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ABSTRACT
Contrastive learning has shown promising potential in self-supervised
spatio-temporal representation learning. Most works naively sam-
ple different clips to construct positive and negative pairs. However,
we observe that this formulation inclines the model towards the
background scene bias. The underlying reasons are twofold. First,
the scene difference is usually more noticeable and easier to discrim-
inate than the motion difference. Second, the clips sampled from the
same video often share similar backgrounds but have distinct mo-
tions. Simply regarding them as positive pairs will draw the model
to the static background rather than the motion pattern. To tackle
this challenge, this paper presents a novel dual contrastive formu-
lation. Concretely, we decouple the input RGB video sequence into
two complementary modes, static scene and dynamic motion. Then,
the original RGB features are pulled closer to the static features and
the aligned dynamic features, respectively. In this way, the static
scene and the dynamic motion are simultaneously encoded into the
compact RGB representation. We further conduct the feature space
decoupling via activation maps to distill static- and dynamic-related
features. We term our method as Dual Contrastive Learning for
spatio-temporal Representation (DCLR). Extensive experiments
demonstrate that DCLR learns effective spatio-temporal represen-
tations and obtains state-of-the-art or comparable performance on
UCF-101, HMDB-51, and Diving-48 datasets.

CCS CONCEPTS
• Computing methodologies→ Activity recognition and un-
derstanding; • Information systems→ Video search.
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Anchor (track + jump)

Positive (track + run)

Negative (court + shot) 

Figure 1: An illustration for positive and negative pair in
spatio-temporal contrastive learning. For positive pairs, the
two clips have the same background (track) but distinct mo-
tions (run vs jump). And for the negative pair, the difference
in the background scene (track vs court) is much more no-
ticeable than the difference in motion (jump vs shot). These
two phenomena cause static scene bias.

1 INTRODUCTION
Recently, self-supervised spatio-temporal representation learning
has attracted great interest in the computer vision community.
Compared with traditional supervised settings, the core of this
learning scheme is to extract general representations from large-
scale video data without resorting to human annotations. Instead of
supervision from the costly manual labels, self-supervised learning
obtains supervision from the unlabeled data themselves, enabling
the utilization of millions of freely accessible videos on the Internet.

Inspired by the success in image domain [7, 18], contrastive-
based methods have been expanded to spatio-temporal representa-
tion learning [12, 42] and achieved superior performance compared
to previous pretext task-based methods [26, 38, 59]. In particular, a
common implementation of spatio-temporal contrastive learning
is to sample two temporally different clips from each video, then
regard pairs from the same (different) video as positive (negative)
samples. The model is forced to draw ‘positive’ pairs closer in the
feature space and push apart the ‘negative’ pairs. Under this for-
mulation, the final representations are encouraged to capture the
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discriminative information, which greatly facilitates the perfor-
mance. However, previous works [9, 51] reveal that this learning
diagram tends to favor the static cues while focusing less on the mo-
tion. The potential reason lies in two aspects. First, the static scene
bias exists in the positive pair formulation. In vanilla contrastive
learning, we sample different temporal clips from each video. Those
clips usually share a similar background but have a subtle differ-
ence in motion. As shown in Fig. 1, the positive pair owns the same
background (track field) but different motions (jump vs run). If
the model is encouraged to pull such biased positive pairs closer
in the feature space, the model will naturally attend to the char-
acteristics of the background scene but fail to capture the motion
information. And for negative pairs, the background information
still appears more salient than the motions. Take the negative pair
in Fig. 1 for instance, the scenes of the indoor basketball court and
the outdoor track field almost dominate the entire screen. Thus,
the considerable distinction between these two scenes seems to be
sufficient for the model to push the negative pair away while the
difference in motion patterns in the negative pair is hard to get
noticed. To verify whether the background shortcut truly exists in
contrastive learning, we utilize the static frame, which does not
carry motion information, for analysis. We regard the static frame
as the positive sample of the original RGB clips to train the model.
We find the model pretrained in this manner can achieve almost
the same performance as the vanilla method (48.1% vs 48.9%). This
empirical observation demonstrates that pulling RGB video pairs
closer is basically equivalent to pulling the RGB video and the static
frame closer, which reveals vanilla contrastive learning degrades
the model to focus on background cues and learn static-biased
representations. More pieces of evidence are shown in Table 4.

Hence, here comes a question on how to formulate the learning
scheme that makes contrastive learning take both scene and motion
into consideration. To delve into this problem, our paper proposes
a novel approach named Dual Contrastive Learning for spatio-
temporal Representation (DCLR). We perceive scene and motion as
two kinds of orthogonal and complementary information sources
and decouple them at two levels. We first decouple the static and
dynamic information on the inputs and define a dual contrastive-
based objective that enables the model to capture both static and
dynamic features in video data. Particularly, given an RGB video
sequence, we repeat a random frame along the temporal axis as the
static data and regard the frame difference as the dynamic data. We
train the model by respectively minimizing two dual contrastive
losses. One is the alignment between the original RGB sequence
and static input, the other is between RGB and dynamic input. In
addition, to emphasize motion learning, we mine the truly aligned
motion positive pair of the RGB sequence across different videos.
We do not view the clips from the same video as corresponding
motion positive pairs. Rather, we maintain a dynamically updated
feature extractor and retrieve the most similar motions as the cor-
rected positive pairs. Besides the static-dynamic decoupling in the
input space, we further enhance the decoupling in the feature space.
Specifically, we constrain that the RGB sequence feature activations
should be consistent with the combination of static frame and frame
difference activations. Meanwhile, we use the latter two activation
maps to refine the static and dynamic related features in the RGB

representation for dual contrastive learning. We evaluate the pro-
posed DCLR on three action recognition downstream benchmarks,
UCF-101, HMDB-51, and Diving-48, and manifest the effectiveness
of each component in our framework. The experimental results
demonstrate that DCLR enables contrastive spatio-temporal repre-
sentation learning to resist the background shortcuts and achieve
better generalization ability.

To sum up, our contributions are as follows:

• We formulate a novel self-supervised learning scheme, dual
contrastive learning, motivated by the static bias in the
spatio-temporal representation learning.

• We decouple static and dynamic cues in both data input and
feature space to enhance dual contrastive learning.

• We achieve state-of-the-art or competitive results on down-
stream action recognition and video retrieval across UCF-101,
HMDB-51, and Diving-48 datasets.

2 RELATEDWORK
Self-supervised Representation Learning. The target of repre-
sentation learning is to learn a transferable encoder that extracts
desired characteristics from input data and filters redundant in-
formation. In traditional supervised learning like classification,
[19, 47, 58] directly use the category labels as the learning objective.
While in self-supervised learning, it is nontrivial to define the ob-
jective. Early works design various pretext tasks, e.g., rotation [13],
colorization [27], jigsaw [10, 37], to learn certain attributes. But the
handcrafted pretext tasks are limited in performance. Later, con-
trastive learning promotes great progress in image representation
learning [39, 60, 61]. It employs the consistency between multi-
ple views of the same instance as self-supervisory signal [7, 46].
Compared with the supervised settings, the multi-view constraint
provides richer information, including semantics and some other
instance-specific characters [62, 67]. Therefore, contrastive learn-
ing can obtain comprehensive representations that preserve unique
information of each instance. However, in the video domain, due
to the complex spatio-temporal structures, the naive multi-view
constraint is far from satisfactory. In this work, we formulate a
decoupled multi-view constraint to better fit the spatio-temporal
nature.
Spatio-temporalRepresentationLearning. Inspired by self-supervised
learning in image domain, a line of works relies on pretext tasks to
learn spatio-temporal representations. Since videos contain much
richer characteristics, there are more pretext tasks: temporal order-
ing [38, 59, 63], spatio-temporal puzzles [26, 52], playback speed
prediction [4, 24], temporal cycle-consistency [23, 33, 54], and fu-
ture prediction [3, 15, 16, 36, 48, 49]. Besides, some works expand
the contrastive learning pipeline to the video domain by sam-
pling different clips or modalities to formulate multi-view con-
straint [1, 12, 17, 42, 43, 53]. Recent works [9, 51] observe that
vanilla contrastive-based methods lead to static scene bias and
attend less to temporal dynamic. To deal with it, our work refor-
mulates the conventional contrastive learning as a dual learning
problem, which encodes scene-debiased and motion-aware repre-
sentations. [22, 66] also adopt dual form of contrastive learning
in video data. Specifically, [66] samples clips of the same times-
tamp for spatial contrast and samples clips of different timestamps
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for temporal contrast to separately learn spatial and temporal at-
tributes. Since there is motion misalignment in temporally different
clips, the static bias could still exist in [66]. While ours can avoid
this problem by directly maximizing the agreement between video
clips with corresponding temporally aligned positive pairs. And for
[22], they also conduct contrastive learning via three streams to
extract RGB, static and dynamic features. But [22] only decouples
representations at the level of data input. We extend this decoupling
methodology to feature space. We adopt the attention map to refine
the static-related and dynamic-related contrasts and restrict the
complementarity of RGB features. The superior results compared
to [22, 66] manifest the effectiveness of our dual formulations.
Elimination of Background Bias in Video. The exploration of
mitigating the background bias [8, 20, 34, 55] in the video emerges
for a long time. [8] proposes to mitigate scene bias by augmenting
the standard cross-entropy loss, where it leverages human-masked-
out videos to tell model whether the video contains action. [34]
aims at alleviating static representation bias in existing datasets,
where proposes a procedure to reassemble existing datasets. In
self-supervised domain, other modality like optical flow [32, 57] are
employed to emphasize motion information explicitly. To utilize the
motion information implicitly in RGB, DSM [50] and BE [51] decou-
ple the motion and context by deliberately constructing the motion-
aware positive/negative samples through disturbance. Moreover,
FAME [9] proposes a copy-paste augmentation technique to keep
the foreground motion intact. It copies the foreground area onto
the other background to resist the background shortcut. In this pa-
per, we solve this bias problem from two perspectives. On the one
hand, we decouple RGB into the easily accessible static frame and
frame difference and train the model via dual contrastive loss. On
the other hand, we sample corresponding motion patterns across
videos in a large pool to weaken the bias in positive pair sampling.

3 APPROACH
In this section, we elaborate on our framework of dual contrastive
learning. Our goal is to learn compact and rich feature representa-
tions from videos, which are not only scene-related but also con-
tain temporal dynamic information. We first revisit vanilla spatio-
temporal contrastive learning in Sec. 3.1. And in Sec. 3.2, we illus-
trate the construction of positive (negative) pairs in dual contrastive
learning. Sec. 3.3 introduces the further decoupling in future space
via activation maps. Finally, we give the full objective in Sec. 3.4.

3.1 Spatio-temporal contrastive learning
The vanilla spatio-temporal contrastive learning adopts instance
discrimination [56] in a fully self-supervised manner. For ease of no-
tation, we represent video data 𝑣 ∈ R𝐶×𝑇×𝐻×𝑊 , where 𝐶,𝑇 , 𝐻,𝑊
denote the dimensions of the channel, timespan, height, width, re-
spectively. We notate the video encoder as 𝑓 : R𝐶×𝑇×𝐻×𝑊 → R𝐷 ,
where 𝐷 is the dimension of representation. Similar to image do-
main [7, 14, 18], it maximizes the similarity between two different
views 𝑣𝑖 , 𝑣 𝑗 of one query sample 𝑣 and minimizes the similarity be-
tween negative pairs. Two different views of one video are sampled
from two timestamps and then are processed by the temporal-
consistent augmentation to reserve motion information [12, 42].
We simply adopt other samples from the mini-batch as negative

sample. Assuming the number of mini-batch is 𝑁 , we take rest
2(𝑁 − 1) examples in same mini-batch as negative samples. Having
the positive pairs (𝑣𝑖 , 𝑣 𝑗 ), the loss function L𝑉𝑉 is formulated as

L𝑉𝑉 = 𝐼
(
𝑓 (𝑣𝑖 ); 𝑓 (𝑣 𝑗 )

)
+ 𝐼

(
𝑓 (𝑣 𝑗 ); 𝑓 (𝑣𝑖 )

)
, (1)

𝐼 (𝑓 (𝑣𝑖 ); 𝑓 (𝑣 𝑗 )) = − log
exp(sim(𝑓 (𝑣𝑖 ), 𝑓 (𝑣 𝑗 ))/𝜏)∑2𝑁

𝑘=1 I[𝑘≠𝑖 ] exp(sim(𝑓 (𝑣𝑖 ), 𝑓 (𝑣𝑘 ))/𝜏)
,

(2)

where I[𝑘≠𝑖 ] ∈ {0, 1} is an indicator function and 𝜏 is the tempera-
ture hyper-parameter. sim(𝑧𝑖 , 𝑧 𝑗 ) measures the cosine similarity be-
tween the latent representation, i.e., sim(𝑧𝑖 , 𝑧 𝑗 ) = 𝑧𝑇𝑖 𝑧 𝑗/(∥𝑧𝑖 ∥2



𝑧 𝑗 

2).
As mentioned in the Sec. 1, this contrastive formulation possess

severe background bias [9, 51]. Two temporally different clips usu-
ally own similar static backgrounds but slightly diverse motions.
In this way, contrastive learning would intuitively prioritize the
background information alignment rather than motion. Such bias
contributes to the weak generalization ability of the model.

3.2 Static-dynamic decoupling in data input
To mitigate the aforementioned background bias, we decouple the
original input to perform dual contrastive learning, where we split
the original video data into static frame and frame difference.
Static Frame.We define static frame 𝑠 ∈ R𝐶×𝑇×𝐻×𝑊 . Simply, we
repeat a randomly selected frame to carry the static information
without any dynamic motion. Mathematically,

𝑠 = [𝑣𝑡 , · · · , 𝑣𝑡︸     ︷︷     ︸
𝑇 times

] for any 𝑡 ∈ [1,𝑇 ] (3)

where 𝑣 ∈ R𝐶×𝑇×𝐻×𝑊 is the original clip and 𝑡 is the index of
temporal dimension.
FrameDifference.We denote frame difference as𝑑 ∈ R𝐶×𝑇×𝐻×𝑊 .
By differentiating adjacent frames iteratively, frame difference con-
veys natural motion information where moving areas possess a
great magnitude and static cues are eliminated in this data input.
Mathematically,

𝑑 = 𝑣2:𝑇+1 − 𝑣1:𝑇 , (4)
where 𝑣 ∈ R𝐶×(𝑇+1)×𝐻×𝑊 is the original clip and subscript is the
index of temporal dimension. Except for the frame difference, we
also consider optical flow to convey motion information. Though
the quality of optical flow looks more accurate, the extraction of
the dense optical flow produces an unaffordable computational cost.
Therefore, we adopt frame difference as a cheaper substitute.

Given complementary modalities 𝑠 and 𝑑 , we can losslessly re-
cover 𝑣 with simple union operation 𝑠 ∪ 𝑑 . To this end, it is feasible
to encode the feature of 𝑣 containing both characteristics of 𝑠 and
𝑑 at the same time. Therefore, we transform the vanilla contrastive
objective L𝑉𝑉 into a dual form as

L𝑉𝑉 → L𝑉𝑆 + L𝑉𝐷 , (5)

L𝑉𝑆 = 𝐼
(
𝑓 (𝑣𝑖 ); 𝑓 (𝑠 𝑗 )

)
+ 𝐼

(
𝑓 (𝑣 𝑗 ); 𝑓 (𝑠𝑖 )

)
, (6)

L𝑉𝐷 = 𝐼
(
𝑓 (𝑣𝑖 ); 𝑓 (𝑑 𝑗 )

)
+ 𝐼

(
𝑓 (𝑣 𝑗 ); 𝑓 (𝑑𝑖 )

)
, (7)

where the function 𝐼 (·; ·) is the same as Eq. 2.L𝑉𝑆 (L𝑉𝐷 ) optimizes
the alignment between video 𝑓 (𝑣) and 𝑓 (𝑠) (𝑓 (𝑑)). By minimizing
this dual loss term, 𝑓 (𝑣) should contain both static and dynamic
characters.
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Figure 2: An overview of the proposed method. We first feed three data inputs 𝑠, 𝑣, 𝑑 into the backbone. We search the corre-
sponding motion patterns in the large sample pool established by 𝑓 (𝑑) to correct the motion misalignment in the positive
sample formulation. We utilize the activation maps as a concrete referrer to purify static and dynamic features, and employ
the consistency constraint to let 𝑓 (𝑣) cover the joint of 𝑓 (𝑠) and 𝑓 (𝑑). Best viewed in color.

However, one concern in the decoupled contrastive optimization
process is that 𝑓 (𝑣) possibly collapses to the intersection of 𝑓 (𝑠)
and 𝑓 (𝑑). In other words, 𝑓 (𝑠) and 𝑓 (𝑑) do not contain desired
complementary information but only carry limited common infor-
mation. This collapse exactly goes against our goal. Hence, in order
to prevent the potential collapse problem, we enforce two decou-
pled representations orthogonal by maximizing a regularization
term L𝑆𝐷 , i.e.,

L𝑆𝐷 = 𝐼 (𝑓 (𝑠𝑖 ); 𝑓 (𝑑𝑖 )) + 𝐼
(
𝑓 (𝑠 𝑗 ); 𝑓 (𝑑 𝑗 )

)
. (8)

Note that in contrast to L𝑉𝑆 and L𝑉𝐷 which take two different
views of one video data, we use static frame and frame difference
from the same view to ensure disparity between 𝑓 (𝑠) and 𝑓 (𝑑).
The intuition is that if the model learns to attract positive pairs
from the same view, it will easily attend to redundant information,
which deviates from the vital characteristics. By maximizing L𝑆𝐷 ,
we could guarantee the complementarity between 𝑓 (𝑠) and 𝑓 (𝑑),
and let 𝑓 (𝑣) simultaneously include much static as well as dynamic
characteristics that help unbiased video understanding. We provide
empirical results to support this formulation in the ablation study.

Now we have addressed the collapse problem by introducing
the regularization term L𝑆𝐷 , but the static bias in dual contrastive
formulation remains. Concretely, the positive pair often shares
similar backgrounds but differs in motions, i.e., given two views 𝑣𝑖
and 𝑣 𝑗 , the corresponding dynamic motions 𝑑𝑖 and 𝑑 𝑗 do not always
align. Hence, if we directly pull 𝑓 (𝑣𝑖 ) and 𝑓 (𝑑 𝑗 ) closer through
L𝑉𝐷 , the model cannot learn helpful dynamic-related knowledge.
Therefore, we conduct the cross-video search to figure out the
truly aligned motion patterns as corrected positive motion pairs.
Motivated by the queue mechanism in MoCo [18], we maintain
a slowly changing frame difference feature extractor 𝑓 which is

updated every few epochs, and a queue of length 𝐿 to store extracted
frame difference features. In each iteration, given two-view frame
difference input 𝑑𝑖 and 𝑑 𝑗 , we update the queue with 𝑓 (𝑑 𝑗 ), and
apply 𝑓 (𝑑𝑖 ) as query to retrieve similar pairs in the memory queue.

For a neat presentation, we omit the subscript and denote the
query as (𝑣, 𝑑). We calculate the cosine similarity 𝑆 ∈ R𝐿 between
𝑓 (𝑑) and each frame difference feature in the queue. In this way,
𝑆 reveals the pair-wise similarity in dynamic motions. Hence, we
can intuitively obtain cross-video motion pattern correspondence.
We consider several variants of implementations in the retrieval
stage. One simplest way is to retrieve the sample with highest
similarity score, denoted as (𝑣̃, 𝑑). Then we use (𝑣, 𝑑) and (𝑣̃, 𝑑) to
form modified L𝑉𝐷 , i.e.,

L𝑉𝐷 = 𝐼 (𝑓 (𝑣); 𝑓 (𝑑)) + 𝐼 (𝑓 (𝑣̃); 𝑓 (𝑑)) . (9)

Besides, we can select a subset of samples with topK highest simi-
larity score [(𝑣̃1, 𝑑1), (𝑣̃2, 𝑑2), ..., (𝑣̃𝐾 , 𝑑𝐾 ))], where 𝐾 is the number
of samples in the selected subset. Meanwhile, we employ the co-
sine similarity score as prior knowledge. Then the loss calculation
equals to

L𝑉𝐷 =

𝐾∑︁
𝑖=1

𝑝𝑖 [𝐼 (𝑓 (𝑣); 𝑓 (𝑑𝑖 )) + 𝐼 (𝑓 (𝑣𝑖 ); 𝑓 (𝑑))] (10)

where 𝑝𝑖 = 𝑆 [𝑖]/
∑𝐾
𝑖=1 𝑆 [𝑖] and we sort 𝑆 in descending order. Cross-

instance retrieval is a common and effective way to align the high-
level semantics shown in recent works [11, 29]. In our work, the
motivation for retrieving cross-video samples is different, where
we aim to mitigate the motion pattern misalignment in positive
pairs. Through this process, we fully leverage the natural characters
of frame difference as well as the learned knowledge to mitigate



Dual Contrastive Learning for Spatio-temporal Representation MM ’22, October 10–14, 2022, Lisboa, Portugal

the bias in the dual contrastive formulation. And we also explore
reformulating L𝑉𝑆 in a similar manner. There is no significant gain
in performance, which is concordant with our motivation that there
only exists dynamic misalignment in positive pairs. The detailed
discussions are displayed in the ablation study.

3.3 Static-dynamic decoupling in feature space
We further enhance static-dynamic decoupling in feature space.
To do this, we consider an abstract measurement of the high-level
features, which is the activation maps [2, 68]. The activation maps
involve richer information on the spatio-temporal distribution of
the extracted features. Particularly, we obtain the class-agnostic
activation maps [2] by calculating the summation of the feature
maps 𝐹 (·) ∈ R𝐶×𝑇×𝐻×𝑊 over the channel dimension. For example,
the activation 𝐴𝑣 ∈ R𝑇×𝐻×𝑊 for 𝐹 (𝑣) is

𝐴𝑣 [𝑡, ℎ,𝑤] =
𝐶∑︁
𝑐=1

|𝐹 (𝑣) | [𝑐, 𝑡, ℎ,𝑤], (11)

where 𝑡, ℎ,𝑤 denotes spatio-temporal index,𝐶 is channel dimension.
𝐴𝑠 and 𝐴𝑑 are computed in the same fashion.

Naturally, 𝐴𝑑 attends more to the spatio-temporal areas that
contain dynamic motions, while 𝐴𝑠 focuses on areas with discrimi-
native static cues. Inspired by this, the activation𝐴𝑣 for 𝑓 (𝑣) should
jointly highlight scene and motion related areas. Thus, we derive
the activation alignment constraint:

L𝑎𝑐 = ∥𝐴𝑣 − (𝐴𝑠 +𝐴𝑑 )∥1 . (12)

We apply min-max normalization over the whole spatio-temporal
dimensions to 𝐴𝑣 and (𝐴𝑠 + 𝐴𝑑 ) in loss calculation. To stabilize
the training, we only backpropagate the gradient of L𝑎𝑐 to 𝑓 (𝑣)
stream and stop the gradient to 𝑓 (𝑠) or 𝑓 (𝑑) stream. In this way,
𝐴𝑣 is encouraged to cover both dynamic and static reference areas
and avoid falling into a trivial solution.

Besides the direct alignment in activation maps, we rely on
𝐴𝑠 and 𝐴𝑑 to purify the static and dynamic related features of
𝑓 (𝑣). Particularly, we perform global weighted pooling on 𝐹 (𝑣) to
obtain the refined features. Given𝐴𝑑 , we represent dynamic related
features 𝑓𝑑 (𝑣) as

𝑓𝑑 (𝑣) =
∑
𝑡,ℎ,𝑤 𝐹 (𝑣) [𝑡, ℎ,𝑤] · 𝐴𝑑 [𝑡, ℎ,𝑤]∑

𝑡,ℎ,𝑤 𝐴𝑑 [𝑡, ℎ,𝑤] . (13)

Static related features 𝑓𝑠 (𝑣) are obtained similarly. We now replace
vanilla 𝑓 (𝑣) with decoupled features in the dual formulation, i.e.,

𝐼 (𝑓 (𝑣); 𝑓 (𝑠)) → 𝐼 (𝑓𝑠 (𝑣); 𝑓 (𝑠)) , (14)
𝐼 (𝑓 (𝑣); 𝑓 (𝑑)) → 𝐼 (𝑓𝑑 (𝑣); 𝑓 (𝑑)) . (15)

Through feature space decoupling, we filter out the possible noise
that may interfere with our dual contrastive objective and enhance
the representation ability.

3.4 The Full Objective
The ultimate framework is illustrated in Fig. 2. We first feed three
data types 𝑠, 𝑣, 𝑑 into the video encoder 𝑓 . It is worth noting that we
adopt the same backbone for RGB, static frame, and frame difference
since we empirically find that using separate backbones for three
inputs achieves similar results with the same backbone. The under-
lying reason might be after the pre-processing normalization, the

distribution of the three data types 𝑠, 𝑣, 𝑑 is not that different. Thus
we adopt the same backbone to reduce parameters and training
costs. For the dynamic motion branch, we maintain a dynamically
updated feature extractor 𝑓 to establish cross-video correspondence
and correct the motion misalignment in the original positive pair
formulation. Then, we use activation maps𝐴𝑠 and𝐴𝑑 , as soft masks
to decouple static scene and dynamic motion related features for
dual contrastive learning, and leverage the consistency between
𝐴𝑣 and 𝐴𝑠 + 𝐴𝑑 to enhance the agreement between 𝑓 (𝑣) and the
union 𝑓 (𝑠) ∪ 𝑓 (𝑑).

Overall, the training loss consists of two parts, the dual con-
trastive term and the activation alignment term:

L = (L𝑉𝑆 + L𝑉𝐷 − L𝑆𝐷 ) + 𝜆L𝑎𝑐 , (16)

where 𝜆 is the balancing hyper-parameter, set to 0.5 in default.
Considering that the cross-video retrieval as well as the inferred
𝐴𝑠 and 𝐴𝑑 are not reliable in early training stage, we perform
truly aligned motion positive pair correction in Eq. 9 and feature
refinement in Eq. 14 & 15 after a few epochs.

4 EXPERIMENTS
4.1 Implementation Details
Dataset.We use four popular video benchmarks for experiments,
Kinetics-400 [5], UCF-101 [44], HMDB-51 [31] and Diving-48 [34].
Kinetics-400 [5] is a large-scale and high-quality dataset for action
recognition, collected from realistic YouTube videos. Kinectis-400
contains over 240K video clips of 400 action classes. UCF-101 [44]
is an action recognition dataset consisting of over 13k clips covering
101 action classes. HMDB-51 [31] is another action recognition
dataset with 51 action categories and around 7,000 annotated clips.
Diving-48 [34] involves 18k diving clips of 48 fine-grained diving
categories, whichmajorly vary inmotions and are no vast difference
in the scenes. We pretrain the model on the training set of UCF-
101 or Kinetics-400, and evaluate on the split 1 of UCF-101 and
HMDB-51, or the V2 test set of Diving-48.
Self-supervisedPretraining.Weuse R(2+1)D-18 [47], with 14.4M
parameters, as the video encoder, and share the same network to ex-
tract RGB, static frame, and frame difference features. We randomly
sample two temporally different clips in each video as two views
and apply temporally consistent random resized crop and random
horizontal flip to obtain the frame sequence. We decouple the static
frame input 𝑠 and the frame difference input 𝑑 as described in Eq. (3)
& (4). We apply color jitter and Gaussian blur to augment the RGB
input 𝑣 , static frame input 𝑠 . In this way, 𝑣 , 𝑠 and 𝑑 are all of spatio-
temporal resolution 16 × 112 × 112 and input to the same encoder.
We pretrain the model for 200 epochs on UCF-101 or 100 epochs on
Kinetics-400. An SGD optimizer is adopted with the initial learning
rate of 10−2 and weight decay of 10−4. For the cross-video search,
on UCF-101, we update the slowly changed feature extractor every
10 epochs with a queue length of 2048. On Kinetics-400, we update
the extractor every 5 epochs with a queue length of 16384.
Action Recognition. We use the pretrained parameters except
for the last fully-connected layer for initialization. We employ two
popular protocols to validate the self-supervised representations:
(1) Finetune the whole network with action labels; (2) Freeze the
backbone and train the last linear classifier, denoted as linear probe.
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Method Backbone Pretrain Dataset Frames Res. Freeze UCF-101 HMDB-51
CCL [28] R3D-18 Kinetics-400 16 112 ! 52.1 27.8

MemDPC [16] R3D-34 Kinetics-400 40 224 ! 54.1 30.5
RSPNet [6] R3D Kinetics-400 16 112 ! 61.8 42.8
MLRep [41] R3D Kinetics-400 16 112 ! 63.2 33.4
FAME [9] R(2+1)D Kinetics-400 16 112 ! 72.2 42.2

DCLR(Ours) R(2+1)D Kinetics-400 16 112 ! 72.3 46.4

VCP [35] R3D UCF-101 16 112 % 66.3 32.2
IIC [45] C3D UCF-101 16 112 % 72.7 36.8

MLRep [41] R3D UCF-101 16 112 % 76.2 41.1
TempTrans [24] R(2+1)D UCF-101 16 112 % 81.6 46.4
DCLR(Ours) R(2+1)D UCF-101 16 112 % 82.3 50.1
3DRotNet [25] R3D Kinetics-400 16 112 % 62.9 33.7

Pace Prediction [53] R(2+1)D Kinetics-400 16 112 % 77.1 36.6
MemDPC [16] R3D Kinetics-400 40 224 % 78.1 41.2

Pace [53] R(2+1)D Kinetics-400 16 112 % 77.1 36.6
VideoMoCo [40] R(2+1)D Kinetics-400 32 112 % 78.7 49.2
MLRep [41] R3D Kinetics-400 16 112 % 79.1 47.6

TempTrans [24] R3D Kinetics-400 16 112 % 79.3 49.8
RSPNet [6] R(2+1)D Kinetics-400 16 112 % 81.1 44.6
ASCNet [21] R3D Kinetics-400 16 112 % 80.5 52.3
SRTC [65] R(2+1)D Kinetics-400 16 112 % 82.0 51.2

DCLR(Ours) R(2+1)D Kinetics-400 16 112 % 83.3 52.7
Table 1: Results on action recognition downstream task. We present the backbone encoder, pretrain dataset, spatio-temporal
resolution of each method. Freeze (tick) indicates linear probe, and no freeze (cross) denotes end-to-end finetune.

Method Pretrain Dataset Res. Top-1
Random Init. - - 50.7

BE [51] UCF-101 224 58.8
FAME [9] UCF-101 224 67.8

DCLR(Ours) UCF-101 112 72.7
BE [51] Kinectics-400 224 62.4
FAME [9] Kinectics-400 224 72.9

DCLR(Ours) Kinectics-400 112 75.1
Table 2: Top-1 accuracy on Diving-48 dataset. We compare
different pretrain settings and evaluate on V2 labels.

During the inference phase, we follow the prevalent evaluation
protocols [53, 59] to uniformly sample ten 16-frame clips from each
video, then center crop and resize them to 112×112. We average the
prediction of each clip as video-level action prediction and report
Top-1 accuracy to measure the action recognition performance.
Video Retrieval. We extract spatio-temporal features from the
pretrained model without any further training. Based on the cosine
similarity, videos in the test set retrieve the Top-𝑘 nearest neighbors
in the training set. If the category of the test set exists in the 𝑘
nearest neighbors, it counts as a hit. Following [53, 59], we average
representations of ten uniformly sampled clips. We report Top-𝑘
recall R@k for evaluation.

4.2 Evaluation on Downstream Tasks
Action Recognition. We first present action recognition on UCF-
101 and HMDB-51 in Table 1. We report linear probe and finetune
Top-1 accuracy. For a fair comparison, we do not include the works
with different evaluation settings and much deeper backbone or
non-single modality e.g., optical flow, audio, and text.

In linear probe settings, our method obtains the best result on
both UCF-101 and HMDB-51. Even though MLRep [41] carefully
devises the multi-level feature optimization and temporal modeling,
DCLR beats MLRep [41] significantly, i.e., 9.1% and 13% improve-
ment on UCF-101 and HMDB-51 respectively. In addition, DCLR
surpasses FAME [9] by 4.2% on HMDB51, an approach that empha-
sizes motion pattern learning, demonstrating the effectiveness of
our dual contrastive learning framework.

In finetune protocol, DCLR still achieves the best results among
RGB-onlymethods. Note that [6, 21, 24, 65] introduce diverse tempo-
ral transformations or carefully design temporal pretext tasks. The
superiority over them proves our method distills effective spatio-
temporal representations by decoupling both levels of data input
and feature space.

Additionally, in Table 2, we report finetune results on a more
challenging Diving-48 dataset [34], where all videos share a similar
background and only differ in long-termmotion patterns. In Diving-
48, the fine-grained categories are not strongly correlatedwith static
backgrounds anymore. Thus, the result on such a motion-heavy
dataset can better display whether the model captures the motion-
aware representations. We compare our method with FAME [9],
which applies motion inductive augmentation to highlight motion
patterns in contrastive learning. Our method DCLR greatly out-
performs FAME with 2× smaller resolution on both UCF-101 and
Kinetics-400 pretrain datasets. It demonstrates that DCLR consider-
ably enhances long-range motion pattern modeling and solves the
background bias in naive spatio-temporal contrastive learning.
Video Retrieval. We show the performance on video retrieval
with R@k in Table 3. All models are pretrained on UCF-101 for a
fair comparison. We gain significant improvement on both UCF-101
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Method Backbone UCF-101 HMDB-51
R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

VCP [35] R3D 18.6 33.6 42.5 53.3 7.6 24.4 36.3 53.6
Pace [53] R(2+1)D 25.6 42.7 51.3 61.3 12.9 31.6 43.2 58.0
PRP [64] R(2+1)D 20.3 34.0 41.9 51.7 8.2 25.3 36.2 51.0
STS [52] R3D 38.3 59.9 68.9 77.2 18.0 37.2 50.7 64.8
VCLR [30] R2D-50 46.8 61.8 70.4 79.0 17.6 38.6 51.1 67.6

DCLR(Ours) R(2+1)D 54.8 68.3 75.9 82.8 24.1 44.5 53.7 64.5
Table 3: Results on video retrieval task pretrained on UCF-101. We report R@k (k=1,5,10,20) on UCF-101 and HMDB-51.

L𝑉𝑉 L𝑉𝑆 L𝑉𝐷 L𝑆𝐷 Same-View UCF-101
✓ 48.9

✓ 48.1
✓ 55.2

✓ ✓ 60.2
✓ ✓ ✓ 41.7
✓ ✓ ✓ 61.1

✓ ✓ 49.3
✓ ✓ 59.4
✓ ✓ ✓ 61.7
✓ ✓ ✓ ✓ 62.4

Table 4: Top-1 linear probe accuracy on UCF-101. We com-
pare different loss combinations, with L𝑉𝑉 , L𝑉𝑆 , L𝑉𝐷 to be
minimized,L𝑆𝐷 to bemaximized. The ‘same-view’ indicates
whether adopting the same view samples for L𝑉𝑆 and L𝑉𝐷 .

and HMDB-51 datasets. It indicates that DCLR formulation encodes
static and dynamic characteristics into a more compact manifold.

4.3 Ablation Study
For further analysis, we dissect our approach on several crucial
modules. We pretrain on UCF-101 for 200 epochs, and report the
linear probe Top-1 accuracy.
Effectiveness of L𝑉𝑆 , L𝑉𝐷 , and L𝑆𝐷 . To analyze the effective-
ness of the decoupled learning objective, we make extensive pre-
liminary experiments on various sets of loss. Note that in default
settings, for L𝑉𝑉 , L𝑉𝑆 , and L𝑉𝐷 , we use temporally different
views of the same video to minimize the loss. Instead, for L𝑆𝐷
that needs to be maximized, we utilize the same view to avoid the
collapse issue. We show the linear probe action recognition accu-
racy on UCF-101 in Table 4. Vanilla contrastive spatio-temporal
representation learning baseline is located at the first row in the
table, only using L𝑉𝑉 . By comparing the baseline and various set-
tings, we reach several important observations. First, considering
the first three lines, adoption of L𝑉𝑆 gains a similar result with
baseline (0.8%↓) while using L𝑉𝐷 significantly improves the per-
formance (6.3%↑). It indicates that naively optimizing 𝑓 (𝑣) via L𝑉𝑉
nearly equals pulling the video with its static frame, thus losing
crucial dynamic motion characters. However, employing L𝑉𝐷 can
resist the background shortcuts and boost the representation qual-
ity. The above observation strongly coincides with our motivation
about the existing static bias in the contrastive formulation. Second,
among the middle three lines, we find that jointly minimizing L𝑉𝑆
and L𝑉𝐷 improves the baseline by a large margin (11.3%↑), which
means decoupling in data input can validly solve the background
bias and help the model capture more compact and comprehensive

Setting UCF-101 HMDB-51
None 64.3 37.7

Only 𝑓 (𝑠) 64.5 38.3
Only 𝑓 (𝑑) 67.1 40.1

Joint 𝑓 (𝑠) & 𝑓 (𝑑) 67.2 39.8
Table 5: Ablation study on cross-video correspondence
search. We compare the baseline and different search set-
tings.

Num. Dist. UCF-101 HMDB-51
- - 64.3 37.7
1 - 66.4 39.7
5 Uniform 66.9 39.5
5 Prior 67.1 40.1
10 Uniform 65.6 38.1
10 Prior 66.3 39.8

Table 6: Ablation study on cross-video retrieval sample dis-
tribution formulation. We compare the results with differ-
ent numbers and distribution settings.

representations. And if we adopt the same-view setting to formu-
late L𝑉𝑆 and L𝑉𝐷 , the performance will drop dramatically (7.2%↓).
It is consistent with our hypothesis that the same view causes the
model to deviate from the high-level semantic space and attend to
redundant low-level information. Besides, the introduction of the
regularization term L𝑆𝐷 further improves the accuracy by 0.9%
compared to only utilization of L𝑉𝑆 and L𝑉𝐷 . Third, we inves-
tigate the combination of L𝑉𝑉 and decoupled contrastive losses
in the last four lines. Unsurprisingly, integrating L𝑉𝑉 and L𝑉𝑆
seems to bring no improvement (0.4%↑), while jointly optimizing
L𝑉𝑉 and L𝑉𝐷 greatly enhances the performance (10.5%↑). Also,
incorporating L𝑉𝑉 into the combination of L𝑉𝑆 and L𝑉𝐷 only
leads to marginal improvement (60.2% vs 61.7%). The phenomenon
is reproducible when we add L𝑆𝐷 at the same time (61.1% vs 62.4%).
It is shown that L𝑉𝑆 and L𝑉𝐷 are sufficient for dual contrastive
learning. Hence, L𝑉𝑉 is not imported in default setting.
Cross-video Correspondence Search. We first compare differ-
ent settings for cross-video correspondence search in Table 5. We
observe that employing 𝑓 (𝑑) to search similar motion patterns con-
siderably facilitates the performance while using 𝑓 (𝑠) only spurs
marginal improvement. It proves that there exists a severe static
bias in the original positive sample construction, i.e., the original
positive pairs are well aligned in static scenes but differ in motions.
Through our proposed cross-video motion alignment, the static
bias issue is solved to some extent. It brings nearly 3% gains on
both UCF-101 and HMDB-51 datasets compared to the baseline. In
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L𝑎𝑐 𝑓𝑠 𝑓𝑑 UCF-101 HMDB-51
- - - 61.1 34.4
✓ 62.7 36.1
✓ ✓ 63.2 36.9
✓ ✓ 63.6 37.1
✓ ✓ ✓ 64.3 37.7

Table 7: Ablation study on feature activation maps. We com-
pare the results without cross-video retrieval.

(a) Activation maps𝐴𝑠 of static frame feature.

(b) Activation maps𝐴𝑑 of frame difference feature.

Figure 3: Activation maps of static frame and frame differ-
ence feature.We observe that 𝐴𝑠 and 𝐴𝑑 respectively attends
to representative backgrounds and dynamic motions.
default, we discard the search on the static frame 𝑓 (𝑠) and only
maintain the extractor and queue of frame difference 𝑓 (𝑑).

Besides the utilization of cross-video correspondence search, we
compare the number of similar pairs and the sample distribution
in our corrected motion positive samples. In Table 6, the first line
denotes the baseline while the second line means only one sample
is taken as positive pair. ‘Uniform’ indicates all pairs are equally
important and the final representations are mean averaged. ‘Prior’
means the probability follows pair-wise similarity as Eq. 10. We
can see that ‘Prior’ outperforms ‘Uniform’ consistently. It validates
that the frame difference feature serves as a reliable reference for
similar motion pattern retrieval. Interestingly, 5 positive samples
achieve the highest accuracy while 10 get the worst. Theoretically,
more abundant positive pairs lead to more accurate estimation, and
there should be approximately 2048/101 ≈ 20 samples per class
in the queue. However, due to the clip sampling, there are much
fewer truly aligned motion patterns as illustrated in Fig. 1. Hence,
the performance drops when we retrieve the ten nearest samples
to constitute the positive pairs.
Feature Activation Maps. We detail the effect of using feature
activation maps in Table 7. The first line denotes only decoupling in
data inputs. It is clear that the activation alignment constraint L𝑎𝑐
is effective, and the static-dynamic feature decoupling 𝑓𝑠 and 𝑓𝑑
further improves performance. It is coincident with our motivation
that the activation maps provide more concrete spatio-temporal
reference to capture both static and dynamic characteristics and
mitigate possible static bias.

4.4 Qualitative Analysis
To better understand how the activation maps work, we visualize
the class-agnostic activation maps of the static frame and frame

Figure 4: Cross-video search on static and dynamic features.
We use two frames to present a clip, and show the Top-1 sim-
ilar pair for both static scene 𝑠 and dynamic motion 𝑑 .

difference features in Fig. 3. The static frame features 𝐴𝑠 attend
to representative background areas like the ping pong table and
baseball field. In contrast, the frame difference features𝐴𝑑 focus on
the moving actors. Accordingly,𝐴𝑠 and𝐴𝑑 provide complementary
views to understand a video and jointly contributes to unbiased
video understanding.

Moreover, we also provide two typical examples of our cross-
video retrieval results in Fig. 4. For better illustration, two queries
are two views sampled from the same video. Through our cross-
video search mechanism, we can figure out the exactly aligned clip
with the query, especially in dynamic characters. For example, we
match the query of the first row with another jumping moment as a
motion pattern positive pair. And we find another running motion
sample across the videos in the second row. Moreover, the static
background of the motion pair appears totally different. It verifies
that our cross-video search can reduce the background shortcut via
the introduction of backgrounds from other videos. On the contrary,
there was little difference between query and static similar pair 𝑠̃
in both motion and background content, which also echos with the
quantitative results in Table 5 that the dynamic 𝑑 makes a great
difference but the static 𝑠̃ has a minor effect.

5 CONCLUSION
In this paper, we propose a novel dual contrastive formulation to
eliminate the static scene bias in spatio-temporal representation
learning. We decouple the input RGB video sequence into the static
frame and frame difference, then respectively minimize the decou-
pled loss term to guarantee the comprehensiveness of the RGB
feature. We further utilize the static and dynamic activation maps
as a concrete referrer to filter out redundancy that potentially in-
terferes with learning. Through the experiments, we validate the
effectiveness of dual contrastive learning formulation that simulta-
neously encode desired static and dynamic characteristics.

While our work shows some promising results, the state-of-the-
art self-supervised performances [12] of UCF101 and HMDB51 are
much higher than ours. But we believe our method can be further
boosted through a huger model backbone with greater resolution
input. We leave it as the feature work.
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