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Shape tracking is based on landmark detection and alignment. Open-source code and pre-trained models are 

available for an implementation that is based on an ensemble of regression trees. The C++ Deformable Shape 

Tracking (DEST) implementation of face alignment that is using Eigen template library for algebraic operations is 

employed in this work. The overhead of the C++ Eigen library calls is measured and selected computational 

intensive operations are ported from Eigen implementation to custom C code achieving a remarkable acceleration 

in the shape tracking application. An important achievement of this work is the fact that the restructured code can 

be directly implemented with reconfigurable hardware for further speed improvement. Driver drowsiness and 

distraction detection applications are exploiting shape tracking by measuring landmark distances in order to detect 

eye blinking, yawning, etc. Fast video processing and accuracy is mandatory in these safety critical applications. The 

modified software implementation of the original DEST face alignment method presented in this paper, is almost 

250 times faster due to the custom implementation of computational intensive vector/matrix operations and 

rotations. Eigen library is still used in non-time critical parts of the code for compact description and higher 

readability. Flattening of nested routines and inline implementation is also used to eliminate excessive argument 

copies and data type checking and conversions. 
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Figure 1: Face alignment based on our application with 68 landmarks. Video frame source from [1]. 

1 Introduction 
A number of landmarks can be used to perform face alignment. Different landmarks determine the shape of the 

face or more specifically the chin, the mouth, the eyes, the eyebrows, etc., as shown in Fig. 1. The number of 

landmarks typically used can range from less than 10, if only a specific part of the face has to be detected or 

aligned (e.g., mouth, eyes), to more than 160, if the detailed face shape has to be drawn. As expected, the use of a 

large number of landmarks requires a bigger training set and longer training period to achieve a reasonable 

accuracy. The distance of specific landmarks is used in metrics such as Eye Aspect Ratio (EAR) [2] or Percentage 

of Eye Closure (PERCLOS) [3] to detect eye blinking, yawning, facial expressions, orientation of the face etc. Face 

alignment is exploited by applications that detect driver drowsiness, user reaction to specific stimulus, emotional 

reactions, etc. 

Face alignment can be efficiently performed using an Ensemble of Regression Trees (ERT) as described in the 

fast 2D facial landmark detection algorithm presented by Kazemi and Sullivan in [4]. This method focuses on a 

small number of predetermined pixel positions from the input image. The gray scale intensities of these pixels is 

examined and ERT training is performed based on gradient boosting, optimizing the sum of square error loss. The 

regression procedure is expressed as a sparse coding problem in [5] and additional dictionaries have been used 

e.g., for the reconstruction of face shapes partially occluded. The authors of [6] use an ERT of 500 binary trees of 

31 nodes and depth=5. This size of ERT is also used in our case. In [7], a 2D landmark alignment method detector 

is presented, based on ERT balancing accuracy and speed. An ERT is also employed in [8] for the estimation of the 

head pose with a latency of 1ms per image frame. This is the speed advertised in [4], too. Implementations of the 

face alignment method described in [4] are available in the C++ DLIB library [9] and the DEST repository [10]. 

Five experiments with different combinations of face detection failure, model free tracking etc, have been 

conducted in [11] comparing a large number of face tracking approaches. Several important issues are also 

examined in [12] including acceleration techniques, jitter in face tracking, and appropriate evaluation metrics. 

The source code of the DEST repository [10] has been transformed in the framework of this paper, to develop a 

high performance shape tracking application that can also be implemented in hardware with Field Programmable 

Gate Arrays (FPGAs). The original DEST source code has been developed in C++ with calls to the Eigen template 
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library [13] for matrix/vector operations, Jacobi rotations, Singular Value Decomposition (SVD), etc. The use of 

Eigen library and well defined C++ classes ensures the integrity of the data values in any application and allows 

the operations to be described in a compact, still portable, way. Nevertheless, the excessive integrity checks and 

data type conversions are responsible for a high latency overhead. Moreover, the Eigen and C++ classes and data 

types used in DEST do not allow a reconfigurable hardware synthesis by state-of-the-art tools such as Xilinx Vitis. 

For instance, every data structure in the original DEST implementation is dynamically allocated while the size of 

the matrices used in hardware kernels has to be defined as a constant. Although the original DEST application 

supports vectorization for Graphic Processing Units (GPUs) implementations, the frame processing time needed 

on a Central Processing Unit (CPU) is more than 116 ms, which is much longer than the 1 ms advertised in [4]. 

Frame processing execution times on various platforms (Intel, AMD, ARM processors) can also be found in [12]. 

The original source code of the DEST repository had been tested in Windows and Mac OS X operating systems. 

The DEST video tracking application has been ported and tested on Ubuntu 18.04 operating system as a part of 

this work. Common GNU C++ compilers have been employed that are also used in hardware design tools (Xilinx 

Vitis). In this way, the hardware synthesis of computational intensive operations and consequently the porting to 

hardware platforms is feasible. Profiling of the original DEST video tracking application revealed that the most 

computational intensive parts is the Tracker::predict() routine that estimates the position of the landmarks in the 

current warped video frame (described in detailed in the next sections). Therefore, the code of the 

Tracker::predict() routine and the functions called in a nested manner from this top level routine are flattened 

and converted from C++ to C. As a result, the latency of the modified predict() routine has been improved by a 

factor of 240. More specifically, this latency was reduced from 116ms to 479us measured on the same CPU. 

The paper is organized as follows. The concept of the face alignment method presented in [4] and the 

landmark distance dependent parameters used in driver drowsiness applications are presented in Section 2. The 

original and modified source code structure are described in Section 3. The experimental results are presented in 

Section 4 while the conclusions and future work are discussed in Section 5. 

2 Face alignment method and applications 
Let LM be the number of face landmarks. In the DEST implementation, LM is equal to 68. The shape S∈R2*LM, is 

defined as a set of LM landmarks: 𝑆 = {𝑥0, 𝑥1, . . , 𝑥𝐿𝑀}. Each member xi of the S set is a pair of coordinates. The 

initial estimated shape 𝑆̂(0) is the mean shape retrieved from the trained model. In this model, a set Pr consisting 

of Nc reference pixels associated with their closest landmark have also been defined. In the current image frame, 

the algorithm presented in [4], attempts to locate the pixels that correspond to the ones defined in Pr, based on 

their intensity in gray scale. The cardinality Nc of Pr is much smaller than the number of pixels in the original 

image frame, thus the processing time is significantly reduced since only a small subset of pixels is examined. In 

the trained model, Tcs regressors are defined, implemented as Tcs cascade stages. The estimated shape at the 

cascade stage t is denoted as 𝑆̂(𝑡) (t=1,.., Tcs). The estimated shape at stage t+1 is the one of stage t corrected by a 

factor rt that also depends on the current image 𝐼𝜋𝑖
: 

𝑆̂(𝑡+1) = 𝑆̂(𝑡) + 𝑟𝑡(𝐼𝜋𝑖
, 𝑆̂𝑖

(𝑡)
) (1) 

The rt correction factor is based on the intensities of the Pr pixels and each one of these pixels is associated 

with the closest landmark. A gradient tree boosting algorithm is used to train a regressor with a sum of square 

error loss [12]. The training set consists of N images 𝐼𝜋𝜄
, 0 ≤ 𝜋𝑖 < 𝑁 and 𝑆̂𝑖

(𝑡)
is the shape estimated by all training 

images Ii with 𝑖 ≠ 𝜋𝑖 . The residual  𝛥𝑆𝑖
(𝑡)

in the regressor rt is estimated as the difference between the shape of the 

specific 𝐼𝜋𝑖
 image (𝑆𝜋𝑖

) and the mean shape estimated from the rest of the training images (𝑆̂𝑖
(𝑡+1)

) : 𝛥𝑆𝑖
(𝑡+1)

=

𝑆𝜋𝑖
− 𝑆̂𝑖

(𝑡+1)
. In each regressor t, K binary trees are visited. Each binary tree has 31 nodes and depth equal to 5. 

This means that 5 of the 31 tree nodes are visited, following a path from the tree root to a leaf. In each node of the 

k-th tree (k=1, …, K), the intensity of a predefined pair of pixels that belong to Pr, is compared in order to decide 
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the direction in the tree that has to be followed (left or right). In this way, the reference Pr pixels are mapped to 

the corresponding pixels in the image under test. It can be stated that each one of the K binary trees is used to 

map a small subset of Pr pixels to the corresponding ones in the current image. This mapping can be viewed as a 

warping of the current image to fit the mean shape and the Pr pixels associated with the landmarks of the mean 

shape [12]. For each node of the tree, the following information is retrieved from the trained model: a) the indices 

of two pixels 𝑝1, 𝑝2 ∈ 𝑃𝑟, b) the threshold Th that determines the next node that will be visited if the intensity 

difference between p1 and p2 is higher or lower than Th and c) a weak regression function gk. 

The regressor rik for the k-th tree and the i-th training image (i=1,…, N) is updated as a function of the strong 

regressor fk as follows: 

𝑟𝑖𝑘 = 𝛥𝑆𝑖
(𝑡)

− 𝑓𝑘−1(𝐼𝜋𝑖
, 𝑆̂𝑖

(𝑡)
) (2) 

The initial strong regressor f0 is initialized as: 

𝑓0(𝐼, 𝑆̂(𝑡)) = argmin
𝛾

∑ ‖𝛥𝑆𝑖
(𝑡)

− 𝛾‖
2

𝑁
𝑖=1  (3) 

and it is updated in the k-th tree as follows: 

𝑓𝑘(𝐼, 𝑆̂(𝑡)) = 𝑓𝑘−1(𝐼, 𝑆̂(𝑡)) + 𝑙𝑟 ∙ 𝑔𝑘(𝐼, 𝑆̂(𝑡)) (4) 

The shrinkage factor lr<1 is used to avoid overfitting. The weak regressor gk is retrieved from the leaf of the k-

th binary tree. Eventually, rt is set to fK. Warping is performed in the DEST implementation by a process called 

Similarity Transform (ST). If q is a Pr pixel and its closest landmark has index kq, their distance δxq is estimated as 

𝛿𝑥𝑞 = ‖𝑞 − 𝑥𝑘𝑞
‖. If si and Ri are the scale and rotation matrices used in the ST to warp the initial shape of the 

current image, the pixel q’ in the current image I that corresponds to q is estimated by: 

𝑞′ = 𝑥𝑖,𝑘𝑞
+

1

𝑠𝑜
𝑅𝑖

𝑇𝛿𝑥𝑞 (5) 

The minimization of the mean square error in the estimation of the q’ value, can be used to select the optimal si 

and Ri values. 

The output of the DEST shape tracking algorithm is 𝑆̂(𝑇𝑐𝑠) i.e., the final landmark position coordinates. This 

information can be exploited by higher level applications. For example, a driver drowsiness detector can monitor 

e.g., whether the eyes of the driver are closed or if he is yawning. Two parameters are defined for monitoring the 

eye but they can also be extended to monitor the mouth [2][3]: the EAR and PERCLOS. The EAR parameter can be 

used to detect if the eye is open or closed. 

 

Figure 2: Eye landmarks. 
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If the landmarks x1-x6, determine the shape of an eye as shown in Fig. 2, then EAR is defined as: 

𝐸𝐴𝑅 =
‖𝑥2−𝑥6‖+‖𝑥3−𝑥5‖

2‖𝑥1−𝑥4‖
 (6) 

EAR values higher than a threshold mean that the distance between x2, x6 and x3, x5 is relatively high compared 

to the distance between x1, x4 thus, the eye is open, otherwise the eye can be considered closed. Similarly, an open 

or closed mouth can be detected by measuring the distance between the corresponding mouth landmarks. In both 

cases, PERCLOS can be used to determine the percentage of time the eyes or the mouth of the driver are closed or 

open to detect if his eyes are sleepy or if he is yawning. The PERCLOS that defines the percentage of closed eyes 

time is defined as: 

𝑃𝐸𝑅𝐶𝐿𝑂𝑆 =
𝑐𝑙𝑜𝑠𝑒𝑑 𝑒𝑦𝑒𝑠 𝑡𝑖𝑚𝑒

𝑐𝑙𝑜𝑠𝑒𝑑 𝑎𝑛𝑑 𝑜𝑝𝑒𝑛 𝑒𝑦𝑒𝑠 𝑡𝑖𝑚𝑒
× 100 (7) 

3 ORIGINAL AND MODIFIED Face alignment application 
As noted, the top level application performs face alignment through 68 landmarks (LM). Its operation is described 

in Algorithm 1. Initially, a stream is opened from a stored video or a camera. Face alignment can be performed 

every Ar frames i.e., when Fc % Ar=0, where the symbol ‘%’ denotes the integer division modulo and Fc is the frame 

counter. A landmark alignment can be performed provided that a face has been detected in the specific frame 

using the OpenCV library face detector. If a new face alignment has to be performed in the current frame, a shape 

transform (ST) has to be performed to warp the current image in order to match the reference shape. ST requires 

scaling and rotation operations as described in equation (5). More details for this operation can be found in [4]. 

Then, landmark prediction is performed by the Tracker::predict() routine in the original DEST application (step 

3.b.2 in Algorithm 1). Profiling showed that the Tracker::predict() routine introduces the highest latency: 94.25% 

of the time needed to process a single frame is spent in Tracker::predict() or the nested functions called within 

this routine. In the course of this paper, the functionality of Tracker::predict(), shown in Fig. 3, was implemented 

as a C kernel called predict_kernel(). The current form of the predict_kernel() function and the data types and 

structures used in this routine allow its implementation in reconfigurable hardware if further reduction in the 

execution  is desired. 

ALGORITHM 1: Video Tracking Application 

1. open video stream 
2. frame counter Fc0 
3. while not the end of the video stream, do 
 3.a. read next frame from video stream 
 3.b. if Fc % Ar =0 and a face is detected in the frame then 
   3.b.1. warp frame with ST to match the mean shape  
  3.b.2. predict shape S as a set of landmarks 
        else 
  3.b.3. if face is detected in the frame then 
   3.b.3.1. warp with ST to match the mean shape 
   3.b.3.2. apply the available shape S to the current frame 
  end 
 end 
 3.c. Fc  Fc +1 
end 
4. close video stream 
end 

As shown in Fig. 3, the mean shape is initially loaded from the trained model in the original DEST 

Tracker::predict() implementation. Then, the Tcs cascaded regressors are iteratively called: the routine 

Regressor::predict() is called Tcs times within Tracker::predict(). In the trained model used by the original and the 
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modified DEST application Tcs is equal to 10, as a trade-off between speed and accuracy. The first operation 

performed within each regressor i.e., within the Regressor::predict() routine is the image warping (ST). The gray 

scale intensities of selected Pr pixels from the warped image are read next. Then, the initialization of the mean 

residual sr and f0 (equation (3)) takes place and the routine Tree::predict() is called K times, to fit the K trees of the 

regressor. In the k-th, Tree::predict(), a single binary tree is fitted to get the weak regressor gk. The strong 

regressor fk is updated using equation (4). The mean residual sr is updated with the last fK value at the end of the 

Regressor::predict() routine. The shape estimation S is updated with the mean residual sr in the top level function 

Tracker::predict(). Concerning the tree fitting in the Tree::predict() routine, each binary tree has 2Td-1=31 nodes 

and thus, a depth (Td) equal to 5. Different gk values are stored in the leaves of each regression tree. The root of 

each tree is accessed first and then a path is followed towards a leaf. This path is decided based on the intensities 

of predetermined pixels in the warped image (mapped from the Pr set). The right or left direction in the binary 

tree is opted depending on whether the intensity difference is larger than a threshold Th. 

 

Figure 3: The functionality of the predict() routines. The functionality of Tracker::predict(), 
Regressor::predict() and Tree::predict() routines is implemented in the single predict_kernel() routine 

that is hardware synthesizable. 

The functionality of the predict() routines shown in Fig. 3 has been flattened in the proposed, new 

predict_kernel() routine. The Eigen-library calls have been replaced by custom ANSI C implementations of matrix 

operations. The predict_kernel() routine is portable to reconfigurable hardware since simple C data types 
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consistent with hardware synthesis tools have been employed. The speed of the resulting predict_kernel() routine 

is two order of magnitude higher than the original Tracker::predict() routine due to the elimination of 

unnecessary data type checks and type conversions performed by the Eigen library. 

Another issue that slowed down the original DEST implementation was the repeated access of the same 

parameters of the pre-trained model from scattered memory locations each time a Tracker::predict(), 

Regressor::predict() and Tree::predict() routines were called. All of these numerous parameters of the trained 

model are now loaded once during initialization into contiguous buffers from the new predict_prepare() routine 

that is invoked between steps 2 and 3 of Algorithm 1. The model parameters that are loaded from this 

initialization routine are listed in Table 1.  

Table 1: Model parameters, size and number of accesses. Loaded once in the predict_prepare() routine 

Parameters Buffer size Description Number of 

Accesses 

Tree sizes Tcs×K×sizeof(int) Each regressor could have a different number of 

trees. In this implementation each regress has Tcs 

trees 

Tcs×K 

Learning Rates Tcs×K×sizeof(float) An identical learning rate is used in this 

implementation although different learning rates 

could have been used for each tree 

Tcs×K 

Mean Shape 2×LM×sizeof(float) Consists of LM coordinates 2×LM 

Relative Pixel 

Coordinates 

2×Nc×sizeof(int) The coordinates of the pixels in the Pr set  2×Nc 

Closest Shape Landmarks Nc×sizeof(int) Each pixels in the Pr set is associated with the 

closest landmark 

Nc 

Tree node split index1 Tcs×K×2Td×sizeof(int) Refer to the index of the next tree node if the left 

direction is followed 

Tcs×K×Td 

Tree node split index2 Tcs×K×2Td×sizeof(int) Refer to the index of the next tree node if the right 

direction is followed 

Tcs×K×Td 

Tree node threshold Tcs×K×2Td×sizeof(float) Tree node threshold Th Tcs×K×Td 

Tree node means Tcs×K×2Td×sizeof(float) Tree node means (gk). We are interested in the 

values stored in the leaves 

Tcs×K 

The scattered values of each one of the parameters listed in Table 1 are stored in contiguous buffers within 

predict_kernel() making faster their access. These buffers can also be transferred once in the common memory 

accessed both by the processors and the programmable logic of an FPGA. The size of these buffers are listed in the 

2nd column of Table 1. The number of accesses needed to these parameters is listed in the 4th column of Table 1. 

There are some cases in which there is no need to access the whole buffers as in the case of tree node information. 

For example, although each tree has 2Td nodes, only Td nodes are accessed in the tree fitting process of 

Tree::predict(). Similarly to Table 1, the parameters that need to be initialized from the trained model, at the 

beginning of each Tracker::predict() i.e., when a new frame is processed, are listed in Table 2. The initial shape 

estimate is read once and updated at the end. The mean residuals are initialized by the trained model and updated 

in each regressor. Therefore, the 2×Nc mean residuals need 2×Nc×Tcs accesses. 

In the modified application developed in the framework of this paper, the buffers allocated from the 

predict_prepare() routine (listed in Table 1) are released at the end of the application after step 4 of Algorithm 1. 

The buffers allocated at the beginning of Tracker::predict() i.e., the ones listed in Table 2, are released at the end 

of this routine.  
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Table 2: Model parameters, size and number of accesses. Accessed every time a new frame is processed. 

Parameters Buffer size Description Number of 

Accesses 
Shape estimate 2×LM×sizeof(float) LM landmark coordinates. Initialized from the mean 

shape and updated at the end with the mean 

residuals 

2×LM 

Mean residuals 2×Nc×sizeof(float) Initialized from the trained model and then, updated 

in each regressor 

2×Nc×Tcs 

4 EXPERIMENTAL RESULTS 
The experimental results are listed in Table 3. The most important achievement of this work is the reduction of 

the Tracker::predict() latency from 117ms to less than 0.5ms i.e., an acceleration of more than 240 times is 

achieved. If the frame rate of the input video is 30 frames per second (fps) and a new face alignment is performed 

every 5 input frames, the frame rate of the application is improved from 1.6fps to 28ftp. This rate is quite close to 

the one of the input video and can be further improved in the predict_kernel() is implemented in hardware. The 

measurements listed in Table 3, were performed on an Intel 6-Core i5-9500 CPU @3.00GHz, with 16GB RAM, 

running Ubuntu 18.04. A 3 sec test video has been used as input both to the original DEST and the modified 

application. There was no accuracy degradation i.e., the position of the landmarks in this reference video are 

exactly the same in the original DEST and the modified application. However, if the floating point values in the 

predict_kernel() are represented as fixed point values or integers (through scaling) an accuracy degradation is 

expected. This could be useful in hardware implementations for lower resource allocation. Finding data types that 

require less hardware resources without significant accuracy loss is part of our on-going work. 

Table 3: Experimental results 

 Original DEST application Our modified application 

Latency of Tracker::Predict() 117ms 0.48ms 

Frame rate (Ar=5) 1.6fps 28fps 

GDB steps needed in 10 indicative 

cases 

2 to 165 1 to 5 

An indicative metric of the overhead posed by Eigen calls is the number of steps needed in a GNU Debugger 

(GDB): a) to call a function (from the time the function is called until the control reaches its first command), or b) 

to execute an initialization command, or c) to access a class member method. As shown at the last row of Table 3, 

ten indicative cases were examined. The fastest call concerned the access of a class member function to get the 

tree sizes (number of tree nodes): data.trees.size(). This operation needed 2 GDB steps in both the original DEST 

and the modified application. The slowest case concerned the initialization of a 2×2 matrix with zeros: 

Eigen::Matrix2f::Zero(2, 2). In the original DEST application this initialization took 165 GDB steps to complete 

while in our modified application it took only 5 GDB steps. Another interesting example was the copy of a singular 

value to a matrix. This command executed in a single GDB step in the modified application while 75 GDB steps 

were required by the corresponding command in the original DEST application: d(0, 0) = svd.singularValues()(0). 

These indicative examples explain why the original DEST shape tracking application had a latency more than 

240 times higher than the modified one. Exploiting advanced hardware acceleration techniques is also feasible in 

the current form of the application for further speed improvement. One of the limitations of the proposed 

approach is the reduced code readability since several lines of code are needed to describe operations that were 

expressed in a compact way in Eigen. The portability is also reduced and extensions to cover similar problems 

with different model dimensions are also harder to implement in ANSI C, since type conversions and integrity 

checks supported by the Eigen library were removed in computationally intensive operations. 
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5 Conclusions 
The acceleration of a popular face shape tracking application offered in the DEST package was examined in this 

paper. This application exploits an ensemble of regression trees and uses Eigen template C++ library to 

implement matrix operations in a compact way. However, Eigen library poses excessive overhead with a large 

number of integrity checks and type conversions that guarantee that the algebraic operations will be correctly 

performed in any application but most of them were not necessary in our shape tracking application. The source 

code of the initial application was restructured and the most computational intensive of each part was described 

in ANSI C eliminating the calls to Eigen library. Of course, Eigen library calls remained in non-time critical parts of 

the code, due to the convenient way it offers in implementing algebraic operations. The modified computational 

intensive routines are now approximately 250 times faster and their structure is amenable for a hardware 

implementation if further acceleration is required. 

Future work will focus on the implementation of the computational intensive operations in FPGAs. The penalty 

in the accuracy will also be studied when the floating point operations are implemented as fixed point or integer 

operations with appropriate scaling. Hardware acceleration techniques such as pipelined loop optimization, burst 

argument copy, multithread execution, etc. will also be employed in FPGA implementations. 
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