
Software Development in Small Software Companies: Exploring
the Usage of Procedures, Techniques, Methods and Models in

Practice
Micheal, Tuape

Dept of Software Eng. Lappeenranta-Lahti University of
Technology, Lappeenranta

micheal.tuape@lut.fi

Victoria, Hasheela-Mufeti
Dept of Computing, Mathematical and Statistical Sciences,

University of Namibia
vhasheela@unam.na

Anna, Kayanda
Information Systems Dept, College of Business Education,

Dar es Salaam
a.kayanda@cbe.ac.tz

Jussi, Kasurinen
Dept of Software Eng. Lappeenranta-Lahti University of

Technology, Lappeenranta
Jussi.kasurinen@lut.fi

ABSTRACT
Small software companies have a challenge with utilizing process
tools, which affects practice with significant quality-related chal-
lenges. This affects the software industry significantly because SSCs
dominate the industry, and most of all, over 80 percent of software
products are produced by SSCs. This cross-sectional survey was
conducted in 3 countries attracting 115 respondents with the pri-
mary objective of investigating the software practice concerning the
utilization of process tools in SSCs. The study focused on the tools
used in requirements engineering and software testing as critical
process areas for quality software products. Our findings indicate
that the number of personnel intertwines with the complexities
arising from lengthy procedures of the tools and processes, aggre-
gating into difficulty in tool usage. Due to the constant evolution
of practices, the volatility in processes also causes slow adoption
of other tools, for instance, testing that must accompany the main
engineering tools during a project. These findings are significant
in informing theory and communicating to the practitioners what
they should do regarding process tools.

CCS CONCEPTS
• Software and its engineering; • Software creation and man-
agement; • Designing software;

KEYWORDS
Small software companies, Utilization of process tools, Software
development practice, Survey methodology

ACM Reference Format:
Micheal, Tuape, Victoria, Hasheela-Mufeti, Anna, Kayanda, and Jussi, Kasuri-
nen. 2021. Software Development in Small Software Companies: Exploring
the Usage of Procedures, Techniques, Methods and Models in Practice. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESSE 2021, November 19–21, 2021, Larissa, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8506-0/21/11. . . $15.00
https://doi.org/10.1145/3501774.3501779

2021 2nd European Symposium on Software Engineering (ESSE 2021), No-
vember 19–21, 2021, Larissa, Greece. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3501774.3501779

1 INTRODUCTION
Software engineering continues to face challenges amidst increased
demand for software-intensive projects[23], including challenged
projects, poor quality products with all attempts to transform pro-
cesses with the different tools available for practice that continue to
pose new challenges, especially for the Small Software Companies
(SSCs) given the complex environment in which they operate[41].

Unlike other engineering fields, software engineering is a rel-
atively new field that is very knowledge-intensive [15] [42]. This
industry involves lots of design and is hugely dependent on people
[14], which probably explains why the software industry faces dif-
ferent challenges and complexities [36]. Based on this background,
the software failure rate is still high in the industry and has been this
linked to poor practice where up to 40% of projects are considered
failures [27]. Quality is another aspect that has been a challenge in
the software industry [18] because of poor processes, as indicated
by [17], causing delay to market, cost overruns, dissatisfaction of
customers leading to the cancellation of projects. Today, the soft-
ware industry is becoming global, putting pressure on the young
industry, leading to high expectations and increasing demand for
quality software products.

Creativity has been experienced in practice and research, with
different solutions being suggested, primarily where the challenges
in practice affect software engineering most. These challenges are
aggregated by the underutilization of the tools that facilitate soft-
ware development processes; the techniques, approaches, notations
and methods prevalent for SSCs are very evident, with researchers
[2] citing a low 7 percent usage. Authors have suggested that tools
are often not easily adaptable for the SSCs, which leads to limited
utilization. This is perhaps because most tools are made with the
assumption that all software companies are the same. A typical
example is the introduction of agile methods [8], which has ef-
fectively gained prominence among practitioners and researchers,
with some researchers calling it a paradigm shift [20]. In support of
this, Stankovic et al., in [36] are quoted as saying that "agile meth-
ods is not about the practices they use, but rather the recognition of
people as principal drivers of project success, added to the intense

29

https://doi.org/10.1145/3501774.3501779
https://doi.org/10.1145/3501774.3501779
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3501774.3501779&domain=pdf&date_stamp=2022-03-26

ESSE 2021, November 19–21, 2021, Larissa, Greece Micheal Tuape et al.

focus on effectiveness and maneuverability." This means the tools
may remain the same, but the focus should be on ensuring that
the tools are adaptable to have the processes utilized in practice.
Similarly, software process improvement(SPI) has also taken credit
as a key contributor in transforming practice; however, Tripathi et
al. [37] also note that successfully implementing SPI is arguably the
most challenging issue facing the SPI field today andmost especially
for the SSCs.

There is also a known concern that studies to understand soft-
ware practice have beenminimal, andmost areas of software remain
under-researched with glairing evidence of the gap in practice and
researched information. Among areas that remain under-researched
is software testing[20][21] and requirements engineering (RE)[39],
whose adequate definition creates a significant impact on the gen-
eral understanding of the product under construction and on the
final product quality [5][13]. Significantly, 60 percent of develop-
ment effort is used while generating system requirements for the
system under construction, and most of the projects are challenged
because of unsatisfactory requirements [13]. The tools available for
RE are significant for practice; however, the usage of the tools is
limited. Researchers in [13][16] have studied the effectiveness of
the tools, citing, and acknowledging that RE’s success greatly de-
pends on the people involved in it. Software practitioners consider
motivation, domain knowledge, attitude, communication skills and
personality as critical human aspects [16] when involved in RE and
development of software generally.

This study seeks to investigate software practice, creating a
deeper understanding of why there is limited utilization of pro-
cess tools and what tools are most utilized by the SSCs. Another
objective is to investigate further what motivates the decision on
the tools that the organizations often utilize. The other aspect of
interest in this study is to ultimately develop a process adoption
framework to provide developers of software process tools with a
strategy to ensure that the tools contend with the context in which
SSCs operate. Therefore, to do this, understanding software practice
and the utilization of tools by the SSCs is paramount. This study is a
survey in which 115 software development practitioners from soft-
ware companies in 3 African countries, namely: Namibia, Tanzania
and Ghana, have been reached through an online questionnaire to
answer questions related to software practice in SSCs.

The rest of this paper is structured such that, section 2 presents
the related work, section 3 the methodology is discussed, section 4
is the presentation of the results, section five is the discussion of
the results and limitations of the study; and finally, section 6 covers
the conclusion and future work.

2 RELATEDWORK
Different researchers have attempted to explore many avenues in
explaining the plight to understand the practice, especially process
tools in software engineering. It is important to note that there are
limited studies on software practice, especially those dedicated to
studying the SSCs. Most of the available studies have paid signifi-
cant attention to the larger companies and their practices in general.
It is also evident that questions on what process tools are often
used in practice and how they arrive at the choice of process tools
remain a mystery. This has led to other researchers [21] questioning

processes research while arguing that process-related research has
lost momentum and has failed to aligned with practice concerns.

Generally, on software practice and the associated tools used in
software development, researchers in [1] contend that the field of
software development is not shy of introducing new methodolo-
gies; to this effect, in the last 25 years alone, different approaches to
software development have been introduced, of which only a few
have survived up today. Researchers with similar views also argue
that development methodologies "are treated primarily as a neces-
sary fiction to present an image of control or provide a symbolic
status[27][23]." Similarly, other researchers [1, 31, 34] front the ar-
gument that traditional methods are unattainable ideals that only
provide normative guidance to utopian development situations.

Some researchers give significant attention to SSCs, especially
regarding processes and practice, among others are Wangenheim
et al. in [42], who stated that many SSCs are unaware of exist-
ing software process assessment models and standards that are
primarily responsible for the transformation of software develop-
ment practice in SSCs. In addition, they have also argued that such
procedures have been criticized as inappropriate for SSCs, which
generally have informal processes and organizational structures
that focus primarily on getting the product out to stay in business
which is a concern of other researchers who have also explored the
practice of SSCs observed in [41] [38][29].

Similarly, in [33], the researchers highlight the challenges of
SSCs characteristics that clearly distinguish them from larger orga-
nizations and translate into restrictions for selecting engineering
tools. They also add that the tools are constantly increasing in num-
ber and, unfortunately, are designed to adapt to different scopes,
making the selection of the appropriate tools much more complex.
On the differences in context and the associated difficulty in imple-
menting tools in practice, Sánchez-Gordón and O’Connor in [35]
also contend that all software companies are not the same and vary
according to different factors including size, market sector, time
in business, management style, product range and geographical
location and that since all companies are not the same, then the
critical questions for those who develop software process and tools
should be questioning why the tools they have to be the same

Other researchers in [37] also add that SSCs are critical in driving
the software industry today and are responsible for the rapid growth
of most growing economies. The SSCs operate under challenging
environments with difficulty utilizing tools and processes. The
authors call for the need to assist the SSCs in seeking the relevant
information to make their software development processes efficient
because they lack systematic process knowledge for determining
which type of processes and tools are more relevant to their context.

Some researchers have also undertaken studies from the scope
of our study related to software practice in Nelulu and Mufeti [28]
report software development practice in a study from Namibia.
The authors share similar concerns of low utilization of process
tools and point out agile methods during development. Similarly,
in another study, Mushashu and Mtebe [25] also study the software
practice in Tanzania and report the usage of traditional methods
compared to the agile methods. The authors tag the reason for
choosing the traditional methods to the type of projects handled
by the companies. In a paper proposing a software maintenance

30

Software Development in Small Software Companies: Exploring the Usage of Procedures, Techniques, Methods and
Models in Practice ESSE 2021, November 19–21, 2021, Larissa, Greece

model, the authors hint at the poor practice in software develop-
ment in Ghana[18]. Other studies related to software practice in
other African countries include [2][26].

However, the literature reviewed in this work highlights the
challenges of interest in this study, although the studies do not
seek to understand what the practitioners are specifically doing
on utilizing tools and what prompts the decision to choose a tool
during software development. This gap remains unexploited, and
we believe answering this will be a positive step in understanding
practice in SSCs.

3 METHODOLOGY
This is a quantitative design study to help us answer the questions
regarding software practice in SSCs. A cross-sectional survey with
close-ended questions answered with a type 5 Likert scale. De-
scriptive studies like this are commonly used in software practice
research [16, 30]; we would then understand the characteristics of
practitioners and their usage of software tools in software practice
in SSCs, which has limited studies. This will enable us to answer the
what and why questions then pave the way for the how questions
that will come up in the subsequent studies.

3.1 Population and Sample
Software-intensive companies were considered as the target popula-
tion for this study. This population includes companies of different
sizes developing software products for a wide variety of markets.
This survey was sent out to a total of 282 companies in Namibia
(84), Tanzania (95) and Ghana (103). We received 47, 38 and 30,
totaling 115 data points, representing 26, 33, and 41 percent as
represented in Figure 1. The respondents were reached through
purposive sampling based on a criterion whose characteristics were
defined for a purpose that is relevant to the study [4]. The main
elements considered for the criterion while selecting the companies
were; the number of persons in the company fitting the definition
of SSCs (under 50 persons), the type of software-intensive prod-
ucts the company produces, and the respondent’s role as being
directly involved in the development of software. Purposive sam-
pling is typical in software engineering studies as advocated for
in [7] and used in [9] and [8]. The participants were contacted by
telephone to request participation in the study before mailing the
questionnaire link on the Webropol survey system. In attempt to
keep the questionnaire as short as possible (a pilot study of the
survey questionnaire showed that respondents needed about 15 to
20 minutes to complete it). We combined several well-proven tech-
niques for improving the response rate of mailed questionnaires.
Furthermore, this represents an effective response rate of 40.8 per-
cent, which is about the minimum of 40 percent for representatives
of organizations as suggested in [6].

3.2 Characteristics of respondents
Although there was a set criterion for identifying the participants,
parts of the survey questionnaire asked characteristic questions to
define the characteristics of the respondents. To understand the
characteristics of the respondents we examined the type of soft-
ware products produced by the participant’s company, the gender,

the level of education and the country from which the data was
collected as shown in Figure 1.

Most of the companies produce more than one software-
intensive product, predominantly software solutions and web appli-
cations. The developers and software engineers are the dominant
roles taken by most of the participants in the study, with 82 and 52
participants, respectively.

The other aspect significant about the characteristics of the par-
ticipants is the gender and number of personnel of their respective
companies shown in Figure 2

The results show that, 85 percent of the participants came from
companies that fall under the definition of SSCs with 1 to 50 per-
sonnel, and 70 percent of them are from the very small entities
with between 0 and 25 personnel. However, the 0 to 5 category re-
main glaringly significant, with up to 41 percent of the participants
belonging to this category.

3.3 Survey questions
The online survey questionnaire was designed to investigate soft-
ware practice, specifically the tools used in practice by the SSCs.
We developed a draft set of questions to comprehensively cover
the software practice, considering the questionnaire’s size and the
number of questions, following the guidelines and experiences of
other researchers in conducting online surveys [15].

The questionnaire was sent to fifteen practitioners in the indus-
try to ensure that the language used in the study was familiar to
the intended participants. Evidence in the literature shows that [13]
researchers and industrial practitioners often use different termi-
nologies and, when conducting industry research, consensus on
terminology is paramount.

Early feedback from the practitioners helped ensure the proper
context for the survey and the familiarity with its terminology
for industrial respondents. This was used to develop the second
set of survey questions subjected to review by five other experts
with over five years of experience conducting software engineering
surveys. After improving the questions based on the feedback from
the industry practitioners in the pilot study, the instrument had
28 questions. A set of questions was dedicated to the profiles and
demographics of the respondent. The questions probed data related
to software companies in the context of characteristics, software
development tools used in software practice with answers of type
5-point Likert scale giving participants options of 1. Never, 2. Rarely,
3. Sometimes, 4. Often, and 5. Always.

3.4 Assessment of Reliability and Validity
Cronbach’s alpha α proposed in [11] is the most common measure
of internal consistency ("reliability"). It is mostly used with multiple
Likert questions in a survey that form a scale, and you wish to
determine if the scale is reliable. Reliability refers to the consistency
and stability of the score from a measurement scale, it is calculated
using formular 1 below.

α =
k

k − 1

[
1 −

∑
s2y

s2x

]
(1)

The reliability of the 64 sub-questions measured on the 5 Likert
scale given a dataset of 115 was evaluated by internal consistency

31

ESSE 2021, November 19–21, 2021, Larissa, Greece Micheal Tuape et al.

Figure 1: L-R top; respondents’ responses on the software-intensive products produced by the companies, the countries from
which the data was collected—L-R bottom roles of respondents in the company, level of education of the respondents (n=115)

Figure 2: Left to right gender representation of the respondents and the number of personnel in the companies in the study
(n=115)

Table 1: Assessment of reliability and validity using the Cronbach’s alpha

Variables Description Value Internal consistency

K Number of Items 64
Acceptable

∑
s2y Sum of item variance 88,17

s2x Variance of the total score 1590,74
α Cronbach’s Alpha 0,96

analysis, using coefficient alpha α [23]. The result of the Cronbach’s
alphaα interpretationwas evaluated to .92, see Table 1 whichmeans
that our questions’ internal consistency or reliability is acceptable.
According to the rule, the ranges are from zero to one; however,
.7 and above is acceptable. In cases with large datasets, this α is
expected to be high closer to one.

3.5 Data Analysis Techniques
We used Cross-tabulation, sometimes referred to as cross-tab or
contingency table, as a tool used to analyze categorical data. This
type of data involves values that are mutually exclusive to each
other. Data was collected in numbers, but numbers have no value
unless they mean something as used in [17],

32

Software Development in Small Software Companies: Exploring the Usage of Procedures, Techniques, Methods and
Models in Practice ESSE 2021, November 19–21, 2021, Larissa, Greece

Figure 3: Responses of the question on the techniques for requirements elicitation by the SSCs (n=115).

Figure 4: responses on the question on approaches used during software requirements analysis and modelling (n=115).

The results of testing these assumptions showed that kurto-
sis, skewness, and the one-sample Kolmogorov-Smirnov tests for
all variables were within the acceptable range for the normal dis-
tribution assumption. Also, the assumptions of homoscedasticity,
linearity, and independence of the error terms were supported, and
no influential observations were identified. In other words, there
were no extreme violations to the basic assumptions underlying
the chosen data analysis techniques that could justify the use of
less powerful nonparametric statistics. All quantitative analyses
were conducted using SPSS.

4 RESULTS
Process tools are general implements used to enhance one’s ability
in building, modifying, and generally developing software. The
tools include techniques, approaches, notations, and methods.

4.1 Requirements
4.1.1 Techniques used for requirements elicitation. Figure 3 rep-
resents the common techniques among the different techniques
in eliciting requirements: brainstorming, interviews, surveys or
questionnaires, prototyping, and document analysis. Eliciting re-
quirements, the results indicate minimal usage of the techniques of
surveys and questionnaires compared to the other. Brainstorming
is, however, better utilized.

4.1.2 Approaches we use during the analysis and modelling of soft-
ware requirements. Figure 4 illustrates the responses on the ap-
proaches that guide analysis and modelling practice, including
UML diagrams, Flow charts and Scenarios, which are seen as more
utilized than Traceability graphs, Gap analysis, and Storyboards
minimally used. In contrast, Fishbone diagrams and Journey maps
are the least used.

4.1.3 Notations used in expressing requirements specifications. Fig-
ure 5 presents the results of the notations used by the SSCs in the
requirements specification. There is an overall low usage of the
notations.

Structured natural language that uses standard Templates/form
presents as a preferred choice, Design description language and
Graphical notation which is also sometimes Text annotations are
moderately used while, Mathematical Specifications with finite
state machines/sets is minimally used.

4.1.4 Our team performs requirements inspections in your software
projects. Inspection is a powerful method to uncover ambiguities,
in which different readers interpret a requirement in different ways.
If the reader has difficulty describing a requirement, perhaps it is
too complex, poorly expressed, or incorrect. Figure 6 shows this
study’s key requirements inspection techniques: scenarios, ad hoc
techniques, checklists, and the sample-driven technique.

4.2 Software development methods
The study asked whether Crystal Family, Nexus, DevOps, Dynamic
Systems Development Method, Kanban, Lean Software Develop-
ment, Scaled Agile Framework (SAFe), Scrum, ScrumBan, Spiral
Model, Structured Systems Analysis and Design Method, Team Soft-
ware Process, V-shaped Process (V-Model), Iterative Development,
Personal Software Process and PRINCE2 were used. See Figure 7.
The results show limited usage of the development methods by the
companies that participated in the study. The Iterative development,
scrum, DevOps, and SAFe recorded more than 40 respondents who
have often used these methods. While the methods like Crystal
Family, Nexus, Kanban, ScrumBan, V-Model, and Prince 2 are list
utilized with over 70 respondents stating to have never or rarely
used the methods.

33

ESSE 2021, November 19–21, 2021, Larissa, Greece Micheal Tuape et al.

Figure 5: responses on the question on the notations used while expressing requirements specifications(n=115).

Figure 6: Requirements inspections techniques used in software projects (n= 93)

Figure 7: Software development methods n= 115

4.3 Software testing
4.3.1 Software testing strategy. Figure 8. shows the availability of
a software testing strategy within the SSCs and how it is utilised.

We examined the availability of test strategies in the SSCs and
the strategies’ utilization on software testing. The results present
data from the 93 companies that SSCs and we not that generally,
64 respondents answer in affirmative while 29 state that they do
not have a test strategy in their companies representing 69 and 31
percent respectively.

4.3.2 Referral to company test strategy. The responses whether the
participants referred to their test strategies were answered by 64

respondents, of which 38, 31, 36, 3 and 5 responded with Always,
often, sometimes rarely and never, respectively, as illustrated above.

4.3.3 Models for software testing. Figure 9 shows that 3 of the
software models have never been used by about 60 respondents,
and 45 have also not used ISO/IEC29119. The difference is not
significant, although there is a little higher usage of ISO/IEC29119
than the other three asked in the questionnaire.

5 DISCUSSION
This study reports quantitative research undertaken to investigate
software practice, specifically the utilization of software process
tools as techniques, models, methods, and processes. This section

34

Software Development in Small Software Companies: Exploring the Usage of Procedures, Techniques, Methods and
Models in Practice ESSE 2021, November 19–21, 2021, Larissa, Greece

Figure 8: Left representation of percentages of the respondents who confirmed having a software test strategy in the SSCs. n=
93; Right the usage of the strategy of those who confirmed to have a strategy n= 64

Figure 9: Responses of participants on the models used by the SSCs in software testing n= 93

discusses the insights gained for practitioners and researchers from
the findings; we also further discuss the limitations of the study
and some suggestions for further research

5.1 Insights from the researcher’s perspective
5.1.1 Requirements Engineering tools in practice. The low usage
of the requirements elicitation techniques is worrying, yet many
stakeholders cannot accurately articulate the business needs and
problems. This, therefore, means that, while performing the elicita-
tion, it may be challenging to ensure that the requirements produced
are understandable, practical, and relevant, a view shared in [39].
This confirms claims of rampant project failure being associated
with requirements in [24]. This also shows a clear linkage to the
findings that show low usage of notations in requirements specifica-
tion and inspection, respectively. The unutilized tools are solutions
to the challenges observed; this leaves us with the quest to ask why
the tools are not being used yet there is a need.

Requirement elicitation techniques are skillful ways to carry
out the process of collecting information from stakeholders. From
this, we determine the customers’ needs for the proposed system.
Given the challenges from the industry as cited in [5] and [39], as
it is expected. Eliciting requirements is considered by practitioners
and researchers as one of the most challenging tasks in develop-
ing software majorly because establishing one’s interest usually

is very difficult when it comes to software. This procedure serves
as a foundation in documenting the requirements for application
development.

In linguistics and semiotics, a notation is a system of graphics
or symbols, characters, and abbreviated expressions, expected to
be helpful in software development practice to represent technical
facts by convention as cited in[10]. Notations allow us to write and
make calculations large numbers quickly and with minimal effort.
Symbols play crucial roles in advanced mathematical thinking that
they provide flexibility and reduce cognitive load, although often
have a dual nature since they signify both processes and objects of
mathematics. In software, engineering notations are expected to
be significant in abstracting complexity, although in most cases, it
is seen as a complex approach, which probably explains why its
usage is very insignificant among SSCs.

The tools unutilised in the during RE require substantial time
and are highly procedural with numerus formalities the trend seen
here is that tools that enable what is perceived as “flexibility” seems
to carry the day regardless of how useful a tool may be.

5.1.2 Software developing methodologies. Our findings have some
similarities with the findings of [26], who study the utilization of
development methodology. Their finding reported a low usage of
methods and significantly low usage of the agile approaches in

35

ESSE 2021, November 19–21, 2021, Larissa, Greece Micheal Tuape et al.

Uganda compared to Sweden. Uganda has similar traits with the
geographical scope of this study we see that software companies in
Uganda are prone to utilizing traditional development methodolo-
gies. Because of proximity, the software practice can have a familiar
pattern.

In another study [25], in Tanzania, the authors also found out
that the methodologies varied significantly although the traditional
methods were dominant and that the choice of methodology was
largely dependent on nature and type of project among other rea-
sons, a view also shared in [2] by Alamdy and Osman. Significant
to this is that the methodologies of choice tend towards shorter
processes aligning with the revelations on RE tools.

5.1.3 Software testing and practice. About 30 percent of the respon-
dents from the SSCs not having a testing strategy is bad enough,
and worst still, the strategies seem to be underutilized by the com-
panies. In most cases, such strategies refer to utilizing internal
documents. If internal documents and methods are not used, then
the other models and methods cannot be taken up. Our findings
on software testing closely relate to the study of [14], whereby
the implementation of TMMI is not observed in Canada. This is
also similar to the findings of [15]. This is perhaps because of the
change in experience of the software practice in general and be-
cause changing development approaches would ordinarily require
a change in test practice which unfortunately is given less priority;
this view is highlighted in [20].

The interesting finding is how the ISO/IEC 29119 is most uti-
lized compared to the others, although researchers in [19] state
that it has laborious processes and no mechanism of adoption for
companies. They also state that software testing is significantly
ignored as we equally observe from the usage of the tools, be it
internal or external. Additionally, the findings of Matalonga et al.
[22] assert that ISO/IEC 29119 is intended to cover extensive testing
approaches, and its application is convenient to traditional testing
techniques; however, the SSCs could not have explored using this.
This same view is shared by Eira et al. [12], who also shows how
beneficial the standard can be to SSCs.

The low usage of inspections tools draws the attention of the
researchers to the stages in the inspections process, which include
planning, overview meeting, preparation, inspection meeting, re-
work, and follow-up, which perhaps becomes problematic given
that the number of practitioners may not accommodate these tasks.
A similar view is fronted in [33], associating this complexity to the
characteristics of the companies. This probably makes inspection
a mission impossible. It may mean developing more straightfor-
ward approaches for very small groups for adequate verification
and validation. Keen interests need to be taken on studying the
characteristics of the SSCs to inform the processes of choosing
what tool could be ideal for what company a view in other studies
[35][38][41].

5.2 Limitations and potential threats to validity
This sub-section discusses the threats to the validity this study was
exposed to and the steps taken to minimize them. This study con-
sidered four types of threats to validity: internal validity, external,
construct, and lastly, conclusion validity which is adopted from
[43].

5.2.1 Internal validity. A major potential threat to the internal
validity of our study lies in the selection of the sample popula-
tion. The study considered only 115 respondents from 115 software
companies; this may not represent the SSCs in the sample space.
Due to limitations beyond our control, it was not feasible for us to
reach out to only a sizable number from the three countries, and
we continue to collect data from other countries that we shall use
to triangulate at the end of the study to validate our findings.

Probabilistic sampling was not possible, and we used purposive
sampling, where respondents are selected based on the set criterion
discussed in section 3.1. We worked through established societies
in these countries; however, the COVID-19 restrictions made it
difficult as initially planned we then adjusted accordingly.

5.2.2 Construct validity. A threat to construct validity refers to
whether what wemeasured is representative of what happens in the
industry regarding software process tools. Counting the answers
to each question designed to answer the questions as seen in [36],
shows that results based on counting data and statistical inferences
can reflect respondents’ perceptions about the tools used in software
development practice SSCs.

To further minimize this threat, we declared the study’s intention
to all participants as a survey to study the software engineering
practices in companies. We also informed the participants that
identifying information would not be used, and all participants will
remain anonymous.

5.2.3 Conclusion validity. The threat to conclusion validity lies in
the reliability of measures that depend on poor question wording
and survey layout [43]. The authors reviewed the survey questions
and subjected the questionnaire to a review of 5 other experts
before subjecting the questionnaire to a pilot study. The software
practitioners responded to the pilot study questions and provided
feedback regarding the quality of our survey questions.

Another threat to conclusion validity was related to whether
the conclusions we drew were based on rigorous and repeatable
treatment [43] that we have done by an extensive description of the
method. We also explicitly stated that our results would be based
on a dataset of mostly SSCs, and others to contrast how much the
companies may differ from those pivoting from SSCs. This was
considered when interpreting the results and conclusions.

5.2.4 External validity. External validity deals with the limitations
of generalizing the research results beyond the scope of the partici-
pants in our study. The extent to which the results are generalized
to other people reflects its external validity; Although, this study
has been triangulated with multiple data sites to reflect the more
significant part of the community.

The use of 115 data points is a small sample, and we attempted to
use purposive sampling to give room for qualitative generalisability.
As pointed out by Amir and Ralph, purposive sampling is typical
in software engineering to facilitate qualitative generalisability [3].

6 CONCLUSIONS AND FUTUREWORK
The software engineering community has, over the years, taken
note of software process tools that are not adoptable by the SSCs
and the big number of tools that remain unused in practice. This
paper presents a survey in which we view software practice and

36

Software Development in Small Software Companies: Exploring the Usage of Procedures, Techniques, Methods and
Models in Practice ESSE 2021, November 19–21, 2021, Larissa, Greece

the usage of process tools in SSC as being minimal and the size of
the companies is no absolute reason for how process tools are used,
although we have observed that size has an effect on the tools used
as also cited in[32][38], the lengthy processes of the tools seem to
play a significant part in deciding on the choice of tool orchestrated
with the urge for shortcuts and ad-hoc tendencies.

We also note that process areas like software testing tend to
remain ignored, as noted in [15], because of the rapid changes in
development processes, and this is also expected to transform the
software testing approaches, yet volatility continues to overwhelm
the practitioners in the SSCs. It is, however, essential to acknowl-
edge the challenges of attempting to adopt a tool that is intently
designed for larger companies and does not fit in the context of the
SSCs, a view shared by other researchers in[1], [33] [40]. In this
work, we present numerical summaries of the characteristics of the
respondents and what tools are used by the practitioners during
software development in SSCs.

In our ultimate goal of developing an adaptability framework to
guide designers of software tools and help the software companies
make correct decisions while choosing tools that fit their context,
we also intend tools identified in this study to develop a deeper
understanding of the characteristics of the SSCs to develop a classi-
fication taxonomy. This study gives us good insights to guide our
next steps in which we then ask the why questions to give us a
firm footing in understanding the software practice and the limited
utilization of tools while developing software in SSCs. This study
will also be validated with data that is being collected from two
European countries whose data collection process is still ongoing.

ACKNOWLEDGMENTS
The authors would like to acknowledge the help of Victoria, Sharon,
Pulafela, Joseph and Jonathan, who made the follow up calls to
the respondents and Maria, Annika, Bilal, Shola, and Saltan for
reviewing the survey protocol. We also appreciate the support of
Denis, Kwaku, Joseph, Babatunde Nicole, Harriet and Daniel for
their help during the survey piloting phase, and all the practitioners
from the industry who voluntarily participated in the survey and
helped us in the publicity of our survey.

REFERENCES
[1] Abrahamsson, P. et al. 2017. Agile software development methods: Review and

analysis. arXiv preprint arXiv:1709.08439. (2017).
[2] Alamdy, S. and Osman, R. 2017. Software industry practice in Africa: case study

Sudan. 2017 IEEE 41st Annual Computer Software and Applications Conference
(COMPSAC) (2017), 743–748.

[3] Amir, B. and Ralph, P. 2018. There is no random sampling in software engineering
research. Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings (2018), 344–345.

[4] Andrade, C. 2021. The inconvenient truth about convenience and purposive
samples. Indian Journal of Psychological Medicine. 43, 1 (2021), 86–88.

[5] Balikuddembe, J.K. and Tuape, M. 2017. An Ambiguity Minimization Technique
during Requirements Elicitation Phase. 2017 International Conference on Compu-
tational Science and Computational Intelligence (CSCI) (2017), 945–950.

[6] Baltes, S. and Diehl, S. 2018. Towards a Theory of Software Development Ex-
pertise. Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (New York, NY, USA, 2018), 187–200.

[7] Baltes, S. and Ralph, P. 2020. Sampling in software engineering research: A critical
review and guidelines. arXiv preprint arXiv:2002.07764. (2020).

[8] Barr, M. and Parkinson, J. 2019. Developing a work-based software engineer-
ing degree in collaboration with industry. Proceedings of the 1st UK & Ireland
Computing Education Research Conference (2019), 1–7.

[9] Cico, O. 2020. Towards transferring lean software startup practices in software
engineering education. {ESEC/FSE} ’20: 28th {ACM} Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
Virtual Event, USA, November 8-13, 2020 (2020), 1686–1689.

[10] Costagliola, G. et al. 2004. A framework for modeling and implementing visual no-
tations with applications to software engineering. ACM Transactions on Software
Engineering and Methodology (TOSEM). 13, 4 (2004), 431–487.

[11] Cronbach, L.J. 1951. Coefficient alpha and the internal structure of tests. psy-
chometrika. 16, 3 (1951), 297–334.

[12] Eira, P. et al. 2018. Tailoring ISO/IEC/IEEE 29119-3 standard for small andmedium-
sized enterprises. 2018 IEEE International Conference on Software Testing, Verifica-
tion and Validation Workshops (ICSTW) (2018), 380–389.

[13] Garousi, V. et al. 2016. Challenges and best practices in industry-academia col-
laborations in software engineering: A systematic literature review. Information
and Software Technology. 79, (2016), 106–127.

[14] Garousi, V. et al. 2017. What industry wants from academia in software testing?
Hearing practitioners’ opinions. Proceedings of the 21st International Conference
on Evaluation and Assessment in Software Engineering (2017), 65–69.

[15] Garousi, V. and Zhi, J. 2013. A survey of software testing practices in Canada.
JOURNAL OF SYSTEMS AND SOFTWARE. 86, 5 (May 2013), 1354–1376. DOI:https:
//doi.org/10.1016/j.jss.2012.12.051.

[16] Hidellaarachchi, D. et al. 2021. The Influence of Human Aspects on Requirements
Engineering: Software Practitioners Perspective. arXiv preprint arXiv:2109.07868.
(2021).

[17] Javed, T. et al. 2004. A study to investigate the impact of requirements instability
on software defects. ACM SIGSOFT Software Engineering Notes. 29, 3 (2004), 1–7.

[18] Kajko-Mattsson, M. and Bosu, M. 2006. Eliciting an Enhancive Maintenance
Model in Three Organisations in Ghana. 5th IEEE/ACIS International Conference
on Computer and Information Science and 1st IEEE/ACIS International Workshop
on Component-Based Software Engineering,Software Architecture and Reuse (ICIS-
COMSAR’06) (2006), 244–251.

[19] Kasurinen, J. et al. 2011. A self-assessment framework for finding improvement
objectives with ISO/IEC 29119 test standard. European Conference on Software
Process Improvement (2011), 25–36.

[20] Kasurinen, J. et al. 2011. How Test Organizations Adopt New Testing Practices
and Methods? 2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops (2011), 553–558.

[21] Klünder, J. et al. 2019. Catching up with method and process practice: An industry-
informed baseline for researchers. 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP) (2019), 255–264.

[22] Matalonga, S. et al. 2015. Matching context aware software testing design tech-
niques to ISO/IEC/IEEE 29119. International Conference on Software Process Im-
provement and Capability Determination (2015), 33–44.

[23] McLeod, L. and MacDonell, S.G. 2011. Factors that affect software systems devel-
opment project outcomes: A survey of research. ACM Computing Surveys (CSUR).
43, 4 (2011), 1–56.

[24] Mohagheghi, P. and Jørgensen, M. 2017. What contributes to the success of
IT projects? Success factors, challenges and lessons learned from an empirical
study of software projects in the Norwegian public sector. 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C) (2017),
371–373.

[25] Mushashu, E.T. andMtebe, J.S. 2019. Investigating Software DevelopmentMethod-
ologies and Practices in Software Industry in Tanzania. 2019 IST-Africa Week
Conference (IST-Africa) (2019), 1–11.

[26] Nakatumba-Nabende, J. et al. 2017. Hybrid Software and Systems Development
in Practice: Perspectives from Sweden and Uganda. Product-Focused Software
Process Improvement (Cham, 2017), 413–419.

[27] Nandhakumar, J. and Avison, D.E. 1999. The fiction of methodological develop-
ment: a field study of information systems development. Information technology
& people. (1999).

[28] Nelulu, J. and Mufeti, T.K. 2021. An Exploratory Study of the Development Prac-
tices Used by Software Entrepreneurs in Namibia BT - Resilience, Entrepreneur-
ship and ICT: Latest Research from Germany, South Africa, Mozambique and
Namibia. J. Halberstadt et al., eds. Springer International Publishing. 79–93.

[29] O’Connor, R. V. and Laporte, C.Y. 2017. The evolution of the ISO/IEC 29110
set of standards and guides. International Journal of Information Technologies
and Systems Approach. 10, 1 (2017), 1–21. DOI:https://doi.org/10.4018/IJITSA.
2017010101.

[30] Ralph, P. et al. 2020. ACM SIGSOFT empirical standards. (2020).
[31] Ralph, P. 2011. Introducing an empirical model of design. The 6th Mediterranean

Conference on Information Systems (2011).
[32] Ribaud, V. et al. 2010. Software Engineering Support Activities for Very Small

Entities. Systems, Software and Services Process Improvement - 17th European
Conference, EuroSPI 2010, Grenoble, France, September 1-3, 2010. Proceedings
(2010), 165–176.

[33] Rivas, L. et al. 2008. Towards a Selection Model for Software Engineering Tools
in Small and Medium Enterprises (SMEs). Proceedings of the Third International
Conference on Software Engineering Advances, {ICSEA} 2008, October 26-31, 2008,
Sliema, Malta (2008), 264–269.

37

arXiv:1709.08439
arXiv:2002.07764
https://doi.org/10.1016/j.jss.2012.12.051
https://doi.org/10.1016/j.jss.2012.12.051
arXiv:2109.07868
https://doi.org/10.4018/IJITSA.2017010101
https://doi.org/10.4018/IJITSA.2017010101

ESSE 2021, November 19–21, 2021, Larissa, Greece Micheal Tuape et al.

[34] Salo, R. 2014. A guideline for requirements management in GitHub with lean
approach.

[35] Sánchez-Gordón, M.-L. and O’Connor, R. V 2016. Understanding the gap between
software process practices and actual practice in very small companies. Softw.
Qual. J. 24, 3 (2016), 549–570. DOI:https://doi.org/10.1007/s11219-015-9282-6.

[36] Stankovic, D. et al. 2013. A survey study of critical success factors in agile software
projects in former Yugoslavia IT companies. Journal of Systems and Software. 86,
6 (2013), 1663–1678.

[37] Tripathi, N. et al. 2016. Exploring Processes in Small Software Companies: A
Systematic Review BT - Software Process Improvement and Capability Determi-
nation. (Cham, 2016), 150–165.

[38] Tuape, M. et al. 2020. Does Context Matter? Assessing the Current State of
Quality Practice During Software Development in Small Software Companies.
Proceedings of the Future Technologies Conference (2020), 341–356.

[39] Tuape, M. et al. 2021. Software Engineering in Small Software Companies: Con-
solidating and Integrating Empirical Literature into a Process Tool Adoption
Framework. IEEE Access. (2021).

[40] Tuape, M. and Ayalew, Y. 2019. A roadmap for a comparison framework for an
adaptable software process improvement framework in small software companies.
Annals of Computer Science and Information Systems. 20, (2019), 133–141.

[41] Tuape, M. and Ayalew, Y. 2019. Factors Affecting Development Process in Small
Software Companies. Proceedings - 2019 IEEE/ACM Symposium on Software En-
gineering in Africa, SEiA 2019. (2019), 16–23. DOI:https://doi.org/10.1109/SEiA.
2019.00011.

[42] von Wangenheim, C.G. et al. 2006. Helping Small Companies Assess Software
Processes. {IEEE} Softw. 23, 1 (2006), 91–98. DOI:https://doi.org/10.1109/MS.2006.
13.

[43] Wohlin, C. et al. 2012. Experimentation in software engineering. Springer Science
& Business Media.

38

https://doi.org/10.1007/s11219-015-9282-6
https://doi.org/10.1109/SEiA.2019.00011
https://doi.org/10.1109/SEiA.2019.00011
https://doi.org/10.1109/MS.2006.13
https://doi.org/10.1109/MS.2006.13

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	3 METHODOLOGY
	3.1 Population and Sample
	3.2 Characteristics of respondents
	3.3 Survey questions
	3.4 Assessment of Reliability and Validity
	3.5 Data Analysis Techniques

	4 RESULTS
	4.1 Requirements
	4.2 Software development methods
	4.3 Software testing

	5 DISCUSSION
	5.1 Insights from the researcher's perspective
	5.2 Limitations and potential threats to validity

	6 CONCLUSIONS AND FUTURE WORK
	Acknowledgments
	References

