
Software Acceleration of the Deformable Shape Tracking

Application
How to eliminate the Eigen Library Overhead

NIKOS PETRELLIS*

Electrical and Computer Engineering Department, University of Peloponnese, Patra, Greece

STAVROS ZOGAS

Electrical and Computer Engineering Department, University of Peloponnese, Patra, Greece

PANAGIOTIS CHRISTAKOS

Electrical and Computer Engineering Department, University of Peloponnese, Patra, Greece

PANAGIOTIS MOUSOULIOTIS

School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece

GEORGIOS KERAMIDAS

School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece

NIKOLAOS VOROS

Electrical and Computer Engineering Department, University of Peloponnese, Patra, Greece

CHRISTOS ANTONOPOULOS

Electrical and Computer Engineering Department, University of Peloponnese, Patra, Greece

Shape tracking is based on landmark detection and alignment. Open-source code and pre-trained models are

available for an implementation that is based on an ensemble of regression trees. The C++ Deformable Shape

Tracking (DEST) implementation of face alignment that is using Eigen template library for algebraic operations is

employed in this work. The overhead of the C++ Eigen library calls is measured and selected computational

intensive operations are ported from Eigen implementation to custom C code achieving a remarkable acceleration

in the shape tracking application. An important achievement of this work is the fact that the restructured code can

be directly implemented with reconfigurable hardware for further speed improvement. Driver drowsiness and

distraction detection applications are exploiting shape tracking by measuring landmark distances in order to detect

eye blinking, yawning, etc. Fast video processing and accuracy is mandatory in these safety critical applications. The

modified software implementation of the original DEST face alignment method presented in this paper, is almost

250 times faster due to the custom implementation of computational intensive vector/matrix operations and

rotations. Eigen library is still used in non-time critical parts of the code for compact description and higher

readability. Flattening of nested routines and inline implementation is also used to eliminate excessive argument

copies and data type checking and conversions.

CCS CONCEPTS • Computing methodologies • Machine learning • Machine learning approaches • Classification

and regression trees

Additional Keywords and Phrases: Face Alignment, Deformable Shape Tracking, Eigen, Acceleration, Hardware

Implementation

* Contact person, email: npetrellis@uop.gr.

2

ACM Reference Format:

Nikos Petrellis, Stavros Zogas, Panagiotis Christakos, Panagiotis Mousouliotis, Georgios Keramidas, Nikolaos Voros,

Christos Antonopoulos. 2021. Software Acceleration of the Deformable Shape Tracking Face Alignment Application

Compensation of the Eigen Library Overhead. In 2nd Symposium on Pattern Recognition and Applications, Nov 06-

08, 2021, Larissa, Greece. ACM, New York, NY, USA, 10 pages.

Figure 1: Face alignment based on our application with 68 landmarks. Video frame source from [1].

1 Introduction
A number of landmarks can be used to perform face alignment. Different landmarks determine the shape of the

face or more specifically the chin, the mouth, the eyes, the eyebrows, etc., as shown in Fig. 1. The number of

landmarks typically used can range from less than 10, if only a specific part of the face has to be detected or

aligned (e.g., mouth, eyes), to more than 160, if the detailed face shape has to be drawn. As expected, the use of a

large number of landmarks requires a bigger training set and longer training period to achieve a reasonable

accuracy. The distance of specific landmarks is used in metrics such as Eye Aspect Ratio (EAR) [2] or Percentage

of Eye Closure (PERCLOS) [3] to detect eye blinking, yawning, facial expressions, orientation of the face etc. Face

alignment is exploited by applications that detect driver drowsiness, user reaction to specific stimulus, emotional

reactions, etc.

Face alignment can be efficiently performed using an Ensemble of Regression Trees (ERT) as described in the

fast 2D facial landmark detection algorithm presented by Kazemi and Sullivan in [4]. This method focuses on a

small number of predetermined pixel positions from the input image. The gray scale intensities of these pixels is

examined and ERT training is performed based on gradient boosting, optimizing the sum of square error loss. The

regression procedure is expressed as a sparse coding problem in [5] and additional dictionaries have been used

e.g., for the reconstruction of face shapes partially occluded. The authors of [6] use an ERT of 500 binary trees of

31 nodes and depth=5. This size of ERT is also used in our case. In [7], a 2D landmark alignment method detector

is presented, based on ERT balancing accuracy and speed. An ERT is also employed in [8] for the estimation of the

head pose with a latency of 1ms per image frame. This is the speed advertised in [4], too. Implementations of the

face alignment method described in [4] are available in the C++ DLIB library [9] and the DEST repository [10].

Five experiments with different combinations of face detection failure, model free tracking etc, have been

conducted in [11] comparing a large number of face tracking approaches. Several important issues are also

examined in [12] including acceleration techniques, jitter in face tracking, and appropriate evaluation metrics.

The source code of the DEST repository [10] has been transformed in the framework of this paper, to develop a

high performance shape tracking application that can also be implemented in hardware with Field Programmable

Gate Arrays (FPGAs). The original DEST source code has been developed in C++ with calls to the Eigen template

3

library [13] for matrix/vector operations, Jacobi rotations, Singular Value Decomposition (SVD), etc. The use of

Eigen library and well defined C++ classes ensures the integrity of the data values in any application and allows

the operations to be described in a compact, still portable, way. Nevertheless, the excessive integrity checks and

data type conversions are responsible for a high latency overhead. Moreover, the Eigen and C++ classes and data

types used in DEST do not allow a reconfigurable hardware synthesis by state-of-the-art tools such as Xilinx Vitis.

For instance, every data structure in the original DEST implementation is dynamically allocated while the size of

the matrices used in hardware kernels has to be defined as a constant. Although the original DEST application

supports vectorization for Graphic Processing Units (GPUs) implementations, the frame processing time needed

on a Central Processing Unit (CPU) is more than 116 ms, which is much longer than the 1 ms advertised in [4].

Frame processing execution times on various platforms (Intel, AMD, ARM processors) can also be found in [12].

The original source code of the DEST repository had been tested in Windows and Mac OS X operating systems.

The DEST video tracking application has been ported and tested on Ubuntu 18.04 operating system as a part of

this work. Common GNU C++ compilers have been employed that are also used in hardware design tools (Xilinx

Vitis). In this way, the hardware synthesis of computational intensive operations and consequently the porting to

hardware platforms is feasible. Profiling of the original DEST video tracking application revealed that the most

computational intensive parts is the Tracker::predict() routine that estimates the position of the landmarks in the

current warped video frame (described in detailed in the next sections). Therefore, the code of the

Tracker::predict() routine and the functions called in a nested manner from this top level routine are flattened

and converted from C++ to C. As a result, the latency of the modified predict() routine has been improved by a

factor of 240. More specifically, this latency was reduced from 116ms to 479us measured on the same CPU.

The paper is organized as follows. The concept of the face alignment method presented in [4] and the

landmark distance dependent parameters used in driver drowsiness applications are presented in Section 2. The

original and modified source code structure are described in Section 3. The experimental results are presented in

Section 4 while the conclusions and future work are discussed in Section 5.

2 Face alignment method and applications
Let LM be the number of face landmarks. In the DEST implementation, LM is equal to 68. The shape S∈R2*LM, is

defined as a set of LM landmarks: 𝑆 = {𝑥0, 𝑥1, . . , 𝑥𝐿𝑀}. Each member xi of the S set is a pair of coordinates. The

initial estimated shape 𝑆̂(0) is the mean shape retrieved from the trained model. In this model, a set Pr consisting

of Nc reference pixels associated with their closest landmark have also been defined. In the current image frame,

the algorithm presented in [4], attempts to locate the pixels that correspond to the ones defined in Pr, based on

their intensity in gray scale. The cardinality Nc of Pr is much smaller than the number of pixels in the original

image frame, thus the processing time is significantly reduced since only a small subset of pixels is examined. In

the trained model, Tcs regressors are defined, implemented as Tcs cascade stages. The estimated shape at the

cascade stage t is denoted as 𝑆̂(𝑡) (t=1,.., Tcs). The estimated shape at stage t+1 is the one of stage t corrected by a

factor rt that also depends on the current image 𝐼𝜋𝑖
:

𝑆̂(𝑡+1) = 𝑆̂(𝑡) + 𝑟𝑡(𝐼𝜋𝑖
, 𝑆̂𝑖

(𝑡)
) (1)

The rt correction factor is based on the intensities of the Pr pixels and each one of these pixels is associated

with the closest landmark. A gradient tree boosting algorithm is used to train a regressor with a sum of square

error loss [12]. The training set consists of N images 𝐼𝜋𝜄
, 0 ≤ 𝜋𝑖 < 𝑁 and 𝑆̂𝑖

(𝑡)
is the shape estimated by all training

images Ii with 𝑖 ≠ 𝜋𝑖 . The residual 𝛥𝑆𝑖
(𝑡)

in the regressor rt is estimated as the difference between the shape of the

specific 𝐼𝜋𝑖
 image (𝑆𝜋𝑖

) and the mean shape estimated from the rest of the training images (𝑆̂𝑖
(𝑡+1)

) : 𝛥𝑆𝑖
(𝑡+1)

=

𝑆𝜋𝑖
− 𝑆̂𝑖

(𝑡+1)
. In each regressor t, K binary trees are visited. Each binary tree has 31 nodes and depth equal to 5.

This means that 5 of the 31 tree nodes are visited, following a path from the tree root to a leaf. In each node of the

k-th tree (k=1, …, K), the intensity of a predefined pair of pixels that belong to Pr, is compared in order to decide

4

the direction in the tree that has to be followed (left or right). In this way, the reference Pr pixels are mapped to

the corresponding pixels in the image under test. It can be stated that each one of the K binary trees is used to

map a small subset of Pr pixels to the corresponding ones in the current image. This mapping can be viewed as a

warping of the current image to fit the mean shape and the Pr pixels associated with the landmarks of the mean

shape [12]. For each node of the tree, the following information is retrieved from the trained model: a) the indices

of two pixels 𝑝1, 𝑝2 ∈ 𝑃𝑟, b) the threshold Th that determines the next node that will be visited if the intensity

difference between p1 and p2 is higher or lower than Th and c) a weak regression function gk.

The regressor rik for the k-th tree and the i-th training image (i=1,…, N) is updated as a function of the strong

regressor fk as follows:

𝑟𝑖𝑘 = 𝛥𝑆𝑖
(𝑡)

− 𝑓𝑘−1(𝐼𝜋𝑖
, 𝑆̂𝑖

(𝑡)
) (2)

The initial strong regressor f0 is initialized as:

𝑓0(𝐼, 𝑆̂(𝑡)) = argmin
𝛾

∑ ‖𝛥𝑆𝑖
(𝑡)

− 𝛾‖
2

𝑁
𝑖=1 (3)

and it is updated in the k-th tree as follows:

𝑓𝑘(𝐼, 𝑆̂(𝑡)) = 𝑓𝑘−1(𝐼, 𝑆̂(𝑡)) + 𝑙𝑟 ∙ 𝑔𝑘(𝐼, 𝑆̂(𝑡)) (4)

The shrinkage factor lr<1 is used to avoid overfitting. The weak regressor gk is retrieved from the leaf of the k-

th binary tree. Eventually, rt is set to fK. Warping is performed in the DEST implementation by a process called

Similarity Transform (ST). If q is a Pr pixel and its closest landmark has index kq, their distance δxq is estimated as

𝛿𝑥𝑞 = ‖𝑞 − 𝑥𝑘𝑞
‖. If si and Ri are the scale and rotation matrices used in the ST to warp the initial shape of the

current image, the pixel q’ in the current image I that corresponds to q is estimated by:

𝑞′ = 𝑥𝑖,𝑘𝑞
+

1

𝑠𝑜
𝑅𝑖

𝑇𝛿𝑥𝑞 (5)

The minimization of the mean square error in the estimation of the q’ value, can be used to select the optimal si

and Ri values.

The output of the DEST shape tracking algorithm is 𝑆̂(𝑇𝑐𝑠) i.e., the final landmark position coordinates. This

information can be exploited by higher level applications. For example, a driver drowsiness detector can monitor

e.g., whether the eyes of the driver are closed or if he is yawning. Two parameters are defined for monitoring the

eye but they can also be extended to monitor the mouth [2][3]: the EAR and PERCLOS. The EAR parameter can be

used to detect if the eye is open or closed.

Figure 2: Eye landmarks.

5

If the landmarks x1-x6, determine the shape of an eye as shown in Fig. 2, then EAR is defined as:

𝐸𝐴𝑅 =
‖𝑥2−𝑥6‖+‖𝑥3−𝑥5‖

2‖𝑥1−𝑥4‖
 (6)

EAR values higher than a threshold mean that the distance between x2, x6 and x3, x5 is relatively high compared

to the distance between x1, x4 thus, the eye is open, otherwise the eye can be considered closed. Similarly, an open

or closed mouth can be detected by measuring the distance between the corresponding mouth landmarks. In both

cases, PERCLOS can be used to determine the percentage of time the eyes or the mouth of the driver are closed or

open to detect if his eyes are sleepy or if he is yawning. The PERCLOS that defines the percentage of closed eyes

time is defined as:

𝑃𝐸𝑅𝐶𝐿𝑂𝑆 =
𝑐𝑙𝑜𝑠𝑒𝑑 𝑒𝑦𝑒𝑠 𝑡𝑖𝑚𝑒

𝑐𝑙𝑜𝑠𝑒𝑑 𝑎𝑛𝑑 𝑜𝑝𝑒𝑛 𝑒𝑦𝑒𝑠 𝑡𝑖𝑚𝑒
× 100 (7)

3 ORIGINAL AND MODIFIED Face alignment application
As noted, the top level application performs face alignment through 68 landmarks (LM). Its operation is described

in Algorithm 1. Initially, a stream is opened from a stored video or a camera. Face alignment can be performed

every Ar frames i.e., when Fc % Ar=0, where the symbol ‘%’ denotes the integer division modulo and Fc is the frame

counter. A landmark alignment can be performed provided that a face has been detected in the specific frame

using the OpenCV library face detector. If a new face alignment has to be performed in the current frame, a shape

transform (ST) has to be performed to warp the current image in order to match the reference shape. ST requires

scaling and rotation operations as described in equation (5). More details for this operation can be found in [4].

Then, landmark prediction is performed by the Tracker::predict() routine in the original DEST application (step

3.b.2 in Algorithm 1). Profiling showed that the Tracker::predict() routine introduces the highest latency: 94.25%

of the time needed to process a single frame is spent in Tracker::predict() or the nested functions called within

this routine. In the course of this paper, the functionality of Tracker::predict(), shown in Fig. 3, was implemented

as a C kernel called predict_kernel(). The current form of the predict_kernel() function and the data types and

structures used in this routine allow its implementation in reconfigurable hardware if further reduction in the

execution is desired.

ALGORITHM 1: Video Tracking Application

1. open video stream
2. frame counter Fc0
3. while not the end of the video stream, do
 3.a. read next frame from video stream
 3.b. if Fc % Ar =0 and a face is detected in the frame then
 3.b.1. warp frame with ST to match the mean shape
 3.b.2. predict shape S as a set of landmarks
 else
 3.b.3. if face is detected in the frame then
 3.b.3.1. warp with ST to match the mean shape
 3.b.3.2. apply the available shape S to the current frame
 end
 end
 3.c. Fc  Fc +1
end
4. close video stream
end

As shown in Fig. 3, the mean shape is initially loaded from the trained model in the original DEST

Tracker::predict() implementation. Then, the Tcs cascaded regressors are iteratively called: the routine

Regressor::predict() is called Tcs times within Tracker::predict(). In the trained model used by the original and the

6

modified DEST application Tcs is equal to 10, as a trade-off between speed and accuracy. The first operation

performed within each regressor i.e., within the Regressor::predict() routine is the image warping (ST). The gray

scale intensities of selected Pr pixels from the warped image are read next. Then, the initialization of the mean

residual sr and f0 (equation (3)) takes place and the routine Tree::predict() is called K times, to fit the K trees of the

regressor. In the k-th, Tree::predict(), a single binary tree is fitted to get the weak regressor gk. The strong

regressor fk is updated using equation (4). The mean residual sr is updated with the last fK value at the end of the

Regressor::predict() routine. The shape estimation S is updated with the mean residual sr in the top level function

Tracker::predict(). Concerning the tree fitting in the Tree::predict() routine, each binary tree has 2Td-1=31 nodes

and thus, a depth (Td) equal to 5. Different gk values are stored in the leaves of each regression tree. The root of

each tree is accessed first and then a path is followed towards a leaf. This path is decided based on the intensities

of predetermined pixels in the warped image (mapped from the Pr set). The right or left direction in the binary

tree is opted depending on whether the intensity difference is larger than a threshold Th.

Figure 3: The functionality of the predict() routines. The functionality of Tracker::predict(),
Regressor::predict() and Tree::predict() routines is implemented in the single predict_kernel() routine

that is hardware synthesizable.

The functionality of the predict() routines shown in Fig. 3 has been flattened in the proposed, new

predict_kernel() routine. The Eigen-library calls have been replaced by custom ANSI C implementations of matrix

operations. The predict_kernel() routine is portable to reconfigurable hardware since simple C data types

7

consistent with hardware synthesis tools have been employed. The speed of the resulting predict_kernel() routine

is two order of magnitude higher than the original Tracker::predict() routine due to the elimination of

unnecessary data type checks and type conversions performed by the Eigen library.

Another issue that slowed down the original DEST implementation was the repeated access of the same

parameters of the pre-trained model from scattered memory locations each time a Tracker::predict(),

Regressor::predict() and Tree::predict() routines were called. All of these numerous parameters of the trained

model are now loaded once during initialization into contiguous buffers from the new predict_prepare() routine

that is invoked between steps 2 and 3 of Algorithm 1. The model parameters that are loaded from this

initialization routine are listed in Table 1.

Table 1: Model parameters, size and number of accesses. Loaded once in the predict_prepare() routine

Parameters Buffer size Description Number of

Accesses

Tree sizes Tcs×K×sizeof(int) Each regressor could have a different number of

trees. In this implementation each regress has Tcs

trees

Tcs×K

Learning Rates Tcs×K×sizeof(float) An identical learning rate is used in this

implementation although different learning rates

could have been used for each tree

Tcs×K

Mean Shape 2×LM×sizeof(float) Consists of LM coordinates 2×LM

Relative Pixel

Coordinates

2×Nc×sizeof(int) The coordinates of the pixels in the Pr set 2×Nc

Closest Shape Landmarks Nc×sizeof(int) Each pixels in the Pr set is associated with the

closest landmark

Nc

Tree node split index1 Tcs×K×2Td×sizeof(int) Refer to the index of the next tree node if the left

direction is followed

Tcs×K×Td

Tree node split index2 Tcs×K×2Td×sizeof(int) Refer to the index of the next tree node if the right

direction is followed

Tcs×K×Td

Tree node threshold Tcs×K×2Td×sizeof(float) Tree node threshold Th Tcs×K×Td

Tree node means Tcs×K×2Td×sizeof(float) Tree node means (gk). We are interested in the

values stored in the leaves

Tcs×K

The scattered values of each one of the parameters listed in Table 1 are stored in contiguous buffers within

predict_kernel() making faster their access. These buffers can also be transferred once in the common memory

accessed both by the processors and the programmable logic of an FPGA. The size of these buffers are listed in the

2nd column of Table 1. The number of accesses needed to these parameters is listed in the 4th column of Table 1.

There are some cases in which there is no need to access the whole buffers as in the case of tree node information.

For example, although each tree has 2Td nodes, only Td nodes are accessed in the tree fitting process of

Tree::predict(). Similarly to Table 1, the parameters that need to be initialized from the trained model, at the

beginning of each Tracker::predict() i.e., when a new frame is processed, are listed in Table 2. The initial shape

estimate is read once and updated at the end. The mean residuals are initialized by the trained model and updated

in each regressor. Therefore, the 2×Nc mean residuals need 2×Nc×Tcs accesses.

In the modified application developed in the framework of this paper, the buffers allocated from the

predict_prepare() routine (listed in Table 1) are released at the end of the application after step 4 of Algorithm 1.

The buffers allocated at the beginning of Tracker::predict() i.e., the ones listed in Table 2, are released at the end

of this routine.

8

Table 2: Model parameters, size and number of accesses. Accessed every time a new frame is processed.

Parameters Buffer size Description Number of

Accesses
Shape estimate 2×LM×sizeof(float) LM landmark coordinates. Initialized from the mean

shape and updated at the end with the mean

residuals

2×LM

Mean residuals 2×Nc×sizeof(float) Initialized from the trained model and then, updated

in each regressor

2×Nc×Tcs

4 EXPERIMENTAL RESULTS
The experimental results are listed in Table 3. The most important achievement of this work is the reduction of

the Tracker::predict() latency from 117ms to less than 0.5ms i.e., an acceleration of more than 240 times is

achieved. If the frame rate of the input video is 30 frames per second (fps) and a new face alignment is performed

every 5 input frames, the frame rate of the application is improved from 1.6fps to 28ftp. This rate is quite close to

the one of the input video and can be further improved in the predict_kernel() is implemented in hardware. The

measurements listed in Table 3, were performed on an Intel 6-Core i5-9500 CPU @3.00GHz, with 16GB RAM,

running Ubuntu 18.04. A 3 sec test video has been used as input both to the original DEST and the modified

application. There was no accuracy degradation i.e., the position of the landmarks in this reference video are

exactly the same in the original DEST and the modified application. However, if the floating point values in the

predict_kernel() are represented as fixed point values or integers (through scaling) an accuracy degradation is

expected. This could be useful in hardware implementations for lower resource allocation. Finding data types that

require less hardware resources without significant accuracy loss is part of our on-going work.

Table 3: Experimental results

 Original DEST application Our modified application

Latency of Tracker::Predict() 117ms 0.48ms

Frame rate (Ar=5) 1.6fps 28fps

GDB steps needed in 10 indicative

cases

2 to 165 1 to 5

An indicative metric of the overhead posed by Eigen calls is the number of steps needed in a GNU Debugger

(GDB): a) to call a function (from the time the function is called until the control reaches its first command), or b)

to execute an initialization command, or c) to access a class member method. As shown at the last row of Table 3,

ten indicative cases were examined. The fastest call concerned the access of a class member function to get the

tree sizes (number of tree nodes): data.trees.size(). This operation needed 2 GDB steps in both the original DEST

and the modified application. The slowest case concerned the initialization of a 2×2 matrix with zeros:

Eigen::Matrix2f::Zero(2, 2). In the original DEST application this initialization took 165 GDB steps to complete

while in our modified application it took only 5 GDB steps. Another interesting example was the copy of a singular

value to a matrix. This command executed in a single GDB step in the modified application while 75 GDB steps

were required by the corresponding command in the original DEST application: d(0, 0) = svd.singularValues()(0).

These indicative examples explain why the original DEST shape tracking application had a latency more than

240 times higher than the modified one. Exploiting advanced hardware acceleration techniques is also feasible in

the current form of the application for further speed improvement. One of the limitations of the proposed

approach is the reduced code readability since several lines of code are needed to describe operations that were

expressed in a compact way in Eigen. The portability is also reduced and extensions to cover similar problems

with different model dimensions are also harder to implement in ANSI C, since type conversions and integrity

checks supported by the Eigen library were removed in computationally intensive operations.

9

5 Conclusions
The acceleration of a popular face shape tracking application offered in the DEST package was examined in this

paper. This application exploits an ensemble of regression trees and uses Eigen template C++ library to

implement matrix operations in a compact way. However, Eigen library poses excessive overhead with a large

number of integrity checks and type conversions that guarantee that the algebraic operations will be correctly

performed in any application but most of them were not necessary in our shape tracking application. The source

code of the initial application was restructured and the most computational intensive of each part was described

in ANSI C eliminating the calls to Eigen library. Of course, Eigen library calls remained in non-time critical parts of

the code, due to the convenient way it offers in implementing algebraic operations. The modified computational

intensive routines are now approximately 250 times faster and their structure is amenable for a hardware

implementation if further acceleration is required.

Future work will focus on the implementation of the computational intensive operations in FPGAs. The penalty

in the accuracy will also be studied when the floating point operations are implemented as fixed point or integer

operations with appropriate scaling. Hardware acceleration techniques such as pipelined loop optimization, burst

argument copy, multithread execution, etc. will also be employed in FPGA implementations.

ACKNOWLEDGMENTS

This work has received funding from the European Union’s Horizon 2020 research and innovation programme

under Grant Agreement No 871738 - CPSoSaware: Cross-layer cognitive optimization tools & methods for the

lifecycle support of dependable CPSoS.

REFERENCES

<bib id="bib1"><number>[1]</number> Jesus Nuevo, Luis M. Bergasa, and Pedro Jimenez. 2010. RSMAT: Robust simultaneous modeling and
tracking. Pattern Recognition Letters, ACM 31,16 (Dec. 2010), 2455-2463. https://doi.org/10.1016/j.patrec.2010.07.016.</bib>
<bib id="bib2"><number>[2]</number> Tereza Soukupová and Jan Cech. Eye-Blink Detection Using Facial Landmarks.2016. In Proceedings of the
21st Computer Vision Winter WorkshopRimske Toplice, Slovenia. </bib>
<bib id="bib3"><number>[3]</number> Dini Adni Navastara, Widhera Yoza Mahana Putra, and Chastine Fatichah. 2020. Drowsiness Detection
Based on Facial Landmark and Uniform Local Binary Pattern. J. Phys., 1529:052015. http://dx.doi.org/10.1088/1742-
6596/1529/5/052015.</bib>
<bib id="bib4"><number>[4]</number> Vahid Kazemi and Josephine Sullivan. 2014. One millisecond face alignment with an ensemble of
regression trees. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1867–1874. 10.1109/CVPR.2014.241.</bib>
<bib id="bib5"><number>[5]</number> Davidjoseph J. Tan, Federico Tombari, and Nassir Navab. 2015. A Combined Generalized and Subject-
Specific 3D Head Pose Estimation. In Proceedings of International Conference on 3D Vision (3DV). http://dx.doi.org/10.1109/3DV.2015.62.
</bib>
<bib id="bib6"><number>[6]</number> Yanchao Dong, Minjing Lin, Jiguang Yue, and Liang Shi.2019. A low-cost photorealistic CG dataset
rendering pipeline for facial landmark localization. Multimedia Tools and Applications, Springer 78(6).
https://link.springer.com/article/10.1007/s11042-019-7516-5.</bib>
<bib id="bib7"><number>[7]</number> Jon Goenetxea, Luis Unzueta, Fadi Dornaika, and Oihana Otaegui. 2020. Efficient deformable 3D face
model tracking with limited hardware resources. Multimedia Tools and Applications, Springer 79(4).
https://link.springer.com/article/10.1007/s11042-019-08515-y. </bib>
<bib id="bib8"><number>[8]</number> Francisco Madrigal and Frederic Lerasle. 2020. Robust head pose estimation based on key frames for
human-machine interaction. EURASIP Journal on Image and Video Processing, Springer 2020(1). https://jivp-
eurasipjournals.springeropen.com/articles/10.1186/s13640-020-0492-x. </bib>
<bib id="bib9"><number>[9]</number> Dlib C++ library. Retrieved May, 19, 2021 from http://dlib.net/</bib>
<bib id="bib10"><number>[10]</number> Deformable Shape Tracking (DEST). Retrieved May, 19, 2021 from https://github.com/cheind/dest
</bib>
<bib id="bib11"><number>[11]</number> Grigorios Chrysos, Epameinondas Antonakos, Patrick Snape, Akshay Asthana, and Stefanos Zafeiriou.
2018. A Comprehensive Performance Evaluation of Deformable Face Tracking “In-the-Wild”. Int. J. Comput. Vis.126(2),198-
232.doi:10.1007/s11263-017-0999-5.</bib>
<bib id="bib12"><number>[12]</number> Constantino Álvarez Casado and Miguel Bordallo López. 2021. Real-time face alignment: evaluation
methods, training strategies and implementation optimization. Springer J. Real-Time Image Processing. https://doi.org/10.1007/s11554-021-
01107-w.</bib>
<bib id="bib13"><number>[13]</number> Eigen 3.3.9. Retrieved May, 19, 2021 from https://eigen.tuxfamily.org/</bib>
<bib id="bib14"><number>[14]</number> Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. 2001. The elements of statistical learning:
data mining, inference, and prediction. New York: Springer-Verlag.</bib>

10

