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ABSTRACT
Real-life applications often deal with multidimensional data. In

the general case, multidimensional data means a table of numbers

whose rows correspond to different objects and columns correspond

to features characterizing the objects. Usually, the number of

objects is large, and the dimensionality (number of features) is

greater than it is possible to represent the objects as points in

2D. The goal is to reduce the dimensionality of data to such one

that objects, characterized by a large number of features or by

proximities between pairs of the objects, be represented as points

in lower-dimensional space or even on a plane. Multidimensional

scaling (MDS) is an often-used method to reduce the dimensionality

of multidimensional data nonlinearly and to present the data

visually. MDS minimizes some stress function. We have proposed

in [8] and [9] to consider the stress function and multidimensional

scaling, in general, from the geometric point of view, and the

so-called Geometric MDS has been developed. Geometric MDS

allows finding the proper direction and step size forwards the

minimum of the stress function analytically. In this paper, we

disclose several new properties of Geometric multidimensional

scaling and compare the simplest realization (GMDS1) of Geometric

MDS experimentally with the well-known SMACOF version of

MDS.
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1 INTRODUCTION
Visualization methods are recent techniques to discover knowledge

hidden in multidimensional data sets. In the general case,

multidimensional data means a table of numbers whose rows

correspond to different objects and columns correspond to features

characterizing the objects. Usually, the number of objects is

large, and the dimensionality (number of features) is greater

than it is possible to represent the objects as points in 2D.

The goal is to reduce the dimensionality of data to such one

that objects, characterized by a large number of features or by

proximities between pairs of the objects, be represented as points in

lower-dimensional space or even on a plane. The proper reduction

of dimensionality must be such that after representation of the

multidimensional data in a low-dimensional space the certain

properties (e.g. clusters, outliers) of the structure of the data set are

preserved as faithfully as possible. A large number of methods

have been developed for multidimensional data visualization,

including wide applications (see e.g. [1–3, 5, 7, 13–17, 19, 20,

24]). Multidimensional scaling (MDS) is one of the most popular

methods for multidimensional data dimensionality reduction and

visualization [3, 7].

Consider the multidimensional data set as a matrix X =

{Xi = (xi1, . . . ,xin ), i = 1, . . . ,m} of n-dimensional data

points Xi ∈ R
n , n ⩾ 3. Data point Xi = (xi1, . . . ,xin )

is the result of observation of some object characterized by

n features. Dimensionality reduction means finding the set of

coordinates (layout) of points Yi = (yi1, . . . ,yid ), i = 1, . . . ,m,

in a lower-dimensional space (d < n), where the particular point
Xi = (xi1, . . . ,xin ) ∈ R

n
is represented by Yi = (yi1, . . . ,yid ) ∈

Rd . If d ⩽ 3, dimensionality reduction results may be presented

visually for human decision.

In [21], an example of dimensionality reduction and visualization

using MDS is presented by visualizing 5-dimensional n = 5 data

of customers shopping behaviour during an online advertising

campaign. MDS was applied to reduce the dimensionality to 2

(d = 2). The results are presented in Fig. 1. After dimensionality

reduction from n = 5 to d = 2, one point on a plane corresponds to

one particular sale, i.e. the dimensionality was reduced nonlinearly
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from 5 features to 2 new features. The number of objects remains

the same (2644), but the dimensionality is 2. The total number of

points in Fig. 1 is 2644 – one point for one sale. We do not present

legends and units for both axes in Fig. 1 with visualization results

because we are interested in observing the interlocation ofm = 2644

sales and finding some regular structures of data. Results in Fig.

1 allow deciding on the efficiency of the campaign. We see two

clusters of sales and some regular structures inside the clusters.

More interpretations of the results are given in [21].

Figure 1: Example of dimensionality reduction, data of
customers shopping behavior during an online advertising
campaign

Data for MDS is the symmetric m ×m matrix D = {di j , i, j =
1, . . . ,m} of proximities, where di j = dji . MDS tries to hold the

proximities [7] di j between pairs of multidimensional points Xi
and X j , i, j = 1, . . . ,m, as much as possible. Proximity di j can be

the distance between points Xi and X j , i.e. proximities may be

computed from a table of numbers, whose rows correspond to

different objects and columns correspond to features characterizing

the objects.

MDS looks for coordinates of points Yi representing Xi in a

lower-dimensional Euclidean space Rd by minimizing some stress

function. Several realizations of MDS with different stress functions

have been proposed (see review in [7]), seeking less dependence

of the resulting stress value on the magnitude of the proximities

(dissimilarities). However, their minimization is more complicated.

We have proposed a new approach, Geometric MDS, in [8] and

[9]. We have disclosed its unique properties in [10] and [23]. The

advantage of Geometric MDS is that it can use the simplest stress

function, and there is no need for its normalization depending

on the number of data points and the scale of proximities. The

performance was compared with multidimensional scaling using

majorization (SMACOF [4]). It is shown in [9] that Geometric MDS

does not depend on the scales of dissimilarities and, therefore, may

use a much simpler stress function like the raw stress function [18]:

S(Y1, . . . ,Ym ) =
m∑
i=1

m∑
j=i+1
(di j − d

∗
i j )

2, (1)

where d∗i j is the Euclidean distance between points Yi and Yj in a

lower-dimensional space:

d∗i j =

√√√ d∑
l=1

(
yil − yjl

)
2

. (2)

The optimization problem is to find a minimum of the function

S(·), defined by (1), and optimal coordinates of points Yi =
(yi1, . . . ,yid ), i = 1, . . . ,m:

min

Y1, ...,Ym ∈Rd
S(Y1, . . . ,Ym ). (3)

The number of variables in problem (3) ism × d . This number

is very large, often. Therefore, special methods to solve such

optimization problem are developed ([2, 3, 7]). Moreover, the

problem is multiextremal usually.

The motivation of this research is to compare the simplest

realization of Geometric MDS (denote it by GMDS1) with the

well-known SMACOF version of MDS from the point of view of

minimal reached stress value and used computing time.

2 OVERVIEW OF GEOMETRIC MDS
Geometric MDS for minimization of the stress function (1) proposed

in [8] and [9] is reviewed in this section briefly.

Let’s have some initial configuration of points Y1, . . . ,Ym . The

main idea of Geometric MDS focuses on optimizing the position

of one chosen point (let it be Yj ) when the positions of the

remaining pointsY1, . . . ,Yj−1,Yj+1, . . . ,Ym are fixed. In the case of

optimization of one point position, we minimize a part of the global

stress S(·) in (3). This part is named by the local stress function

S∗(·) in [9]. S∗(·) depends on Yj , only:

S∗(Yj ) =
m∑
i=1
i,j

©­«di j −
√√√ d∑

l=1

(
yil − yjl

)
2ª®¬

2

. (4)

Denote a new position of Yj by Y
∗
j . Let Y

∗
j be chosen so that

Y ∗j =
1

m − 1

m∑
i=1
i,j

Ai j , (5)

where the point Ai j lies on the line between Yi and Yj , i , j, in a

distance di j from Yi .
Equation (5) is the main formulae of Geometric MDS, when

defining transition from Yj to its new position Y ∗j . It is reasoned in

[9]. The transition fromYj to its new positionY ∗j , when positions of

the remaining points Y1, . . . ,Yj−1,Yj+1, . . . ,Ym are fixed, is called

by geometric step from the point Yj . After the transition, we get
new coordinates of the point Yj , i.e. the set Y1, . . . ,Ym is being

updated.

Eight propositions of this section are proved in [9]. They disclose

the advantages of the transition defined by (5).
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Proposition 1. The gradient of local stress function S∗(·) is as
follows:

∇S∗ |Yj =
©­­­«2

m∑
i=1
i,j

di j − d
∗
i j

d∗i j

(
yik − yjk

)
, k = 1, . . . ,d

ª®®®¬ . (6)

Proposition 2. The coordinates of point Y ∗j are equal to:

©­­­«
1

m − 1

m∑
i=1
i,j

©­­«
di j

(
yjk − yik

)
d∗i j

+ yik
ª®®¬ , k = 1, . . . ,d

ª®®®¬ . (7)

Proposition 3. The step direction from Yj to Y ∗j corresponds to
the anti-gradient of the function S∗(·) at the point Yj :

Y ∗j = Yj −
1

2(m − 1)
∇S∗ |Yj . (8)

Proposition 4. Size of a step from Yj to Y ∗j is equal to

1

m − 1

√√√√√√√√√ d∑
k=1

©­­­«
m∑
i=1
i,j

di j − d
∗
i j

d∗i j

(
yik − yjk

)ª®®®¬
2

.

Proposition 5. Let Yj does not match to any local extreme point
of the function S∗(·). If Y ∗j is chosen by (5), then a single step from Yj
to Y ∗j reduces a local stress S∗(·):

S∗(Y ∗j ) < S∗(Yj ).

Proposition 6. The value of the local stress function S∗(·) (4) will
converge to a local minimum when repeating steps (8) and Yj ← Y ∗j .

Proposition 7. LetYj does not match to any local extreme point of
the function S∗(·). Movement of any projected point by the geometric
method reduces the stress (1) of MDS: if Y ∗j is chosen by (5), then the
stress function S(·), defined by (1), decreases:

S(Y1, . . . ,Yj−1,Y
∗
j ,Yj+1, . . . ,Ym ) < S(Y1, . . . ,Yj−1,Yj ,Yj+1, . . . ,Ym ).

Proposition 8. The local stress function S∗(·) defined by (4) could
be multimodal for dimensionality 1 ⩽ d < ∞.

3 NEW PROPERTIES OF GEOMETRIC MDS
Proposition 9. The weight center CY of points Y1, . . . ,Ym

changes its position after the geometric step from point Yj if Yj , Y ∗j ,
1 ⩽ j ⩽ m.

Proof. The point Yj moves to the new position Y ∗j after the

geometric step. Before the geometric step, the weight center CY of

points Y1, . . . ,Ym is equal to

1

m

m∑
i=1

Yi . (9)

After the geometric step, the weight center of points Y1, . . . ,Yj−1,
Y ∗j ,Yj+1, . . . ,Ym is equal to

1

m

©­­­«Y
∗
j +

m∑
i=1
i,j

Yi

ª®®®¬ . (10)

By subtracting (9) from (10), we get that after the single geometric

step from point Yj , the weight center CY moves by vector

1

m

©­­­«Y
∗
j +

m∑
i=1
i,j

Yi

ª®®®¬ −
1

m

m∑
i=1

Yi

=
1

m

©­­­«Y
∗
j +

m∑
i=1
i,j

Yi

ª®®®¬ −
1

m

©­­­«Yj +
m∑
i=1
i,j

Yi

ª®®®¬
=

1

m

(
Y ∗j − Yj

)
.

□

Proposition 10. The weight center CY of points Y1, . . . ,Ym
changes to

1

m(m − 1)

m∑
i=1
i,j

(
mYi + (Yj − Yi )

di j

d(Yi ,Yj )

)
(11)

after the geometric step from point Yj , 1 ⩽ j ⩽ m.

Proof. According to proposition 9, the weight center becomes

equal to

CY +
1

m

(
Y ∗j − Yj

)
(12)

after the geometric step from point Yj . Since the point Ai j lies on
the line between Yi and Yj , 1 ⩽ i, j ⩽ m, i , j , in a distance di j
from Yi , then

Ai j = Yi + (Yj − Yi )
di j

d(Yi ,Yj )
. (13)

By substituting (13) into (5), we get

Y ∗j =
1

m − 1

m∑
i=1
i,j

(
Yi + (Yj − Yi )

di j

d(Yi ,Yj )

)
. (14)

By substituting (14) into (12), we get the new weight center:

1

m

(
Y ∗j − Yj

)
+CY

=
1

m

(
Y ∗j − Yj

)
+

1

m

m∑
i=1

Yi

=
1

m

©­­­«Y
∗
j +

m∑
i=1
i,j

Yi

ª®®®¬
=

1

m

©­­­«
1

m − 1

m∑
i=1
i,j

(
Yi + (Yj − Yi )

di j

d(Yi ,Yj )

)
+

1

m − 1

m∑
i=1
i,j

(m − 1)Yi

ª®®®¬
=

1

m(m − 1)

m∑
i=1
i,j

(
mYi + (Yj − Yi )

di j

d(Yi ,Yj )

)
.

□
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Proposition 11. The weight center CY of points Y1, . . . ,Ym
changes after m geometric steps consecutively performed from all
m points Y1, . . . ,Ym .

The proposition has been proved experimentally by making any

ofm consequential geometric steps of points Yi , 1 ⩽ i ⩽ m. The

experiments (counterexamples) show that the weight center also

depends on the order in which points Yi , 1 ⩽ i ⩽ m are selected.

4 COMPARISON OF EFFICIENCY OF THE
SIMPLEST REALIZATION OF GMDS WITH
SMACOF

Two algorithms realizing the idea of Geometric MDS are presented

in [9]. The simplest way to minimize the stress S(·) by Geometric

MDS is a consecutive changing of positions of points Y1, . . . ,Ym
many times. Denote this realization of Geometric MDS by GMDS1.

One iteration of GMDS1 consists of a consecutive changing

of positions of all points Y1, . . . ,Ym once, starting from Y1 and

finishing by Ym . The stress is minimized, namely by a consequent

changing the positions of separate d-dimensional projected points.

In more detail, the simplest realization [9] of Geometric MDS

recalculates the coordinates of a single d-dimensional point Yj
at each step. The result is a new point Y ∗j . The properties of such

transition from Yj to Y ∗j are disclosed on Propositions proved in

[9] and given above. The raw stress function (1) decreases after

movementYj toY
∗
j (see Proposition 7). The position of each selected

point Yj is changed once consecutively. When we recalculate

coordinates of one d-dimensional point (e.g. of Yj ) in Geometric

MDS, we consider coordinates of all m points Y1, . . . ,Ym . After

recalculation, we will have an updated setY = {Y1, . . . ,Ym }, where
Yj will be different as compared with the previous content of this set,

and coordinates of all other pointsYi , i = 1, . . . ,m, i , j , remain not

changed. Afterwards, when we recalculate coordinates of another

d-dimensional point (e.g. of Yi , i , j), we will use all Y1, . . . ,Ym
including the updated point Yj .

In this section, we compare the simplest realization (GMDS1) of

Geometric MDS experimentally with the SMACOF version of MDS

realized in R [22]. GMDS1 is realized in Python.

Experiments were carried out using real data set on 40 regions

of 8 Eastern European countries. Description of data is given in

[6]. Data are collected from the Eurostat database [11]. Therefore,

the number of data points is equal to 40 (m = 40), and data is

11-dimensional (n = 11). The multidimensional data is normalized,

and the visualization is applied in [11]. The matrix X = {Xi =
(xi1, . . . ,xin ), i = 1, . . . ,m} before and after normalization by

z-score is available online inMIDAS archive [12].We use data before

normalization here. In our case, projections of 11-dimensional data

to the plain were chosen, i.e. d = 2. So, optimization problem (3)

has 40 × 2 = 80 variables in this case. The result (minimal obtained

value of the stress function) depends on the starting coordinates

of points Yi = (yi1, . . . ,yid ), i = 1, . . . ,m. Therefore, problem (3)

was solved many times using different starting coordinates of the

points, and results were averaged for the objectivity and reliability

of the results.

1000 experiments of minimization of the stress function S(·),
defined by (1), were carried using different starting coordinates of

Table 1: Comparison of time performance

Algorithm Time, s Programming language

SMACOF 0.001540 R

GMDS1 0.002333 Python

points Yi = (yi1, . . . ,yid ), i = 1, . . . ,m, generated at random in the

interval (0; 1). In our case projections of 11-dimensional data to the

plain was chosen, i.e. d = 2.

SMACOF optimizes the coordinates of points Yi = (yi1, . . . ,yid ),
i = 1, . . . ,m, during each iteration. GMDS1 optimizes coordinates

of a particular point Yi . One iteration of GMDS1 means the run of i
value from 1 tom. In this way, GMDS1 optimizes coordinates of all

points Yi during each iteration like SMACOF.

In each of 1000 experiments, the value of the stress function S(·)
was measured, and the results were averaged. The average results

are presented in Figures 2, 3, 4. Both linear and logarithmic scales

were used to clarify results when presenting the average stress

during the first ten iterations. A logarithmic scale was used because

the values of stress function vary in a large range.

Moreover, the computer time used for one iteration of both

program realizations (GMDS1 and CMACOF) was measured. The

average results are presented in 1. Let us note that the SMACOF

algorithm has been developed for a long time, and there are

many implementations of it that are optimized for performance.

Geometric MDS is a newmethod, and research is needed to increase

the efficiency of its implementation, including the use of other

programming tools, e.g. C++ or R.

5 CONCLUSIONS
Geometric MDS is a new method for multidimensional data

visualization that extends the understanding of multidimensional

scaling (MDS). As a result, new realizations of MDS have been

proposed recently ([8–10, 23]). These realizations are based on the

ideas of Geometric MDS.

The paper presents both theoretical and experimental findings

on Geometric MDS. Several new properties of Geometric MDS have

been discovered theoretically. Experiments show that SMACOF is

more effective than the simplest realization of Geometric MDS

(GMDS1) in the first iteration only. Then GMDS1 outperforms the

efficiency of SMACOF. GMDS1 and SMACOF find similar small

values of the stress function when the number of iterations is

large because the optimization problem is not very difficult, i.e.

80 variables, only. The results on computer time consumption are

quite relatively because realizations were made using different

means - R and Python.

This paper expands our knowledge of the ideas and capabilities

of Geometric MDS for the future development of a class of

new effective and practical algorithms for multidimensional data

visualization, including realizations for big data.
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Figure 2: The average stress during the first 10 iterations,
linear scale

Figure 3: The average stress during the first 10 iterations,
logarithmic scale

Figure 4: The average stress during 11-300 iterations, linear
scale
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