Yx = y) or P(Yxz = y) ; 
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the former governs the causal effect of X on Y ( ob­
tained by randomizing X) and the latter governs the 
causal effect of X and Z on Y (obtained by random­
izing both X and Z). 
We now present conditions under which such reduction 
is nevertheless feasible. 

Theorem 1 (Experimental identification) 
If there exists a set W of covariates, nondescendants 
of X or Z, such that 

for all z and x (7) 

(read: Yxz is conditionally independent of Zx· , given 
W), then the average natural direct-effect is experi­
mentally identifiable, and it is given by 

NDE(x,x*; Y) 
= L)E(Yxziw)- E(Yx•ziw)]P(Zx· = ziw)P(w) 

w,z 

Proof 

The first term in (6) can be written 

E(Yx,z •• ) 

= L L E(YxziZx• = z, W = w) 
w z 

P(Zx· = z]W = w)P(W = w) 

Using (7), we obtain: 

E(Yx,z •• ) 
= LLE(Yxz = yiW = w) 

w z 

(8) 

(9) 

P(Zx· = z]W = w)P(W = w) (10) 

Each factor in (10) is identifiable; E(Yxz = y]W = w), 
by randomizing X and Z for each value of W, and 
P(Zx• = ziW = w) by randomizing X for each value 
of W. This proves the assertion in the theorem. Sub­
stituting (10) into (6) and using the law of composition 
E(Yx•) = E(Yx• z •• ) (Pearl2000, p. 229) gives (8), and 
completes the proof of Theorem 1. D 

The conditional independence relation in Eq. (7) can 
easily be verified from the causal graph associated with 
the model. Using a graphical interpretation of coun­
terfactuals (Pearl 2000, p. 214-5), this relation reads: 

(Y JlZ]W)a_g (11) 

In words, W d-separates Y from Z in the graph formed 
by deleting all (solid) arrows emanating from X and 
z. 

Figure 1(a) illustrates a typical graph associated with 
estimating the direct effect of X on Y. The identify­
ing subgraph is shown in Fig. 1(b), and illustrates how 
W d-separates Y from Z. The separation condition in 
(11) is somewhat stronger than (7), since the former 
implies the latter for every pair of values, x and x*, 
of X (see (Pearl 2000, p. 214)). Likewise, condition 
(7) can be relaxed in several ways. However, since 
assumptions of counterfactual independencies can be 
meaningfully substantiated only when cast in struc­
tural form (Pearl2000, p. 244-5), graphical conditions 
will be the target of our analysis. 

I 

' 
f 

y 

(a) 

I 
I 
' 
I 

I 

,o' u2 

(b) 

Figure 1: (a) A causal model with latent variables 
(U's) where the natural direct effect can be identified 
in experimental studies. (b) The subgraph G x z il­
lustrating the criterion of experimental identifiability 
(Eq. ll): W d-separates Y from Z. 

The identification of the natural direct effect from non­
experimental data requires stronger conditions. From 
Eq. (8) we see that it is sufficient to identify the con­
ditional probabilities of two counterfactuals: P(Yxz = 
y]W = w) and P(Zx· = z ]W = w), where W is any 
set of covariates that satisfies Eq. (7) (or (11)). This 
yields the following criterion for identification: 

Theorem 2 (Nonexperimental identification) 
The average natural direct-effect N DE(x, x*; Y) is 
identifiable in nonexperimental studies if there exists a 
set W of covariates, nondescendants of X or Z, such 
that, for all values z and x we have: 

(ii) P(Y.,z = y]W = w) is identifiable 

(iii) P(Zx· = z]W = w) is identifiable 

Moreover, if conditions ( i) -(iii) are satisfied, the nat­
ural direct effect is given by ( 8). 

Explicating these identification conditions in graphical 
terms (using Theorem 4.41 in (Pearl 2000)) yields the 
following corollary: 
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Corollary 1 (Graphical identification criterion) 
The average natural direct-effect N DE(x, x*; Y) is 
identifiable in nonexperimental studies if there exist 
four sets of covariates, W0, W1, W2, and W3, such that 

(i) (Y llZIWo)axz 

(ii) (Y llXIWo, WI)aKz 

(iii) (Y llZIX, Wo, W1, W2)Ge. 

(iv) (ZllXIWo, W3)aK 

( v) Wo, W1, and W3 contain no descendant of X and 
w2 contains no descendant of z. 

(Remark: G x_z denotes the graph formed by deleting 

(from G) all arrows emanating from X or entering Z.) 

As an example for applying these criteria, consider Fig­
ure 1(a), and assume that all variables (including the 
U's) are observable. Conditions (i)-(iv) of Corollary 1 
are satisfied if we choose: 

or, alternatively, 

It is instructive to examine the form that expression 
(8) takes in Markovian models, (that is, acyclic models 
with independent error terms) where condition (7) is 
always satisfied with W = 0, since Yxz is independent 
of all variables in the model. In Markovian models, we 
also have the following three relationships: 

P(Yxz = y) = P(ylx, z) (12) 

since X U Z is the set of Y's parents, 

P(Zx• = z) = L P(zlx*, s)P(s), (13) 

P(Yx,z •• = y) = LLP(ylx,z)P(zix*,s)P(s) 
s z 

(14) 

where S stands for the parents of Z, excluding X, or 
any other set satisfying the back-door criterion (Pearl 
2000, p. 79). This yields the following corollary of 
Theorem 1: 

Corollary 2 The average natural direct effect in 
Markovian models is identifiable from nonexperimental 
data, and it is given by 
NDE(x,x*;Y) 

= L L [E(Yix, z)- E(Yix*, z)]P(zlx*, s)P(s) 
s z 

(15) 

where S stands for any set satisfying the back-door cri­
terion between X and Z. 

Eq. (15) follows by substituting (14) into (6) and using 
the identity E(Y,.) = E(Y,·z •• ) . 

y 

(a) 

s 

X 

y 

(b) 

s 

Figure 2: Simple Markovian models for which the nat­
ural direct effect is given by Eq. (15) (for (a)) and Eq. 
(17) (for (b)). 

Further insight can be gained by examining simple 
Markovian models in which the effect of X on Z is 
not confounded, that is, 

P(Z,. = z) = P(zix*) (16) 

In such models, a simple version of which is illustrated 
in Fig. 2(b), Eq. (13) can be replace by (16) and (15) 
simplifies to 

NDE(x, x*; Y) = L[E(Yix, z)- E(Yix*, z)]P(zix*) 
z 

(17) 

This expression has a simple interpretation as a 
weighted average of the controlled direct effect 
E(Yix, z)- E(Yix*, z), where the intermediate value 
z is chosen according to its distribution under x*. 

3.5 Natural Indirect Effects: Formulation 

As we discussed in Section 2.4, the prescriptive for­
mulation of "controlled direct effect" has no parallel 
in indirect effects; we therefore use the descriptive for­
mulation, and define natural indirect effects at both 
the unit and population levels. Lacking the controlled 
alternative, we will drop the title "natural" from dis­
cussions of indirect effects, unless it serves to convey a 
contrast. 

Definition 6 (Unit-level indirect effect; qualitative) 
An event X = x is said to have an indirect effect on 
variable Y in situation U = u if the following inequal­
ity holds 

(18) 
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In words, the value of Y changes when we keep X fixed 
at its reference level X == x* and change Z to a new 
value, Z, ( u), the same value that Z would attain under 
X = x. 

Taking the difference between the two sides of Eq. (18), 
we can define the unit level indirect effect as 

NIE(x, x*;Y,u) = Y.,.,z.(u)(u)- Y.,.(u) (19) 

and proceed to define its average in the population: 

Definition 7 (Average indirect effect) 
The average indirect effect of event X = x. on variable 
Y, denoted NIE(x,x*; Y), is defined as 

NIE(x,x*; Y) = E(Y.,·,zJ- E(Y,.) (20) 

Comparing Eqs. (6) and {20), we see that the indirect 
effect associated with the transition from x* to x is 
closely related to the natural direct effect associated 
with the reverse transition, from x to x*. In fact, re­
calling that the difference E(Y,) - E(Y,.) equals the 
total effect of X = x on Y, 

T E(x, x*; Y) = E(Y,) - E(Y.,.) (21) 

we obtain the following theorem: 

Theorem 3 The total, direct and indirect effects obey 
the following relationships 

TE(x, x*;Y) = NIE(x, x*;Y)- NDE(x*,x;Y) (22) 

TE(x, x*; Y) = NDE(x, x*;Y)- NIE(x*,x;Y) (23) 

In words, the total effect (on Y) associated with the 
transition from x* to x is equal to the difference be­
tween the indirect effect associated with this transition 
and the ( naturaQ direct effect associated with the re­
verse transition, from x to x*. 

As strange as these relationships appear, they produce 
the standard, additive relation 

TE(x, x*; Y) = N IE(x, x*; Y) + N DE(x,x*; Y) 
(24) 

when applied to linear models. The reason is clear; in 
linear systems the effect of the transition from x* to x 
is proportional to x - x*, hence it is always equal and 
of opposite sign to the effect of the reverse transition. 
Thus, substituting in (22) (or (23)), yields (24). 

3.6 Natural Indirect Effects: Identification 

Eqs. (22) and (23) show that the indirect effect is iden­
tified whenever both the total and the (natural) direct 
effect are identified (for all x and x*). Moreover, the 
identification conditions and the resulting expressions 
for indirect effects are identical to the corresponding 
ones for direct effects (Theorems I and 2), save for 
a simple exchange of the indices x and x*. This is 
explicated in the following theorem. 

Theorem 4 If there exists a set W of covariates, non­
descendants of X or Z, such that 

(25) 

for all x and z, then the average indirect-effect is ex­
perimentally identifiable, and it is given by 

NIE(x, x*; Y) 
= L E(Yx•z/w)[P(Z., = z/w)- P(Z.,. = z)w)JP(w) 

w,z 
(26) 

Moreover, the average indirect effect is identified in 
nonexperimental studies whenever the following ex­
pressions are identified for all z and w: 

E(Yx·z / w), P(Z, = ziw) and P(Z,. = ziw), 

with W satisfying Eq. {25). 

In the simple Markovian model depicted in Fig. 2(b), 
Eq. (26) reduces to 

NIE(x,x*; Y) = LE(Yix*,z)[P(zix)- P(zix*)] (27) 
z 

Contrasting Eq. (27) with Eq. (I 7), we see that the ex­
pression for the indirect effect fixes X at the reference 
value x•, and lets z vary according to its distribution 
under the post-transition value of X = x. The ex­
pression for the direct effect fixes X at x, and lets z 
vary according to its distribution under the reference 
conditions X = x•. 
Applied to the sex discrimination example of Section 
2.1, Eq. (27) measures the expected change in male 
hiring, E(Y,. ), if males were trained to acquire (in 
distribution) equal qualifications (Z = z) as those of 
females (X= x). 

3. 7 General Path-specific Effects 

The analysis of the last section suggests that path­
specific effects can best be understood in terms of a 
path-deactivation process, where a selected set of paths, 
rather than nodes, are forced to remain inactive during 
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the transition from X =  x• to X =  x. In Figure 3, for 
example, if we wish to evaluate the effect of X on Y 
transmitted by the sub graph g : X --+ Z --+ W --+ Y, 
we cannot hold Z or W constant, for both must vary 
in the process. Rather, we isolate the desired effect 
by fixing the appropriate subset of arguments in each 
equation. In other words, we replace x with x* in the 
equation for W, and replace z with z*(u) = Zx· (u) 
in the equation for Y. This amounts to creating a 
new model, in which each structural function J; in M 
is replaced with a new function of a smaller set of 
arguments, since some of the arguments are replaced 
by constants. The following definition expresses this 
idea formally. 

Definition 8 (path-specific effect) 
Let G be the the causal graph associated with model 
M, and let g be an edge-subgraph of G containing the 
paths selected for effect analysis. The g-specific effect 
of x on Y (relative to reference x*) is defined as the 
total effect of x on Y in a modified model M; formed 
as follows. Let each parent set P A; in G be partitioned 
into two parts 

(28) 

where P A;(g) represents those members of P A; that 
are linked to X; in g, and P A;(g) represents the com­
plementary set, from which there is no link to X; in g. 
We replace each function j;(pa;, u) with a new func­
tion ft (pa;, u; g), defined as 

ft(pa;, u; g) = f;(pai(g),pa: (g), u) (29) 

where pai (g) stands for the values that the variables 
in P A; (g) would attain (in M and u) under X = x* 
(that is, pai (g) = P A; (g) x• ) . The g-specific effect of 
x on Y, denoted SE9(x,x*;Y,u)M is defined as 

SE9(x,x*;Y,u)M = TE(x,x*;Y,u)M·· • (30) 

We demonstrate this construction in the model of Fig. 
3 which stands for the equations: 

z 
w 

fz(x, uz) 

fw(z,x, uw) 
y fy(z,w,uy) 

where uz, uw, and uy are the components of u that 
enter the corresponding equations. Defining z*(u) = 

fz(x*, uz), the modified model M; reads: 

z fz(x,uz) 
w = fw(z,x",uw) and 

y jy(z*(u),w,uy) (31) 

X 

w�z /''(u) 
• 

y y 

(a) (b) 

Figure 3: The path-specific effect transmitted through 
X --+ Z --+ W --+ Y (heavy lines) in (a) is equal to 
the total effect transmitted through the model in (b), 
treating x* and z*(u) as constants. (By convention, u 
is not shown in the diagram.) 

and our task amounts to computing the total effect of 
x on Y in M;, or 

TE(x,x*;Y,u)M• = g 
jy(z* (u), fw (fz(x, uz ), x*, uw ) , uy) 
-Yx• (u) (32) 

It can be shown that the identification conditions for 
general path-specific effects are much more stringent 
than those of the direct and indirect effects. The path­
specific effect shown in Figure 3, for example, is not 
identified even in Markovian models. Since direct and 
indirect effects are special cases of path-specific effects, 
the identification conditions of Theorems 2 and 3 raise 
the interesting question of whether a simple character­
ization exists of the class of subgraphs, g, whose path­
specific effects are identifiable in Markovian models. I 
hope inquisitive readers will be able to solve this open 
problem. 

4 Conclusions 

This paper formulates a new definition of path-specific 
effects that is based on path switching, instead of vari­
able fixing, and that extends the interpretation and 
evaluation of direct and indirect effects to nonlinear 
models. It is shown that, in nonparametric models, 
direct and indirect effects can be estimated consis­
tently from both experimental and nonexperimental 
data, provided certain conditions hold in the causal 
diagram. Markovian models always satisfy these con­
ditions. Using the new definition, the paper provides 
an operational interpretation of indirect effects, the 
policy significance of which was deemed enigmatic in 
recent literature. 

On the conceptual front, the paper uncovers a class 
of nonstandard policy questions that cannot be for-
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mulated in the usual variable-fixing vocabulary and 
that can be evaluated, nevertheless, using the notions 
of direct and indirect effects. These policy questions 
concern redirecting the flow of influence in the system, 
and generally involve the deactivation of existing in­
fluences among specific variables. The ubiquity and 
manageabiligy of such questions in causal modeling 
suggest that value-assignment manipulations, which 
control the outputs of the causal mechanism in the 
model, are less fundamental to the notion of causation 
than input-selection manipulations, which control the 
signals driving those mechanisms. 

Acknowledgment 

My interest in this topic was stimulated by 
Jacques Hagenaars, who pointed out the impor­
tance of quantifying indirect effects in the so­
cial sciences (See (http:/ /bayes.cs.ucla.edujBOOK-
2Kjhagenaars.html).) Sol Kaufman, Sander Green­
land, Steven Fienberg and Chris Hitchcock have pro­
vided helpful comments on the first draft of this paper. 
This research was supported in parts by grants from 
NSF, ONR (MURI) and AFOSR. 

References 

[Gastwirth, 1997] J.L. Gastwirth. Statistical evidence 
in discrimination cases. Journal of the Royal Statical 
Soc iety, Series A, 160(Part 2):289-303, 1997. 

[Goldberger, 1972] A.S. Goldberger. Structural equa­
tion models in the social sciences. Econometrica: 
Journal of the Econometric Society, 40:979-1001, 
1972. 

[Hagenaars, 1993) J. Hagenaars. Loglinear Models 
with Latent Variables. Sage Publications, Newbury 
Park, CA, 1993. 

[Hesslow, 1976] G. Hesslow. Discussion: Two notes on 
the probabilistic approach to causality. Philosophy 
of Science, 43:290-292, 1976. 

[Lewis, 1973] D. Lewis. Counterfactuals and compar­
ative probability. Journal of Philosophical Logic, 2, 
1973. 

[Pearl, 2000] J. Pearl. Causality: Models, Reasoning, 
and Inference. Cambridge University Press, New 
York, 2000. 

[Robins and Greenland, 1992] J.M. 
S. Greenland. Identifiability and 
for direct and indirect effects. 
3(2):143-155, 1992. 

Robins and 
exchangeability 

Epidemiology, 

[Rubin, 1974] D.B. Rubin. Estimating causal effects of 
treatments in randomized and nonrandomized stud­
ies. Journal of Educational Psychology, 66:688-701, 
1974. 


