Session: Programming

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

Privately Executable Examples

Viraj Kumar
virajkumarl@acm.org
Indian Institute of Science
Bengaluru, Karnataka, India

ABSTRACT

Executable examples enable students to check their comprehension
of programming problems at any time before, during, or after im-
plementation. Students express their understanding of a problem
by specifying input-output pairs, and they receive immediate feed-
back on their understanding when these pairs are executed against
correct and buggy solutions specified by the instructor. These so-
lutions are typically executed on a server, and we find evidence
that some students in an introductory programming course are
wary of revealing their fragile problem comprehension in exchange
for feedback. We propose a student-side mechanism that enables
students to receive the same feedback privately. We also conduct
a study to investigate differences in student ability to create valid
and thorough examples using the server-side or the student-side
feedback mechanisms.

CCS CONCEPTS

« Social and professional topics — Student assessment; CS1.

KEYWORDS

CS1, automated assessment, privacy, executable examples

ACM Reference Format:

Viraj Kumar. 2022. Privately Executable Examples. In Proceedings of the
27th ACM Conference on Innovation and Technology in Computer Science
Education Vol 1 (ITiCSE 2022), July 8-13, 2022, Dublin, Ireland. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3502718.3524800

1 INTRODUCTION

When students are confronted with a programming problem, they
must first comprehend its natural-language problem description.
Students who fail to correctly comprehend the problem may spend
considerable time solving a different problem [12, 15, 22]. Natural-
language descriptions may be genuinely or apparently ambiguous,
particularly in linguistically diverse contexts where neither stu-
dents nor instructors are perfectly fluent in the language of in-
struction [1]. Wrenn and Krishnamurthi [23] note that students
cannot check their comprehension of the problem by writing test
cases: “if a student develops both their tests and implementation
with the same misunderstanding of a problem, running those tests

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ITiCSE 22, July 08-13, 2022, Dublin, Ireland

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9201-3/22/07...$15.00
https://doi.org/10.1145/3502718.3524800

283

against their implementation will not reveal their misunderstand-
ing”. Therefore, they propose a mechanism - executable examples
— that allows students to express their problem comprehension as
a suite of input-output examples. A student submits their suite
to a server, which provides immediate feedback on their problem
comprehension by executing the suite against instructor-specified
solutions. Students can refine their submissions, and the server logs
the student’s username and suite contents for each submission [23].

1.1 Motivating Question

The collection of such data raises privacy concerns [13] and trig-
gers the motivating question for this study: Is there a legitimate
educational need to log data traces for students’ example suites?
We believe this question is worth examining carefully, because al-
though a server-side solution can eliminate privacy concerns by
simply not logging data, there is a clear incentive to gather student-
specific data traces: to support learning analytics. This is defined as
“the measurement, collection, analysis and reporting of data about
learners and their contexts, for purposes of understanding and
optimizing learning and the environments in which it occurs” [17].

We do not seek to resolve the legitimacy question. In fact, we
believe that a universal answer does not exist (Section 6.4). For
situations where the answer is “no”, we propose a student-side
command-line mechanism that provides students immediate feed-
back on their suites by executing them against instructor-specified
solutions while guaranteeing privacy (i.e., students reveal only their
final suites). We achieve this by obfuscating instructor-specified so-
lutions so that it is impractical for CS1 students to reverse-engineer
them. Our two research questions are: In comparison to the server-
side mechanism . ..

e RQ1:...do students find it harder to evaluate example suites
using the student-side mechanism?

e RQ2: ... is there a difference in the quality of final suites
created by students using the student-side mechanism?

Following Wrenn and Krishnamurthi [23], we use two measures
of suite quality:
o Validity: The proportion of examples in the suite that are
consistent with the instructor-specified solution.
o Thoroughness: The proportion of buggy implementations for
which at least one example in the suite is inconsistent.

2 RELATED WORK

Pardo and Siemens note that our growing capability to log and
analyze the steps that students perform during a task makes it
“possible to deploy new assessment techniques that measure more
accurately the right [student] achievements”, which “also raises the
issue of privacy” [13]. It is difficult to define privacy, since there
are differences in expectations of privacy between individuals [18],

https://doi.org/10.1145/3502718.3524800
https://doi.org/10.1145/3502718.3524800

Session: Programming

as well as gender differences and differences between cultures [3].
In India, where this study was conducted, early work found less
awareness of privacy issues among Indian students than their Amer-
ican counterparts [9], and a subsequent study found that students’
immediate concerns for privacy remain low [10]. Even when stu-
dents express concerns about the privacy of their data, their trust in
their institution or their perception of a power imbalance may lead
them to surrender their data [2, 20]. It is therefore imperative for
instructors to have legitimate reasons for collecting student data.
Drachsler and Greller have proposed an eight-point checklist for
“managers and decision makers planning the implementation of
Learning Analytics solutions” [7]. The third point on this checklist
examines questions of legitimacy, including: “What data sources
[do] you already have — aren’t they enough?”

Students in our CS1 course write code using Prutor [6], one of
many online programming platforms that take frequent snapshots
of each student’s code, capturing not just the outcome but the process
of code development. Over the past decade [4, 14], a rich body
of research has provided a compelling answer to the legitimacy
question for gathering this type of process-level data instead of just
the outcomes (see [21] for a recent survey). While frameworks for
assisting novice programmers such as the Design Recipe from How
to Design Programs [8] and the PCDIT framework [11] encourage
students to develop examples (or cases in the latter framework), we
are unaware of any argument that addresses the legitimacy question
for gathering process-level data on example suite development.
Wrenn and Krishnamurthi [23] demonstrate that the immediate
feedback provided by their tool can help students improve their
understanding of the problem at hand. We propose and evaluate a
mechanism for the same purpose that does not reveal any process-
level data.

3 STUDENT-SIDE EXAMPLE EVALUATION

To evaluate student examples on the student’s own machine, we
obfuscate the instructor’s solutions (written in C). For this study,
we used the Tigress C obfuscator [19] which can transform the
code in a variety of sophisticated ways. We find that one of the
basic Tigress transformations - Virtualize ! — produces code that
is sufficiently obfuscated to make it impractical for CS1 students
to extract the instructor solutions in human-readable form. The
resulting C code can be compiled and executed by the student from
the command line like any other C program.

There are two limitations to this approach. First, the resulting
C code is often so large that students cannot execute it using free
online programming environments. > Several students rely on such
platforms when they cannot access on-campus computing facilities,
such as during the prevailing lockdown. Second, similarly adequate
obfuscators may not be available for other programming languages.

4 STUDY DESIGN

This in-person study was conducted in Fall 2021, with students
in an accelerated 6-week CS1 course (using the C programming
language) at a premier research institution in India. There are two

Uhttps://tigress.wtf/virtualize html

2For instance, the instructor solution for Problem 1 (Section 4.1.1) has 21 lines of
code and 457 characters (excluding comments), whereas the obfuscated solution has
277 lines and 19,449 characters.

284

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

Table 1: Task — Problem assignment for Groups A and B

Group Days Task 1 Task 2
A (47) Mon, Wed Problem 1 (server) Problem 2 (student)
B (50) Tue, Thur Problem 2 (server) Problem 1 (student)

lecture hours and one tutorial hour per week. Further, at the time of
enrollment, students are randomly assigned to one of four batches.
Each batch attends a weekly 3-hour in-person lab session on a
particular day (Monday to Thursday), during which students can
seek the assistance of the course instructor as well as two Teaching
Assistants.

We conducted the study during Week 5, and 97 students out
108 gave consent for their anonymized submissions to be used in
this research study. Students solved two programming problems
(described below) and completed three graded tasks. Task 1 asked
students to create an example suite for one of the given problems
using the server-side mechanism (Prutor). Students were free to
evaluate their suites any number of times using a familiar sequence
of two mouse-clicks. Although the server logged their username
and attempts, this process-level data was not examined in this study.
For Task 2, students created an example suite for the other problem
using the student-side mechanism (the command line). Once again,
students were free to evaluate their suites as often as they wished,
this time using a two command-line steps they had exposure to in
prior weeks: compiling and running the code. In the two weeks
prior to this study, four similar problems were discussed in lectures
and tutorials. For each problem, an initial suite of valid examples
was presented, and the thoroughness of the suite was improved
during the discussion. For Tasks 1 and 2, students were informed
that their final example suites would be graded based on validity
and thoroughness.

Students were split into two groups A (including 47 consent-
giving students) and B (including 50 consent-giving students), and
the problems for Tasks 1 and 2 were assigned as shown in Table 1.

4.1 Programming Problems

Each of the programming problems asked students to write a func-
tion that processes a given array of integers. We anticipated that
students would find it substantially easier to create examples for
Problem 1. To explain why, we reproduce the problem specifications,
including examples given to students.

4.1.1 Problem 1: Sorted. An array of length n is sorted in ascending
order if: a[0] < a[1] < ... < a[n-1]. Similarly, the array is sorted
in descending order if: a[@] > a[1] > ... > a[n-1]. Consider a
function with the following prototype:

int sorted(unsigned int n, const int a[n]);

This function should return: 2 if the array is sorted in both ascend-
ing and descending order, 1 if the array is sorted only in ascending
order, —1 if the array is sorted only in descending order, and 0 oth-
erwise.

Session: Programming

Examples: If a[3] = {1, 2, x} then the function should return: 1
if x >2and 0if x < 2.

Starter code: Students were given starter code for expressing the
examples above in C, and were asked to add their own examples.

int a1l = {1, 2, 23};

int a2[] = {1, 2, 13};

TEST test[] = {
{.label = "ex1", .n =
{.label = "ex2", .n

3, = al,

. .output
3, .a = a2,

.output

=13,
0}

3

4.1.2 Problem 2: Permutation. Suppose the elements of an array
al[] of length n are a permutation of 0, 1,. .., n — 1 for some positive
integer n. If so, the inverse permutation is an array a_inv[] of
length n such that: ala_inv[i]] = a_inv[a[i]] =iforall0 <
i < n. Consider a function with the following prototype:

int permutation(unsigned int n, const int a[n], int
a_inv[nl);

This function should return: 1 if the array a[] is a permutation of
0,1,...,n— 1 for some positive integer n (if so, the function should
also initialize a_inv[] as the inverse of permutation of a[]), and 0
otherwise.

Example: If a[3] = {x, 2, @} then the function should return 0
if x is not equal to 1. Otherwise, it should return 1 and a_inv[3]
must be the array {2, 0, 13}.

Starter code: Students were given starter code for expressing the
examples above in C, and were asked to add their own examples.

int a1l = {1, 2, 0};
int al_inv[] = {2, 0, 13};
int a2[] = {2, 2, @};
TEST test[] = {

{.label = "ex1", .n =3, .a = al, .a_inv = al_inv,
.output = 13},
{.label = "ex2", .n = 3, .a = a2, .output = 0}

};

4.1.3 Comparison of Problems. We anticipated that students would
find it easier to create examples for Problem 1 for two reasons. First,
we expected students to be more familiar with the idea of a sorted
array than the idea of a permutation and its inverse. Second, it
is easy to copy-paste a given example for Problem 1 and modify
the array to be sorted or unsorted. For Problem 2, in contrast, the
syntax depends on whether the input array is a permutation (in
which case the inverse must also be specified) or not (the inverse
need not be specified). Calculating the inverse is also burdensome,
and we observed several students calculating inverses by hand.
For both Tasks 1 and 2, students executed their examples against
a correct solution only. After completing Tasks 1 and 2, all students
completed a common Task 3: implementing solutions for these
two problems using Prutor. To help students test their code, we
provided test cases that students could execute via Prutor. The
two examples provided in the starter code for each Problem were
included as visible test cases (i.e., students could see each of the
inputs, the corresponding expected output, and their own function’s

285

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

corresponding outputs). For each Problem, we also provided several
hidden test cases. Prutor does not allow students to see the inputs
or expected outputs for these tests, but it reports the number of
hidden test cases that the student’s code passes. Students were
informed that their implementations would be graded based on a
more thorough test suite than the visible and hidden tests provided.

As students debugged their code using these instructor-specified
test-cases, they were encouraged to amend, extend, or otherwise
modify their example suites for Tasks 1 and 2 before finally submit-
ting their work. However, these modifications were not mandatory.

4.2 Student Survey

To understand how students perceived the two Tasks and the two
evaluation mechanisms (relevant for RQ1), we asked students to
complete an optional survey after completing Tasks 1 and 2. Our
study design ensures that examples for both Problems were created
using the server-side mechanism by about half the students, and
using the student-side mechanism by the rest (Table 1). We can thus
examine whether the mechanism had any influence on students’
perceived difficulty in creating examples.

Out of the 47 students in Group A who gave consent, 24 filled
this optional survey. Similarly, 28 out of the 50 students in Group B
who gave consent filled out this survey.

The survey asked the following three questions:

(1) For which Task was it easier to create examples? (Multiple-
choice, options shown in Figure 1)

(2) For which Task was it easier to evaluate examples? (Multiple-
choice, options shown in Figure 2)

(3) For examples created using the command line, your instruc-
tor can see only your final submission. For examples created
using Prutor, your instructor can additionally see all your
past submissions. How do you feel about this? (Open ended)

5 RESULTS

In this Section, we perform several hypothesis tests to compare
two proportions. In each case, our null hypothesis is that the two
proportions are equal, and we calculate the)(12 statistic and the
corresponding p-value using the test by Campbell [5] and Richard-
son [16]. We first examine the results from the optional student
survey.

5.1 Survey Results

5.1.1 Question 1. Figure 1 shows the percentage of responses in
each group for the five given options related to creating examples.
None of the between-group differences are statistically significant,
suggesting that the mechanism for evaluating examples did not
strongly influence students’ perception of the relative difficulty in
creating examples. Most students found it easier to create examples
for Problem 1 (Sorted), in line with our expectations (Section 4.1.3).

5.1.2 Question 2. Figure 2 shows the percentage of responses in
each group for the five given options related to evaluating exam-
ples. The highest percentage of respondents in both groups (more
than 40%) find that the two evaluation mechanisms are “about the
same”. However, among those who thought it was slightly or much
easier to evaluate examples for Problem 1 (Sorting), there were

Session: Programming

Sorted much Sorted slightly About the same Permutation
easier easier slightly easier

Percentage of group size
=] w N [@
(=] (=] (=] (=] (=] (=)

=1

Permutation
much easier

B Group A HGroupB

Figure 1: Responses to the question “For which Task was it
easier to create examples?”

23

&
230
o
225
o
%zo
g 15
£ 10
5
0 |

Sorted slightly ~ About the same
easier

Permutation
much easier

Permutation
slightly easier

Sorted much
easier

M GroupA M GroupB

Figure 2: Responses to the question “For which Task was it
easier to evaluate examples?”

a significantly higher percentage of respondents from Group A
(45.8%, server-side mechanism) than from Group B (14.3%, student-
side mechanism); hypothesis test for difference of proportions:
X12 = 6.146, p = 0.0132. Similarly, among those who that it was
slightly or much easier to evaluate examples for Problem 2 (Permu-
tation), there were a significantly higher percentage of respondents
from Group B (42.9%, server-side mechanism) than from Group A
(12.5%, student-side mechanism); hypothesis test for difference of
proportions:)(f =5.691, p = 0.0171.

5.1.3 Question 3. The majority of students (19 out of 24 in Group A,
18 out of 28 in Group B) gave a neutral answer to the open-ended
survey question. Typical responses include “I'm ok either way”,
“doesn’t matter”, and “Fine”. Only three students (2 from Group A,
1 from Group B) expressed a level of comfort. One of these opin-
ions explicitly refers to the recording of code (not examples): “Its
completely OK because one uses past attempts to figure out where
the error was in one’s code, and the professor sees one’s process
of code making”. Another such opinion came with a caveat: “I feel
that it is really helpful if the Professor could see my past attempts
and it is an excellent idea, where the instructor could keep track of
a student’s progress. But this function is futile unless the instructor

286

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

Table 2: Between-group differences in valid suites by Problem

Problem 1 Problem 2
Group Size Valid Group Size Valid
A 45 42 A 47 38

B 49 37 B 50 48

¥i=5497,p=0019 | x?=5473,p=0.0193

has time enough to check each individual student’s progress and
he does cares [sic] enough”

The remaining 12 opinions expressed a degree of discomfort.
Some responses include “T am slightly uncomfortable that Professor
can see my past attempts”, “Should ask us first”, and “its sorta
creepy”. Two of these responses expressed concern because prior
attempts might be graded, including: “For some of the previous test
cases, I input buggy test cases which did not give a correct answer,
so I would be glad if my proffesor [sic] only focuses on the final test
cases.” (Several students used the terms “test cases” and “examples”
interchangeably.) We note that 9 out of these 12 opinions were from
students in Group B, who used the server-side mechanism to create
examples for the more challenging Problem 2 (see Figure 1).

5.2 Quality of Examples

Next, we examine the quality of example suites created by students
using the two previously stated metrics: validity and thoroughness.

5.2.1 Validity. In our study, example suites were invalid for one
of two reasons: either the code containing the examples failed to
compile, or it caused a run-time error during evaluation. It is clear
from Table 2 that for Problem 1, a significantly higher proportion
of students in Group A (% = 93.3%) were able to create valid
suites, whereas the corresponding proportion for Group B is just
% = 75.6%. This difference in proportions is statistically significant
(p = 0.019). For Problem 2, a significantly higher proportion (96%)
of students in Group B were able to create valid suites than students
in Group A (80.9%).

5.2.2 Thoroughness. For each Problem in our study, students’ ex-
amples were evaluated only against the instructor-specified refer-
ence solution for that Problem (for both the server-side and student-
side mechanisms). As students worked on Task 3 (implementing
solutions for Problems 1 and 2), some of their buggy attempts were
identified by instructor-specified test cases (visible and hidden). Stu-
dents were encouraged (but not required) to execute these buggy
solutions against their own examples and augment these examples
if they failed to detect the bugs. Thus, the study provided students
with an opportunity to improve the thoroughness of their suites.

Of the 94 submissions received for Task 3, three failed to compile.
Out of the remaining 91 submissions, we identified 33 buggy imple-
mentations for Problem 1 (Sorted), and 22 buggy implementations
for Problem 2 (Permutations) using a more thorough set of tests
than the visible and hidden tests provided to students. We manually
inspected all solutions that passed these tests to convince ourselves
that they were correct implementations.

For this study, we use these student-created buggy implementa-
tions to assess the thoroughness of student-created example suites.

Session: Programming

As a benchmark, the thoroughness of the visible test cases was
15.2% for Problem 1 and 31.8% for Problem 2. In contrast, the thor-
oughness of the combined set of visible and hidden test cases was
51.5% for Problem 1 and 63.6% for Problem 2.

For Problem 1, the average thoroughness of students’ suites was
nearly identical for Group A (51.80%) and Group B (51.67%). In
fact, for 32 out of the 33 buggy implementations for Problem 1,
the percentage of student suites that can detect a bug is nearly
identical for both groups. Figure 3 compares the performance for
both groups on these 33 implementations, ordered along the x-axis
from “obviously buggy” (all student suites can detect a bug) to
“subtly buggy” (very few student suites can detect a bug). The only
exception is Implementation 13 in this ordering, which is shown in
Figure 4. The proportion of student suites that can detect bugs in
this implementation differs significantly from Group A (57.14%) to
Group B (81.08%); y% = 5.145, p = 0.0233.

Group % detecting buggy sorted implementations

100
90
20
70
60
50
40
30
20

10 Buggy Ihpl. 13
0 A
Obviously Subtly
—Group A Group B
buggy buggy

Figure 3: Comparison of groups on each of 33 buggy imple-
mentations for Problem 1 (Sorted), ordered from “obviously
buggy” to “subtly buggy”

1 int sorted(unsigned int n, const int a[n]) {
2 if (n <= 1) { return 2; }

3 for (int 1 = 8; i <= n-2; i++) {

4 if (a[i] == a[i+1]) {

5 return 2;

6 } else if (a[i+1] »>= a[i] && a[i+2] »>= a[i+1]) {
7 return 1;

8 } else if (a[i] »>= a[i+1]) {

9 return -1;
10 } else {
11 return ©;
12 }
13 }
14}

Figure 4: Buggy Implementation 13 for Problem 1

For Problem 2, the average thoroughness of students’ suites was
again nearly identical for Group A (59.81%) and Group B (59.19%).
In fact, for all 22 buggy implementations for Problem 2, the per-
centage of student suites that can detect a bug is nearly identical
for both groups (Figure 5): none of these differences is statistically
significant.

287

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

Group % detecting buggy Permutation impl.

100
%
20
70
60
50
40
30
20
10

—

A\

Obviously
buggy

Subtly
buggy

—Group A Group B

Figure 5: Comparison of groups on each of 22 buggy im-
plementations of Problem 2 (Permutation), ordered from
“obviously buggy” to “subtly buggy”

6 DISCUSSION
6.1 Limitations

We acknowledge four main limitations of our study due to which
our findings may not generalize well. First, there is a significant
gender bias among our sample of 97 students: only 14 self-identify
as female. In India, such a gender ratio is typical in CS1 courses
at top-tier institutions, but it is atypical at the majority of institu-
tions offering CS1. Second, our student-side mechanism relies on
effectively obfuscating instructor solutions, which we have demon-
strated only for C programs. Third, our study is based on only
two problems, both involving array traversal. Fourth, all but 4 re-
sponses for the optional survey were recorded during the 3-hour
lab session. Thus, students who struggled with the problems may
be underrepresented among survey respondents.

6.2 RO1

In comparison to the server-side mechanism, do students find it
harder to evaluate example suites using the student-side mecha-
nism? Based on our findings in Section 5.1.2 and Section 5.2.1, we
believe that the answer to RQ1 is “yes” i.e., a substantial number
of students appear to find it harder to evaluate example suites with
the student-side mechanism.

We identify two possible and related explanations for these find-
ings: discomfort with the command-line interface in general and,
more specifically, discomfort with fixing syntax errors using the
compiler from the command line. For the majority of students, this
course provides their first exposure to the command line. In the four
weeks preceding this study, students were exposed to the command-
line interface during Weeks 1, 2, and 3, and to Prutor’s GUI during
Weeks 3 and 4. Despite this exposure, we observed some students
struggling with the command line during this study. We suspect that
most of the students who found both evaluation mechanisms similar
(Section 5.1.2) were comfortable with the command-line interface,
whereas most of the other students found the GUI-based server-
side mechanism far easier to handle. To eliminate this potential
source of difference, we are working on a GUI for the student-side
mechanism.

Session: Programming

We interpret the results in Section 5.2.1 as follows. For the
server-side mechanism, students wrote their examples using Prutor.
This provides a modern IDE with standard features such as line-
numbering, auto-indentation and highlighting to indicate syntax
errors. In contrast, many students using the student-side mech-
anism edited their code using a rudimentary text editor (gedit)
which provides only some of these features. This may have con-
tributed to the substantially higher number of syntactically invalid
suites created by these students. To eliminate this potential source
of difference in future studies, we will familiarize students with a
modern IDE accessible from the command line.

6.3 RQ2

In comparison to the server-side mechanism, is there a difference in
the quality of final suites created by students using the student-side
mechanism? The findings above suggest that the answer to RQ2
is “yes” when the metric for the quality of suites is validity. On
the other hand, when the metric is thoroughness, our findings in
Section 5.2.2 strongly suggest that the answer to RQ2 is “no”: for
every buggy implementation except one, there is no statistically
significant difference in the proportion of example suites created
using the server-side or the student-side mechanism that is capable
of detecting a bug.

We tried to seek an explanation for the differing performance
on the single exception (Buggy Implementation 13 for Problem 1,
Figure 4). The implementation is correct when the array length
n < 1 (due to the test on Line 2). When the array length n = 2,
there may be an out-of-bounds array access on Line 6. For a C
program, the run-time behavior may depend on the value of other
(memory adjacent) variables. Hence, we checked whether any of the
observed difference between Group A and Group B suites on this
implementation is due to examples with n = 2. We found no such
differences. It just turns out that a greater proportion of students
from Group B had created examples with array length n > 3 (using
the student-side mechanism) that detected the error. One such input
was a hidden test case provided for Task 3: a[3] = {-1, -2, -1}.

6.4 The Legitimacy Question

In our view, gathering process-level data for student-created ex-
amples is legitimate only if instructors can use this data to help
students either directly (as noted by one student in Section 5.1.3),
or indirectly by “understanding and optimizing learning and the
environments in which it occurs” [17]. During this study, students
received help from the instructor and TAs only when they requested
help. All these requests fell into two categories: help with under-
standing a technical nuance of the problem specification, and help
with understanding the natural-language description itself. We
illustrate each type of request with an example, and discuss the
potential for process-level data to assist instructors in fielding such
help requests.

For Problem 1, the most commonly asked question was: “What
should the sorted() function return when the array has length
n < 1?” Students who asked this question were unfamiliar with
the concept of vacuous truth and were therefore unable to under-
stand why such an array is sorted in both ascending and descending
order according to the specification of Problem 1 (Section 4.1.1).

288

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

Each of these students had created an example for such an input
by specifying the expected output as 0, and both mechanisms pro-
vided feedback on this error. Some of these students deduced that
the correct output is 2 through a process of trial-and-error, but
they wanted to understand why this was the correct output. An
analysis of process-level data could help the instructor recognize
that a specific technical point is a common source of confusion,
and therefore suggest a way to help (e.g., by providing a suitable
learning resource).

For Problem 2, several students were unfamiliar with the term
“inverse” and struggled to parse the given definition. Some of these
students interpreted this as “reverse”, even though the stated def-
inition of inverse (Section 4.1.2) was clearly not the definition of
reverse, and despite the example provided at the end of the problem
specification in which the inverse of {1, 2, 0} is not the reverse
{@, 2, 1}.Our initial response to their query was always similar
to “Read the definition of inverse carefully”. However, some stu-
dents required further assistance, including an explanation of the
problem in a language they were more comfortable with. We do
not see the utility of process-level data in assisting such students,
except possibly in identifying them. However, such identification
could raise ethical concerns.

We therefore believe that there is no universal answer to the
legitimacy question we have posed.

7 CONCLUSIONS

We have presented a mechanism that allows students to privately
self-assess their comprehension of programming problems by cre-
ating input-output examples, without revealing anything to the
instructor except possibly their final suite of examples. Our student-
side mechanism presently requires familiarity with the command-
line interface, and therefore it may be slightly harder for students
to create syntactically valid examples and execute them than with
the GUI for our server-side mechanism. (We plan to eliminate this
difference in future studies.) On the other hand, we find no signifi-
cant difference in the thoroughness of example suites created by
students using the two mechanisms. There may be scenarios where
it is legitimate to log process-level data as students create examples.
In all other cases, our student-side mechanism provides the benefits
of immediate feedback while guaranteeing students’ privacy.

REFERENCES

[1] GS Adithi, Akshay Adiga, K Pavithra, Prajwal P Vasisht, and Viraj Kumar. 2015.
Secure, Offline Feedback to Convey Instructor Intent. In 2015 IEEE Seventh Inter-
national Conference on Technology for Education (T4E). IEEE, 105-108.

Susanne Barth and Menno DT De Jong. 2017. The privacy paradox-Investigating
discrepancies between expressed privacy concerns and actual online behavior-A
systematic literature review. Telematics and informatics 34, 7 (2017), 1038-1058.
Steven Bellman, Eric J Johnson, Stephen J Kobrin, and Gerald L Lohse. 2004.
International differences in information privacy concerns: A global survey of
consumers. The Information Society 20, 5 (2004), 313-324.

Paulo Blikstein, Marcelo Worsley, Chris Piech, Mehran Sahami, Steven Cooper,
and Daphne Koller. 2014. Programming pluralism: Using learning analytics to
detect patterns in the learning of computer programming. Journal of the Learning
Sciences 23, 4 (2014), 561-599.

Tan Campbell. 2007. Chi-squared and Fisher-Irwin tests of two-by-two tables with
small sample recommendations. Statistics in medicine 26, 19 (2007), 3661-3675.
Rajdeep Das, Umair Z Ahmed, Amey Karkare, and Sumit Gulwani. 2016. Prutor:
A system for tutoring CS1 and collecting student programs for analysis. arXiv
preprint arXiv:1608.03828 (2016).

Hendrik Drachsler and Wolfgang Greller. 2016. Privacy and Analytics: It’s a
DELICATE Issue a Checklist for Trusted Learning Analytics. In Proceedings of the

[2

[3

Session: Programming ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

Sixth International Conference on Learning Analytics amp; Knowledge (Edinburgh, (ICER ’18). Association for Computing Machinery, New York, NY, USA, 41-50.
United Kingdom) (LAK ’16). Association for Computing Machinery, New York, https://doi.org/10.1145/3230977.3230981

NY, USA, 89-98. https://doi.org/10.1145/2883851.2883893 [16] JT Richardson. 2011. The analysis of 2X 2 contingency tables—yet again. Statistics
Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna- in medicine 30, 8 (2011), 890-author.

murthi. 2018. How to design programs: an introduction to programming and [17] George Siemens and Phil Long. 2011. Penetrating the fog: Analytics in learning
computing. MIT Press. and education. EDUCAUSE review 46, 5 (2011), 30.

Ponnurangam Kumaraguru and Lorrie Cranor. 2005. Privacy in India: Attitudes [18] Daniel J Solove. 2008. Understanding privacy. (2008).

and awareness. In International workshop on privacy enhancing technologies. [19] Clark Taylor and Christian Collberg. 2016. A tool for teaching reverse engineering.

=

[9

=

Springer, 243-258.

Ponnurangam Kumaraguru and Niharika Sachdeva. 2012. Privacy in India:
Attitudes and awareness v 2.0. Available at SSRN 2188749 (2012).

Oka Kurniawan, Cyrille Jégourel, Norman Tiong Seng Lee, Matthieu De Mari, and
Christopher M Poskitt. 2021. Steps Before Syntax: Helping Novice Programmers
Solve Problems using the PCDIT Framework. arXiv preprint arXiv:2109.08896
(2021).

Dastyni Loksa and Amy J. Ko. 2016. The Role of Self-Regulation in Programming
Problem Solving Process and Success. In Proceedings of the 2016 ACM Conference
on International Computing Education Research (Melbourne, VIC, Australia) (ICER
’16). Association for Computing Machinery, New York, NY, USA, 83-91. https:
//doi.org/10.1145/2960310.2960334

Abelardo Pardo and George Siemens. 2014. Ethical and privacy principles for
learning analytics. British Journal of Educational Technology 45, 3 (2014), 438-450.

Chris Piech, Mehran Sahami, Daphne Koller, Steve Cooper, and Paulo Blikstein.
2012. Modeling how students learn to program. In Proceedings of the 43rd ACM
technical symposium on Computer Science Education. 153-160.

[15] James Prather, Raymond Pettit, Kayla McMurry, Alani Peters, John Homer,

and Maxine Cohen. 2018. Metacognitive Difficulties Faced by Novice Pro-
grammers in Automated Assessment Tools. In Proceedings of the 2018 ACM
Conference on International Computing Education Research (Espoo, Finland)

USENIX Workshop on Advances in Security Education, ASE 2016, co-located
with the 25th USENIX Security Symposium. All rights reserved.; 2016 USENIX
Workshop on Advances in Security Education, ASE 2016, co-located with the
25th USENIX Security Symposium.

Yi-Shan Tsai, Alexander Whitelock-Wainwright, and Dragan Gasevi¢. 2020. The
Privacy Paradox and Its Implications for Learning Analytics. Association for
Computing Machinery, New York, NY, USA, 230-239. https://doi.org/10.1145/
3375462.3375536

Maureen M Villamor. 2020. A review on process-oriented approaches for an-
alyzing novice solutions to programming problems. Research and Practice in
Technology Enhanced Learning 15, 1 (2020), 1-23.

Jacqueline Whalley and Nadia Kasto. 2014. A Qualitative Think-Aloud Study
of Novice Programmers’ Code Writing Strategies. In Proceedings of the 2014
Conference on Innovation amp; Technology in Computer Science Education (Uppsala,
Sweden) (ITiCSE '14). Association for Computing Machinery, New York, NY, USA,
279-284. https://doi.org/10.1145/2591708.2591762

[23] John Wrenn and Shriram Krishnamurthi. 2019. Executable Examples for Pro-

gramming Problem Comprehension. In Proceedings of the 2019 ACM Confer-
ence on International Computing Education Research (Toronto ON, Canada)
(ICER ’19). Association for Computing Machinery, New York, NY, USA, 131-139.
https://doi.org/10.1145/3291279.3339416

https://doi.org/10.1145/2883851.2883893
https://doi.org/10.1145/2960310.2960334
https://doi.org/10.1145/2960310.2960334
https://doi.org/10.1145/3230977.3230981
https://doi.org/10.1145/3375462.3375536
https://doi.org/10.1145/3375462.3375536
https://doi.org/10.1145/2591708.2591762
https://doi.org/10.1145/3291279.3339416

	Abstract
	1 Introduction
	1.1 Motivating Question

	2 Related Work
	3 Student-side Example Evaluation
	4 Study Design
	4.1 Programming Problems
	4.2 Student Survey

	5 Results
	5.1 Survey Results
	5.2 Quality of Examples

	6 Discussion
	6.1 Limitations
	6.2 RQ1
	6.3 RQ2
	6.4 The Legitimacy Question

	7 Conclusions
	References

