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due to their unique ability to ingest relatively unstructured data types as input data. Although some elements

of the GNN architecture are conceptually similar in operation to traditional neural networks (and neural net-

work variants), other elements represent a departure from traditional deep learning techniques. This tutorial

exposes the power and novelty of GNNs to AI practitioners by collating and presenting details regarding the

motivations, concepts, mathematics, and applications of the most common and performant variants of GNNs.
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1 INTRODUCTION AND CONTEXT

Contemporary artificial intelligence (AI), or more specifically, deep learning (DL), has been
dominated in recent years by the neural network (NN). NN variants have been designed to in-
crease performance in certain problem domains; the convolutional neural network (CNN) ex-
cels in the context of image-based tasks, and the recurrent neural network (RNN) in the space
of natural language processing (NLP) and time series analysis. NNs have also been leveraged
as building blocks in more complex DL frameworks—for example, they have been used as trainable
generators and discriminators in generative adversarial networks (GANs) and as components
in Transformer networks [86].

Graph neural networks (GNNs) provide a unified view of these input data types: The images
used as inputs in computer vision, and the sentences used as inputs in NLP can both be interpreted
as special cases of a single, general data structure—the graph (see Figure 1 for examples).

Formally, a graph is a set of distinct vertices (representing items or entities) that are joined
optionally to each other by edges (representing relationships). Uniquely, the graphs fed into a
GNN (during training and evaluation) do not have strict structural requirements per se; the
number of vertices and edges between input graphs can change. In this way, GNNs can handle
unstructured, non-Euclidean data [7], a property that makes them valuable in problem domains
where graph data is abundant. Conversely, NN-based algorithms are typically required to operate
on structured inputs with strictly defined dimensions. For example, a CNN built to classify over
the MNIST dataset must have an input layer of 28 × 28 neurons, and all subsequent input images
must be 28 × 28 pixels in size to conform to this strict dimensionality requirement [50].

The expressiveness of graphs as a method for encoding data and the flexibility of GNNs with
respect to unstructured inputs has motivated their research and development. They represent a
new approach for exploring relatively general DL methods, and they facilitate the application of
DL approaches to sets of data that—until recently—were not not exposed to AI.

1.1 Contributions

The key contributions of this tutorial article are as follows:

(1) An easy-to-understand, introductory tutorial, which assumes no prior knowledge of GNNs.1

(2) Step-wise explanations of the mechanisms that underpin specific classes of GNNs, as enu-
merated in Table 1. These explanations progressively build a holistic understanding of GNNs.

(3) Descriptions of the advantages and disadvantages of GNNs and key areas of application.
(4) Full examples of how specific GNN variants can be applied to real-world problems.

1.2 Taxonomy

The structure and taxonomy of this article is outlined in Table 1.

2 PRELIMINARIES

Here, we discuss some basic elements of graph theory, as well as the the key concepts required
to understand how GNNs are formulated and operate. We present the notation that will be used
consistently in this work (see Table 3).

1We envisage that this work will serve as the “first port of call” for those looking to understand GNNs, rather than as a com-

prehensive survey of methods and applications. For those seeking a more comprehensive treatment, we highly recommend

the following works: [30, 98, 108, 110] (see Table 2 for more details).
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Fig. 1. The graphs data structure is highly abstract and can be used to represent images (matrices), molecules,
sentence structures, game playing trees, and so on.
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Table 1. A Variety of Algorithms Are Discussed in This Tutorial Article

Broad class of algorithm Related variants of algorithm

Recurrent GNNs
(Section 3)

Graph LSTMs (Section 3.3),
Gated GNNs (Section 3.3).

Convolutional GNNs
(Section 4)

Spatial CGNNs (Section 4.2, including Graph Attention
Networks, Message Passing Neural Networks, etc.),
Spectral CGNNs (Section 4.3).

Graph Autoencoders
(Section 5)

Variational Graph Autoencoders (Section 5.2),
Graph Adversarial Techniques (Section 5.3).

This table illustrates potential use cases for each algorithm and the section where they are discussed. Should the

reader prefer to read this tutorial article from an applications/downstream task-based perspective, then we invite them

to review Tables 5, 6, and 8, which link each algorithm.

2.1 Key Terms

Graphs are formally defined by a set of vertices and the set of edges between these vertices: Put
formally, G = G (V, E ). Fundamentally, graphs are just a way to encode data, and in that way,
every property of a graph represents some real element, or concept in the data. Understanding
how graphs can be used to represent complex concepts is key in appreciating their expressive-
ness and generality as an encoding device (see Figure 1 for examples of this domain agnostic
expressiveness).

Vertices represent items, entities, or objects, which can naturally be described by quantifiable
attributes and their relationships to other items, entities, or objects. We refer to a set of |V| vertices
as V and the ith single vertex in the set as vi . Note that there is no requirement for all vertices to
be homogenous in their construction.

Edges represent and characterize the relationships that exist between items, entities, or objects.
Formally, a single edge can be defined with respect to two (not necessarily unique) vertices. We
refer to a set of |E| edges as E and a single edge between the ith and jth vertices as ei j .

Neighborhoods are subgraphs within a graph and represent distinct groups of vertices and
edges. Most commonly, the neighborhood Nvi

centered around a vertex vi comprises of vi , its
adjoining edges (where ei j = 1), and the vertices that are directly connected to it. Neighborhoods
can be iteratively grown from a single vertex by considering the vertices attached (via edges) to
the current neighborhood. Note that a neighborhood can be defined subject to certain vertex and
edge feature criteria (i.e., all vertices within two hops of the central vertex, rather than one hop).

Features are quantifiable attributes that characterize a phenomenon that is under study. In the
graph domain, features can be used to further characterize vertices and edges. Extending our social
network example, we might have features for each person (vertex) that quantifies the person’s age,
popularity, and social media usage. Similarly, we might have a feature for each relationship (edge)
that quantifies how well two people know each other, or the type of relationship they have (familial,
colleague, etc.). In practice there might be many different features to consider for each vertex and
edge, so they are represented by numeric feature vectors referred to as v F

i and e F
i j , respectively.

Embeddings are compressed feature representations. If we reduce large feature vectors
associated with vertices and edges into low dimensional embeddings, then it becomes possible
to classify them with low-order models (i.e., if we can make a dataset linearly separable). A
key measure of an embedding’s quality is if the points in the original space retain the same
similarity in the embedding space. Embeddings can be created (or learned) for vertices, edges,

ACM Computing Surveys, Vol. 54, No. 10s, Article 205. Publication date: September 2022.
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Table 2. A Comparison of Our Tutorial and Related Works

GNN papers Main sections Description

This work Recurrent GNNs,
Convolutional GNNs,
Graph Autoencoders &
Graph Adversarial
Methods

A tutorial paper that steps through the
operations of key GNN technologies in an
explanatory and diagrammatic manner.
Worked examples have been created to
supplement explanations and are provided as
code and in-text.

Graph Neural
Networks: A Review
of Methods and
Applications [110]

GNN design
framework,
GNN modules,
GNN variants,
Theoretical and
Empirical analyses &
Applications

A review paper that proposes a general
design framework for GNN models and
systematically elucidates, compares, and
discusses the varying GNN modules that can
exist within the components of said
framework.

Deep Learning on
Graphs: A Survey
[108]

Recurrent GNNs,
Convolutional GNNs,
Graph Autoencoders,
Graph RL &
Graph Adversarial
Methods

A survey paper that outlines the
development history and general operations
of each major category of GNN. A complete
survey of the GNN variants within said
categories is provided (including links to
implementations and discussions on
computational complexity).

A Comprehensive
Survey on Graph
Neural Networks
[98]

Recurrent GNNs,
Convolutional GNNs,
Graph Autoencoders &
Spatial-temporal GNNs

A survey paper that provides a
comprehensive categorization of
contemporary GNN methods and benchmark
datasets (across varying application domains).
Numerous resources (e.g., open source code,
datasets) are linked in a structured way.

Computing graph
neural networks: A
survey from
algorithms to
accelerators [1]

GNN fundamentals,
modeling, applications,
complexity, algorithms,
accelerators & data
flows

A review of the field of GNNs is presented
from a computing perspective. A brief
tutorial is included on GNN fundamentals,
alongside an in-depth analysis of
acceleration schemes, culminating in a
communication-centric vision of GNN
accelerators.

While other works provide comprehensive overviews of the field, our work focuses on explaining and illustrating key

GNN techniques to the AI practitioner. Our goal is to act as a “first port of call” for readers, providing them with a basic

understanding that they can build upon when reading more advanced material.

neighborhoods, or graphs. Embeddings are also referred to as representations, encodings, latent
vectors, or high-level feature vectors, depending on the context.

Output types change depending on the problem domain. A GNN’s forward pass can be thought
of as two key processes: converting input graphs into useful embeddings, performing some down-
stream task (e.g., classification) on the embeddings, which converts the embeddings into some
useful output. We define three commonly observed output types as follows:

ACM Computing Surveys, Vol. 54, No. 10s, Article 205. Publication date: September 2022.
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Table 3. Notation Used in This Work

Notation Meaning

V A set of vertices.

|V| The number of vertices in a set of vertices V.

vi The ith vertex in a set of vertices V.

v F
i The feature vector of vertex vi .

E A set of edges.

|E| The number of edges in a set of edges E.

ei j The edge between the ith vertex and the jth vertex, in a set of edges E.

e F
i j The feature vector of edge ei j .

G = G (V, E ) A graph defined by the set of vertices V and the set of edges E.

Nvi
The set of vertex indices for the vertices that are direct neighbors of vi .

h k
i The kth hidden layer’s representation of the ith vertex. Since each layer

typically aggregates information from neighbors 1-hop away, this
representation includes information from neighbors k-hops away.

oi The ith output of a GNN (indexing is dependant on output structure).

In An n × n identity matrix; all zero except for ones along the diagonal.

A The adjacency matrix; each element Ai j represents if the ith vertex is
connected to the jth vertex by an edge.

D The degree matrix; a diagonal matrix of vertex degrees or valencies (the
number of edges incident to a vertex). Formally defined as Di,i =

∑
j Ai j .

AW The weight matrix; each element AW ij represents the “weight” of the edge
between the ith vertex and the jth vertex. The “weight” typically represents
some real concept or property. For example, the weight between two given
vertices could be inversely proportional to their distance from one another
(i.e., close vertices have a higher weight between them). Graphs with a
weight matrix are referred to as weighted graphs, but not all graphs are
weighted graphs; in unweighted graphs AW = A.

M The incidence matrix; a |V| × |E| matrix where for each edge ei j , the element
of M at (i, ei j ) = +1, and at (j, ei j ) = −1. All other elements are set to zero. M

describes the incidence of all edges to all vertices in a graph.

L The non-normalized combinatorial graph Laplacian; defined as L = D − AW .

Lsn The symmetric normalized graph Laplacian; defined as L = In − D−
1
2 AD−

1
2 .

We suggest that the reader familiarize themselves with this notation before proceeding.

(1) Vertex-level outputs require a prediction (e.g., a distinct class or regressed value) for each
vertex in a given graph.

(2) Edge-level outputs require a prediction for each edge in a given graph.
(3) Graph-level outputs require a prediction per graph. For example: predicting the properties

molecule graphs [96].

2.2 Learning Types

Transductive learning methods are exposed to all of the training and testing data before making
predictions. For example: Our dataset might consist of a single large graph (e.g., Facebook’s

ACM Computing Surveys, Vol. 54, No. 10s, Article 205. Publication date: September 2022.
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social network graph) and the set of vertices is only partially labelled. The training set consists
of the labelled vertices, and the testing set consists of both a small set of labelled vertices (for
benchmarking) and the remaining unlabelled vertices. In this case, our learning methods should
be exposed to the entire graph during training (including the test vertices), because the additional
information (e.g., structural patterns) will be useful to learn from. Transductive learning methods
are useful in such cases where it is challenging to separate the training and testing data without
introducing biases.

Inductive learning methods reserve separate training and testing datasets. The learning pro-
cess ingests the training data, and then the learned model is tested using the testing data, which
it has not observed before in any capacity.

3 RECURRENT GRAPH NEURAL NETWORKS

In a standard NN, successive layers of learned weights work to extract progressively higher level
features from an input tensor. In the case of NNs for computer vision, the presence of low-level
features—such as short lines and curves—are identified by earlier layers, whereas the presence of
high-level features—such as composite shapes—are identified by later layers. After being processed
by these sequential layers, the resultant high-level features can then be provided to a softmax layer
or single neuron for the purpose of classification, regression, or some other downstream task.

In the same way, the earliest GNNs extracted high-level feature representations from graphs by
using successive feature extraction operations [60, 74] and then routed these high-level features
to output functions. In other words: They processed inputs into useful embeddings and then pro-
cessed embeddings into useful outputs using two distinct stages of processing. These early tech-
niques had limitations: Some algorithms could only process Directed Acyclic Graphs (DAGs)

[18], others required the input graphs to have “supersource” vertices (which had directed paths
to all other vertices in the graph) [4], and some techniques required heuristic approaches to deal
with the cyclical nature of certain graphs [61].

Typically, these early recursive methods relied on “unfolding” special cases of graphs into finite
trees (recursive equivalents), which could then be processed into useful embeddings by recursive
NNs [4]. The Recurrent GNN extended this, and thus provided a solution that could be applied to
generic graphs [75]. Rather than create an embedding for the whole input graph via a recursive
encoding network, RGNNs create embeddings at the vertex-level through an information propa-
gation framework known as message passing, which will be defined in this section.

3.1 Recurrently Computing Embeddings

RGNNs compute embeddings at each vertex in the input graph using a deterministic, shared func-
tion called the transition function. It is named the transition function, as it can be interpreted as
calculating the next representation of a neighborhood from the neighborhood’s current representa-

tion. This transition function can be applied symmetrically at any vertex, even though the size of a
vertex’s neighborhood may be variable. This process is illustrated in Figure 2, where the transition
function f calculates an embedding at each vertex for the surrounding neighborhood.

As such, the kth embedding h k
i for any given vertex vi is dependent on the following quantities:

• The features of the central vertex v F
i .

• The features of all adjoining edges e F
i j , j ∈ Nvi

(if edge features are present).

• The features of all neighboring vertices v F
j , j ∈ Nvi

.

• The previous iteration’s embeddings of all neighboring vertices’ h k−1
j , j ∈ Nvi

. h 0
i ∀i ∈ V

can be defined defined arbitrarily on initialization, and Banach’s fixed point theorem will

ACM Computing Surveys, Vol. 54, No. 10s, Article 205. Publication date: September 2022.
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guarantee that the subsequently calculated embeddings will converge to some optimal value
exponentially (if f is implemented as a contraction map) [44].

To recurrently apply this learned transition function to compute successive embeddings, f must
have a fixed number of input and output variables. How then can it be dependent on the imme-
diate neighborhood, which might vary in size, depending on where we are in the graph? There
are two simple solutions, the first of which is to set a “maximum neighborhood size” and use null
vectors when dealing with vertices that have non-existing neighbors [74]. The second approach
is to aggregate all neighborhood features in some permutation invariant manner [25], thus ensur-
ing that any neighborhood in the graph is represented by a fixed size feature vector. While both
approaches are viable, the first approach does not scale well to “scale-free graphs,” which have
degree distributions that follow a power law. Since many real world graphs (e.g., social networks)
are scale-free [72], we will use the second solution here. Mathematically, this can be formulated
as in Equation (1) [74].

h k
i =

∑
j ∈Nvi

f
(
v F

i , e
F
i j , v

F
j , h

k−1
j

)
, where all h 0

i are defined on initialization. (1)

We can see that under this formulation Equation (1), f is well defined. It accepts four feature
vectors that all have a defined length, regardless of which vertex in the graph is being considered,
regardless of the iteration. This means that the transition function can be applied iteratively, until
a stable embedding is reached for all vertices in the input graph. This expression can be interpreted
as passing “messages,” or features, throughout the graph; in every iteration, the embedding h k

i is
dependant on the features and embeddings of its neighbors. This means that with enough recurrent
iterations, information will propagate throughout the whole graph: After the first iteration, any
vertex’s embedding encodes the features of the neighborhood within a range of a single edge.

In the second iteration, any vertex’s embedding is an encoding of the features of the neighbor-
hood within a range of two edges away, and so on. The iterative passing of “messages” to generate
an encoding of the graph is what gives this message passing framework its name.2

Note that it is typical to explicitly add the identity matrix In to the adjacency matrix A, thus
ensuring that all vertices become trivially connected to themselves, meaning that a vertex vi ∈ Nvi

∀i ∈ V. Moreover, this allows us to directly access the neighborhood by iterating through a single
row of the adjacency matrix. This modified adjacency matrix is usually normalized to prevent
unwanted scaling of embeddings.

3.2 Computing Downstream Outputs

Once we have useful embeddings centered around each vertex in the graph, the goal is to then in-
ference meaningful outputs based on these values (i.e., to perform a downstream task). The output

function д is responsible for taking the converged embeddings of a graph G (V, E ) and creating
said output. In practice, the output function д, much like the transition function f , is implemented
by a feed-forward neural network, though other means of returning a single value have been used,
including mean operations, dummy super nodes, and attention sums [110].

Intuitively, the combined process of recurrently computing embeddings and subsequently com-
puting downstream inputs can be interpreted as a sequential process of repeated NN computation
blocks—or a finite computation graph (see Figure 2). In a supervised setting, a loss signal can be

2Importantly, this is not the formulation Message Passing Neural Network (MPNN) model [25], rather, it is a technique

that uses the message passing framework. State-of-the-art approaches will be discussed in Section 4.2, and in particular,

the MPNN will be defined explicitly.

ACM Computing Surveys, Vol. 54, No. 10s, Article 205. Publication date: September 2022.
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Fig. 2. An RGNN forward pass for a simple input graph G (V, E ) with |V| = 4, |E| = 4. G goes through k layers

of processing. In each layer, each vertex’s features v F
i (green), the neighborhood’s featuresN F

vi
(yellow), and

the previous hidden layer (purple) are processed by the state transition function f and aggregated, thereby
producing successive embeddings of G. Note that the neighborhood features must be aggregated into a fixed
embedding size, otherwise f would need to handle variable input sizes. This is repeated until the embeddings
converge (i.e., the change between consecutive embeddings fails to exceed some stopping threshold). At that
stage, the embeddings are fed to an output function д that perform some downstream task—in this case, the
task is a vertex-level classification problem. Note that f and д can be implemented as NNs and trained via
backpropagation of supervised error signals through the unrolled computation graph [60, 74]. Note that each
vertex’s embedding includes information from at max k “hops” away after the kth layer of processing. Image
best viewed in color.

ACM Computing Surveys, Vol. 54, No. 10s, Article 205. Publication date: September 2022.
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calculated that quantifies the error between the predicted output and a labelled ground truth. Both
f and д can then be trained via backpropagation of errors, throughout the “unrolled” computation
graph. For more detail on this process, see the calculations in [74].

3.3 Extensions for Sequential Graph Data

When discussing recurrence thus far, we have referred mainly to computing techniques that are
iteratively applied to neighborhoods in a graph to produce embeddings that are dependent on
information propagated throughout the graph. However, recurrent techniques may also refer to
computing processes over sequential data, e.g., time series data. In the graph domain, sequential
data refers to instances that can be interpreted as graphs with features that change over time. These
include spatiotemporal graphs [98]. For example, Figure 1(b) illustrates how a graph can represent
a skeletal structure in a single image of a hand, however, if we were to create such a graph for
every frame of a contiguous video of a moving hand, then we would have a data structure that
could be interpreted as a sequence of individual graphs, or a single graph with sequential features,
and such data could be used for classifying hand actions in video.

As is the case with traditional sequential data, when processing each state of the sequence,
we want to consider not only the current state but also information from the previous states,
as outlined in Figure 6(a). A simple solution to this challenge might be to simply concatenate
the graph emeddings of previous states to the features of the current state (as in Figure 6(b)),
but such approaches do not capture long-term dependencies in the data. In this section, we out-
line how existing solutions from traditional DL—such as Long Short-Term Memory Networks

(LSTMs) and Gated Recurrent Units (GRUs) (outlined in Figure 6)—can be extended to the graph
domain.

Graph LSTMs (GLSTMs) make use of LSTM cells that have been adapted to operate on graph-
based data. Whereas the aforementioned recurrent modules (Figure 6(b)) employ a simple concate-
nation strategy, GLSTMs ensure that long-term dependencies can be encoded in the LSTM’s “cell
state” (Figure 6(c)). This alleviates the vanishing gradient problem where long-term dependency
signals are exponentially reduced when backpropagated throughout the network [35, 36].

GLSTM cells achieves this through four key processing elements that learn to calculate use-
ful quantities based on the previous state’s embedding and the input from the current state (as
illustrated in Figure 6(c)).

(1) The forget gate, which uses Lf to extract values in the range [0,1], representing if elements
in the previous cell’s state should be “forgotten” (0) or retained (1).

(2) The input gate, which uses Li to extract values in the range [0,1], indicating the amount of
the modulated input that will be added to this cell’s cell state.

(3) The input modulation gate, which uses Ln to extract values in the range [−1,1], represent-
ing learned information from this cell’s input.

(4) The output gate, which uses Lo to calculate values in the range [0,1], indicating which parts
of the cell state should be output as this cell’s hidden state.

To use GLSTMs, we need to define all the operators in Figure 6(e). Since a graph G (V, E ) can
be thought of as a variably sized set of vertices and edges, we can define graph concatenation as
the separate concatenation of vertex features and edge features, where some null padding is used
to ensure that the resultant tensor is of a fixed-size. This can be achieved by defining some “max
number” of vertices for the input graphs. If the input signal for the GLSTM cell has a fixed size,
then all other operators can be interpreted as traditional tensor operations, and the entire process
is differentiable when it comes to backpropagation.

ACM Computing Surveys, Vol. 54, No. 10s, Article 205. Publication date: September 2022.
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The Role of Recurrent Transitions in RGNNs for Graph Classification
In this independent example, we investigate social networks, which represent a rich source of graph data.

Due to the popularity of social networking applications, accurate user and community classifications have

become exceedingly important for the purpose of analysis, marketing, and influencing. In this example,

we look at how the recurrent application of a transition function aids in making predictions on the graph

domain, namely, in graph classification.

Fig. 3. A web developer
group. |V| = 38 and |E| =
110.

Fig. 4. A machine learning
developer group. |V| = 30

and |E| = 66.

Dataset

We will be using the GitHub Stargazer’s dataset [67] (available here). GitHub is

a code sharing platform with social network elements. Each of the 12,725 graphs

is defined by a group of users (vertices) and their mutual following relation-

ships (undirected edges). Each graph is classified as either a web development

group or a machine learning development group. There are no vertex or edge

features—all predictions are made entirely from the structure of the graph.

Algorithms

Rather than use a true RGNN that applies a transition function to hidden states

until some convergence criteria is reached, we will instead experiment with

limited applications of the transition function. The transition function is a sim-

ple message passing aggregator that applies a learned set of weights to create

size 16 hidden vector representations. We will see how the prediction task is af-

fected by applying this transition function 1, 2, 4, and 8 times before feeding the

hidden representations to an output function for graph classification. We train

on 8, 096 graphs for 16 epochs and test on 2, 048 graphs for each architecture.

Results and Discussion

As expected, successive transition functions result in more discriminative fea-

tures being calculated, thus resulting in a more discriminative final representa-

tion of the graph (analogous to more convolutional layers in a CNN).

Table 4. The effect of repeated
transition function applications on
graph classification performance

Algorithm Acc. (%) AUC
x1 transition 52% 0.5109
x2 transition 55% 0.5440
x4 transition 56% 0.5547
x8 transition 64% 0.6377

In fact, we can see that the final hidden representations become

more linearly separable (see TSNE visualizations in Figure 5), thus,

when they are fed to the output function—a linear classifier—the

predicted classifications are more often correct. This is a diffi-

cult task, since there are no vertex or edge features. State-of-the-

art approaches achieved the following mean AUC values aver-

aged over 100 random train/test splits for the same dataset and

task: GL2Vec [10]—0.551, Graph2Vec [62]—0.585, SF [16]—0.558,

FGSD [89]—0.656.

Fig. 5. TSNE renderings of final hidden graph representations for the x1, x2, x4, x8 hidden layer networks.
Note that with more applications of the transition function (equivalent to more layers in a NN) the final
hidden representations of the input graphs become more linearly separable into their classes (hence why
they are able to be better classified using only a linear classifier).

Here, our transition function f was a “feedforward NN” with just one layer, so more advanced NNs (or

other) implementations of f might result in more performant RGNNs. As more rounds of transition func-

tion were applied to our hidden states, the performance—and required computation—increased. Ensuring a

consistent number of transition function applications is key in developing simplified GNN architectures and
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in reducing the amount of computation required in the transition stage. We will explore how this improved

concept is realized through CGNNs in Section 4.2.

Gated Recurrent Units (GRUs) provide a less computationally expensive alternative to
GLSTMs by removing the need to calculate a cell state in each cell. As such, GRUs have three

learnable weight matrices (as illustrated in Figure 6(d)) that serve similar functions to the
four learnable weight matrices in GLSTMs. Again, GRUs require some definition of graph

concatenation.

(1) The reset gate Lr determines how much information from to “forget” or “retain” when
calculating the new information to add to the hidden state from the current state.

(2) The update gate Lu determines what information to “forget” or “retain” from the previous
hidden state.

(3) The candidate gate Ln determines what information from the reset input will contribute to
the next hidden state.

GRUs are well suited to sequential data when repeating patterns are less frequent, whereas
LSTM cells perform well in cases where more frequent pattern information needs to be captured.
LSTMs also have a tendency to overfit when compared to GRUs, and as such GRUs outperform
LSTM cells when the sample size is low [27].

3.4 Advantages, Disadvantages, and Applications

In this section, we have explained the forward pass that allows an RGNN to produce useful predic-
tions over graph input data. During the forward pass, a transition function f is recursively applied
to an input graph to create high-level features for each neighborhood. The repeated application of
f ensures that at iteration k , an embedding h k

i includes information from vertices k edges away
from vi . These high-level features can be fed to an output function to solve downstream tasks.
During the backward pass, the parameters for the NNs f and д are updated with respect to a loss
that is backpropagated through the computation graph defined in the forward pass. Recurrent pro-
cessing units can also refer to approaches for handling graph-based sequential data, which include
graph-based extensions to LSTMs and GRUs.

In actuality, the formulation for calculating embeddings provided in Equation (1) represents
only one approach to calculating embeddings. This approach will be contextualised in Section 4,
where a broader perspective on calculating useful embeddings will be introduced.

While RGNNs offer a simple approach to working with generic graphs, they have a number
of shortcomings. Namely, the shared transition function f means that the same weights are being
used to extract features in successive iterations, which may not be ideal for deep learning scenarios
where the relationships between low-level features (earlier in the network) are different to the
relationships between high-level features (later in the network). Moreover, since RGNNs iterate
until convergence, they have variable length encoding networks, which can add implementation
complexities. In the next section, we will discuss how these issues can be alleviated by developing
formal definitions of convolution in the graph domain.

4 CONVOLUTIONAL GRAPH NEURAL NETWORKS

Convolutional NNs have achieved state-of-the-art performance on predictive tasks involving im-
ages. By convolving a learned kernel of weights with an input image, CNNs extract features of
interest based on their visual appearance—regardless of their locality in the image. Since images
are just a special case of graphs (see Figure 1(a)), a generalized convolution operator can be defined
for the graph domain, thus bringing the following desirable properties to GNNs:
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Fig. 6. The processing approaches for graph-based sequential data, including the overarching approach (a),
simple RNN cells (b), GLSTMs (c), and graph GRUs (d).
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Table 5. A Selection of Works That Use Recurrent GNN Techniques Such
as Those Discussed in This Section

Approach Applications

RNNs (early work) [61] Quantitative structure-activity relationship analysis.

RNNs (early work) [4] Various, including localization of objects in images.

RGNNs (early work) [74] Various, including subgraph matching, the mutagenesis
problem, and web page ranking.

RGNNs (Neural Networks
for Graphs) [60]

Quantitative structure-activity relationship analysis of alkanes,
and classification of general cyclic/acyclic graphs

RGNNs & RNNs
(a comparison) [18]

4-class image classification

Geometric Deep Learning
algorithms (incl. RGNNs)
[7]

Graphs, grids, groups, geodesics, gauges, point clouds, meshes,
and manifolds. Specific investigations include computer
graphics, chemistry (e.g., drug design), protein biology,
recommender systems, social networks, traffic forecasting, and
so on.

RGNN pretraining [38] Molecular property prediction, protein function prediction,
binary graph classification, and so on.

RGNNs benchmarking [57] Cycle detection and exploring what RGNNs can and cannot
learn.

Natural Graph Networks
(NGNs) [15]

Graph classification (bioinformatics and social networks).

GLSTMs [105] Airport delay prediction (with |V| = 325).

GLSTMs (using differential
entropy) [100]

Emotion classification from electroencephalogram (EEG)
analysis (graphs calculated from K-nearest neighbor
algorithms).

GLSTMs [58] Speed prediction of road traffic throughout a directed road
network (vertices are road segments, and edges are direct links
between them).

GLSTMs (with
spatiotemporal graph
convolution) [63]

Real-time distracted driver behavior classification (i.e., based on
the human pose graph [23] from a sequence of video frames—is
the driver drinking, texting, performing normal driving, etc.).
Other techniques for this problem include References [53, 79].

LSTM-Q (i.e., fusion of RL
with a bidirectional LSTM)
for graphs [13]

Connected autonomous vehicle network analysis for
controlling agent movement (in a multi-lane road corridor).

Graph GRUs [54] Computer program verification.

Graph GRUs [32] Explainable predictive business process monitoring.

Graph GRUs [3] NLP as a graph to sequence problem (leveraging structural
information in language).

Graph GRUs [68, 69] Gating for vertices and edges. Key applications include
earthquake epicenter placement and synthetic regression
problems.

Symmetric Graph GRUs [59] Improved long-term dependency performance on synthetic
tasks.
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Fig. 7. A comparison of image-based and graph-based spatial convolution techniques. Both techniques cre-
ate embeddings centered around pixels/vertices, and the output of both techniques describes how the input
is modified by the filter. Images best viewed in color.

(1) Locality: Learned feature extraction weights should be localized. They should only consider
the information within a given neighborhood, and they should be applicable throughout the
input graph.

(2) Scalability: The learning of these feature extractors should be scalable, i.e., the number
of learnable parameters should be independent of |V|. Preferably the operator should be
“stackable,” so models can be built from successive independent layers, rather than requiring
repeated iteration until convergence as with RGNNs in Section 3. Computation complexities
should be bounded where possible.

(3) Interpretability: The convolutional operation should (preferably) be grounded in some
mathematical or physical interpretation, and its mechanics should be intuitive to understand.

4.1 What Is Convolution?

We define convolution generally as an operation whereby an output is derived from two given

inputs by integration or summation, which expresses how the one is modified by the

other.
Convolution in CNNs involves two matrix inputs: one is the previous layer of activations, and

the other is a matrix W × H of learned weights, which is “slid” across the activation matrix, ag-
gregating each W × H region using a simple linear combination (see Figure 7(a)). In the spatial
graph domain, it seems that this type of convolution is not well defined [78]; the convolution of a
rigid matrix of learned weights must occur on a rigid structure of activation. How do we reconcile
convolutions on unstructured inputs such as graphs?

Note that at no point during our general definition of convolution was the structure of the
given inputs alluded to. In fact, convolutional operations can be applied to continuous functions
(e.g., audio recordings and other signals), N-dimensional discrete tensors (e.g., semantic vectors
in 1D, and images in 2D), and so on. During convolution, one input is typically interpreted as a
filter (or kernel) being applied to the other input, and we will adopt this language throughout this
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section. Specific filters can be utilized to perform specific tasks: In the case of audio recordings,
high pass filters can be used to filter out low-frequency signals, and in the case of images, certain
filters can be used to increase contrast, sharpen, or blur images. In our previous example of CNNs,
filters are learned rather than designed.

4.2 Spatial Approaches

One might consider the early RGNNs described in Section 3 as using convolutional operations. In
fact, these methods meet the criteria of locality, scalability, and interpretability. First, Equation (1)
only operates over the neighborhood of the central vertex vi , and can be applied on any neigh-
borhood in the graph due to its invariance to permutation and neighborhood size. Second, the NN
f is dependent on a fixed number of weights and has a fixed input and output that is indepen-
dent of |V|. Finally, the convolution operation is immediately interpretable as a generalization of
image-based convolution: In image-based convolution, neighboring pixel values are aggregated to
produce embeddings; in graph-based spatial convolution, neighboring vertex features are aggre-
gated to produce embeddings (see Figure 7). This type of graph convolution is referred to as the
spatial graph convolutional operation, since spatial connectivity is used to retrieve the neighbor-
hoods in this process.

Although the RGNN technique meets the definition of spatial convolution, there are numerous
improvements in the literature. For example, the choice of aggregation function is not trivial—
different aggregation functions can have notable effects on performance and computational
cost.

A notable framework that investigated aggregator selection is the GraphSAGE framework [29],
which demonstrated that learned aggregators can outperform simpler aggregation functions (such
as taking the mean of embeddings) and thus can create more discriminative, powerful vertex em-
beddings. Regardless of the aggregation function, GraphSAGE works by computing embeddings
based on the central vertex and an aggregation of its neighborhood (see Equation (2)). By includ-
ing the central vertex, it ensures that vertices with near identical neighborhoods have different
embeddings. GraphSAGE has since been outperformed on accepted benchmarks [20] by other
frameworks [6], but the framework is still competitive and can be used to explore the concept of
learned aggregators (see Section 4.3).

h k
i = σ

(
Wconcat

(
h k−1

i , aggregate
(
h k−1

j ∀j ∈ Nvi

)))
(2)

Alternatively, Message Passing Neural Networks (MPNNs) compute directional messages
between vertices with a message function that is dependent on the source vertex, the destination
vertex, and the edge connecting them [25]. Rather than aggregate the neighbor’s features and con-
catenating them with the central vertex’s features as in GraphSAGE, MPNNs sum the incoming
messages, and pass the result to a readout function alongside the central vertex’s features (see
Equation (3)). Both the message function and readout function can be implemented with simple
NNs in practice. This generalizes the concepts outlined in Equation (1) and allows for more mean-
ingful patterns to be identified by the learned functions.

h k
i = fr eadout

���
�

h k−1
i ,

∑
j ∈Nvi

mk
i j

���
�

���
�
, wheremk

i j = fmessaдe

(
h k

i , h
k
j , ei j

)
(3)

One of the most popular spatial convolution methods is Graph Convolutional Networks

(GCNs), which produce embeddings by summing features extracted from each neighboring
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vertex and then applying non-linearity [97]. These methods are highly scalable, local, and fur-
thermore, they can be “stacked” to produce layers in a CGNN. Each of these features is normalized
based on the relative neighborhood scales of the current and neighbor vertex, thus ensuring that
embeddings do not “explode” in scale during the forward pass.

h k
i = σ

���
�

∑
j ∈Nvi

Wh k−1
j√

|Nvi
| |Nvj

|

���
�

(4)

Graph Attention Networks (GATs) extend GCNs: Instead of using the size of the neighbor-
hoods to weight the importance of vi to vj , they implicitly calculate this weighting based on the
normalized product of an attention mechanism [87]. In this case, the attention mechanism is de-
pendent on the embeddings of two vertices and the edge between them. Vertices are constrained to
only be able to attend to neighboring vertices, thus localizing the filters. GATs are stabilized dur-
ing training using multi-head attention and regularization and are considered less general than
MPNNs [88]. Although GATs limit the attention mechanism to the direct neighborhood, the scala-
bility to large graphs is not guaranteed, as attention mechanisms have compute complexities that
grow quadratically with the number of vertices being considered.

h k
i = σ

���
�

∑
j ∈Nvi

αi j Wh k−1
j

���
�
, where αi j =

eatt(h k−1
i ,h k−1

j ,ei j )

∑
l ∈Nvi

eatt(h k−1
i ,h k−1

l
,eil )

(5)

Interestingly, all of these approaches consider information from the direct neighborhood and
the previous embeddings, aggregate this information in some symmetric fashion, apply learned
weights to calculate more complex features, and “activate” these results in some way to produce
an embedding that captures non-linear relationships.

4.3 Spectral Approaches

In this section, we discuss another class of convolution approaches that evolved from the perspec-
tive of Graph Signal Processing (GSP) [78, 82]. These methods are attractive, as they are well
grounded in a formal definition of convolution and can be directly interpreted as signal processing
techniques in the domain of graph structured data.

The path to defining spectral graph convolution is described by the following series of
statements.

( f ∗ д) (t ) =

∫ +∞

−∞
f (u)д(t − u)du (6)

(1) Defining a convolutional operator in the graph domain is desirable (as motivated in Sec-
tion 4.2).

(2) From a signal processing perspective, the convolution operator is defined as in Equation (6).
In other words, it is the integral of the product of a reversed and translated filter (д(t−u)) and
an input function (f (u)). To define this in the graph domain, a translation operator needs to
be defined for graphs.

(3) By Parseval’s theorem, multiplication in the frequency domain (frequency space) corre-
sponds to translation in the spatial domain (vertex space) [52]. Formally defining spatial
translation in the graph domain requires a method to convert graphs between the vertex
and frequency space.

(4) The eigenfunctions of the Laplacian define a basis in frequency space, so a formal definition
of the graph Laplacian is required to develop spectral graph convolutions.
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Using GraphSAGE to Generate Embeddings for Unseen Data
The GraphSAGE (SAmple and aggreGatE) algorithm [29] emerged in 2017 as a method for not only learn-

ing useful vertex embeddings, but also for predicting vertex embeddings on unseen vertices. This allows

powerful high-level feature vectors to be produced for vertices that were not seen at train time; enabling us

to effectively work with dynamic graphs, or very large graphs (>100,000 vertices).
Dataset

In this example, we use the Cora dataset (see Figure 8) as provided by the deep learning library DGL [92]. The

Cora dataset is oft considered “the MNIST of graph-based learning” and consists of 2,708 scientific publica-

tions (vertices), each classified into one of seven subfields in AI (or classes). Each vertex has a 1, 433 element

binary feature vector, which indicates if each of the 1, 433 designated words appeared in the publication.

Fig. 8. A subgraph of the Cora dataset. The
full Cora graph has |V| = 2708 and |E| =
5429. Note the many vertices with few inci-
dent edges (low degree) as compared to the
few vertices with many incident edges (high
degree).

What is GraphSAGE?

GraphSAGE operates on a simple assumption: vertices with

similar neighborhoods should have similar embeddings. In this

way, when calculating a vertex’s embedding, GraphSAGE

considers the vertex’s neighbors’ embeddings. The function

that produces the embedding from the neighbors’ embeddings

is learned, rather than the embedding being learned directly.

Consequently, this method is not transductive, it is inductive,

in that it generates general rules that can be applied to unseen

vertices, rather than reasoning from specific training cases to

specific test cases.

Importantly, the GraphSAGE loss function is unsupervised

and uses two distinct terms to ensure that neighboring vertices

have similar embeddings and distant or disconnected vertices

have embedding vectors that are numerically far apart. This

ensures that the calculated vertex embeddings are highly dis-

criminative.
Architectures

In this worked example, we experiment by changing the aggregator functions used in each GNN and observe

how this affects our overall test accuracy. In all experiments, we use 2 hidden GraphSAGE convolution layers,

16 hidden channels (i.e., embedding vectors have 16 elements), and we train for 120 epochs before testing

our vertex classification accuracy. We consider the mean, pool, and LSTM (long short-term memory)

aggregator functions.

The mean aggregator function sums the neighborhood’s vertex embeddings and then divides the result

by the number of vertices considered. The pool aggregator function is actually a single fully connected layer

with a non-linear activation function that then has its output element-wise max pooled. The layer weights

are learned, thus allowing the most important features to be selected. The LSTM aggregator function is

an LSTM cell. Since LSTMs consider input sequence order, this means that different orders of neighbor

embedding produce different vertex embeddings. To minimize this effect, the order of the input embeddings

is randomized. This introduces the idea of aggregator symmetry; an aggregator function should produce

a constant result, invariant to the order of the input embeddings.
Results and Discussion

The mean, pool, and LSTM aggregators score test accuracies of 66.0%, 74.4%, and 68.3%, respectively. As

expected, the learned pool and LSTM aggregators are more effective than the simple mean operation, though

they incur significant training overheads and may not be suitable for smaller training graphs or graph

datasets. Indeed, in the original GraphSAGE paper [29], it was found that the LSTM and pool methods

generally outperformed the mean and GCN aggregation methods across a range of datasets.

At the time of publication, GraphSAGE outperformed the state-of-the-art on a variety of graph-based

tasks on common benchmark datasets. Since that time, a number of inductive learning variants of Graph-

SAGE have been developed, and their performance on benchmark datasets is regularly updated.3

3The state-of-the-art for vertex classification (Cora dataset): https://paperswithcode.com/sota/node-classification-on-cora.
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Fig. 9. An input function f (x ,y) : R2 �→ R (a), its gradient ∇f (x ,y) : R2 �→ R
2 ((a) and (b)), and the

divergence of its gradient ∇ ·∇f (x ,y) : R2 �→ R (b). The divergence of a function’s gradient is known as the
Laplacian, and it can be interpreted as measuring “how much” of a minimum each point is in the original
function f (x ,y). The plots in (a) and (b) are an example of the entire calculation of the Laplacian; from scalar
field to vector field (gradient), and then from vector field back to scalar field (divergence). The Laplacian is
an analog of the second derivative and is often denoted by ∇ · ∇, ∇2, or Δ.

The Laplacian is a second order differential operator that is calculated as the divergence of the
gradient of a function in Euclidean space. The Laplacian occurs naturally in equations that model
physical interactions, including but not limited to electromagnetism, heat diffusion, celestial me-
chanics, and pixel interactions in computer vision applications. Similarly, it arises naturally in
the graph domain, where we are interested in the “diffusion of information” throughout a graph
structure.

More formally, if we define flux as the quantity passing outward through a surface, then the
Laplacian represents the density of the flux of the gradient flow of a given function. A step-by-step
visualization of the Laplacian’s calculation is provided in Figure 9. Note that the definition of the
Laplacian is dependant on three things: functions, the gradient of a function, and the divergence

of the gradient. Since we are seeking to define the Laplacian in the graph domain, we need to define
how these constructs operate in the graph domain.

Functions in the graph domain (referred to as graph signals in GSP) are a mapping from every
vertex in a graph to a scalar value: f (G (V, E )) : V �→ R. Multiple graph functions can be defined
over a given graph, and we can interpret a single graph function as a single feature vector defined
over the vertices in a graph. See Figure 10 for an example of a graph with two graph functions.

The gradient of a function in the graph domain describes the the direction and the rate
of fastest increase of graph signals. In a graph structure, when we refer to “direction,” we are
referring to the edges of the graph; the avenues by which a graph function can change. For ex-
ample, in Figure 10, the graph functions are 8-dimensional vectors (defined over the vertices), but
the gradients of the functions for this graph are 12-dimensional vectors (defined over the edges)
and are calculated as in Equations (7). Refer to Table 3 for a formal definition of the incident
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Fig. 10. A graph representing Australia (|V| = 8, |E| = 12). Its vertices represent Australia’s capital cities, and
the edges between them represent common flight paths. Each vertex has two features, one representing the
population and another representing the total (statewide) cases of an infectious disease at those locations.
Those two vertex feature vectors can be interpreted as the graph functions (also known as graph signals)
fcases and fpop., which are rendered at the bottom of the figure. As an example, it may be of interest to
investigate the propagation/diffusion of these graph signal quantities throughout the graph structure.

matrix M.

MT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 −1 0 0 0 0 0 0

+1 0 −1 0 0 0 0 0

+1 0 0 0 0 0 −1 0

0 +1 0 0 0 0 −1 0

0 +1 0 −1 0 0 0 0

0 0 +1 0 0 0 −1 0

0 0 0 +1 −1 0 0 0

0 0 0 +1 0 0 −1 0

0 0 0 0 +1 −1 0 0

0 0 0 0 +1 0 −1 0

0 0 0 0 0 +1 −1 0

0 0 0 0 0 0 +1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, fcases =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1, 048

191

851

1, 763

7, 492

124

20, 879

13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ∇fcases = MT fcases =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+857

+197

−19, 831

−20, 688

−1, 572

−20, 028

−5, 729

−19, 116

+7, 368

−13, 387

−20, 755

+20,866

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

In Equations (7), the gradient vectors describe the difference in graph function value across

the vertices/along the edges. Specifically, note that the largest magnitude value is 20,866 and
corresponds to e12, the edge between Hobart and Melbourne in Figure 10. In other words, the
greatest magnitude edge is between the city with the least cases and the city with the most cases.
Similarly, the lowest magnitude edge is e2; the edge between Perth and Adelaide, which has the
least difference in cases.

The divergence of a gradient function in the graph domain describes the outward flux
of the gradient function at every vertex. To continue with our example, we could interpret the
divergence of the gradient function fcases as the outgoing “flow” of infectious disease cases from
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each capital city. Whereas the gradient function was defined over the graph’s edges, the divergence
of a gradient function is defined over the graph’s vertices and is calculated as in Equation (8).

∇ · (∇fcases) = M(∇fcases) = M(MT fcases) = MMT fcases = Lfcases =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−18, 777

−23, 117

−20, 225

−23, 273

−290

−28,123

+134,671

−20, 866

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

The maximum value in the divergence vector for the infectious disease graph signal is 134,671,
corresponding to Melbourne (the 7th vertex). Again, this can be interpreted as the magnitude of the
“source” of infectious disease cases from Melbourne. Contrastively, the minimum value is−281,123,
corresponding to Canberra, the largest “sink” of infections disease.

Note as well that the dimensionality of the original graph function is 8—corresponding to the
vector space, its gradient’s dimensionality is 12—corresponding to its edge space, and the Lapla-
cian’s dimensionality is again 8—corresponding to the vertex space. This mimics the calculation of
the Laplacian in Figure 9, where the original scalar field (representing the magnitude at each point)
is converted to a vector field (representing direction) and then back to a scalar field (representing
how each point acts as a source).

The graph Laplacian appears naturally in these calculations as a |V| × |V| matrix operator in
the form L = MMT (see Equation (8)). This corresponds to the formulation provided in Table 3,
as shown in Equation (9), and this formulation is referred to as the combinatorial definition L =

D−AW (the normalized definition is defined as Lsn [17]). The graph Laplacian is pervasive in the
fields of GSP [14].

L = MMT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 −1 0 0 0 −1 0

−1 3 0 −1 0 0 −1 0

−1 0 2 0 0 0 −1 0

0 −1 0 3 −1 0 −1 0

0 0 0 −1 3 −1 −1 0

0 0 0 0 −1 2 −1 0

−1 −1 −1 −1 −1 −1 7 −1

0 0 0 0 0 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= D − AW (9)

Since L = D−AW , the graph Laplacian must be a real (Li j ∈ R, ∀ 0 ≤ i, j < |V|) and symmetric

(L = LT ) matrix. As such, it will have an eigensystem composed of a set of |V| orthonormal
eigenvectors, each associated with a single real eigenvalue [78]. We denote the ith eigenvector
with ui , and the associated eigenvalue with λi , each satisfying Lui = λiui , where the eigenvectors
ui are the |V|-dimensional columns in the matrix (Fourier basis) U. The Laplacian can be factored
as three matrices such that L = UΛUT through a process known as eigenvector decomposition.
A variety of algorithms exist for solving this kind of eigendecomposition problem (e.g., the QR
algorithm and Singular Value Decomposition).

These eigenvectors form a basis in R |V | , and as such, we can express any discrete graph function
as a linear combination these eigenvectors. We define the graph Fourier transform of any graph
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function/signal as f̂ = UT f ∈ R |V | , and its inverse as f = U f̂ ∈ R |V | . To complete our goal of
performing convolution in the spectral domain, we now complete the following steps:

(1) Convert the lth graph function into the frequency space (i.e., generate its graph Fourier
transform). We do this through matrix multiplication with the transpose of the Fourier basis:
UT fl . Note that multiplication with the eigenvector matrix is O (N 2).

(2) Apply the corresponding lth learned filter in frequency space. If we define Θl as our lth
learned filter (and a function of the eigenvalues of L), then this appears like so: Θl U

T fl .
(3) Convert the result back to vertex space by multiplying the result with the Fourier basis

matrix. This completes the formulation defined in Equation (10). By Parseval’s theorem,
multiplication applied in the frequency space corresponds to translation in vertex space, so
the filter has been convolved against the graph function [52].

UΘl U
T fl (10)

This simple formulation has a number of downsides. Foremost, the approach is not localized—
it has global support—meaning that the filter is applied to all vertices (i.e., the entirety of the graph
function). This means that useful filters are not shared, and that the locality of graph structures is
not being exploited. Second, it is not scalable: The number of learnable parameters grows with
the size of the graph (not the scale of the filter) [17], theO (N 2) cost of matrix multiplication scales
poorly to large graphs, and the O (N 3) time complexity of QR-based eigendecomposition [81] is
prohibitive on large graphs. Moreover, directly computing this transform requires the diagonaliza-
tion of the Laplacian and is infeasible for large graphs (where |V| exceeds a few thousand vertices)
[31]. Finally, since the structure of the graph dictates the values of the Laplacian, graphs with

dynamic topologies cannot use this method of convolution.

Θ =
K∑

k=1

θkTk (Λ̃) (11)

To alleviate the locality issue, Reference [21] noted that the smoothing of filters in the frequency
space would result in localization in the vertex space. Instead of learning the filter directly, they
formed the filter as a combination of smooth polynomial functions and instead learned the coeffi-
cients to these polynomials. Since the Laplacian is a local operator affecting only direct neighbors
of any given vertex, then a polynomial of degree r affects vertices r -hops away. By approximating
the spectral filter in this way (instead of directly learning it), spatial localization is thus guaran-
teed [77]. Furthermore, this improved scalability; learningK coefficients of the predefined smooth
polynomial functions meant that the number of learnable parameters was no longer dependent on
the size of the input graph. Additionally, the learned model could be applied to other graphs, too, as
opposed to spectral filter coefficients that are basis-dependant. Since then, multiple potential poly-
nomials have been used for specialized effects (e.g., Chebyshev polynomials, Cayley polynomials
[51]).

Equation (11) outlines this approach. The learnable parameters are θk —vectors of Chebyshev

polynomial coefficients—and Tk (Λ̃) is the Chevyshev polynomial of order k (dependent on the

normalized diagonal matrix of scaled eigenvalues Λ̃). Chevyshev polynomials can be computed
recursively with a stable recurrence relation and form an orthogonal basis [83]. We recommend
Reference [65] for a full treatment on Chebyshev polynomials.

Interestingly, these approximate approaches demonstrate an equivalence between spatial and
spectral techniques. Both are spatially localized and allow for a single filter to extract repeating
patterns of interest throughout a graph, both have a number of learnable parameters that are
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Table 6. A Particular Selection of Often-cited Works That Use Convolutional GNN Techniques
(Such as Those Discussed in This Section)

Approach Applications

GSP general (spectral) [82] Multi-sensor temperature sensing (as a signal processing
problem).

ChebNet (spectral) [83] Various, but particularly in contexts where the functions to be
approximated are high dimensional and smooth.

CayleyNets (spectral) [51] Community detection, MNIST, citation networks, recommender
systems, and other domains where specific frequency bands are of
particular interest.

MPNNs (spatial) [25] Quantum chemistry, specifically molecular property prediction.

GraphSAGE (spatial) [29] Classifying academic papers, classifying Reddit posts, classifying
protein functions, and so on.

GCNs (spatial) [45] Semi-supervised vertex classification on citation networks and
knowledge graphs.

Residual Gated Graph
ConvNets (spatial) [6]

Subgraph matching and graph clustering.

Graph Isomorphism
Networks (GINs) [99]

Various, including bioinformatics and social network datasets.

CGNN benchmarking [20] Extensive, including ZINC [39], MNIST [49], CIFAR10 [48], and so
on.

GATs [88] Citation networks, protein-protein interaction.

GATs [73] Robust pointwise correspondence of local image features.

Gated Attention Modules
[106]

Traffic speed forecasting.

Edge GATs [11] Citation networks, but generally any domain sensitive to
relations/edge features.

Graph Attention Tracking
[28]

Visual tracking (i.e., similarity matching between a template
image and a search region).

Hyperbolic GATs [107] Hyperbolic domains, e.g., protein surfaces, biomolecular
interactions, drug discovery, or statistical mechanics.

Heterogeneous Attention
Networks (HANs) [94]

Citation networks, IMBD (movie database networks), or any
domain where vertices/edges are heterogeneous.

GATs [93] Knowledge graphs and explainable recommender systems.

Graphormers [101] Various, including quantum chemistry prediction. Particularly
well suited to smaller scale graphs due to quadratic computation
complexity of attention mechanisms.

Graph Transformers (with
spectral attention) [47]

Various, including molecular graph analysis (i.e., Reference [39]
and similar). Particularly well suited to smaller scale graphs as
above.

Many of these algorithms are applicable to graph generally, and as such, the application column outlines the

applications directly discussed in the cited paper.

independent of the input graph size, and each have meaningful and intuitive interpretations from
a spatial (Figure 7) and spectral (Figure 10) perspective. In fact, GCNs can be viewed as a first-order
approximation of Chebyshev polynomials [56]. For an in-depth treatment on the topic of GSP, we
recommend References [82] and [78].
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4.4 Advantages, Disadvantages, and Applications

As noted, spatial techniques and spectral techniques each have their advantages and disadvantages.
The most popular spatial techniques are localized, generally scalable, and easily interpretable as
methods for extracting features of interest from neighborhoods within graphs. As a downside,
some of the more popular approaches (i.e., GATs) require expensive computations that scale in
compute complexity quadratically with the size of their inputs, making them unsuitable for large
graphs. However, spectral techniques can also be localized, scalable, and physically interpreted,
but in some cases require rigorous computations to calculate the graph Laplacian. In general,
eigendecomposition-based techniques cannot be used for graph inputs that have dynamic topolo-
gies and are computationally prohibitive for large graphs.

5 GRAPH AUTOENCODERS

GAEs represent the application of GNNs (often CGNNs) to autoencoding. The goal of an AE can
be summarized as follows: to project the inputs features into a new space (known as the latent
space) where the projection has more desirable properties than the input representation. These
properties may include:

(1) The data being more separable (i.e., classifiable) in the latent space.
(2) The dimensionality of the dataset being smaller in the latent space than in the input space.
(3) The data being obfuscated for security or privacy concerns in the latent space.

A benefit of AEs in general is that they can often achieve this in an unsupervised manner—i.e.,
they can create useful embeddings without any training data. In their short history, GAEs have
led the way in unsupervised learning on graph-structured data and enabled greater performance
on supervised tasks such as vertex classification on citation networks [46].

5.1 Autoencoders in the Graph Domain

AEs work in a two-step fashion, first encoding the input data into a latent space and then decoding
this compressed representation to reconstruct the original input data, as depicted in Figure 11
(though in some cases higher dimensionality latent space representations have been used). The
AE is then trained to minimize the reconstruction loss, which is calculated using only the input
data and can therefore be trained in an unsupervised manner. In its simplest form, such a loss is

defined as LossAE = ‖X − X̂ ‖2, where we have an input instance X and the reconstructed input X̂ .
The difference between AEs to GAEs is illustrated in Figure 11 and requires the definition of

encoders and decoders that take in and put out graph structures, respectively. One of the most
common methods for doing this is to replace the encoder with a CGNN and replace the decoder
with a method that can reconstruct the graph structure of the input [46].

With a well-defined loss function, we can perform end-to-end learning across this network to op-
timize the encoding and decoding to strike a balance between both sensitivity to inputs and gen-

eralizability—we do not want the network to overfit and “memorize” all training inputs. Rather,
the goal is for the encoder network to represent repeating patterns within the input data in a more
compressed and efficient format.

Once trained, GAEs (like AEs), can be split into their component networks to perform specific
tasks. A popular use case for the encoder is to generating robust embeddings for supervised down-
stream tasks (e.g., classification, visualization, regression, clustering), and a use for the decoder is
to generate new graph instances that include properties from the original dataset. This allows the
generation of large synthetic datasets.
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Fig. 11. The architecture for a traditional tensor-based AE, compared to a GAE.

5.2 Variational Graph Autoencoders

Rather than representing inputs with single points in latent space, variational autoencoders

(VAEs) learn to encode inputs as probability distributions in latent space. Figure 13 shows a VGAE
that predicts a multivariate Guassian-like distribution q(Z |A,X ) for a given input.
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Using Variational Graph Autoencoders for Unsupervised Learning

In this example, we will implement GAEs and VGAEs to perform unsupervised learning. After training, the

learned embeddings can be used for both vertex classification and edge prediction tasks, even though the

model was not trained to perform these tasks initially, thus demonstrating that the embeddings are meaning-

ful representations of vertices. We will focus on edge prediction in citation networks, though these models

can be easily applied to many task contexts and problem domains (e.g., vertex and graph classification).

Fig. 12. Renderings of the Citeseer dataset
(top) and Cora dataset (bottom). Image
best viewed in colour.

Dataset

To investigate GAEs, we use the Citeseer, Cora, and PubMed

datasets, which are accessible via PyTorch Geometric [24]. In

each of these graphs, the vertex features are word vectors in-

dicating the presence or absence of predefined keywords (see

Section 4.3 for another example of the Cora dataset being used).

Algorithms

We first implement a GAE. This model uses a single GCN to

encode input features into a latent space. An inner product de-

coder is then applied to reconstruct the input from the latent

space embedding (as described in Section 5.2). During train-

ing, we optimize the network by reducing the reconstruction

loss. We then apply the model to an edge prediction task to

test whether the embeddings can be used in performing down-

stream machine learning tasks and not just in reconstructing

the inputs.

We then implement the VGAE as first described in Reference

[46]. Unlike GAEs, there are now two GCNs in the encoder

model (one each for the mean and variance of a probability dis-

tribution). The loss is also changed to Kullback–Leibler (KL)

divergence to optimize for an accurate probability distribution.

From here, we follow the same steps as for the GAE method: An

inner product decoder is applied to the embeddings to perform

input reconstruction. Again, we will test the efficacy of these

learned embeddings on downstream machine learning tasks.

Results and Discussion

To test GAEs and VGAEs on each graph, we average the results

from 10 experiments. In each experiment, the model is trained

for 200 iterations to learn a 16-dimensional embedding.

Table 7. Comparing the link prediction performance of
autoencoder models on Citeseer.

Algorithm Dataset AUC APa

GAE Citeseer 0.858 (±0.016) 0.868 (±0.009)

VGAE Citeseer 0.869 (±0.007) 0.878 (±0.006)

GAE Cora 0.871 (±0.018) 0.890 (±0.013)

VGAE Cora 0.873 (±0.01) 0.892 (±0.008)

GAE PubMed 0.969 (±0.002) 0.971 (±0.002)

VGAE PubMed 0.967 (±0.003) 0.696 (±0.003)

In alignment with Reference [46], we see

the VGAE outperform GAE on the Cora

and Citeseer graphs, while the GAE out-

performs the VGAE on the PubMed graph.

Performance of both algorithms was signif-

icantly higher on the PubMed graph, likely

owing to PubMed’s larger number of ver-

tices (|V| = 19,717), and therefore more

training examples, than Citeseer (|V| =
3,327) or Cora (|V| = 2,708). Moreover,

while Cora and Citeseer vertex features are

simple binary word vectors (of sizes 1,433

and 3,703, respectively), PubMed uses the

more descriptive TF-IDF word vector, which accounts for the frequency of terms. This feature may be more

discriminative and thus more useful when learning vertex embeddings.
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Fig. 13. An example of a VGAE. Graph inputs are encoded via a GNN into multivariate Guassian parame-
ters (i.e., mean and variance). These represent ranges of possible values in the latent space, which enforces
a continuous latent space representation. Samples are selected from these distributions and fed to the de-
coder, as in Figure 11(b). In practice, researchers have observed that this method ensures that all regions
of latent space map to meaningful outputs and that latent vectors that are close to one another map to
reconstructions that are “close to” one another in the input space. To ensure that the encoded distributions
are well behaved, a penalty term is added to the loss function to enforce the distributions to match some
known prior distribution (i.e., normal distributions). The total loss function for a VGAE is thus defined as

L = ‖X − X̂ ‖2 + KL((N (0, 1),q(Z )).

This creates a “smoother” latent space that covers the full spectrum of inputs, rather than leaving
“gaps,” where an unseen latent space vector would be decoded into a meaningless output. This
has the effect of increasing generalization to unseen inputs and regularizing the model to avoid
overfitting. Ultimately, this approach transforms the GAE into a more suitable generative model.

Unlike in GAEs—where the loss is simple the mean squared error between the input and the
reconstructed input—a VGAE’s loss imposes an additional penalty that ensures that the latent
distributions are normalized. More specifically, this term regularizes the latent space distributions
by ensuring that they do not diverge significantly from some prior distribution with desirable
properties. In our example, we use the normal distribution (denoted as N (0, 1)). This divergence is
quantified in our case using Kulback-Leibler divergence (KL), though other similarity metrics
(e.g., Wassertein space distance or ranking loss) can be used successfully. Without this loss penalty,
the VGAE encoder might generate distributions with small variances or high magnitude means;
both of which would make it harder to sample from the distribution effectively.

5.3 Improving Robustness with Graph Adversarial Techniques

Graph Adversarial Techniques (GAdvTs) use adversarial learning methods, whereby an AI
model acts as an adversary to another during training to mutually improve the performance of both
models in tandem. Due to the adversarial nature of GAdvT’s, developments in this area have been
described as an “arms race between attackers and defenders” [12]. As with traditional adversarial
techniques, common goals for GAdvTs include:

• Improving the robustness, regularization, or distribution of learned embeddings.
• Improving the robustness of models to targeted attacks.
• Training generative AI models.

The field of GAdvTs is broad, with multiple different kinds of attacks, training regimes, and use
cases. In this tutorial, we will look at how GAdvTs can be used to extend VGAEs to create robust
encoding networks, and well regularized generative mechanisms. Figure 14 describes a typical
architecture for adversarially training a VGAE.

To ensure that the sampling operation is differentiable, VGAEs leverage a “reparameterization
trick,” where a random Guassian sample is generated from N (0, 1) outside the forward pass of the
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Fig. 14. A typical approach to adversarial training with VGAEs. The top row described a VGAE as illustrated
in Figure 13. Importantly, for each real sample, a “fake” sample is generated from some prior distribution
p (Z ) (e.g., a multivariate Gaussian or some other distribution that is believed to model the properties of the
latent space attributes). During training, these fake and real samples are input into a discriminator network,
which predicts whether said inputs are real or fake. If the discriminator correctly classifies the sample, then
the generator is penalized, thus optimizing the encoder to generate distributions whose samples are more
likely to “fool” the discriminator. In other words, this causes the encoder to create samples that have similar
properties to the samples pulled from the prior distribution p (z), thus acting as a form of regularization.

network. The sample is then transformed by the parameterization of the generated distribution
q(z), rather than having the sample be generated directly from q(z) [19]. Since this approach is
entirely differentiable, it allows for end-to-end training via backpropagation of an unsupervised
loss signal.

5.4 Advantages, Disadvantages, and Applications

In this section, we have explained the mechanics behind traditional and graph autoencoders. Anal-
ogous to how AEs use NN to perform encoding, GAEs use CGNNs to perform encoding and create
embeddings [46]. Similarly, an unsupervised reconstruction error term is defined; in the case of
GAEs, this is between the original adjacency matrix and the predicted adjacency matrix (produced
by the decoder). GAEs and VGAEs represent a simple method for performing unsupervised train-
ing, which allows us to learn powerful embeddings in the graph domain without any labelled data,
but requires regularization techniques to smooth their latent space representations and reparame-
terization tricks to ensure differentiability.

Before the seminal work in Reference [46] on VGAEs, a number of deep GAEs had been devel-
oped for unsupervised training on graph-structured data, including Deep Neural Graph Rep-

resentations (DNGR) [8] and Structure Deep Network Embeddings (SDNE) [91]. These
methods operate on only the adjacency matrix, so information about both the entire graph and
the local neighborhoods is lost. More recent work mitigates this by using an encoder that ag-
gregates information from a vertex’s local neighborhood to learn latent vector representations.
For example, Reference [70] proposes a linear encoder that uses a single weights matrix to ag-
gregate information from each vertex’s one-step local neighborhood, showing competitive per-
formance on numerous benchmarks. Despite this, typical GAEs use more complex encoders—
primarily CGNNs—to capture nonlinear relationships in the input data and larger local neighbor-
hoods [5, 8, 46, 64, 84, 85, 91, 102].
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Table 8. A Selection of Works Using GAE/VGAE/GAdvT Techniques as Discussed in This Section

Approach Applications

Deep Neural Graph
Representation [8]

Various, including clustering, calculating useful vertex
embeddings, and visualization.

Structure Deep Network
Embeddings [91]

Various, including language networks, citation networks, and
social networks.

Denoising Attribute AEs
[34]

Various, including social networks and citation networks.

Link prediction-based
GAEs (and VGAEs) [71]

Various, including link prediction and bidirectionally
prediction on citation networks.

VGAEs [46] Various, including citation networks.

Deep Gaussian Embedding
of Graphs (G2G) [5]

Various, including citation networks.

Semi-implicit VGAEs [33] Various graph analytic tasks, including citation networks.

Adversarially Regularized
AEs (NetRA) [102]

Directed communication networks, software class dependency
networks, undirected social networks, citation networks,
directed word networks with inferred “Part-of-Speech” tags,
and Protein-Protein Interactions.

Adversarially Regularized
Graph Autoencoder (ARGA,
and its variants) [64]

Various, including vertex clustering and visualization of
citation networks.

Graph Convolutional
Generative Adversarial
Networks [90]

Traffic prediction in optical networks (particularly in domains
with “burst events”).

FeederGAN (adversarial)
[55]

Generation of distributed feeder circuits.

Labelled Graph GANs [22] Generating graph-structured data with vertex labels.
Demonstrated for citation networks and protein graphs.

Graph GANs for Sparse
Data [43]

Generating sparse graph datasets. Demonstrated for MNIST
and high-energy physics proton-proton jet particle data.

Graph Convolutional
Adversarial Networks [37]

Predicting missing infant diffusion MRI data for longitudinal
studies.

6 FUTURE RESEARCH

The field of GNNs is rapidly developing, and there are numerous directions for meaningful future
research. In this section, we outline a few specific directions that have been identified as important
research areas to focus on [98, 103, 108, 110].

6.1 Explainability

Recent advancements in deep learning have allowed deeper NNs to be developed and applied
throughout the field of AI. As the mechanics that drive predictions (and thus decisions) become
more complex, the path by which those decisions are reached becomes more obfuscated. Explain-

able AI (XAI) promises to address this issue.
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Explainability in the graph domain promises much of the same benefits as it does across AI,
including more interpretable outputs, clearer relationships between inputs and outputs, more in-
terpretable models, and in general, more trust between AI and human operators across problem
domains (e.g., digital pathology [40], knowledge graphs [95]).

While the suite of available XAI algorithms has been consistently growing over the recent years
(e.g., LIME, SHAP), graph specific XAI algorithms are relatively few and far between [103]. A key
reason for this might be the requirement for graph explanations to incorporate not just the rela-
tionships among the input features, but also the relationships surrounding the input’s structural/-
topological information. In particular, the exploration of instance-level explainers—including high-
fidelity perturbative and gradient-based methods—may provide good approximations of input im-
portance in graph prediction tasks. Further techniques, especially those that assign quantitative
importances to a graph’s structure and its features will give a more holistic view of explainability
in the graph domain.

6.2 Scalability

In traditional deep learning, a common technique for dealing with extremely large datasets and
AI models is to distribute and parallelize computations where possible. In the graph domain, the
non-rigid structure of graphs presents additional challenges. For example, how can a graph be uni-
formly partitioned across multiple devices? How can message-passing frameworks be efficiently
implemented in a distributed system? These questions are especially pertinent for extremely large
graphs. Recent developments suggest that sampling-based approaches may provide appropriate
solutions in the near future [109], though such solutions are non-trivial, especially when graphs
are stored on distributed systems [76].

Moreover, the scalability of GNN modules themselves may be improved by further directed re-
search. For example, popular GNN variants such as MPNNs can in practice only be applied to small
graphs due to the large computational overheads associated with the message-passing framework.
Methods such as GATs show promising results regarding scalability, but attentional mechanisms
still incur a quadratic time complexity, which may be prohibitive for graphs with large neighbor-
hoods (on average). An exciting further avenue of research regarding GATs is their equivalence
to Transformer networks [41, 47, 86, 101]. Further directed research in this area may contribute
not only to the development of exciting new graph-based techniques, but also the understanding
of Transformer networks as a whole. Breakthroughs in this area may address challenges specific
to Transformers, such as the design of efficient positional encodings, effective warm-up strategies,
and the quantification of inductive biases.

6.3 Advanced Learning Paradigms

Self-supervised Learning (SSL) techniques have recently been suggested as the “next step” in
AI training paradigms, as they close the gap—and even outperform—fully supervised approaches
in visual tasks [2, 9]. Contemporary approaches to SSL include using models that learn from one
another [9, 26, 104]. In related work, recent research suggests that contrastive objectives can be
designed in the graph domain by selecting views of a single graph instance, thus permitting the
capture of universal structural properties across graph without the need for large labelled datasets
[42, 66, 111, 112]. These initial investigations demonstrate that the graph domain is well suited
to the application of advanced learning paradigms techniques. Further research in this area may
produce more general pretrained GNNs, allow the leveraging of large unlabelled graph datasets,
and yield further insight into nature unsupervised/weakly supervised learning in the development
of intelligence.
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7 CONCLUSION

The development of GNNs has accelerated hugely in the recent years due to increased interest in
exploring unstructured data and developing general AI solutions. In this article, we have illustrated
key GNN variants, described the mechanisms that underpin their operations, addressed their lim-
itations, and worked through examples of their application to various real-world problems (with
links to more advanced literature where necessary). Going forward, we expect that GNNs will con-
tinue to emerge as an exciting and highly performant branch of algorithms that natively model
and address important real-world problems.
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