
Experience with Abrupt Transition to Remote Teaching
of Embedded Systems

Jan Koniarik

Masaryk University

Brno, Czech Republic

433337@mail.muni.cz

Daniel Dlhopolček

Masaryk University

Brno, Czech Republic

xdlhopol@mail.muni.cz

Martin Ukrop

Masaryk University

Brno, Czech Republic

mukrop@mail.muni.cz

ABSTRACT
Due to the pandemic of COVID-19, many university courses had to

abruptly transform to enable remote teaching. Adjusting courses

on embedded systems and micro-controllers was extra challenging

since interaction with real hardware is their integral part. We start

by comparing our experience with four basic alternatives of teach-

ing embedded systems: 1) interacting with hardware at school, 2)

having remote access to hardware, 3) lending hardware to students

for at-home work and 4) virtualizing hardware. Afterward, we eval-

uate in detail our experience of the fast transition from traditional,

offline at-school hardware programming course to using remote

access to real hardware present in the lab. The somewhat unusual

remote hardware access approach turned out to be a fully viable

alternative for teaching embedded systems, enabling a relatively

low-effort transition. Our setup is based on existing solutions and

stable open technologies without the need for custom-developed

applications that require high maintenance. We evaluate the experi-

ence of both the students and teachers and condense takeaways for

future courses. The specific environment setup is available online

as an inspiration for others.

CCS CONCEPTS
• Applied computing → Distance learning; • Computer sys-
tems organization → Embedded software; • Hardware;

KEYWORDS
remote teaching; embedded systems; remote hardware access

ACM Reference Format:
Jan Koniarik, Daniel Dlhopolček, and Martin Ukrop. 2022. Experience with

Abrupt Transition to Remote Teaching of Embedded Systems. In Proceedings
of the 27th ACMConference on Innovation and Technology in Computer Science
Education Vol 1 (ITiCSE 2022), July 8–13, 2022, Dublin, Ireland. ACM, New

York, NY, USA, 7 pages. https://doi.org/10.1145/3502718.3524821

1 INTRODUCTION
Interest in blended learning (combination of online and face-to-

face) was shown in surveys already at the beginning of the 21
st

century [8]. Later on, the use of online learning dramatically in-

creased worldwide with the approach of the COVID-19 pandemic in

early 2020 [13]. However, the inclusion of information technology

and online services into education can be done in multiple ways:

ITiCSE 2022, July 8–13, 2022, Dublin, Ireland.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of the
27th ACM Conference on Innovation and Technology in Computer Science Education Vol 1
(ITiCSE 2022), July 8–13, 2022, Dublin, Ireland, https://doi.org/10.1145/3502718.3524821.

While innovative use improves education, simple substitutive use

can even decrease the quality of learning [8]. Due to the sudden na-

ture of the change, Adedoyin and Soykan [1] suggest calling online

education at the beginning of the pandemic by the term “emergency

remote teaching” to put it in contrast with the thoroughly prepared,

efficient online teaching.

This paper reflects on our experience with a fast transformation

of a university-level course on embedded hardware programming

for emergency remote teaching. Since the university decided to

have a fully remote semester only four weeks before the semester

started, we needed a fast transition. With at-school hardware in-

teraction no longer possible, we saw three basic setups to teach

hardware systems: 1) distributing hardware to students for work at

home, 2) using purely virtualized hardware, or 3) remotely accessing

hardware at school.

Not having enough hardware to distribute to students individu-

ally andwanting to retain asmany hardware interactions as possible

(it is one of the few hardware-based courses at the faculty), we de-

cided to set up remote access to hardware in the lab. Previous works

using remote hardware access [2, 12] were almost exclusively based

on complex custom-made platforms developed in-house over the

years. We aimed for a much simpler solution that could be set up

quickly and would require low maintenance while allowing us to

make as few changes to the course as possible (compared to the

in-person teaching). We wanted to entirely avoid the development

of new custom tools, reusing existing infrastructure, and stable,

open software.

In summary, our paper attempts to look for answers to the fol-

lowing two research questions:

(1) How do different setups of teaching embedded systems
compare?We try to compare and contrast the main features of

four principally different approaches to hardware access based

on our ten years-long pedagogical experience in the field.

(2) Is education based on remotehardware access viable even
without complex custom-made systems?What are its ben-
efits and challenges?We show that remote hardware access

is an effective approach for teaching hardware, deployable in a

matter of weeks using existing technologies. We describe our

setup for others to adapt and summarize challenges encountered

and lessons learned.

After describing the related work in Section 2, we look into the

context of the course and compare possible high-level approaches

to hardware access in Section 3. The section ends with a description

of our transformation. Reusing existing infrastructure and standard

technology stack, we set up virtual machines in the lab with direct

access to the hardware. Remote access is provided using university

https://orcid.org/0000-0001-6824-6734
https://orcid.org/0000-0001-8110-8926
https://doi.org/10.1145/3502718.3524821
https://doi.org/10.1145/3502718.3524821

VPN with visual feedback via connected webcams. In Section 4, we

evaluate the transformation from the perspective of both students

and teachers. Lessons learned are summarized in Section 5.

2 RELATEDWORK
As stated by Chung et al. in 2018 [5], previous research on how

teaching online affects computer hardware education is rare. Yet

research into remote methods of teaching can be useful not only

in pandemics but also for improving educational opportunities in

disadvantaged communities or during wartime [16].

Astatke et al. [2] is one of the few to describe teaching embedded

systems using remote hardware access. However, it relies on a

specialized educational board and costly oscilloscopes. Furthermore,

the custom board that was used is no longer supported and no

obvious replacement exists.

A close relative to teaching embedded systems is teaching ro-

botics, often also interacting with real hardware. Nevertheless, the

reader has to keep in mind that robotics courses tend to focus on

more high-level concepts and the requirements for contact with

hardware are less strict [3, 9].

A platform providing remote access to robots was described by

Kulich et al. [12]. The authors report students extensively used re-

mote access outside of normal working hours or from home. Thus,

contrary to previous years, most students could test their code on

real hardware. With the deployment of the remote access system,

the enrollment for the course increased. However, the system re-

lies on a custom IDE plugin, web interface, robot, and the robot

labyrinth – implying high development and maintenance costs.

Furthermore, their approach is too custom-tailored to robotics to

adapt to our use case.

Although the COVID-19 pandemic caused a surge of emergency

remote teaching [1] (a rapid switch to online education), compara-

tive studies of online and offline education are limited. Chung et al.

managed to do that to some extent [5] – they formulated a list of

necessary components that online education of embedded systems

requires to be viable: 1) student-teacher interaction, 2) independent

learning skills, 3) well-designed learning content and 4) tangible

support. However, they operate in the context of high schools, so

their conclusions may not be directly applicable in our setting.

The work of Brooks et al. [4] compared the difficulties of a rapid

transition to online education doing interviews across multiple

lecturers from a selected university. From this, multiple patterns

emerged: The workload was much higher, lectures were switched

to asynchronous mode and engaging students was more difficult.

3 COURSE TRANSFORMATION
This section describes the context of conducted changes, possible

options, and our solution in more detail.

3.1 Context and Syllabus
The course functions as an introduction to programming for micro-

controllers. It is an optional part of the curriculum at the Faculty of

Informatics, Masaryk University, Czechia. It is a medium-sized IT

faculty with about 280 employees and 2 300 students. The curricu-

lum is mostly focused on software aspects and computer science

theory, giving this course an important position as an introduc-

tion to low-level hardware. The course enrollment is usually about

30 students. We do not expect any prior hardware experience or

electrical engineering knowledge. The only requirement is an un-

derstanding of the C language.

For most students, this is the first contact with microcontrollers

and low-level hardware. We focus on peripherals and hardware-

specific aspects, such as handling input noise and limited resolution.

A good example is the proper handling of a button press (it can

oscillate instead of producing a simple binary signal [15]). This

experience is rather difficult to simulate, as the range of potential

problems is quite wide. Given how easy it is to give students access

to real hardware, simulating such processes has not been developed

much.

We use a standard development board FRDM-K66F [17], designed

by NXP. These boards contain a microprocessor and a set of pe-

ripherals (RGB LED, IMU, audio). We also provide students with

additional external modules, such as USB-to-UART bridges, pres-

sure sensors, joysticks, etc. We do this to give students at least basic

skills of interconnecting the modules and the board. From now on,

we use the term development kit to denote the board alongside the

set of extra modules.

The course starts with the introduction of basic concepts such

as polling and interrupts for input readings. Then we continue

with basic communication interfaces such as SPI and UART. In our

examples, we are trying to show our students that even though

we have only one core, they have to think of race conditions and

different states their firmware may be in. These issues may not

arise as much in simulations because the behavior of simulated

hardware is usually more orderly and issues of real hardware may

not arise. At the end of the course, we introduce some higher-level

interfaces such as USB and Ethernet.

In standard offline semesters, students are required to do weekly

assignments on the topic introduced in the given week. The weekly

assignments are simple and students are expected to spend no more

than 30 minutes solving them. Students are allowed to complete

the assignment either at the end of the class or after the class.

Apart from the weekly assignments, there is the semester project.

The difficulty varies with regards to the specific assignment, but

it takes around eight hours on average. As part of the project,

students are required to present a short protocol regarding the

project solution, describe the solution, and give arguments for the

chosen method. For the project, students choose and set up the

peripherals individually.

The course is pass/fail (i.e., not graded). To successfully pass the

course, students must solve most weekly assignments and defend

their final project explaining their decision-making.

3.2 Available Teaching Setups
In retrospect, we see four alternative setups with regard to hardware

interactions:

Hardware at school. Students visit the laboratory, work with lo-

cal hardware and interact with teaching assistants in person.

Remote hardware access. Hardware is present at the laboratory,
and students connect to it remotely from anywhere.

Table 1: Comparison of four scenarios for teaching embedded systems at university level

Scenario I

Hardware at School
Scenario II

RemoteHardware Access
Scenario III

Hardware at Home
Scenario IV

Virtualized Hardware

Remote

learning

not supported mostly OK

teachers need to be at the lab
OK

fully remote
OK

fully remote

Contact with

hardware

direct

kits available at school
passive

teachers setup the HW
direct

kits available at home
virtual

only virtualized ideal version

Cost medium

kit for each present student
medium

kit for each online workstation
high

kit for each student
low

if virtualized locally

Time

Availability

limited

seminars and open lab hours
anytime anytime anytime

Software

Availability

easy

local licensed installations
easy

local licensed installations
may be complicated

possible licensing problems
usually available

mostly proprietary

Complexity

for Students

medium

students have to handle HW,
but assistance is simple

simple

HW is handled by teachers,
students “just use” it

high

students have to handle HW,
yet assistance is complicated

usually simple

interacting with simulator can
be simpler than HW

Assisting

Students

simple

interaction in the lab
medium

teachers can see HW in the lab,
student can share screen

complicated

screen sharing, but HW at home
and support only via camera

simple

screen sharing gets all info

Work with

Peripherals

simple

handled by students, teacher
assistance easily available

medium

handled by teachers
complicated

handled by students, teacher
assistance is difficult

complicated

peripherals are often difficult to
realistically simulate

Hardware

Maintenance

students and teachers

students working with kits dif-
ferently, re-assembly required

teachers

uniform setup by teachers
students

separate hardware setups,
problematic without assistance

non-existent

virtual environment can be eas-
ily reset

Serendipitous

learning

high potential

people meeting in the lab
possible

people sharing hardware
low

people working individually
low

people working individually

Custom

Projects

easy

access to all extra hardware
complicated

teacher must setup the projects
medium

reduced access to parts and tools
medium

limited and less fun

Hardware at home. University lends the hardware to the stu-

dents who work with it independently at home.

Virtualized hardware. There is no real hardware present. Stu-

dents work with simulated hardware.

Each of these four setups has its advantages and disadvantages.

A comprehensive comparison based on ten years of experience

teaching hardware-based courses is summarized in Table 1. The

rest of this section elaborates on some of the more complex features.

Transitioning to teaching online can require a different amount

of change in the course materials. Remote hardware access can

reuse all the materials from the setup with hardware at school as

only the remote connection layer is new. With hardware at home,

the lack of teacher assistance demands more detailed manuals for

hardware interactions or adjusted seminars. Virtualization usually

changes the tool stack and thus also requires new tutorials or even

adjustments in the course of the seminars.

Licensing can be a complicated issue. Historically, we used pro-

prietary software that required a license server in the network.

Recently, we moved to development kits without a need for a li-

cense server, which simplified the workflow. Licenses may be a

complication with hardware at home – although accessing the

university license server may be possible, floating licenses and con-

nections are often complicated. Licensing issues are also relevant

for virtualization. Free virtualization software (e.g., Qemu emula-

tor [7]) works well, but it is problematic to emulate peripherals.

Alternatives exists but require a license [14] or focus on the Arduino

platform [10], which is not sophisticated enough for our needs.

When comparing to teaching robotics, there is a significant dif-

ference of focus: Robotics courses tend to focus on high-level al-

gorithms and control, while courses on embedded systems often

concentrate on the low-level details of hardware control [3, 9]. For

example, it is reasonable in robotics that students will understand

algorithms like A* from programming a virtual mouse in a virtual

labyrinth. The same students will not understand the complexi-

ties of sensing a color from a sensor unless they experience all

the hardware limitations and challenges. This makes virtualization

in robotics more feasible, resulting in plenty of available robotic

simulators useful for the education.

The topic of cost is also very variable. Lending hardware to

students scales badly with the number of students, making it an

WORKSTATION

IDE

VPN

HYPERVISOR

WORKSTATIONDEVELOPMENT KIT

CAMERA

UNIVERSITY LABORATORY

EXTRA APP

VIDEO STREAM

REMOTE DESKTOP CLIENT

STUDENT PC

EXTRA HW

DEVELOPMENT KIT

INTERNET

Figure 1: Setup overview of the remote hardware access approach. The photo in the top left shows the hardware setup of two
hypervisors with four workstations and four development kits. The screenshot in the top right picture represents the student
view of the system. The diagram on the bottom visualizes the technology stack used for working with hardware buttons.

interesting option only for courses with a low number of students.

On the other hand, a standard offline approach with one seminar

at a time requires development kits only for that seminar (and

some in reserve). The virtualization option can also be quite expen-

sive: Apart from the potential license fees, powerful virtualization

hardware may be needed.

3.3 Our Transition to Remote Teaching
We designed our solution with multiple design goals. Firstly, it

should be as simple and modular as possible, ideally avoiding any

new development of custom software systems. Secondly, it should

reuse existing infrastructure and utilize existing stable technolo-

gies, preferably open ones. If successful, this would result in a

low-maintenance solution enabling fast transition (in a matter of

weeks from design to testing). Furthermore, a standard modular

technology stack would ensure discontinued tools can be easily

switched for others.

An overview of our setup, based on the remote hardware ac-

cess setup, can be seen in Fig. 1. We have prepared a cluster of

hypervisors, each hosting two virtual machines. Each virtual ma-

chine was one workstation to which students connected remotely.

Each workstation had a pre-installed IDE and was connected to

one development kit. To see the kit behavior, a camera stream was

provided per four kits. The whole infrastructure was accessible for

students remotely at any time.

In this section, we describe key aspects of the setup. It should

work as a useful inspiration for anyone attempting to set up a

similar setup. The detailed automated setup in the form of the

Ansible playbook (an open-source system configuration tool [6]) is

available at github.com/koniarik/teaching-embedded-remotely.

Course Structure and Communication. Although one of our goals

was to keep the content unchanged, the structure had to be adjusted

a bit. We introduced the concept of demos to the existing seminars:

We recorded all necessary information for each week and gave the

recording to the students. The content of seminars was the same as

the content of demos, just done differently and interactively.

We used a dedicated Discord server for all communication [11],

as it provides both the ability to hold group voice calls and recorded

asynchronous instant messaging. Furthermore, our students were

already familiar with the service from their personal lives – we

assumed this would make it really simple for them to contact us.

Assessment. Because the lacking student access to hardware was
complicating semester projects, we decided to adjust the assessment

https://github.com/koniarik/teaching-embedded-remotely

and drop the project entirely. Instead, we increased the difficulty of

weekly assignments to take approximately 90minutes to solve (com-

pared to the 30 minutes previously). While increasing the difficulty,

it had been decided to evaluate assignments more strictly. Even

with that, 29 out of 34 students solved all assignments correctly,

while the remaining five were asked to do additional work.

Hypervisors and Workstations. The infrastructure was based on

virtualization – it consisted of base hypervisor hardware and virtu-

alized workstations. For the hypervisors, we decided to repurpose

older lab computers that were previously used to work with the

hardware. Apart from handling the virtual machines, each hyper-

visor had a camera connected. This was used to stream a video of

development kits from up to four workstations (see Fig. 1).

Each hypervisor handled two virtual workstations. Each work-

station was a standalone development environment for one person.

We connected one development kit to each workstation. Apart from

these, we connected some additional hardware needed to work with

the boards (prime example are extra boards in Fig. 1 used to simulate

button interactions).

Networking. The laboratory has an isolated network governed

by the local server. We connected hypervisors to this network and

enabled port forwarding from selected high ports of the server

to the virtual workstations. To secure the access we utilized the

existing university VPN service, filtering at the firewall for selected

ports. In summary (Fig. 1), we allowed only remote desktop and SSH

access to the workstations (programming the development kits)

and to the hypervisors (video streams, generating sensor inputs).

The network setup was fully automated using Ansible.

Generating Inputs. To let students test their solutions, sensors

on the development kits needed controlled inputs (e.g., pressing

buttons or moving the kit to engage the accelerometer). To generate

such inputs, we employed extra development kits connected to

the hypervisors. These controlled the motors periodically tilting

the student kits to generate accelerator data or generated digital

signals simulating button presses. Unfortunately, we found no tools

to enable comfortable remote control, but creating a minimalist

graphical interface accessible was more than sufficient (for example,

see the button controls in Fig. 1).

IDE. Tominimize the necessary changes in the course, wewanted

to stick to the free IDE from the manufacturer (MCU Expresso [18]

by NXP). In our experience, it has the best hardware support and

beginner-friendly tools for configuration and debugging. This is

crucial for the introductory course, as we do not want to overwhelm

the students. For example, the configuration of peripherals is much

simpler with graphical tools (like the one present in MCU Expresso)

than just by code.

There were two installation options built on existing infrastruc-

ture: 1) Students installing IDEs on their computers and using a

remote server (e.g., GDB) for programming and debugging or 2)

students connecting by remote desktop to the workstations and

using the IDE within the remote desktop environment. The remote

GDB server appeared to be an unfeasible option with the selected

IDE, as there were multiple connection issues. Furthermore, the

remote desktop environment had the benefit of an easier setup.

User Management. Because the virtual machines were shared

and the resources were limited, we needed a solution to schedule

and manage workstation access. Aiming for simplicity, we used

a simple shared Google Spreadsheet. For our case (a course with

about 30 students) a shared table with the honor system turned out

as perfectly sufficient. Nevertheless, larger classes may require a

dedicated reservation system or access enforcement.

4 EVALUATION
In this section, we retrospectively evaluate our fast transformation

to remote teaching from both student and teacher perspectives.

4.1 Student Perspective
At the end of the course, the students were asked to complete a short

questionnaire summarizing their views and feelings. The questions

asked can be categorized into three groups: previous experience,

issues, and ideas for the future. It was answered only by 11 out of

34 students, which may introduce a self-selection bias.

Most of the students had no problem with the technical content

of the course (even though it was the first contact with hardware

programming for many of them). The largest issue reported (almost

unanimously) concerned the development environment. The re-

mote desktop access caused (sometimes huge) latency in responses

to user inputs. As one of the students reported: “The idea of remote
boards with webcams is interesting. Although the implementation
could be better, mainly the poor performance of workstations [was
problematic].”

On the one hand, the largest advantage students had seen in

the remote setup was the possibility to access hardware literally

anytime (day and night, workdays and weekends). In a standard

teaching setup, students can access the hardware laboratory only

on workdays from 8:00 am to 8:00 pm. Students had also seen a

great advantage in the pre-recorded seminars. This allowed them to

re-watch sections that they found difficult or revisit topics covered

weeks ago. On the other hand, there was a group of students who

would prefer the standard offline version: “Yes, I would prefer to
visit the lab. I think it would be much easier to directly work with the
hardware and visiting the lab is not really a problem.”

Looking at these opinions, we wonder about the possibility of

having both at the same time. This way, students could have the

benefits of anytime access from home and yet receive full interactive

education at the laboratory during the seminar.

4.2 Teacher Perspective
The strongest observations of teachers concerned the effects of

communication (asynchronous, textual, recorded), the necessity to

maintain the hardware, and different homework assessments.

The overall adjustments in communication did not pose any

significant issues. With the (pre-recorded) demo videos and study

materials, most of the students could work independently. The

presence of recorded interactions had a strong effect: Compared

to usual (recordless) face-to-face interactions or voice calls, pre-

recorded videos, instant messaging, and emails are recorded, allow-

ing students to get back to them when necessary. In our setup, the

difference was noticeable: Firstly, students knew much more from

the lecture material and did not want to have it repeated during the

Table 2: Student’s self-reported time spent on the course,
compared across the standard and remote semester

Standard Remote
Max 80 h 125 h

Min 35 h 20 h

Median 60 h 50 h

Average 63.3 h 57.8 h

Student responses 12 out of 24 19 out of 34

seminars. Secondly, we had a much lower frequency of repeated

questions, as students got into a habit of searching the history of

our communication platform first. On both levels, the availability

of records was beneficial.

With the development kits not under students’ direct control,

the occasional necessary hardware restarts had to be performed by

teachers (many things can go wrong in hardware and preventing

them all was not realistic). This led to the need for at least one

teacher to be present in the lab throughout the week. Furthermore,

the teachers had to set up new hardware each week (e.g., new

sensors or different interactions). Connecting all peripheries and

verifying the setup for all kits was a tedious and time-consuming

process. It was not the best long-term solution, but it was manage-

able in our small case.

Even though the homework assignments were considerablymore

difficult than in the previous semester, the assessment was still

similarly simple (pull student code, run test cases, evaluate). In

most cases, the submitted solutions received the full score. Overall,

it seems wemanaged to retain the course difficulty level comparable

to the standard in-person semester (see Table 2).

5 LESSONS LEARNED
After comparing the options and describing our approach in the

previous sections, we draw lessons learned from our experience.

Remote access approach works. The atypical approach to re-

mote teaching of embedded hardware proved to work well

enough. Although there is definitely room for improvement, it

enabled us to keep at least indirect contact with real hardware.

Complex custom-made systems are not necessary. We were

able to assemble the system out of existing stable components

without the need for custom development. That increases ro-

bustness and simplifies maintenance.

Demos are useful. We saw an unexpected improvement in stu-

dents’ ability to understand what was given to them (decreas-

ing the usual necessity to repeat information multiple times).

The students themselves appreciated the recorded demos and

the fact that they could revisit older topics.

Anytime access is appreciated. Based on the feedback from stu-

dents, the most appreciated aspect was the ability to work

anytime (expectable, as having to visit the laboratory to con-

tinue the work on homework or project can be inconvenient).

A similar conclusion was also reported by Kulich et al. [12].

Hybrid access is preferred. To our surprise, students would pre-
fer to have both in-person and remote access to hardware to

enjoy the benefits of the lab and the possibility of working

from home when necessary (e.g., homework deadline).

Changes to the configuration are tiresome. In the remote hard-

ware access setup, any change to the hardware configuration

is tiresome to do, as the teachers have to adjust the setup on

all kits. Although manageable in our case, we consider effort

put into minimizing this need as worthwhile.

Remote desktop has latency. As reported by students, the re-

mote desktop access has poor performance – although that is

possibly affected by the quality of students’ connection. Never-

theless, we should always expect there will be some students

with a poor connection.

Familiar and less formal communication platform. We saw

increased usage of the Discord communication platform out-

side of seminars compared to the traditional ways of contacting

teachers (email, university information system). It is not clear

whether this was due to the specifics of this semester or be-

cause of the different nature of the technology, but we assume

that we can clarify this in the next offline semester.

Teachers should do retrospection. Deeply analyzing the course
and performing adjustments in retrospect lead us to a better

and much clearer understanding of what we did and what

we want to do in the future. Writing this experience report

pressed us to verbalize our thoughts and feelings and deeply

compare and contrast the possible teaching approaches.

On the one hand, the Discord communication platform and pre-

recorded demos are features we want to transfer also into the tra-

ditional in-person semesters. Based on our understanding of why

they work, keeping them should preserve the benefits even for

in-person teaching.

On the other hand, we are still hesitant to retain the possibility

of remote hardware access in parallel to the in-person access for

the upcoming semester. Further work would be required to stabilize

the current solution and space/maintenance requirements are also

non-trivial. Nevertheless, the system is a clear choice for us should

remote teaching be necessary again.

6 CONCLUSION
Due to a pandemic, we had to transition a university course on

embedded hardware programming to enable remote education.

We compared four principally different options. In the end, in-lab

teaching was unavailable due to the pandemic, lending hardware

to students was too costly and to emulating hardware avoided

the intended hardware interactions. We decided to try an atypical

solution of remotely accessed hardware.

Although remote hardware access has been used in teaching be-

fore [2, 5, 12], all previous works featured custom-built tools with

costly development and high necessary maintenance. We investi-

gated the viability of avoiding complex custom-made systems. Our

experience shows remote hardware access is a feasible alternative,

deployable in a matter of weeks using existing open technologies.

REFERENCES
[1] Olasile Babatunde Adedoyin and Emrah Soykan. 2020. COVID-19 Pandemic

and Online Learning: The Challenges and Opportunities. Interactive Learning

Environments (2020), 1–13. https://doi.org/10.1080/10494820.2020.1813180

[2] Yacob Astatke, Craig J. Scott, Kenneth A. Connor, and Jumoke O. Ladeji-Osias.

2012. Online Delivery of Electrical Engineering Laboratory Courses. In 2012
ASEE Annual Conference & Exposition. ASEE Conferences, San Antonio, Texas,

18 pages. https://doi.org/10.18260/1-2--21760

[3] Andreas Birk, Evelina Dineva, Francesco Maurelli, and Andreas Nabor. 2020.

A Robotics Course during COVID-19: Lessons Learned and Best Practices for

Online Teaching beyond the Pandemic. Robotics 10, 1 (Dec 2020), 5. https:

//doi.org/10.3390/robotics10010005

[4] Alexander Brooks, Caroline Hardin, Jennifer Scianna, Matthew Berland, and

Laura Hobbes Legault. 2021. Approaches to Transitioning Computer Science

Classes from Offline to Online. In Proceedings of the 26th ACM Conference on
Innovation and Technology in Computer Science Education V. 1 (Virtual Event,

Germany) (ITiCSE ’21). Association for Computing Machinery, New York, NY,

USA, 81–87. https://doi.org/10.1145/3430665.3456366

[5] Hyunsuk Chung, Siqu Long, Soyeon Caren Han, Shouvojit Sarker, Leonie Ellis,

and Byeong Ho Kang. 2018. A Comparative Study of Online and Face-to-Face

Embedded Systems Learning Course. In Proceedings of the 20th Australasian
Computing Education Conference (Brisbane, Queensland, Australia) (ACE ’18).
Association for Computing Machinery, New York, NY, USA, 63–72. https://doi.

org/10.1145/3160489.3160499

[6] Red Hat Ansible & Ansible community. 2022. Ansible Documentation. https:

//docs.ansible.com/

[7] Peter Maydell et al. 2022. QEMU: A Generic and Open Source Machine Emulator
and Virtualizer. https://www.qemu.org/

[8] Donn Randy Garrison and Norman D. Vaughan. 2012. Blended Learning in Higher
Education: Framework, Principles, and Guidelines. John Wiley & Sons, Hoboken,

NJ, USA.

[9] Peter Holowka. 2020. Teaching Robotics during COVID-19: Machine Learning,

Simulation, and AWS Deepracer. In 17th International Conference on Cognition
and Exploratory Learning in Digital Age, CELDA 2020. IADIS Press, 227–234.

https://doi.org/10.33965/celda2020_202014l029

[10] Autodesk Inc. 2022. Tinkercad: Create 3D Digital Designs with Online CAD.
https://www.tinkercad.com/

[11] Discord Inc. 2022. Discord: Your Place to Talk and Hang Out. https://discord.com/

[12] Miroslav Kulich, Jan Chudoba, Karel Kosnar, Tomáš Krajnik, Jan Faigl, and Libor

Preucil. 2013. SyRoTek—Distance Teaching of Mobile Robotics. IEEE Transactions
on Education 56, 1 (2013), 18–23. https://doi.org/10.1109/TE.2012.2224867

[13] Barbara B. Lockee. 2021. Online Education in the Post-COVID Era. Nature
Electronics 4, 1 (2021), 5–6. https://doi.org/10.1038/s41928-020-00534-0

[14] Arm Ltd. 2022. Arm Developer: Fixed Virtual Platforms. https://developer.arm.

com/tools-and-software/simulation-models/fixed-virtual-platforms

[15] Mike Parks. 2015. Bench Talk: Battling the Bouncing Button. Mouser Electronics.

https://www.mouser.com/blog/battling-the-bouncing-button

[16] Khairan D. Rajab. 2018. The Effectiveness and Potential of E-Learning in War

Zones: An Empirical Comparison of Face-to-Face and Online Education in Saudi

Arabia. IEEE Access 6 (2018), 6783–6794.
[17] NXP Semiconductors. 2016. FRDM-K66F | Freedom Development Platform |

Kinetis® MCUs. https://www.nxp.com/design/development-boards/freedom-

development-boards/mcu-boards/freedom-development-platform-for-kinetis-

k66-k65-and-k26-mcus:FRDM-K66F

[18] NXP Semiconductors. 2022. MCUXpresso IDE for NXP MCUs. https://www.nxp.

com/design/software/development-software/mcuxpresso-software-and-tools-

/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE

https://doi.org/10.1080/10494820.2020.1813180
https://doi.org/10.18260/1-2--21760
https://doi.org/10.3390/robotics10010005
https://doi.org/10.3390/robotics10010005
https://doi.org/10.1145/3430665.3456366
https://doi.org/10.1145/3160489.3160499
https://doi.org/10.1145/3160489.3160499
https://docs.ansible.com/
https://docs.ansible.com/
https://www.qemu.org/
https://doi.org/10.33965/celda2020_202014l029
https://www.tinkercad.com/
https://discord.com/
https://doi.org/10.1109/TE.2012.2224867
https://doi.org/10.1038/s41928-020-00534-0
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms
https://www.mouser.com/blog/battling-the-bouncing-button
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-kinetis-k66-k65-and-k26-mcus:FRDM-K66F
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-kinetis-k66-k65-and-k26-mcus:FRDM-K66F
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-kinetis-k66-k65-and-k26-mcus:FRDM-K66F
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE

	Abstract
	1 Introduction
	2 Related Work
	3 Course Transformation
	3.1 Context and Syllabus
	3.2 Available Teaching Setups
	3.3 Our Transition to Remote Teaching

	4 Evaluation
	4.1 Student Perspective
	4.2 Teacher Perspective

	5 Lessons Learned
	6 Conclusion
	References

