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Figure 1: Motivation and solution of our method. (a): Morphing results of continuous attributes (age) and discrete attributes
(face mask and eyeglasses) via InterfaceGAN [41] with different length. Discrete attributes synthesis is inaccurate. (b):
Schematic diagram ofmanipulating face representation in latent space. The yellow arrows indicate semantic prior basis 𝑛𝑏 for
synthesizing images. The green arrows indicate the offset latent representation 𝑛𝑜 of facial attributes. The red arrows indicate
the precise semantic representation 𝑛𝑎 in our method. 𝑤 is the face latent representation in the latent space of pre-trained
StyleGAN2. Notice that each face representation has its unique discrete attribute code. Our method has the state-of-the-art
performance.

ABSTRACT
Manipulating latent code in generative adversarial networks (GANs)
for facial image synthesis mainly focuses on continuous attribute
synthesis (e.g., age, pose and emotion), while discrete attribute
synthesis (like face mask and eyeglasses) receives less attention.
Directly applying existing works to facial discrete attributes may
cause inaccurate results. In this work, we propose an innovative
framework to tackle challenging facial discrete attribute synthesis
via semantic decomposing, dubbed SD-GAN. To be concrete, we
explicitly decompose the discrete attribute representation into two
components, i.e. the semantic prior basis and offset latent repre-
sentation. The semantic prior basis shows an initializing direction
for manipulating face representation in the latent space. The offset
latent presentation obtained by 3D-aware semantic fusion network
is proposed to adjust prior basis. In addition, the fusion network in-
tegrates 3D embedding for better identity preservation and discrete
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attribute synthesis. The combination of prior basis and offset la-
tent representation enable our method to synthesize photo-realistic
face images with discrete attributes. Notably, we construct a large
and valuable dataset MEGN (Face Mask and Eyeglasses images
crawled from Google and Naver) for completing the lack of discrete
attributes in the existing dataset. Extensive qualitative and quanti-
tative experiments demonstrate the state-of-the-art performance
of our method. Our code is available at an anonymous website:
https://github.com/MontaEllis/SD-GAN.

CCS CONCEPTS
• Computing methodologies→ Image processing.

KEYWORDS
Decomposing Face Attribute Representation; Face Discrete At-
tribute Synthesis; 3D-aware; GAN
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1 INTRODUCTION
Image synthesis has various applications, such as interactive graph-
ics editing and image translation. With the rapid development of
deep learning, image synthesis has achieved promising performance
and received ever-increasing interest. Among different categories
of natural images, it is very challenging to synthesize discrete at-
tributes of face images (e.g., face mask and eyeglasses) mainly due to
the complicated structure of face images and the complex geometric
relationships between face images and discrete attributes.

Image-to-image translation methods on face image synthesis try
to learn mapping relationships among different image domains [21,
47, 64]. Generally, these methods achieve synthesis realism from
appearance space while neglecting the critical geometry space.
Some other techniques adopt image composition strategies to fuse
foreground image (e.g., face mask) with background image (face
image) [28, 54]. SF-GAN [54] combines a geometry synthesizer with
an appearance synthesizer to achieve synthesis realism. Although
thesemethods can keep other face attributes intact, they often suffer
from the different distributions of two image domains, resulting in
non coherent fusing edges.

Recently, learning facial semantics via manipulating latent code
in the latent space has achieved great success in high-fidelity face
image synthesis [16, 41, 43]. GANSpace [16] adopts PCA to find
facial semantic representation in the latent space of the GANmodel.
StyleSpace [50] utilizes style channels to control a highly disentan-
gled visual attribute. These methods usually modify a latent code
and enable semantic-level editing for generated images. They can
synthesize faces with fine visual details, however, most of them
mainly focus on continuous attributes (e.g., age, pose and emotion).
When applying these methods to tackle facial discrete attribute
synthesis, the results are always inaccurate. As shown in Fig. 1, the
attribute representation in yellow arrows facilitates poor results
which drift the accurate ones in red arrows. In addition, according
to [46] the manifold corresponding to 2D images in the latent space
do not allow to control accurately 3D shapes. The 3D-aware GANs
have abundant 3D information but there are few works introduce
them to facilitate 2D face image synthesis.

To address the above-mentioned problems, we propose an inno-
vative framework (named SD-GAN) to decompose the latent code
of facial and discrete attributes in the latent space of GANs. From
our key observations (as shown in Fig. 1(a)), face image synthesis
networks [41] fail in regressing accurate discrete attributes which
are orthogonal to other facial attributes. For example, while ma-
nipulating face mask attribute on the second row of Fig. 1(a), the
age and hair of the face changed as well. Hence, we decompose
the semantic discrete attribute into prior basis and offset latent
representation. As shown in Fig. 1, the optimal face images always
correspond to different lengths of basis. So a novel search algorithm
is also proposed for the optimal length of the basis. In this way, the
semantic prior basis shows an initializing direction for manipulat-
ing face representation and makes the network focus on learning
the following offset latent representation instead of losing its way
in the large possible latent space.

In addition, highly motivated by the 3D controlling abilities of
3D-aware GAN [4, 11, 12, 31, 49, 62], we propose a novel 3D-aware
semantic fusion network to generate offset latent representation of

discrete attributes for adjusting prior basis and performing better
authentic. In this way, we introduce 3D embedding into 2D mani-
folds to help the network perform better in identity preservation
and discrete attribute synthesis. The offset latent representation
and semantic prior basis will be combined to facilitate the original
latent code for generating the final synthesized image. As shown in
Fig. 1, with the help ofW prior basis, the network easily converges
to precise latent representation. Our method has the advantages
of both face attribute intacting and visual details. Notably, we con-
struct a dataset MEGN (Face Mask and EyeGlasses images crawled
from Google and Naver). According to the experimental results in
Sec. 4,our MEGN greatly benefits the task of synthesizing images
with discrete attributes. In summary, our contributions are:

• We propose an innovative framework (named SD-GAN),
decomposing semantic discrete attribute representation in
the latent space of GANs into semantic prior basis and offset
latent representation. Our method achieves state-of-the-art
performance both qualitatively and quantitatively.

• We adopt the normal vector of the hyperplane created by
a SVM classifier as the semantic prior basis and a novel op-
timal length of basis search algorithm is proposed therein.
The semantic prior basis shows an initializing direction for
manipulating face representation in the latent space. Also,
a novel 3D-aware semantic fusion network is proposed to
generate offset latent representation. 3D information is inte-
grated in the network for achieving better authenticity.

• We propose a valuable dataset MEGN for complementing
existing datasets that are lacking in discrete attributes, for
the task of face image synthesis.

2 RELATEDWORK
2.1 Image Synthesis via GAN
Image synthesis aims to fuse with other objects for generating
realistic images while the remaining attributes in the un-covered
part of the image are unchanged. Image-to-image translation meth-
ods try to learn optimal mapping relationships between different
image domains for image synthesis. A lot of works adopt con-
ditional GAN [21], dual learning [21], multi-domain transforma-
tion [64], separated latent space swapping [9] and other novel meth-
ods [6, 22, 30] to synthesize general face attributes. Overall, the
existing image-to-image translation methods often achieve synthe-
sis realism from appearance space while neglecting the geometry
space. Image-Composition based methods try to blend foreground
images with a background image into a target image. ST-GAN [28]
adopts geometric warping parameter space to synthesize images
with geometric realism, but it neglects the appearance of realism.
SF-GAN [54] adopts a spatial fusion strategy to synthesize images
for both appearance realism and geometric realism.

Generally, image-composition based methods tend to suffer from
different distributions of two image domains, resulting in incoher-
ent fusing edges. Our method works in a semantic latent space
rather than the methods mentioned above.
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Figure 2: Framework of our method. (1): Diagram of StyleGAN2 pre-training. (2): Flowchart of generating semantic prior
basis. (3): 3D-aware Fusion Network for offset latent representation. Our method decomposes facial attribute into semantic
prior basis and offset latent representation, facilitating face synthesis with discrete attribute. The offset latent representation
obtained by 3D-aware fusion network balances a better authenticity between face images and discrete attribute.

2.2 Latent Semantic Manipulating
Recently, image synthesis methods via manipulating the latent
representation have achieved promising performance and attracted
great attention. Chen et al. [7] separates an input noise vector into
an incompressible part and a latent code; hence it can concentrate
on exploring semantic information underlying latent representation
for generating synthesis images. StyleGAN [24] is proposed to
demonstrate the potential power of decoupling attributes in latent
space to highlight the particular semantic attribute.

Shen et al. [41] hypothesize that the latent representations of
two face images can be separated by a normal vector in latent space,
which can be utilized to implement controllable face image syn-
thesis. Härkönen et al. [16] adopt PCA to find the principle face
attribute representation in the latent space of GAN model. Shen
and Zhou [43] propose an unsupervised method to find semantic
representations for tackling some undefinable attributes, e.g., eye
size and painting style. Tewari et al. [46] proposes a method to em-
bed a parametric face model into the network and implement pose,
illumination manipulation. StyleCLIP [36] conducts image manipu-
lation via a text-based interface for integrating the advantages of
CLIP [38] and StyleGAN. Hu et al. [20] investigates reference and
label attribute editing through a pre-trained latent classifier. Over-
all, the existing GAN-based methods mainly focus on continuous
attributes and often fail to hold discrete ones. Our method aims to
synthesize faces with discrete attributes correctly.

2.3 3D-aware GAN
The works in GANs has promising performance, while the series
of StyleGANs [23–25] lack the ability to hold 3D controls and have
difficulty to achieve complex editing. Recent works leverage Neural

Radiance Field (NeRF [29]) to construct implicit fields to repre-
sent 3D scenes. The following works [5, 12, 31, 63] adopt periodic
implicit GAN, progressively upsampling, Implicit Neural Repre-
sentation [8] and Signed Distance Function (SDF) [34] to synthe-
size 3D-aware data. Head-NeRF [18] is proposed to take 3DMM as
prior to construct a face field. Other methods focus on wild images
and reconstruct 3D faces in supervised [15, 69] or unsupervised
ways [33, 49]. Our method embeds 3D information obtained by
3D-aware Unsup3d [49] into semantic fusion network to synthesize
images with authenticity.

3 OUR METHOD
3.1 Overview
The framework of our method is illustrated in Fig. 2. In step one
of Fig. 2, we will first pre-train the generator of StyleGAN2 𝐺𝑠

on FFHQ and our proposed MEGN. Then our generator will be
fixed after pre-training. To decompose semantic attribute represen-
tation, we explore a semantic prior basis via an SVM classifier in
the latent space in step two. 3D-aware semantic fusion network is
proposed in step three, feature of face image and discrete attribute
will be extracted by two individual encoders. The face image, and
its corresponding 3D information extracted by Unsup3D [49], will
be combined to extract the feature by style encoder. The three fea-
tures (face feature, attribute feature and style feature) will be used
to learn offset latent representation by fusion module. The offset
latent representation and semantic prior basis will be combined
into an adjusted latent representation for promoting the latent rep-
resentation of the original face image. The synthesized face image
will be generated by the pre-trained generator 𝐺𝑠 .
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3.2 Semantic Prior Basis
The synthesis network of StyleGAN2 [25] in the series of Style-
GAN [23–25] can be explained as a function 𝐺𝑠 that maps a latent
code𝑤 ∈ R512 to a realistic face image 𝐼 = 𝐺𝑠 (𝑤). A hyperplane in
the latent space serves as a decision boundary to separate the face
attributes. Learning the hyperplane mainly consists of three steps.
First, we sample 500𝑘 latent codes𝑤 ∈ R512 and generate the cor-
responding face images 𝐼𝑠 = 𝐺𝑠 (𝑤) using a pre-trained generator
of StyleGAN2. Then, an attribute prediction model 𝐹𝑝𝑟𝑒𝑑 will be
adopted to compute a confidence score for the attribute of each
image 𝑐𝑜𝑛𝑓 = 𝐹𝑝𝑟𝑒𝑑 (𝐼𝑠 ). We get the training set {𝑤, 𝑐𝑜𝑛𝑓 } and sort
the corresponding scores and choose samples with extremely high
scores as positive and extremely low ones as negative.

Finally, an SVM classifier will be trained among the dataset above
and resulting in a decision boundary in the latent space. The normal
vector of the decision boundary is normalized as semantic prior
basis 𝑛𝑛−𝑏 ∈ R512 in the latent space of pre-trained StyleGAN2, as
shown in Fig. 2 (2).

However, the semantic prior basis obtained by the SVM classifier
cannot distinguish different facial attributes (with or without dis-
crete attribute) in the non-compact and unsmooth latent space of
GAN. As shown in Fig. 1, the optimal images correspond to different
lengths of prior basis. The face in the second row with length of 3 is
the optimal while the face in the third row is optimal with weight
of 2. In order to promote the initialized guide capability of prior
basis, we adopt a novel search algorithm to compute an optimal
length [ for the semantic prior basis of each face image. Specifically,
we search for an optimal face image with discrete attributes while
maintaining the identity as best as possible. We compute the length
[ according to a formula that consists of three parts and formulated
as below:

𝑆𝑐𝑜𝑟𝑒 =𝐹𝑑𝑒𝑡 (𝐺𝑠 (𝑤 + [ ∗ 𝑛𝑛−𝑏 ))
+ _ × ||𝑀 ⊙ (𝐺𝑠 (𝑤 + [ ∗ 𝑛𝑛−𝑏 ) −𝐺𝑠 (𝑤)) | |22
− _ × ||𝑀 ⊙ (𝐺𝑠 (𝑤 + [ ∗ 𝑛𝑛−𝑏 ) −𝐺𝑠 (𝑤)) | |22,

(1)

where 𝐹𝑑𝑒𝑡 represents a discrete attribute detector which is trained
by YOLO [39] whose confidence scores are used here,𝐺𝑠 represents
the synthesis network of generator in StyleGAN2,𝑤 represents the
latent code of face image (𝑤 ∈ R512),𝑀 represents the binary mask
of face which can be obtained by the method in Sec. 4.2.2, and𝑀

represents the area which does not belong to binary face mask, _ is
used to balance loss terms and is set to 10 here.

The first part in Eq. 1 aims to force the network to learn the
discrete attribute. The discrete attributes are harder than continuous
ones to be disentangled among other attributes, so this part of loss
is significant. The second part aims to morph the area of simulated
discrete mask dramatically, which can improve the possibilities of
correct manipulation and prevent the network from falling into
local optima that do not update. The third part aim to maintain
identity information while manipulating discrete attributes, which
is significant for accurate discrete attribute manipulating.

We have a series of weights {[1, [2, ...} increasing linearly from
0 to 10with step of 0.2 and selecting [𝑚 to maximize 𝑆𝑐𝑜𝑟𝑒 . The [𝑚
is regard as the optimal length and compute semantic prior basis:

𝑛𝑏 = [𝑚 ∗ 𝑛𝑛−𝑏 (2)

3.3 3D-aware Semantic Fusion Network
Existing GAN-based methods generally adopt linear strategies to
directly regress semantic representation [41]. These methods some-
times even fail in disentangling continuous attributes (e.g hair,
smile, age), still less discrete attributes. Distinguished from existing
methods, in our work, we aim to explicitly decompose the discrete
attribute representation so that the network would focus on off-
set latent representation with the benefit of initializing direction
of prior basis. The detailed structure of the 3D-aware semantic
fusion network is illustrated in Fig. 2 (3). Given a face image 𝐼𝑓
generated by StyleGAN2 [25] and a discrete attribute image 𝐼𝑚 , the
3D-aware semantic fusion network learns a mapping function 𝑓𝑚
for correlating their latent semantic representations as:

𝑛𝑜 = 𝑓𝑚 (𝐼𝑓 , 𝐼𝑚), (3)
where𝑛𝑜 is the offset latent representation obtained by our semantic
fusion network. It is worth noticing that 𝑛𝑜 ∈ R14×512 (𝑊 + space
which is more expressive than𝑊 space). The𝑊 + is an extended
latent space which consolidates 14 different𝑤 ∈ R512 code from𝑊

space. The face latent codes𝑤 here are sampled from the mapping
network in StyleGAN2, so 𝑤 ∈ R512. The 𝑤 can translate to𝑊 +
space via broadcasting. The Ground-truth of the training process
can be found in Sec. 4.2.2.

Here, we dissect the design of each sub-module (illustrated by
pink boxes and yellow box in Fig. 2). The face encoder is designed
to learn object-specific features, which serves to preserve identity-
information for the final results. Inspired by works in face recogni-
tion, the weights in face encoder are initialized by ArcFace [10] for
better extracting unique face features at the beginning of training.
For attribute encoder, we adopt the first four residual blocks of
ResNet-18 [17] to extract the feature.

The fixed Unsup3d [49] is applied to get normal map, diffuse map
and albedo. The normal map contains fine detailed shape of the
face, while diffuse map and albedo represent the texture of the face.
Our style encoder (the yellow box in Fig. 2) consists of multi-layer
convolutions to reflect sufficient 3D expression features from the
concatenation of face normal map, diffuse map, and albedo images.
In this way, the style encoder is expressive for 3D shape to estimate
the position of discrete attributes and has adequate 3D information
which can reconstruct the face to enhance the ability of identity
preservation. With object-specific face feature, discrete attribute
feature and adequate 3D feature, we propose a fusionmodule to fuse
features and make them fully expressive for unique precise discrete
attribute features. Inspired by SEAN [66], our feature fusion module
adopts weighted learning with coefficients to fuse the extracted
features. The details of network architecture of style encoder and
fusion module can be found in Appendix.

Our regressor aims to map the fused feature to offset latent
representation in the𝑊 + space mentioned above. Our regressor
consists of sparse-connected layers [40] for mapping operation,
which avoids the issue of redundant parameters in fully-connected
layers. The structure not only has fewer parameters, but also has
stronger performance capabilities.
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Figure 3: Pipeline of generated synthetic dataset. (a):
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So far, we get the adjusted latent code 𝑛𝑎 through the addition
of offset and 𝑛𝑏 :

𝑛𝑎 = 𝑛𝑜 + 𝑛𝑏 (4)
With the adjusted latent representation 𝑛𝑎 , we can modulate the

latent representation 𝑤 for generating a synthesized image with
discrete attributes while retaining other attributes intact. Mathe-
matically, it can be formulated as:

𝐼𝑝𝑟𝑒𝑑 = 𝐺𝑠 (𝑤 + 𝑛𝑎), (5)
where 𝐼𝑝𝑟𝑒𝑑 represents the synthesized face image with discrete
attribute.

3.4 Optimization
We adopt MSE (Mean Squared Error) to evaluate the content loss
of synthesized image, which can be formulated as:

𝐿𝑚𝑠𝑒 = | |𝐼𝑝𝑟𝑒𝑑 − 𝐼𝑔𝑡 | |22, (6)
where 𝐼𝑔𝑡 represents Ground-truth in Sec. 4.2.2.We adopt LPIPS [58]
loss to evaluate feature-level inconsistency, which can be formu-
lated as:

𝐿𝑓 = Φ(𝐼𝑝𝑟𝑒𝑑 , 𝐼𝑔𝑡 ), (7)
where Φ represents LPIPS [58] loss.

In order to explicitly guide the network to converge in the di-
rection of face image with discrete attribute, we adopts a class loss
which can be formulated as:

𝐿𝑐 = 1 − 𝐹𝑑𝑒𝑡 (𝐼𝑝𝑟𝑒𝑑 ), (8)

where 𝐹𝑑𝑒𝑡 represents the classification network which is the same
as Eq. 1 of the discrete attribute.

Finally, the total loss for our method is:

𝐿𝑎𝑙𝑙 = 𝐿𝑚𝑠𝑒 + _1𝐿𝑓 + _2𝐿𝑐 , (9)

where _1 and _2 are empirically defined parameters.

4 EXPERIMENTS
4.1 Implementation Details
The backbone of our face image encoder is a pre-trained Arc-
Face [10]. In our network training, Adam [27] optimizer is applied
to train our model with 30 epochs. The batch size is set to 10.
The initial learning rate is 0.01 and multiplied by 0.8 after each 5
epoch. The parameters in the generator are fixed during the whole
training process. We evaluate our method on 1, 000 images ran-
domly sampled from the pre-trained StyleGAN2. All experiments
are performed on a single GPU (RTX-3090), and PyTorch 1.6.0.

4.2 Dataset setting
4.2.1 Our MEGN for training generator. It is worth noting that the
generator in StyleGAN2 [25] trained by FFHQ cannot successfully
generate images with face mask and eyeglasses. Existing face image
datasets with discrete attribute are mainly designed for the task of
face detection [48], in which the face targets are generally small
and fuzzy. Hence, they are not consistent with the distribution of
FFHQ. Although there are some synthetic fake datasets [3], they
are not realistic in subjectivity for network training.

To obtain high-resolution images close to the distribution of
FFHQ, we manually construct our MEGN (Face Mask and Eye-
Glasses images crawled from Google and Naver), which includes
5, 000 face images with the attributes of wearing a face mask and
eyeglasses (resolution 256 × 256). All data in this dataset are care-
fully crawled from Google and Naver, aligned by Dlib [26]. Then,
we manually remove the inaccurate and blurred images.

We pre-train the generator 𝐺𝑠 StyleGAN2 on a mixed FFHQ
and MEGN dataset, enabling the generator to generate informative
images with discrete attributes. To the best of our knowledge, our
MEGN is the first realistic, high-definition dataset of face images
with discrete attributes, especially face mask. Subsequent exper-
iments (as shown in Sec. 4) have proved that the complement of
MEGN is quite useful for the representation and decoupling of
discrete attributes in the latent space.

4.2.2 Synthetic dataset for training 3D-aware Fusion Network. Due
to the lack of 3D models, we adopt MaskTheFace [1] to synthesize
the face mask image. Specifically, face mask is applied to the face
with landmarks detected by Dlib [26]. The procedure of synthetic
generation is depicted in Fig. 3 (a). In glasses image synthesis, it is
difficult to precisely locate the feet of glasses due to the ambiguity of
depth and self-occlusion, resulting in an unrealistic image. Highly
motivated by the works in [13, 14, 19, 44, 55–57, 59–61, 67, 68], we
also adopt 3DDFAv2 [15] to obtain 3D face representation [2] of
face image and further find the transformation matrix between
BFM [37] and ours. The transformation matrix will be applied to
glasses 3D models (pre-registered to BFM). Finally, we render the
glasses on top of the current face in Fig. 3 (b). Although we adopt
synthetic images as Ground-truth, extensive experiments reveal
that our results exceed Ground-truth in terms of many metrics.
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Figure 4: Representative visual results of different methods. Our method outperforms other methods on visual quality.
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Figure 5: Representative visual results generated by inter-
polation on latent space of GAN models. (a1-a3): Interface-
GAN, (b1-b3): Our method. Our method outperforms Inter-
faceGAN in terms of the fluidity and identity preservation.

Extensive experiments have proven our method is generalisable,
and for other discrete attributes, the network can achieve more
realistic effect by simply simulating Ground-truth as shown in
Fig. 3.

4.3 Qualitative Experiments
4.3.1 Synthesis Face Image with Discrete Attributes. For the task of
face image synthesis, it is important to generate pleasing visual de-
tails (such as coherent edges and complete structure) while keeping
other attributes unchanged. The qualitative results are shown in
Fig. 4. ST-GAN [28] locates the glasses in the wrong place, which
results in an unrealistic appearance. Pix2Pix [21] generates noise
artifacts while synthesizing. CycleGAN [64] generates synthesized

images with incoherent edges and incomplete masks. Interface-
GAN [41] is capable of synthesizing realistic face images with
discrete attributes but fails to retain other face attributes. Style-
CLIP [36] tends to generate inaccurate images. Apparently, our
method keeps other face attributes intact as in composition-based
methods (Ground-truth, ST-GAN [28]) and image-to-image based
methods (Pix2Pix [21], CycleGAN [64]), and synthesizes face images
with visual details as in semantic-based methods [41]. Ground-truth
suffers from obvious aliasing and has unsmooth edges. Overall, our
method outperforms other methods on visual quality especially
anti-aliasing and achieves state-of-the-art results.

4.3.2 Image Interpolation. To comprehensively analyze the seman-
tic property, we adopt face image interpolation, which explores
the semantic information in face synthesis. According to [65], a
suitable synthesis should change the face mask gradually while
keeping other attributes unchanged. As shown in Fig. 5, some repre-
sentative examples of InterfaceGAN [41] implement face synthesis
with face mask while suffering from obvious changes in light at-
tribute ((𝑎1)), age attribute ((𝑎2)), and shapes of eyes ((𝑎2), (𝑎3)).
We find that the image interpolation in our method is reasonable
in semantics and does not change the attributes which should be
retained compared to InterfaceGAN. For example, our method does
not distort the structure of the face or change other attributes of
the face. In contrast, both structure distortion and attributes drift of
the face occur in the synthesis of InterfaceGAN [41]. StyleCLIP [37]
is quite hard to modify images with discrete attribute correctly, so
it is not listed in this experiment. Apparently, our method achieves
remarkable performance in the image interpolation task.

4.4 Quantitative Experiments
4.4.1 Synthesis Performance Evaluating with Re-score. Here, we
adopt Re-score [42, 51] to evaluate the ability to retain attributes
via predicting the confidence of face attributes fidelity before and
after face synthesis. For a fair comparison, we directly borrow the
trained prediction models from the official repository in IALS [53].
Besides, due to the large coverage proportion of face mask, some
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Table 1: Experimental results on retaining face attributes in synthesizing. Re-score is adopted to evaluate the effect of retaining
face attributes. The best Re-score is highlighted in bold. FM denotes face mask, SG denotes sun glasses, and FG denotes frame
glasses. The best results are highlighted in red, and the second-best results are highlighted in blue.

Methods Male (↓) Young (↓) Pose (↓) Eyeglasses
FM SG FG FM SG FG FM SG FG FM (↓) SG (↑) FG (↑)

Ground-truth 0.024 0.094 0.056 0.055 0.131 0.060 0.035 0.002 0.014 0.364 0.992 0.987
ST-GAN [28] - 0.102 0.174 - 0.102 0.210 - 0.022 0.013 - 0.986 0.959
Pix2Pix [21] 0.052 0.180 0.149 0.188 0.118 0.101 0.030 0.014 0.006 0.603 0.992 0.987

CycleGAN [64] 0.028 0.091 0.060 0.032 0.091 0.075 0.029 0.007 0.015 0.395 0.992 0.987
InterfaceGAN [41] 0.116 0.163 0.151 0.106 0.352 0.356 0.043 0.016 0.016 0.367 0.958 0.985

Ours 0.016 0.071 0.127 0.094 0.014 0.026 0.019 0.000 0.012 0.191 0.993 0.988

Table 2: User study results for face image synthesis on face mask, sun glasses, and frame glasses. Original feature retention
(ORF), mask synthesis comfort (MSC), and overall quality of synthesis (OQS) are three metrics for evaluation.

Methods Face Mask Sun Glasses Frame Glasses
OFR (↑) MSC (↑) OQS (↑) OFR (↑) MSC (↑) OQS (↑) OFR (↑) MSC (↑) OQS (↑)

Ground-truth 4.092 2.762 3.062 3.977 2.985 3.308 4.031 2.869 3.254
ST-GAN [28] / / / 3.569 2.369 2.554 3.715 2.869 3.038
Pix2Pix [21] 3.277 2.685 2.838 2.712 2.185 2.269 3.223 2.438 2.685

CycleGAN [64] 3.923 2.838 3.162 3.754 2.846 3.100 3.915 2.762 3.192
InterfaceGAN [41] 2.069 3.985 3.115 3.408 4.285 3.823 3.169 4.277 3.877
StyleCLIP [36] 3.078 1.674 2.154 3.215 1.349 2.679 3.219 1.561 3.476

Ours 3.992 3.715 3.854 4.077 3.831 3.947 4.077 4.131 4.138

concealed attributes, such as smiles, are not considered in our exper-
iments. The detailed results are listed in Tab. 1 and we can observe
that our method outperforms other methods on most attributes
according to the Re-score metric. Our method outperforms Inter-
faceGAN [41] on the young attribute in frame glasses synthesis
by 0.330 in terms of Re-score. Notably, our method outperforms
Pix2Pix [21] on the eyeglasses attribute and young attribute in
face mask synthesis by 0.412 and 0.094 in terms of Re-score, re-
spectively. Generally speaking, image composition based methods
(Ground-truth, ST-GAN [28]) and image-to-image based methods
(Pix2Pix [21], CycleGAN [64]) should achieve optimal results on
Re-score because they are directly affixed with a discrete attribute
or will learn a fine-grained pixel-level mapping relationship. Appar-
ently, our method is comparable with image composition-based and
image-to-image translation methods and even outperforms them in
some attributes. Although InterfaceGAN [41] achieves promising
Re-scores, it greatly changes other attributes, as shown in Fig. 4.
StyleCLIP [36] edits incorrect images and the resulting images are
almost identical to the original, so it is not listed in the table. Overall,
our method achieves promising results in terms of Re-score.

4.4.2 User Study. User study is a human evaluation metric for ver-
ifying the quality of synthesized images [52]. To test the quality of
generated images comprehensively, we adopt three testing metrics:
original feature retention (ORF) for evaluating identity preserva-
tion ability while manipulating, mask synthesis comfort (MSC) for
evaluating the performance of discrete attribute manipulating, and
overall quality of synthesis (OQS) for evaluating the authenticity of
global face manipulating. The scores of the above three metrics all

range from 1 to 5. We invited 200 volunteers, and each volunteer
was randomly given five sets of images randomly selected from
1, 000 groups. Each set includes eight images, i.e., original image,
Ground-truth, ST-GAN [28], Pix2Pix [21], CycleGAN [64], Inter-
faceGAN [41], StyleCLIP [36] and Ours. Every volunteer has the
duty to score each set of images separately by three metrics.

The detailed results are listed in Tab. 2. From Tab. 2, we can
observe that the image composition-based methods and image-
to-image based methods have good ORF but unpromising MSC
on discrete masks. InterfaceGAN [41] achieves the best MSC but
poor ORF. Although the performance of our method on MSC is
not the best, it is very close to InterfaceGAN [41]. About OFR, our
method under-performs Ground-truth only 0.1 in face mask. But
our method apparently outperforms other methods on OFR in sun
glasses and frame glasses synthesis. On OQS, our method outper-
forms InterfaceGAN [41] by 0.739, 0.124, and 0.261 on face mask,
sun glasses, and frame glasses, respectively. Apparently, our method
achieves state-of-the-art performance against other methods.

4.5 Ablation Study
To verify the effectiveness of our semantic prior basis and 3D-
aware fusion network, we conduct two ablation experiments both
qualitatively and quantitatively, as shown in Fig. 6 and Tab. 3.

Comparing the results without semantic prior basis and without
3D information, we observe that synthesized images generated
via semantic prior basis are more visually realistic than the results
without semantic prior basis (denoted by "Ours (w/o basis)") and the
results without 3D information (denoted by "Ours (w/o 3d)"). The
results generated via semantic prior basis and 3D information have
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Figure 6: Ablation study for Ours, Ours (w/o basis) and Ours (w/o 3d). Ours (w/o basis) denotes our method without semantic
prior basis and Ours (w/o 3d) denotes our method without 3d information.

Table 3: Experimental results on Re-score for evaluating the importance of semantic prior basis and 3d information. Best
scores are highlighted in red.

Methods Male (↓) Young (↓) Pose (↓) Eyeglasses
FM SG FG FM SG FG FM SG FG FM (↓) SG (↑) FG (↑)

Ours 0.016 0.071 0.128 0.094 0.014 0.026 0.019 0.000 0.012 0.191 0.993 0.988
w/o basis 0.096 0.132 0.228 0.204 0.051 0.072 0.019 0.015 0.038 0.015 0.992 0.974
w/o 3d 0.041 0.080 0.214 0.126 0.004 0.040 0.019 0.011 0.012 0.192 0.992 0.987

coherent synthesizing edges and intact face information, while the
results without the semantic prior basis are not photo-realistic. This
may be induced by the large area of the face mask compared with
relatively small face images, making the network challenging to
learn discrete semantic attribute representations of GAN directly. In
sun glasses and frame glasses synthesis, the shape of glasses is quite
blurry and aliasing without the help of semantic prior basis. In some
details (such as lips and hair), the results without 3D information
tend to be changed lightly. The lack of 3D information embedding
makes it difficult for the network to retain the detailed information
of the original image. While in our method, the synthesized images
with semantic prior basis and 3D-aware embedding are more anti-
aliasing and authentic.

In addition, we analyze the quantitative results of our method
in terms of Re-score with and without semantic prior basis and 3d
information. The detailed results are listed in Tab. 3. From Tab. 3, we
observe that "Ours" apparently outperforms "Ours (w/o basis)" and
"Ours (w/o 3d)" nearly on all attribute metrics. In particular, "Ours"
outperforms "Ours (w/o basis)" by 0.061 on the Male attribute
and outperforms "Ours (w/o basis)" by 0.015 on the pose attribute
when synthesizing sun glasses. In addition, the results of "Ours
(w/o basis)" are always worse in metrics. Overall, our method can
coherently improve the quality of synthesized images qualitatively
and quantitatively, especially when semantic prior basis is well
relevant to the optimal semantic representation of the GAN model.

5 CONCLUSION
In this paper, we propose an innovative framework by decomposing
semantic discrete attributes representation of GAN into semantic
prior basis and offset latent representation. The semantic prior basis
will be learned by the SVM classifier in the latent space of GAN
and a novel semantic fusion network is proposed to generate off-
set latent representation of facial attributes with the guidance of
face 3D information. In this way, our method can well learn accu-
rate discrete attributes in the facial representation for synthesizing
photo-realistic face images. Extensive experiments demonstrate
that our method can synthesize photo-realistic face images with
discrete attributes while stabilizing other attributes. In the future,
we will continue to study the properties of semantics in the latent
space of GANs for generic real image editing tasks.
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A OVERVIEW
This supplementary material contains the following parts:

• We introduce the architecture details of style encoder and
fusion modules of the proposed 3D-aware semantic fusion
network.

• We provide extra experiments to prove the performance of
our method.

• We provide some example images in our proposed MEGN
(Face Mask and Eyeglasses images crawled from Google and
Naver).

• We propose a video to show discrete attribute manipulation
results (see MM.mp4 in the supplement zip).

B ARCHITECTURE DETAILS
Following the networks in SPADE [35] and SEAN [66], we design
the structure of style encoder and fusion module to synthesize face
with discrete attributes.

B.1 Style Encoder
As shown in Fig. 7 (a), our style encoder consists of multi-layer
convolutions to extract 3D features from the concatenation of face
normal map, diffuse map, and albedo images. The region-wise aver-
age pooling is adopted here to get style feature. The pooling mainly
aims to adapt the dimensions of the subsequent module.

B.2 Fusion Module
As shown in Fig. 7 (b), our fusion module adopts weighted learning
with coefficients to fuse the extracted features. Specifically, the style
feature undergoes a per-style convolution and is then broadcast to
face feature. In this way, the style map is yielded. The style map
is processed by convolution layers to produce pixel normalization
values of 3D information. The face feature passes through a con-
volution layer and then two separate convolution layers to obtain
pixel normalization values of face. The learnable weight parame-
ters 𝛼1 and 𝛼2 during training would adjust the proportion of each
variable when fusing with attribute feature.

C EXTRA EXPERIMENTS
C.1 Image Quality Estimation
In our experiments, we adopt SDD-FIQA [32] and SER-FIQ [45] to
evaluate the realism of synthesized images. SDD-FIQA [32] and
SER-FIQ [45] are two popular metrics in evaluating the effectiveness
of image data for the face recognition task. The higher scores of
SDD-FIQA and SER-FIQ denote the better quality of synthesized
images. The detailed results are listed in Tab. 4.

From Tab. 4, we observe that our method outperforms other
methods in terms of SDD-FIQA and SER-FIQ in face mask synthe-
sis. Notably, our method outperforms InterfaceGAN [41] in face
mask synthesis by 5.95 in terms of SDD-FIQA. Although Inter-
faceGAN achieves a higher SDD-FIQA score (68.652) than Ours
(56.350) on sum glasses synthesis, it significantly modifies other
attributes, as shown in Fig. 9,10,11. And this is detrimental for many
tasks, such as data augmentation for face recognition. Overall, our
method achieves promising quality for face image synthesis and can
significantly benefit data augmentation in face recognition-related
tasks.

C.2 Decoupled Degree Between Attributes
In this section, we study the decoupled degrees between attributes
to reflect if attribute subspace is correctly divided in latent space.
Here, we use cosine similarity to measure the decoupled degree
between two semantic representations. A large value of cosine
similarity indicates a bad decoupled degree of two attributes. We
compare our method with InterfaceGAN [41]. The detailed results
are shown in Fig. 8. The attributes (age, beauty, light, gender, face
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Figure 7: The architecture of style encoder and fusion module.

Table 4: Experimental results of face image quality estimation with SDD-FIQA and SER-FIQ. The best SDD-FIQA and SER-FIQ
are highlighted in red, and the second-best results are highlighted in blue. FM denotes face mask, SG denotes sun glasses and
FG denotes frame glasses.

Methods SDD-FIQA [32] (↑) SER-FIQ [45] (↑)
FM SG FG FM SG FG

Ground-truth 58.017 55.854 66.045 0.874 0.767 0.885
ST-GAN [28] / 53.329 65.691 / 0.816 0.875
Pix2Pix[21] 56.102 50.326 63.319 0.880 0.491 0.879

CycleGAN[64] 58.222 55.482 66.272 0.878 0.775 0.883
InterfaceGAN [41] 55.523 68.652 68.507 0.877 0.889 0.889
StyleCLIP [36] 55.720 54.694 55.574 0.880 0.886 0.885

Ours 61.473 56.350 64.789 0.881 0.859 0.884

Figure 8: Experimental results of decoupled relationships
between attributes. A large value of cosine similarity indi-
cates a bad decoupled degree of two attributes. Our method
outperforms InterfaceGAN with a significant margin.

mask, and glasses) obtained by InterfaceGAN [41] have a bad decou-
ple relation between each other. Especially, the decoupled degree
between age and face mask reaches 0.217, the decoupled degree be-
tween age and glasses reaches 0.277, the decoupled degree between
beauty and glasses reaches 0.179. In our method, the decoupled
degrees between attributes are all approximate to 0. This indicates
that attribute representations in our method are almost orthogo-
nal with each other. In particular, our method uncouples age with
glasses, age with face mask, and beauty with sun glasses, resulting
in superior decoupled degree 0.007, 0.014, and 0.005, respectively.
Apparently, our method outperforms InterfaceGAN [41] in the ca-
pability of decoupling relationships between different attributes
with a significant margin.

C.3 Additional Results
We provide additional results to those presented in the paper. In
Fig. 9,10,11, we show a large number of visual results of face mask,
frame glasses and sun glasses synthesis methods separately. Our
method keeps other face attributes intact and also synthesizes face
images with visual details especially on anti-aliasing.

D OUR PROPOSED MEGN
We propose a big dataset MEGN (Face Mask and Eyeglasses images
crawled from Google and Naver) which includes 5, 000 face images
with discrete attributes. See Fig. 12 for some representative images.
Existing face image datasets with discrete attributes only have small
and fuzzy images. To the best of our knowledge, our MEGN is the
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first realistic, high-definition dataset of face images with discrete
attributes, especially face mask.
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Figure 9: Representative visual results of discrete face mask attribute synthesis. Other methods have poor performance on
discrete face mask and fail retain face attributes while editing. Our method outperforms other methods on visual quality
especially anti-aliasing and other face attributes intactness.
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Origin image Ground-truth InterfaceGANPix2Pix CycleGAN StyleCLIP Ours
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Figure 10: Representative visual results of discrete frame glasses attribute synthesis. Othermethods have poor performance on
discrete frame glasses and fail retain face attributes while editing. Our method outperforms other methods on visual quality
especially anti-aliasing and other face attributes intactness.
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Figure 11: Representative visual results of discrete sun glasses attribute synthesis. Other methods have poor performance on
discrete sun glasses and fail retain face attributes while editing. Our method outperforms other methods on visual quality
especially anti-aliasing and other face attributes intactness.
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Figure 12: Some example images in MEGN. Our MEGN is the first realistic, high-definition dataset of face images with discrete
attributes, especially face mask.
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