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Wireless Body Area Networks (WBANs) comprise a network of sensors subcutaneously implanted or placed
near the body surface and facilitate continuous monitoring of health parameters of a patient. Research
endeavours involving WBAN are directed towards effective transmission of detected parameters to a Local
Processing Unit (LPU, usually a mobile device) and analysis of the parameters at the LPU or a back-end cloud.
An important concern in WBAN is the lightweight nature of WBAN nodes and the need to conserve their
energy. This is especially true for subcutaneously implanted nodes that cannot be recharged or regularly
replaced. Work in energy conservation is mostly aimed at optimising the routing of signals to minimise energy
expended. In this paper, a simple yet innovative approach to energy conservation and detection of alarming
health status is proposed. Energy conservation is ensured through a two-tier approach wherein the first tier
eliminates ‘uninteresting’ health parameter readings at the site of a sensing node and prevents these from
being transmitted across the WBAN to the LPU. The second tier of assessment includes a proposed anomaly
detection model at the LPU that is capable of identifying anomalies from streaming health parameter readings
and indicates an adverse medical condition. In addition to being able to handle streaming data, the model
works within the resource-constrained environments of an LPU and eliminates the need of transmitting the
data to a back-end cloud, ensuring further energy savings. The anomaly detection capability of the model is
validated using data available from the critical care units of hospitals and is shown to be superior to other
anomaly detection techniques.
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1 INTRODUCTION
The world is seeing rapid advancements in the field of ‘smart’, online health monitoring today. An
important contribution towards this is through the effective use of Wireless Body Area Networks,
WBANs [9, 28]. A WBAN comprises a network of usually miniaturised computing devices that
accommodate independent sensing nodes deployed subcutaneously (just under the skin), over the
skin, or over/under clothing depending on the nature of the health parameter being monitored.
Each node monitors one or more health parameters and sends the signal(s) back over appropriate
communication protocols like the IEEE 802.15.6 [32] across the network of nodes to a Local
Processing Unit (LPU) like a mobile device as shown in Figure 1. The LPU collates signals from
various sensors and runs analytical algorithms sometimes locally but mostly at a back end cloud to
make sense of the health parameter values. This works like a well oiled machine and the well being
of an individual is effectively monitored. The issue arises when one or more sensing nodes run out
of energy and is unable to send back signals nor facilitate the passage of signals from other nodes.
This is an unsurprising eventuality given the small and constrained architecture of a node and is
especially true for nodes implanted subcutaneously or deep inside the individual’s body with no
means to recharge. Several endeavours are directed to address this with a large fraction devoted
to optimising the route of signal transmission from the sensing node to the LPU [4, 44, 49, 54].
Some work is in the direction of utilising alternative communication protocols to reduce the energy
expended [6, 29, 53].
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Fig. 1. Representational depiction of WBAN

We propose a simple yet effective approach to energy conservation in this paper. Unlike earlier
work that is directed towards optimally transmitting signals to the LPU, our approach conserves
energy by 1) reducing the data that needs to be transmitted to the LPU; and 2) eliminating the
need to transmit collated signals from the LPU to the back-end cloud for analysis. The first of
this two-tier approach involves significant reduction of data that needs to be transmitted to the
LPU. This is done by eliminating uninteresting and visibly faulty data at the site of the sensor node.
Uninteresting data here implies health parameter values whose deviation from the immediately
preceding value is very small and/or whose value is not part of an apparent trend, such that it
does not convey useful information. Visibly faulty data implies health parameter values that are so
widely astray that it is safe to assume a fault in their provenance most likely in the functioning of
the sensor. Profiling and eliminating data in this manner at the site of the sensor node is non-trivial
given the resource-constrained nature of these nodes. We, therefore, employ an algorithm of O(1)
time and space complexity for this purpose and demonstrate through hardware simulation the
practical viability of the approach.
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The second tier of our approach reduces the energy expended by eliminating the need to transmit
data to the back-end cloud for analysis. An anomaly detection approach that works effectively with
streaming data is utilised without the need to store data. The anomaly detection approach is able to
identify anomalies in the health parameters of the monitored individual at the LPU and indicates
an adverse health condition.
The proposed two-tier approach is validated on data available in the MIMIC Critical Care

Database [1] (comprising data from the critical care units of several hospitals) and includes the
following parameters: Heart Rate, Systolic Blood Pressure, Diastolic Blood Pressure, Pulse rate,
Respiratory rate, and Oxygen saturation. The broad contributions of this paper include:

• proposal of a novel approach to energy savings in a WBAN by eliminating faulty and
uninteresting data at the sensor node and saving on transmission energy;
• the implementation of a light-weight anomaly detection technique at the LPU, thus minimis-
ing the need of a back-end cloud;
• validation of the proposed two-tier approach on standard data-sets and through a real-world
prototypical implementation.

The remainder of this paper is organized as follows: Section 2 contains information and discussion
on related work and surveys. Section 3 provides details of the proposed approach. In Section 4,
the efficacy of the approach is validated through experiments, and finally Section 5 concludes the
paper.

2 RELATEDWORK
E-Health Monitoring is emerging as an important area of research. WBANs play a significant role
in these and help in effectively monitoring patients [27, 31]. One of the most important challenges
in WBANs is to find effective means to prolong the active life of a sensor node. Several researchers
propose prolonging the life of a sensor node by proposing approaches to conserve the latter’s
energy [2, 6, 58].
Another issue with WBANs functioning as effective health monitoring deployments are faulty

measurements. Faulty measurements arise from equipment malfunctions, faulty readings, or envi-
ronmental noise and lead to unnecessary consumption of sensor energy and possible false alarms.
Such faulty measurements need to be detected early and eliminated. Major endeavours in this
direction include [3, 45, 52, 60]. Conforming to expectations, several endeavours are towards anom-
aly detection in WBANs to detect medical issues in patients. Key surveys in this direction include
[5, 43, 56].
Anomaly detection techniques are classified as statistical-based [57], Machine learning based

[47], Game-based [48], and graph-based [16].
Salem et al. [47] propose a Support Vector Machine (SVM) based approach for anomaly detection

in WBAN. They construct a classification model comprising SVM and linear regression. The
incoming data point from theWBAN is collected at the processing unit and is identified as abnormal
if it deviates from the developed model. A data point so categorised as abnormal is further assessed
to be an anomaly or a fault using linear regression. In addition to this, they propose a ‘counter’
mechanism to keep track of spatial correlations between attributes. If the 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 > 1, an alarm is
raised indicating an anomaly; otherwise the data point is construed as faulty and discarded. There
are several drawbacks of this approach: 1) it is possible that two or more attributes incur faulty
measurements and the model predicts it to be an anomaly whereas in reality the measurement is
faulty; 2) the model is not adaptive and is thus not suitable and effective in the real-world where
data variation is common. Banerjee et al. [8] propose an algorithm that assesses an incoming data
point as abnormal using minimum and maximum parametric values that are globally set. If the
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measured data point is beyond the range of the minimum and maximum values, it is considered to
be an abnormal data point. The issue with this simple technique though is that the assumed global
minimum and maximum values may not work for all patients [51]. Osman et al. [46] propose a
classification based approach that utilises the 𝑗48 decision tree algorithm to classify data points
as normal or abnormal in WBAN. If a point is abnormal, they further apply linear regression and
correlation to further classify the point as anomalous or faulty. The issue with this approach is that
there is no attempt to update the model periodically to conform with the manner data varies in the
real world. Furthermore, they pre-define values for health parameters that are considered normal
which may not hold for all patients.

Qi et al. [42] propose a system called RadioSense, that recognizes body sensor network activity
using wireless communication patterns. The authors use a smoothing window size of 9 seconds in
their work. The work is primarily concerned with energy costs and uses the K-Nearest Neighbor
(KNN) algorithm as the classifier. Li et al. [34] propose the use of a WSN-WiFi hybrid network
that improves the quality of wireless communication in body area networks by considering both
WiFi and ZigBee packet sizes. The study demonstrates the critical role of packet size selection in
energy conservation in a hybrid WSN-WiFi hybrid network. Huynh et al. [24] propose an energy
efficient solution in healthcare systems for WBAN based on ZigBee. The authors use OPNET for
simulation, and utilize ZigBee in a beacon-enabled mode. This approach is effective in avoiding
energy consumption in the idle mode. However, this endeavour fails to eliminate communication
overhead. This leads to congestion that ultimately results in significant increase in the average
end-to-end latency. The work by Chiang et al. [14] focuses on reducing the energy required for
transmitting data for seizure detection and for detecting other related medical conditions. The idea
is to not transmit the entire EEG signal but only a few distinct features from a few EEG channels
for further analysis. This results in significant reduction in the number of features transmitted and
hence transmission energy. The approach, however, does not minimize the energy consumption
at the sensor. It is also not a realistic approach as medical practitioners prefer seeing the entire
EEG rather than just specific features. Majumdar et al. [38] propose the use of Blind Compressed
Sensing (BCS) to reduce data transmission and minimize energy consumption associated with
sensing, computing, and transmission in WBAN. However, they are unable to regulate the upload
frequency of body sensors and the approach is thus not effective in practical settings.
Several other techniques for fault and anomaly detection include one that uses Mahalanobis

distance [35], another uses kernel density estimation [61], and third chi-square distance [47] to
identify anomalies in data. These are effective but suffer from high computational costs that a
WBAN deployment can ill afford. Isolation Forest [36], PiForest [25], and RRCF [21] are tree-based
anomaly detection approaches that have conservative computational costs but can only be used for
anomaly detection. They are not effective with faulty data and give rise to a large number of false
alarms.
More specific architectures that detect vital signs [59] of patients over WBANs include AID-N

[18], UbiMon [40], Codeblue [39], AlarmNet [55], and CareNet [26].

3 PROPOSED APPROACH
We propose a two-tier anomaly detection approach in a WBAN deployment that conserves energy
without compromising on effectively monitoring the health parameters of the patient. The first
tier comprises interventions at the site of the WBAN node such that the data transmitted over the
WBAN to the LPU is reduced. The reduction of data is achieved by eliminating health parameter
values that convey little or no new information. These are mostly parameter values that have
not deviated much from the immediately preceding reading or are values that are significantly
deviated from the expected and hence are assumed to be faulty. Eliminating such data results in
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Fig. 2. Proposed Framework

large energy savings without compromising on the relevant information sent back for processing.
The second tier of the approach comprises endeavours to analyse data for detecting anomalies
at the LPU rather than sending it to the back-end cloud. This is non-trivial as an LPU is not rich
enough in terms of resources to store health parameter values emanating at quick intervals and
rapidly accumulating to large volumes. An anomaly detection technique that works on streaming
data is therefore proposed that can effectively analyse health parameters and identify anomalous
health conditions at the LPU. Not sending data to the back-end cloud for analysis significantly
conserves energy and eliminates latency.

3.1 Tier-1 Assessment
Tier-1 implies the site of individual WBAN nodes that comprise one of more sensors. The data
on the patient’s health originates at these nodes in the form of sensor readings. WBAN nodes
are compact, miniaturised devices that accommodate one or more sensors and are often deployed
subcutaneously (just below the skin) or much deeper in the patient’s body. In some cases, these
are deployed above the skin, below or above clothing. In any case, WBAN nodes are extremely
resource-constrained both in terms of storage and processing capability. The aim of identifying
and eliminating uninteresting and faulty data in such constrained environments is non-trivial.
Uninteresting data, as we earlier described, is data that does not deviate much from the immediately
preceding data and thus transmitting this data over the WBAN to the LPU does not provide new
information. Faulty data comprises health parameter values that are unrealistically removed from
normal levels and originate from damaged sensors, incorrect readings, environment noise, and
other such issues.
Assuming there are 𝑁 sensors deployed in the body of a patient as shown in Figure 1. Each

sensor senses a health parameter that has one or more attributes (in general 𝐾𝑖 attributes such
that 𝐾𝑖 ≥ 1), for instance, Blood Pressure has 3 attributes: Systolic Blood Pressure, Diastolic Blood
Pressure, and Mean Blood Pressure. The data generated at each time interval by a sensor 𝑆𝑖 is 𝑥𝑖 𝑗𝑡
(𝑖 ∈ [1, 𝑁 ] and 𝑗 ∈ [1, 𝐾𝑖 ]) where 𝑥𝑖 𝑗𝑡 is the reading of the 𝑗 th attribute of the parameter sensed by
sensor 𝑆𝑖 at the 𝑡 th second. The readings of 𝑁 sensors at time interval 𝑡 can be visualized as a list
such that each entry represents a sensor reading:

𝑋𝑡 =
[
𝑦 (1)𝑡 𝑦 (2)𝑡 𝑦 (3)𝑡 . . . 𝑦 (𝑁 )𝑡

]
(1)

where 𝑦 (𝑖)𝑡 =
[
𝑥𝑖1𝑡 𝑥𝑖2𝑡 𝑥𝑖3𝑡 . . . 𝑥𝑖𝑘𝑖𝑡

]
.
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The 𝑖th sensor senses 𝑘𝑖 attributes of a health parameter and these have 𝑘𝑖 different data values.
At time 𝑡 , the data values generated by the 𝑖th sensor is represented as 𝑦 (𝑖)𝑡 . The value of each
health parameter attribute measured by a sensor undergoes an assessment at each time interval at
the site of the node that we refer to as Tier-1 assessment (as shown in Figure 2). During the Tier-1
assessment, the mean (𝑚), variance (𝑣), and the number of data values generated and measured (𝑛)
so far are computed. 𝑛 is updated every𝑀 hours (in our experiments, we use𝑀 = 2 hours because
it is long enough to properly study the working of the system and short enough to practically
conduct experiments).

For each health parameter attribute measured by sensor 𝑆𝑖 , a 𝑍 value is calculated as:

𝑍 =
(𝑥𝑖 𝑗𝑛 −𝑚)√

𝑣
(2)

where𝑚 is the mean of the last (𝑛 − 1) attribute values and 𝑣 measures how much variance the
attribute values have from the mean value. In general, the mean and variance for any list of 𝐴
values is calculated as:

𝑚 =

∑𝑛
𝑖=1𝐴𝑖

𝑛
, (3)

𝑣 =

∑𝑛
𝑖=1 (𝑚 −𝐴𝑖 )2

𝑛
or 𝑣 =

∑𝑛
𝑖=1𝐴

2
𝑖

𝑛
−𝑚2 (4)

If the 𝑍 value, so calculated, falls outside the range of 𝑙𝑡ℎ and ℎ𝑡ℎ (𝑍 < 𝑙𝑡ℎ | |𝑍 > ℎ𝑡ℎ), where 𝑙𝑡ℎ
and ℎ𝑡ℎ are the lower and upper thresholds respectively (these are globally declared separately for
each health parameter attribute based on universally accepted practices), then the attribute value is
discarded as faulty. Otherwise, Δ𝑍 for the attribute is calculated as:

Δ𝑍 = | (𝑍 − 𝑍𝑝𝑟𝑒𝑣) |, (5)

where 𝑍𝑝𝑟𝑒𝑣 is the value of 𝑍 at the immediately preceding time interval 𝑡 − 1.
The thresholds are calculated based on discussions on the range of vital signs in seminal works

in the field [13, 15, 19, 37]. Lockwood et al. [37] and Chester et al. [13] analyse extensively the
existing literature to converge on a consensual range for vital signs across categories of patients
such as children, adults, the elderly, neonatal, paediatric, and hospitalised adults. Edmonds et al.
[15] and Genes et al. [19] in their work put together a table that shows the standard deviations
and range of vital signs. Using these detailed studies, there is a consensus in the community on
a universal set of values for body vitals. We utilise these values to calculate 𝑙𝑡ℎ and ℎ𝑡ℎ for each
health parameter attribute.
If Δ𝑍 < 𝜖 , (where 𝜖 is a small value, 𝜖 = 0.2 in our experiments) for an attribute value then

that attribute value is deemed uninteresting for not having deviated much from the immediately
preceding value. This uninteresting point is eliminated and not transmitted to the LPU to conserve
energy. If the LPU does not receive an attribute value at a particular time interval, it assumes the
attribute value to be unchanged from the value at the immediately preceding time interval. This
simple procedure is described in Algorithm 1. The mean and variance values for each attribute are
updated at each time interval as described respectively:

𝑚 =
𝑛𝑚 + 𝑥𝑖 𝑗 (𝑡+1)

𝑛 + 1 , (6)

𝑣 =
𝑛

𝑛 + 1

(
𝑣 +
(𝑚 − 𝑥𝑖 𝑗 (𝑡+1) )2

𝑛 + 1

)
(7)
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The Tier-1 assessment process has a time complexity of O(1) time and its space complexity is
O(𝑘) where 𝑘 = max(𝐾1, 𝐾2, . . . , 𝐾𝑁 ). 𝐾𝑖 is the number of health parameter attributes measured by
sensor 𝑖 and is bounded by a constant value [20]. The space complexity, therefore, is effectively
O(1). A constant time and space complexity ensures that the Tier-1 assessment is seamlessly
conducted within the resource-constrained confines of a WBAN node.

Algorithm 1 Tier-1 Assessment
Input: Sensor 𝑆𝑖 with attribute 𝑗 , current data value 𝑥𝑖 𝑗𝑡
Output: 𝑥𝑖 𝑗𝑡 or Discard 𝑥𝑖 𝑗𝑡
1: 𝑍𝑛𝑒𝑤 =

(𝑥𝑖 𝑗𝑡−𝑚)√
𝑣

2: if (𝑍𝑛𝑒𝑤 ≤ ℎ𝑡ℎ and 𝑍𝑛𝑒𝑤 ≥ 𝑙𝑡ℎ) then
3: Δ𝑍 = 𝑎𝑏𝑠 (𝑍𝑛𝑒𝑤 − 𝑍𝑜𝑙𝑑 )
4: if Δ𝑍 ≥ 𝜖 then
5: 𝑚 =

(𝑛−1)𝑚+𝑥𝑖 𝑗𝑡
𝑛

6: 𝑣 = 𝑛−1
𝑛
(𝑣 + (𝑚−𝑥𝑖 𝑗𝑡 )

2

𝑛
)

7: Transmit 𝑥𝑖 𝑗𝑡 to LPU
8: else
9: Discard 𝑥𝑖 𝑗𝑡 as a uninteresting point
10: Send 𝐴𝐶𝐾 bit periodically after a fixed interval of time
11: end if
12: else
13: Discard 𝑥𝑖 𝑗𝑡 as a faulty point
14: end if
15: 𝑍𝑜𝑙𝑑 = 𝑍𝑛𝑒𝑤

3.2 Tier-2 Assessment
The attribute values of various parameters are transmitted to an LPU and assessment of this data at
the LPU comprises Tier-2 Assessment. Given the relative resource restrictions of an LPU, the norm
is to further transmit the data received to a back-end cloud for analysis and to draw conclusions
on the well being of a patient. We propose an approach to appropriately analyse data at the LPU
without the need to send it to the cloud. This has the potential to ensure significant savings in terms
of transmission energy as well as reduced latency. It may, however, sometimes be necessary to send
data to the cloud. This could be data sent to facilitate more detailed analysis as well as to maintain
a history of the recorded vitals. The proposed approach facilitates such kind of interaction and
places no limitation on sending data to the cloud. However, to cater for the immediate application,
interaction with the cloud is not essential. The issue with analysis of WBAN data at an LPU is that
data (in the form of attribute values for various health parameters) arrives at regular intervals and
accumulates to quickly take up large volumes. Storing such large volumes of data at the LPU for
analysis is non-trivial. We propose an approach that is capable of detecting anomalies in health
parameter values that are ‘streaming in’. In other words, the proposed approach eliminates the
need to store the health parameter values for analysis, rather it analyses the data as it comes in and
extracts relevant information from it.

We utilise the iForest algorithm for anomaly detection [36] and appropriately amend its usage to
work with streaming data within an LPU. iForest is a well-known tree based anomaly detection
algorithm that is based on randomization [10]. Randomization is a powerful tool used to take out
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Fig. 3. Circular queue buffer representation

random sub-samples from the dataset. In randomization, an attribute is randomly selected and then
an attribute value is randomly chosen from the selected attribute. This value is set for partitioning
the root node. The data points whose values are smaller than the selected split value are taken in
the left subtree and the data points whose values are greater than the selected split value are taken
in the right subtree. Each of the two subtrees is further partitioned in the same way until all the
data points are isolated or the maximum tree height is reached, which forms the leaves of the tree.
This forms an iTree. Multiple iTrees are created to form an iForest. The point that isolates closer to
the root node is an anomaly and one that isolates far from the root node is a normal point.

In the proposed approach, attribute values of health parameters across the body converge at the
LPU. These attribute values are aggregated to form a single data vector. Each attribute value is
normalised and becomes one dimension of the vector. As per the nature of WBAN networks, the
attribute values stream in to the LPU and these are handled as follows:

Sliding Window: As the attribute values stream in to the LPU, they are quickly aggregated to a
single data vector such that one vector corresponds to one time interval. These data vectors are
made to fill up a sliding window which is a mechanism useful for performing computations on
streaming data. A sliding window allows continuous streaming data to collect in it and cordons off
blocks of data of a fixed size (𝜔). These blocks of 𝜔 data elements are considered for computation
one at a time. After these computations are done, the data elements are eliminated and a new set of
𝜔 data elements are considered.

Creation of iForest: The 𝜔 data vectors in the sliding window are used to create 𝑛𝑡𝑟𝑒𝑒 number of
𝑖𝑇𝑟𝑒𝑒𝑠 following the process described in [36] wherein a forest of 𝑖𝑇𝑟𝑒𝑒𝑠 called 𝑖𝐹𝑜𝑟𝑒𝑠𝑡 is created.
The process of creating an 𝑖𝐹𝑜𝑟𝑒𝑠𝑡 was briefly described at the beginning of this sub-section.

Populating a Circular Queue Buffer: The 𝑖𝑇𝑟𝑒𝑒𝑠 so created are made to populate a buffer in the
form of a circular queue wherein each element of the queue has a pointer pointing to the root node
of an 𝑖𝑇𝑟𝑒𝑒 . There are 𝑛𝑡𝑟𝑒𝑒 elements in the circular queue corresponding to the number of 𝑖𝑇𝑟𝑒𝑒𝑠
in the 𝑖𝐹𝑜𝑟𝑒𝑠𝑡 created. Figure 3 is a representational depiction of a circular queue buffer.
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Identifying anomalous data points: The data vectors in the sliding window are made to traverse
each of the 𝑖𝑇𝑟𝑒𝑒𝑠 in the circular queue buffer and depending on how quickly the data vector isolates
in each case, an assessment is made on whether it is an anomaly or not. The following approach
borrowed from the concept of Binary Search Trees (BST) is adopted for calculating the anomaly
score.
To compute the anomaly score, a data point is traversed from the root and terminates at an

external node i.e., the height of the 𝑖𝑇𝑟𝑒𝑒 gives an idea of the chance of the data point being an
anomaly or not. As the number of nodes in an 𝑖𝑇𝑟𝑒𝑒 increases at the rate of O(𝑛), the average
height of the 𝑖𝑇𝑟𝑒𝑒 increases at the rate of O(log 𝑛) as 𝑖𝑇𝑟𝑒𝑒𝑠 have a structure similar to BSTs. To
compare the path length until a data point reaches an external node, and effectively the anomaly
score, a normalized average height of 𝑖𝑇𝑟𝑒𝑒𝑠 is computed (as there are several 𝑖𝑇𝑟𝑒𝑒𝑠 of different
heights). This gives a normalized anomaly score. The calculation of the average height of an 𝑖𝑇𝑟𝑒𝑒
is borrowed from the calculation of unsuccessful search in a BST as

𝑑 (𝑛) = 2𝐻𝑛−1 − (2(𝑛 − 1)/𝑛) (8)
where 𝑛 is the number of instances in the sample, 𝐻𝑛−1 = ln(𝑛 − 1) + 𝛾 , and 𝛾 is Euler’s constant
with a value of approx 0.5772156. As 𝑑 (𝑛) is the average of ℎ(𝑛), we use it to normalise ℎ(𝑛) [36].

𝑆 (x, 𝜔) = 2−𝐸 (ℎ (𝑥))/𝑑 (𝜔) (9)

where 𝑆 (x, 𝜔) is the score that indicates whether a point is an anomaly or not, 𝜔 is the sliding
window size, ℎ(𝑥) denotes the length of an 𝑖𝑇𝑟𝑒𝑒 , 𝐸 (ℎ(𝑥)) denotes the average of ℎ(𝑥) from all the
𝑖𝑇𝑟𝑒𝑒𝑠 created and 𝑑 (𝜔) is the average of ℎ(𝑥) considering 𝜔 data elements in the sliding window.
If 𝑆 (x, 𝜔) > 0.5, the data point is an anomaly otherwise it is a normal point.

Refreshing the Circular Queue Buffer: After all the data vectors in the sliding window are done
traversing the 𝑖𝑇𝑟𝑒𝑒𝑠 in the buffer, 𝑘𝑡𝑟𝑒𝑒 number of 𝑖𝑇𝑟𝑒𝑒𝑠 (where 𝑘𝑡𝑟𝑒𝑒 < 𝑛𝑡𝑟𝑒𝑒) are removed
from the circular queue and these 𝑘𝑡𝑟𝑒𝑒 elements are re-populated with the next batch of 𝑖𝑇𝑟𝑒𝑒𝑠
from the fresh data in the sliding window. Partially refreshing the circular queue buffer reduces
bias in computing the anomaly score.

Refreshing the Sliding Window: The data in the sliding window is replaced with a fresh batch
of 𝜔 data vectors. These are used to create 𝑘𝑡𝑟𝑒𝑒 number of 𝑖𝑇𝑟𝑒𝑒𝑠 and these populate the circular
queue buffer.

Anomalous health parameters are so detected in the proposed approach. Subsequent to detection
of an anomaly, the LPU can be programmed to store and report the health parameter values
responsible for the anomaly to a practitioner and/or raise an alarm and call for help.

Algorithm 2 discusses the step-wise procedure followed in Tier-2 at the LPU to identify anomalous
health parameter values in the patient.

4 EXPERIMENTAL VALIDATION
To assess the efficacy of the proposed two-tier approach to monitor the well being of a patient whilst
simultaneously conserving energy, we utilise a dataset from the MIMIC database [1] that comprises
freely available critical care data. We specifically work with the data of two patients: one with id
number 221 and the other with id number 230. We choose these two patients because the models
with which we compare our approach of anomaly detection have used the data of these two patients
to demonstrate their working and hence it is easier to compare. We first demonstrate the efficacy
of our approach to assess faulty parameter readings at individual sensor sites. We also demonstrate
how a large fraction of sensor readings are uninteresting and compute the percentage of energy
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Algorithm 2 Tier-2 Assessment
Input: 𝑛𝑡𝑟𝑒𝑒 - Number of trees, Streaming input data 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑖 , . . . , } , 𝜔− Sliding Win-

dow Size, 𝑘𝑡𝑟𝑒𝑒-number of trees to update 𝑄
Output: Anomaly Detector
1: Initialize Circular_Queue_Buffer 𝐹 ← []
2: Initialize Sliding Window as 𝑌 ← []
3: Initialize count of Streaming data point in window 𝑐=0
4: while 𝑐 != 𝜔 do

Insert 𝑋𝑖 in 𝑌
𝑐 ← 𝑐 + 1

5: end while
6: Apply preprocessing step to Y
7: Initialize starting pointer of a circular queue 𝑠 ← 0
8: Initialize height ℎ ← 𝑐𝑒𝑖𝑙 (𝑙𝑜𝑔2 (𝜔))
9: for 𝑖 ← 0 to 𝑛𝑡𝑟𝑒𝑒 do

𝐹 [𝑖] ← 𝑖𝑇𝑟𝑒𝑒(𝑌 ,0,ℎ)
10: end for
11: Re-initialize 𝑌 ← [] 𝑎𝑛𝑑 𝑐 ← 𝜔

12: while 𝑐 > 0 do
Insert 𝑋𝑖 in 𝑌
𝑐 ← 𝑐 − 1

13: end while
14: Apply preprocessing step to Y
15: report anomaly detector 𝐺 (Y)
16: for 𝑖 ← 𝑠 to 𝑠 + 𝑘𝑡𝑟𝑒𝑒 do

set 𝐹 [𝑖 modulo 𝑛𝑡𝑟𝑒𝑒] ← NULL
17: end for
18: for 𝑖 ← 0 to 𝑘𝑡𝑟𝑒𝑒 do

𝐹 [𝑠] ← 𝑖𝑇𝑟𝑒𝑒(𝑌 ,0,ℎ)
s← 𝑠+1
s=𝑠 modulo 𝑛𝑡𝑟𝑒𝑒

19: end for
20: goto 11 for upcoming data points

savings ensured by eliminating these. Subsequently, Tier-2 efficacy is demonstrated by correct
identification of anomalous health conditions taking all parameters into account simultaneously at
the LPU. The working of our approach is compared and shown to be superior to the classical iForest
[36] and the Robust Random Cut Forest (RRCF) based anomaly detection approach [21]. In addition
to demonstrating the efficacy of the algorithms at the two tiers, we simulate the hardware of a
typical WBAN node using MATLAB/Simulink and run the Tier-1 algorithm over this simulation.
The algorithm works exactly as expected validating not just its efficacy but also demonstrating
that the Tier-1 set-up can be effectively implemented in the resource-constrained environment of a
WBAN node.

The experiments are conducted on a personal PCwith Intel(R) Core(TM) i7-7500UCPU@2.70GHz
2.90 GHz and 16 GB memory (RAM). The operating system is Windows 10 Pro. The algorithms are
programmed with 𝑃𝑦𝑡ℎ𝑜𝑛 3.7.
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4.1 Dataset
The dataset, as stated earlier, is part of the MIMIC database [1] and we specifically utilise the data
corresponding to two patients with ids 221 and 230. The data of these patients have been used by
competing methods. The following six health parameters are monitored for these two patients: 1)
Heart Rate; 2) Systolic Blood Pressure; 3) Diastolic Blood Pressure; 4) Pulse rate; 5) Respiratory rate;
and 6) Oxygen saturation (SpO2). The data is collected over a duration of 6 hours and 56 minutes
from 11:50:32-18:47:12 dated 18/05/1995 and 12:43:50-19:40:14 dated 20/06/1995 for patients 221
and 230 respectively. Table 1 is a description of the data collected for these two patients. Anomalies
in the readings are injected synthetically and the percentage of anomalies injected is shown in the
table under ‘Anomaly Threshold’.

Table 1. Data of patients 221 and 230

Patient
id

Number of
Records

Monitoring
Duration

Number of
Attributes

Anomaly
Threshold

221 25,000 6.94 Hrs 6 6.46%
230 25,000 6.94 Hrs 6 3.02%

The six health parameters for patient 221 are shown in Figure 4 and for 230 in Fig. 5.
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Fig. 4. Patient 221 dataset

4.2 Tier-1 Assessment Results
Tier-1 assessment is the assessment of health parameter values at the site of the sensor immediately
after they have been generated and before they are transmitted over the WBAN to the LPU. Tier-1
assessment happens at different sensor locations for each of the following health parameters in our
experiments: 1) Heart Rate; 2) Systolic Blood Pressure; 3) Diastolic Blood Pressure; 4) Pulse rate;
5) Respiratory rate; and 6) Oxygen saturation (SpO2). The assessment is done to identify health
parameter values with one of the following two characteristics:
Faulty parameter readings: These are health parameter values that arise out of faulty measure-
ments, malfunctioning equipment, and other such issues. Such measurement are far removed
from the normal values such that they fall beyond a range effectively computed by the Median
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Fig. 5. Patient 230 dataset

Absolute Deviation (MAD) for the data [33]. Our Tier-1 assessment is effective in identifying faults
in the various health parameter values and these are shown with black lines in Figures 6 and 7,
respectively for patients 221 and 230. The faulty readings so identified are eliminated at the site of
the respective sensor and not transmitted over the WBAN to the LPU.
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Fig. 6. Fault Detection for Patient 221

Uninteresting readings: The other set of health parameter values identified at Tier-1 are un-
interesting readings. These are parameter values that very slightly deviate from the immediately
preceding value such that their transmission over the WBAN does not provide useful information.
A significant number of readings are found to be uninteresting and these are eliminated at the site of
the sensor node instead of transmitting them over the WBAN to the LPU. The LPU on not receiving
a reading at a time interval, assumes it to be uninteresting or in a small number of cases faulty, and
uses the value of the immediately preceding time interval for its assessment. Uninteresting readings
are assessed if the deviation of the 𝑍 value of a reading (calculation of 𝑍 is discussed in detail in
Section 3.1) is less than a very small value (𝜖) from that of the immediately preceding reading. We



An Energy Efficient Health Monitoring Approach with Wireless Body Area Networks 13

0

200BP
(mmHg) SBP DBP

0
25

Respiratory rate
(/min)

85
90
95SpO2

(%)

0

100Heart rate
(bpm)

0 5000 10000 15000 20000 25000
Time

75
100
125Pulse

(bpm)

Fault detection

Fig. 7. Fault Detection for Patient 230

Table 2. Outcome of Tier-1 Assessment

Patient id RESP BP-S BP-D SpO2 HR PULSE Total
221 Total # of readings 25,000 25,000 25,000 25,000 25,000 25,000 1,50,000

# of discarded uninteresting readings 16,976 19,826 23,613 24,430 23,789 23,410 1,32,044
% of readings discarded 67.904 79.304 94.452 97.72 95.156 93.64 88.029 (average)

230 Total #of readings 25,000 25,000 25,000 25,000 25,000 25,000 1,50,000
# of discarded uninteresting readings 21,282 24,585 24,547 24,040 22,658 23,418 1,40,530
% of readings discarded 85.128 98.34 98.188 96.16 90.632 93.672 93.68 (average)

experiment with several values of 𝜖 between 0 and 1 and the percentage of uninteresting health
parameter values eliminated is shown in Figure 8. The graph clearly shows that even with a very
small value of 𝜖 , a very large percentage of data points is uninteresting and is eliminated. This
results in significant savings of energy that would otherwise have been spent on transmitting this
data through the WBAN to the LPU. For a value of 𝜖 = 0.2, Table 2 shows the actual percentage
of health parameter readings discarded for both patients, 221 and 230. An average of around 88%
of readings for patient 221 and 93% for patient 230 across the various health parameter sensors
are eliminated leading to significant conservation of energy without compromising on monitoring
accuracy.

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

% 
of 

un
int

er
es

tin
g r

ea
din

gs

Patient 221
Patient 230

Fig. 8. Percentage of uninteresting readings
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Fig. 9. Graph for trade-off between Percentage of uninteresting readings and NMSE based on different values
of epsilon (𝜖)

For the best trade-off between data elimination and information loss, we study the variations in
Normalized Mean Square Error (NMSE) and percentage of uninteresting readings with Epsilon.
Mean Squared Error gives the average of the square of the difference between the actual and
predicted values, and to eliminate biasing of the metric towards the model, the value is normalised
between 0 and 1 and this is called normalised MSE.
To find the optimal value of 𝜖 , NMSE is computed between the original dataset and the output

of Tier-1 Assessment. Figure 9 shows the variations of NMSE and percentage of uninteresting
readings with Epsilon, on patients 221 and 230. The figure shows that as the value of 𝜖 increases
(and correspondingly energy consumption gets reduced), NMSE also increases. Thus, the best value
of 𝜖 is when NMSE is as low as possible with a large percentage of uninteresting readings. This
happens at a value of Epsilon being roughly 0.2.

MSE =
1
𝑛

𝑛∑
𝑖=1

(
𝑌𝑖 − 𝑌𝑖

)2
(10)

Where, 𝑛 = number of data points, 𝑌𝑖 = actual values, and 𝑌𝑖 = predicted values.

4.3 Tier-2 Assessment Results
The assessment at Tier-2 comprises the detection of anomalies in health parameter values streaming
from various sensors to the LPU. The health parameter values streaming in at a particular time
interval are aggregated to a single data vector and these are collected in a sliding window of size
𝜔 = 1024. The sliding window enables assessment of the streaming data as sequential blocks of
size 𝜔 for identifying anomalies. Details on the approach to anomaly detection are included in
Section 3.2. These anomalies represent health conditions that are not normal and are indications
to raise an alarm. As elaborated in Section 3.2, 𝑛𝑡𝑟𝑒𝑒 number of 𝑖𝑇𝑟𝑒𝑒𝑠 are created using the 𝜔
data points in the sliding window. We use a value of 𝑛𝑡𝑟𝑒𝑒 = 100 in our experiments. Of these 100
𝑖𝑇𝑟𝑒𝑒𝑠 , 𝑘𝑡𝑟𝑒𝑒 = 20 number of 𝑖𝑇𝑟𝑒𝑒𝑠 are removed and replaced when a new set of 𝜔 data elements
get collected in the sliding window. The values of 𝑛𝑡𝑟𝑒𝑒 and 𝑘𝑡𝑟𝑒𝑒 as 100 and 20 respectively are
chosen at random. We experimented with other values of 𝑛𝑡𝑟𝑒𝑒 and 𝑘𝑡𝑟𝑒𝑒 as well and the results
were similar.
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4.3.1 Anomaly Detection. The proposed approach is assessed for its efficacy of anomaly detection
using six health parameter (mentioned earlier) values of patients 221 and 230, namely: 1) Heart
Rate; 2) Systolic Blood Pressure; 3) Diastolic Blood Pressure; 4) Pulse rate; 5) Respiratory rate; and
6) Oxygen saturation (SpO2). Figures 10 and 11 show through red bars the anomalies detected by
the approach at the LPU. These bars correspond to when an alarm should be raised indicating that
the patient is unwell and needs medical attention.
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Fig. 10. Alarm Raised for patient 221
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Fig. 11. Alarm Raised for patient 230

The effectiveness of the proposed approach in terms of precision, recall, and f1 score are shown in
Table 3 for patients 221, 230, 237, 291, 401, and 442. The precision, recall, and f1 score are calculated
as per the following equations

Precision =
TP

TP+FP
(11)
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Table 3. Precision-Recall Metrics

Patient id precision recall f1-score Patient id precision recall f1-score
221 0 1.00 0.99 0.99 291 0 1.00 1.00 1.00

1 0.72 0.99 0.84 1 0.85 0.99 0.91
avg / total 0.99 0.99 0.99 avg / total 1.00 1.00 1.00

230 0 1.00 1.00 1.00 401 0 1.00 0.99 0.99
1 0.92 0.99 0.95 1 0.81 0.99 0.89

avg / total 1.00 1.00 1.00 avg / total 0.99 0.99 0.99
237 0 1.00 1.00 1.00 442 0 1.00 1.00 1.00

1 0.87 0.99 0.92 1 0.94 0.99 0.96
avg / total 1.00 1.00 1.00 avg / total 1.00 1.00 1.00

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tru
e P

os
itiv

e R
ate

iForest
RRCF
Proposed

Fig. 12. Comparison with existing anomaly detection techniques

Recall =
TP

TP+FN
(12)

F1-score = 2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) (13)

Where, TP = True Positives, FP = False Positives, FN = False Negatives.
The detection accuracy for Patient 221 is 99.7% and 98.8% for patient 230 and is an indication of

the potency of the approach.

4.3.2 Comparison with other Anomaly Detection Techniques. We compare the proposed approach
in terms of anomaly detection capabilities with two other standard anomaly detection techniques:
iForest [36] and the Robust Random Cut Forest (RRCF) based anomaly detection technique [21].
We compare specifically with these two as they are both tree-based anomaly detection techniques
and facilitate a fair comparison. We compare the three techniques in terms of Area under the ROC
curve [22], a standard means for comparing such techniques. The ROC curve (short for Receiver
Operator Characteristics curve) is a plot between the True Positive Rate (TPR) and False Positive
Rate (FPR) for different threshold values for the assessed model. A large Area Under the ROC Curve
(AUC) is a strong indicator of the efficacy of the model. The TPR and FPR are calculated as per the
following equations

TPR =
TP

TP+FN
(14)

FPR =
FP

TN+FP
(15)

The ROC curves for the proposed approach, the iForest, and the RRCF are shown in Fig. 12. The
AUC under the ROC characteristics for the proposed approach (attains 100% TPR very quickly, at
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an FPR of about 7.1%) clearly indicates a marked superiority in terms of anomaly detection efficacy
when compared to the two standard and widely accepted techniques.

Moreover, the proposed approach is compared with other healthcare anomaly detection tech-
niques in literature. We compare the approach with those in [23, 50] on the basis of False Positive
rate (FPR) on patient 221 in the MIMIC Dataset. Our approach attains 100% True Positive rate (TPR)
very quickly, at an FPR of about 7.1%. Whereas, Haque et al. [23] that use a Sequential Minimal
Optimization (SMO) based anomaly detection reach 100% TPR at an FPR of about 24%. Smrithy et al.
[50] who use a WMA based anomaly detection approach reach 100% TPR at an FPR of about 17%.
This clearly demonstrates the superiority of the proposed approach in terms of anomaly detection
efficacy.

We also compare the proposed approach with SVM [46] and J48 [12]. SVM achieves 100% TPR at
an FPR of about 8%, whereas J48 achieves 100% TPR at an FPR of about 13%. It is important to note
that the SVM and J48 approaches have other limitations: both approaches require a labeled training
dataset which is frequently distorted and often unavailable; neither approach is compatible with
real-time streaming and requires data to be stored in memory before processing. The proposed
approach, therefore, clearly outperforms competing algorithms and enables efficient anomaly
detection whilst consuming less energy and handling streaming data effectively.

4.4 Hardware Simulation of Tier-1 assessment
The validation of the algorithm at Tier-1 is incomplete without ensuring that it is indeed capable of
working within the resource-constrained environments of a WBAN node. To demonstrate this, we
simulate the hardware of a standard WBAN node and implement the proposed Tier-1 algorithm
for detecting faulty and uninteresting health parameter values. A typical WBAN architecture
comprising narrow-band wireless platforms such as Crossbow’s Mica nodes and Texas Instruments’
CC1010 and CC2400 [7, 30] based on ZigBee or Bluetooth wireless modules, is simulated. The
simulation is done over MATLAB (Simulink) incorporating logic gates and MATLAB function
blocks as shown in Figure 13. The working of the algorithm in the simulated environment is tested
with data corresponding to the Heart Rate attribute of patient 221 from the MIMIC-1 dataset. Figure
14 shows the data-points of the Heart Rate attribute of patient 221 after assessment at Tier-1.
Empty spaces in the graph indicate faulty or uninteresting readings that are eliminatated. Figure 15
shows the interpretation of the signal at the LPU. Empty spaces are replaced by values of the data
immediately preceding the eliminated data points.
This is along expected lines and validates the practicability of the proposed approach in the

resource-constrained environments of a WBAN node. The simulation ensures that the algorithm
can easily be implemented on actual hardware.

4.5 Prototypical Implementation of the Proposed System
We assess the practicability of the proposed system in the real world through a prototypical
implementation of a WBAN node. The node comprises an AD8232 Electrocardiogram (ECG)
Monitor Sensor and an Arduino UNO microcontroller (a commercial implementation of a similar
set-up would be significantly miniaturised and appropriately embedded in/on the body). The data
on the heart’s rate and rhythm continuously monitored by the sensor is assessed by the algorithm
at the node. The data collected by the ECG sensor is in𝑚𝑠 . Figure 16 shows a picture of the set-up
on one of the authors to simulate the assessment at Tier-1.

The data monitored at the sensor is shown in Figure 17, and comprises 4500 data points. The Tier-
1 algorithm implemented at the node eliminates 3794 data points that are deemed ‘uninterested’.
This works out to 84.31% of the data and would result in significant savings in term of energy
expended on transmission. Figure 18 shows the graph with the reduced data points. Readings that
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Fig. 14. Data points after Tier-1 Assessment

Fig. 15. Data interpretation at the LPU

are not far removed from immediately preceding data points are eliminated. It is clear from Figures
17 and 18 that the system and is able to effectively capture the nature of the health parameters in
spite of the reduced data points. Subsequently, during Tier-2 assessment, no substantial anomalies
were recorded, and an AUC-ROC score of 0.99 was recorded.

A typical WBAN sensor, Mica2 [17], is used to calculate the power consumption in the proposed
set-up. Polastre et al. [41] provide the total power consumption of a Mica2 sensor for various
operations in Table 4. The total energy (in Joules) for each operation is calculated using Equation
16, assuming a constant voltage of 3 Volts [17].

𝐸𝑛𝑒𝑟𝑔𝑦 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (𝐼 ) ∗𝑇𝑖𝑚𝑒 (𝑇 ) ∗𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝑉 ) (16)
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Fig. 16. Arduino Set-up and dataset generation on a set-up experimented on author
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Fig. 17. Data on the heart’s rhythm monitored by the ECG sensor
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Fig. 18. Reduced data post Tier-1 assessment

From Table 4, we can compute that transmitting 1 byte of data requires: 20× 416× 10-6× 3 = 24.96
𝜇J of energy. Here, we demonstrate the energy efficiency of the proposed approach through the
example of the respirator sensor (RESP) for patient 221 (Mimic dataset) in Table 2. The table shows
that there are 25,000 data points generated, and assuming each data point to be of 4 bytes, Mica2
would require: 25000 × 4 × 24.96 × 10-6 = 2.496 J for transmission. This is the energy expended in
the absence of Tier-1 assessment and all the sensor readings are transmitted to the LPU.

Our proposed approach does certain computations at the sensor and the energy expended for the
computations also needs to be accounted for. From [11] we infer that computing each instruction
requires 2.15 𝑛J on a Mica2 sensor. The total energy spent on computations is calculated using
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Table 4. Mica2 Sensor power consumption on each operation

Operation Time (s) I (mA)
Initialize radio 350E − 6 6
Turn on radio 1.5E − 3 1
Switch to RX/TX 250E − 6 15
Time to sample radio 350E − 6 15
Evaluate radio sample 100E − 6 6
Receive 1 byte 416E − 6 15
Transmit 1 byte 416E − 6 20
Sample sensors 1.1 20

Equation 17.

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 × 2.15 × 10-9 𝐽 (17)

The total number of instructions computed at Tier 1 for the respiratory sensor for patient 221
is obtained by converting the assessment step into assembly code (symbolic machine code), and
works out to 1,850,081 instructions. The total energy expended for computations, therefore is:
1850081 × 2.15 × 10-9 = 0.004 J. The energy expended in transmission of data to the LPU works
out to 32.1% of that expended to transmit all the datapoints which is 0.801 J (32.1% of 2.496 J). This
is because Table 2 shows that the proposed method discards 67.9% of the respiratory sensor data
generated for patient 221. The total energy expended is therefore: 0.004 J (computation energy)
+ 0.801 J (transmission energy) = 0.805 J. This works out to a saving of 67% (0.805 J as compared
to 2.496 J) of energy owing to the use of the proposed 2-Tier assessment approach and is quite
significant.

5 CONCLUSION
An approach to eliminate ‘uninteresting’ health parameter measurements by sensors in Wireless
Body Area Networks (WBAN) was proposed in this paper. The idea involves: 1) eliminating
measurements that have not deviated much from their immediately preceding values and hence
provide no new information; and 2) elimination of measurements that are significantly deviated
from the normal and are most likely faults. Removal of such uninteresting measurements markedly
reduces the energy required to transmit measured health parameter values from the sensors to the
Local Processing Unit (LPU). In our experiments, the elimination of data at the site of the sensors
was around 90% and indicated a proportional degree of energy savings. Such computations at the
resource-constrained senor nodes are usually viewed suspiciously as being impracticable in real
environments. To demonstrate the feasibility of the proposed approach, we conducted a hardware
simulation of a typical sensor node in a WBAN and implemented and executed the algorithm over
it. Results of the simulation were in conformance with our expectations demonstrating the practical
viability of the approach.

The second tier of assessment involved harnessing an anomaly detection model that is capable
of handling streaming data and working within the confines of the relatively resource-constrained
environment of an LPU, usually a mobile device, as compared to the infinitely capable cloud.
Detecting anomalies at the LPU instead of the cloud leads to significant energy savings otherwise
expended on data transmission to the cloud and also minimises latency. The anomaly detection
enables identifying anomalous readings that indicate a possible medical condition and sometimes
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even an emergency. The efficacy of the anomaly detection model was compared with standard
models and shown to be efficacious.

The results are promising andwe aim to combine the proposed approachwith a parallel endeavour
of ours wherein the various sensors in a WBAN more effectively co-exist and communicate with
the LPU through superior spectrum utilisation.
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