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ABSTRACT
To generate dance that temporally and aesthetically matches the
music is a challenging problem, as the following factors need to be
considered. First, the aesthetic styles and messages conveyed by
the motion and music should be consistent. Second, the beats of the
generated motion should be locally aligned to the musical features.
And finally, basic choreomusical rules should be observed, and the
motion generated should be diverse. To address these challenges, we
propose ChoreoGraph, which choreographs high-quality dance mo-
tion for a given piece of music over a Dynamic Graph. A data-driven
learning strategy is proposed to evaluate the aesthetic style and
rhythmic connections between music and motion in a progressively
learned cross-modality embedding space. The motion sequences
will be beats-aligned based on the music segments and then in-
corporated as nodes of a Dynamic Motion Graph. Compatibility
factors such as the style and tempo consistency, motion context
connection, action completeness, and transition smoothness are
comprehensively evaluated to determine the node transition in the
graph. We demonstrate that our repertoire-based framework can
generate motions with aesthetic consistency and robustly extensi-
ble in diversity. Both quantitative and qualitative experiment results
show that our proposed model outperforms other baseline models.
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nization, Dynamic Motion Graph

1 INTRODUCTION
Human dance is a performing art that is composed of human pose
and motion sequences by choreographers based on background
music or the theme of the performance. This human activity en-
codes human cultures, expressions, and beat information, which
should be aligned with the paired songs or music. The dance style
of the dance sequences can be informative, encoding meaningful
expressions to represent the theme of the performance and per-
form rituals like Classical Ballet for Swan Lake and Ceremonial
Dances, or can be groovy and unremitting to represent dancers’
skills and emotions like Street Dances and Contemporary Dances.
To design a dance sequence that is appropriate for the background
theme and music, the dance choreographer requires professional
experience and extensive reasoning ability to handle and encode
the complex relationship between dance styles, poses meanings,
and music rhythms into the dance choreography.

∗ Corresponding author: Jie Chen.

Recently, the availability of stable and accurate 3D motion cap-
ture systems provides opportunities for dance performers and tech-
nological companies to record enormous amounts of paired dance
and music data, dance generation based on data-driven approaches
becomes the hot trend of research [17, 18, 29, 32]. These approaches
can capture the correlation between dance styles, poses meanings,
and rhythms statistically based on the recorded music and dance
data, and apply the learned relationship to generate new dance
sequences that match the input variables such as music and dance
styles. Although the quality of generated dance sequences from the
trained generative models is still not decent from human evalua-
tion, those models still help multimedia content creators and dance
choreographers to design new dance moves for non-uniform music.

On the other hand, traditional methods [3, 9, 13, 20] that generate
motion sequences based on re-aligning sliced motion segments also
benefit from the increased motion and music data. More represen-
tative and informative feature extraction methods are implemented
based on the data statistics, and more distinct and stylish motions
are inserted into the collection for those methods to choose in the
choreograph process. Those methods can produce realistic style-
matched motion from the extracted features guided by professional
artists, but they also suffer from generating motion with matched
rhythmic features because motion segments with perfect style and
rhythm are not always available in the collection. Also, the problem
of action completeness exists in the segment selection methods,
which cause unpleasant artifacts such as sudden stop in spinning
or waving motion in the generated motion sequence.

While the state-of-the-art generative models perform well on
generating style consistent motion with smooth transitions [29],
they usually struggle on music with immense style change. The
generated motion do not response to such style change, showing
limited style variation and producing repetitive moves. Although,
traditional methods can handle music with immense style change
that is captured by designed features, the rhythm of the generated
motion usually cannot match that of the music. We want to design
a framework that is based on the style and rhythm information ex-
tracted using data-driven approaches, while preserving the ability
to generate realistic motion with immense music style change in tra-
ditional methods. Therefore, we design a framework that contains
Style Embedding modules and Tempo-Density estimators trained
using data-driven approaches, while having a Motion Dynamic
Graph for motion node selection and final motion generation.

In this work, based on the input motion segment database and
input music, we propose a motion generation framework that con-
tains Style Embedding modules that are responsive to music style
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change, Dynamic Time-Warper which can re-align the motion seg-
ment according to music rhythmic features extracted from Tempo-
Density module, and Dynamic Graph which construct final motion
sequence by choosing warped motion segments after taking music
style, action completeness, andmotion transition into consideration.
The Style Embedding modules and Tempo-Density estimators are
trained using data-driven approaches, while the Dynamic Graph de-
sign is based on the traditional method Motion Graph [9, 13, 20, 25].

To summarize, our contributions will be as follows:
(1) We propose a motion generation framework which select

and warp motion segments based on trained Style Embed-
ding and Tempo-Density modules, while synthesize output
motion that is responsive to music style change and action
completeness.

(2) We propose a data-driven learning strategy to extract mo-
tion rhythmic feature based on motion distortion. The ex-
tracted motion Tempo-Density allows efficient motion seg-
ment warping for music rhythm and tempo alignment.

(3) Based on the Dynamic Graph, we have incorporated choreo-
musical considerations such as action completeness, transi-
tion naturalness, and style appropriateness into the chore-
ography pipeline. User study shows dance generated by our
ChoreoGraph is more natural and diverse.

2 RELATEDWORK

2.1 Deep Learning Method for Motion
Synthesis

Recent works on motion synthesis mainly focus on deep learning
methods such as CNNs [10], RNNs [5, 7, 8, 11, 18], Normalizing Flow
Models [29], and Transformers [1, 2, 15–17, 22], which can corre-
late cross-modality features and extract meaningful representations
from complex and diverse real-world data and produce motion se-
quences better satisfying the complex cross-modality alignment
requirement. Especially, music conditioned dance generation task
requires the model to learn, extract, and utilize cross-modal infor-
mation, which is very abstract and ambiguous.

AI Choreographer [17] and Transflower [29] propose end-to-end
data-driven learning approaches, extracting cross-modal informa-
tion from elemental music features and human skeleton motion
data to generate output motion sequences using Transformer [2, 30]
or Normalizing Flow [24] model. These models can generate motion
sequences satisfying multiple constraints, especially on audio beat
alignment and style matching. However, those methods usually
overfit the training data, and the generated dance contains unnatu-
ral and unattractive patterns. When the audio beat and rhythm go
very fast, the generated motions becomemonotonous and repetitive
as the model wants to match every audio beat.

From our observations on dance sequences designed by pro-
fessional choreographers, not all audio beats in the music should
be matched with motion beats, as the number of motion beats is
usually smaller. Instead, every motion beat in the dance should be
matched with audio beats. The misaligned motion beats will create
awkward dissonance from the human perspective.

In our work, we select and warp sequences from the motion
dataset to make sure every motion beat has a matched audio beat.

This guarantees both the naturalness and beat alignment of the out-
put motion. As the selection and warping are based on data-driven
learning approaches, the output motion is aesthetically aligned to
conditioned music while matching the music-motion style.

2.2 Time Series Alignment
Motion re-tempo and beat alignment can be viewed as the one-
dimensional time series alignment problem if the motion and mu-
sic rhythms can be expressed as one-dimensional sequences. Dy-
namic Time Warping [26] is one of the most representative and
powerful methods for aligning two time series and evaluating the
alignment cost. Soft DTW [6] and DILATE [14] turn DTW from a
non-differentiable dynamic programming loss into a differentiable
alignment loss, which provides alignment evaluations between the
prediction and ground truth time series in neural network training.
The temporal loss in DILATE [14] provides extra focus on temporal
change detection, which is ideal for the music-motion beat align-
ment tasks. However, such differentiable alignment loss prevents
explicit alignment path evaluation and contains boundary align-
ment assumption, which prevents its application to subsequence
extraction.

In our model, the Dynamic Time-Warper module is implemented
based on Dynamic TimeWarping [26] subsequence extraction in Li-
brosa library [19], which takes a shorter music tempo-density time
series and a longer motion tempo-density time series, and generates
an alignment path for subsequence extraction from motion.

2.3 Graph-based Motion Synthesis
Instead of generating motion poses from the trained models, dance
sequences can also be generated using traditional methods like
Motion Graph [13, 20, 25], statistic feature based models [3, 23, 27],
and heuristic-based algorithm approaches [28] by searching for
appropriate motion segments in the dataset. Yang et al. [34] applied
a graph-based framework based on the stochastic greedy search to
synthesize body motions for social conversations. ChoreoMaster
[4] combines the data-driven methods and the traditional Motion
Graph approach by training a choreomusical embedding network to
extract and process cross-modal information into style and rhythm
requirements, and examining those requirements in the motion
node selection phase in the graph-based framework.

When combining music information with these traditional meth-
ods, the custom-designed cross-modality cost will usually be added
to the framework. These methods usually exploit some simple and
intuitive relationship between music and motion such as rhythm
alignment, but they usually fail to capture abstract correlations
such as style and theme accurately. Also, these methods need to
scan through an enormous amount of motion node candidates to
find a motion segment satisfying all the conditions. Therefore, these
methods either need special labeling in the motion dataset for effec-
tive searching or have a coarse resolution of the rhythm feature to
avoid the exponential growth of graph connections. For example,
ChoreoMaster [4] categorizes motion rhythm into 13 common 2-
second rhythm signatures, and converts beat alignment constraints
into a classification problem of 13 classes. The categorization of mo-
tion rhythm imposes a strong limitation on the beat pattern in the
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Figure 1: Proposed system diagram of our motion generation model.

generated motion and prevents the application of the framework
to non-uniform music.

In our work, only a small dataset is needed for selection as the
music rhythm alignment requirement will be satisfied by motion
segment warping. As we warp the motion from the Style-based
Selector to align with the music beat and rhythm, only a small
number of style-matched and beat-aligned motion nodes will be
inserted into the graph, and this makes the search problem easier.
Also, those nodes will only be activated once, and the outdated
nodes will be removed from the graph to reduce computation costs.

3 PROPOSED METHOD
Our method is composed of the learning-based Tempo-Density
module and Style Embedding module for motion selection and
warping to produce motion candidate nodes, and a Dynamic Graph
to select the best node while taking music and the last selected mo-
tion node into consideration. Our Motion/Music Style Embedding
module and Tempo-Density prediction module are both trained on
music-dance data pairs which samples and then time-warps motion
sequences into graph nodes based on extracted music style and
tempo features. After that, from all the tempo-adjusted and beat-
aligned motion node candidates in the graph, our Dynamic Graph
will select the best motion node by considering and programming
re-examining music-motion styles and choreomusical rules over
the graph edge cost computation. Given a 𝑇 seconds music piece,
our goal is to generate a dance sequence that has the same time
duration and matches the music local features and aesthetic styles.

We adopt a Dynamic Motion Graph framework as shown in
Fig. 1, which choreographs new dances based on source motion
segments organized as 8-second clips in a databaseX = {𝑋𝑖 }𝑖 . Note
that each motion clip is a choreographed dance piece according to a
music clip, and the two form a data pair (𝑋𝑖 , 𝑀𝑖 ). X can be created
from external sources such as the AIST++ dataset [17].

We represent dance as a sequence of poses (sampled at 20 frames
per second) and the music as a sequence of spectral features (sam-
pled at 60 frames per second). We process both the music and

motion sequences based on 1-second units which we refer to as mu-
sic/motion nodes. Each node at a given time 𝑡 belongs to a 4-second
segment window based on which local features are extracted for
style matching. For each 4-second music segment, a Music Style
Embedding Module S𝑚 is designed to encode the music features
into a hidden style vector 𝑠𝑚 , which will be compared against the
motion style vectors {𝑠𝑑 } extracted for the 8-second motion clips
in the Music-Dance Dataset X by the Motion Style Embedding
Module S𝑑 . Then, a Style-based Selector picks 𝐾 motion clips from
X. Next, the Music and Motion Tempo-Density Estimators, i.e.,
T𝑚 and T𝑑 , estimate both the music and motion tempo-densities
based on which the Dynamic Time-WarperW works to extract the
beats-aligned and tempo-adjusted 4-second motion segment ⌈𝑋 ⌋
from the selected 8-second clips𝑋 and organize as four new motion
nodes ⌈𝑋 ⌋ = {𝑥 𝑗 }4𝑗=1 (1 second each) into the Dynamic Graph. The
Dynamic Graph will organize all the inserted motion nodes and
activate those at the appropriate time. For every second, one motion
node xt from all the activated nodes will be selected based on the
graph edge cost which includes style cost, action completeness cost,
and motion transition cost. Finally, the sequence of selected motion
nodes will be concatenated and blended into output motion 𝑋 .

In the following, Sec. 3.1 introduces the Style-based Selector for
the source motion segment selection fromX. Sec. 3.2 introduces the
Tempo-Density module for the alignment of motion to music beats
and tempo. Sec. 3.3 describes the Dynamic Graph which organizes
the time-warped motion segments into nodes and synthesizes the
result motion by node transition.

3.1 Style-based Motion Segment Selector
Music and dance are two highly correlated data modalities that
have explicit beat alignment and implicit style connection. The
style connection is often hidden in the choreographer’s feelings and
cultural background, which are hard to model explicitly. Therefore,
we construct Motion and Music Style Embedding modules for style
extraction and train them based on data-driven approaches.
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For the Music Style Embedding module S𝑚 and the Motion
Style Embedding module S𝑑 , we follow the choreomusical style
embedding module design in ChoreoMaster [4]. The Music Style
Embedding module has 4 convolutional block layers, 2 GRU layers,
and 1 linear layer. On the other hand, the Motion Style Embedding
module has 4 motion graph convolution block layers [33], 2 GRU
layers, and 1 linear layer. The input of the Music Style Embedding
module S𝑚 is a 4-second Mel-spectrogram of shape [1, 96, 4*60],
and will be processed into 32-dimensional style vector 𝑠𝑚 . The
input of the Motion Style Embedding module S𝑑 is 4-second joint
coordinates of shape [3, 21, 4*20], and will be processed into a 32-
dimensional style vector 𝑠𝑑 . Furthermore, to select motion segments
that are easier for temporal alignment in Sec. 3.2, the Embedding
module also has a motion beat number prediction module B𝑚
composed of 4 linear layers to predict the number of motion beats
in the 4-second motion sequence given 𝑠𝑚 .

The Embeddingmodules are trained together with a pairedmusic
and motion dataset. The music mel-feature segment of 4 seconds
𝑚 ∈ R4∗60×96 and motion joint coordinates segment of 4 seconds
𝑋 ∈ R4∗20×63 are both fed into S𝑚 and S𝑑 respectively to produce
music style vector 𝑠𝑚 = S𝑚 (𝑚) andmotion style vector 𝑠𝑑 = S𝑑 (𝑥).

We consider the progression of motion and musical beats to
constitute an important factor of style. We use an MLP B𝑚 to
predict the motion beats number based on the music style hidden
vector B𝑚 (𝑠𝑚). The actual motion beats 𝑁𝐵 are calculated as the
number of local minima of average joint velocity. The local minima
are estimated using find_peaks function in SciPy library [31].

Given the Embedding module outputs 𝑠𝑎 , 𝑠𝑚 , and B𝑚 (𝑠𝑚), we
calculate the cross-modality style feature loss L𝑠𝑡𝑦𝑙𝑒 . Given the
loss term coefficients _𝑐𝑠 , _𝑏 ∈ R, the style loss is shown below:

L𝑠𝑡𝑦𝑙𝑒 (𝑥,𝑚) = _𝑐𝑠 | |𝑠𝑚 − 𝑠𝑑 | |2 + _𝑏 | |B𝑚 (𝑠𝑚) − 𝑁𝐵 | |2 (1)

At style-based selection time, we also process the input music
by the 4-second sliding window to obtain the set of music seg-
ments {𝑚𝑡 }, and evaluate style vectors {𝑠𝑡𝑚} using S𝑚 . On the
other hand, for each 8-second motion source segment in the Music-
Dance Dataset X, we extract the middle 4 seconds to calculate style
vector 𝑠𝑑 using S𝑑 . After that, for each 𝑠𝑡𝑚 in the music style vector
set, We select 𝐾 = 512 motion segments from X by finding the best
K segments with minimum style loss L𝑠𝑡𝑦𝑙𝑒 . The selected motion
segment set {𝑥𝑡

𝑘
}𝐾
𝑘=1 for music segment𝑚𝑡 will be processed and

warped by our Dynamic Time-WarperW later in Sec. 3.2.

3.2 Temporal Re-alignment via Progressive
Cross-modality Embedding Learning

One of the most important aspects of matching between dance and
music comes from the local alignment of beats and tempo. Due to
the cross-modality signal differences, and the fact that there are
different interpretations of what a good match is, it is difficult to set
up a rule for alignment. Therefore, we propose a data-driven strat-
egy to extract tempo-density from motion sequences and predict
such motion tempo-density based on input music features.

The motion tempo-density is a one-dimensional feature that
estimates the tempo of the motion segment. For motion segment
𝑥 ∈ X of shape [3, 21, 8*20], the Motion Tempo-Density Estima-
tor T𝑑 extract the motion tempo-density of shape [1, 8*20]. The

estimator T𝑑 is trained using an autoencoder-like approach, with
tempo-density and motion content vector as the hidden vectors
for motion reconstruction. First, our encoder T𝑑 is composed of 1
transformer layer, 5 convolution blocks, 5 deconvolution blocks,
and 2 linear layers. The input motion will first be processed into a
large hidden vector of size [4096] by the transformer layer and the
convolution blocks. Then, the 5 deconvolution blocks will predict
the tempo-density from the hidden vector. Also, the 2 linear layers
will estimate a smaller motion content vector of size [1024] from the
4096-dimensional hidden vector. The decoder T ′

𝑑 shares the same
structure as T𝑑 but in reverse order, and the convolution blocks are
replaced by deconvolution blocks, and so on.

For the model training of T𝑑 , we designed a Random Time-
Warper D that randomly selects some motion beats, the local
minima of average joint velocity, in the motion sequence 𝑋 and
shift them and corresponding frames slightly along the time axis.
The remaining frames will be linearly interpolated based on the
shifted beat location. The random-warped motion sequence ⌈𝑋 ⌋
should have the same motion content as the base motion sequence
but have a different tempo-density due to the random-warping
process. At training time, motion 𝑋 and warped motion ⌈𝑋 ⌋ will
be processed by T𝑑 to obtain content vector and tempo-density
𝑋𝑡𝑑 , 𝑋𝑐 = T𝑑 (𝑋 ), ⌈𝑋 ⌋𝑡𝑑 , ⌈𝑋 ⌋𝑐 = T𝑑 (⌈𝑋 ⌋). Then, we reconstruct 4
motion sequences based on different combinations of content vec-
tors and tempo-densities to evaluate reconstruction loss. Given the
loss coefficient _𝑐𝑚 ∈ R, the loss for training T𝑑 and T ′

𝑑 is shown
below:

L𝑡𝑑 (𝑋, ⌈𝑋 ⌋) =| |T𝑑 (𝑋𝑡𝑑 , 𝑋𝑐 ) − 𝑋 | |2 + ||T𝑑 (⌈𝑋 ⌋𝑡𝑑 , ⌈𝑋 ⌋𝑐 ) − ⌈𝑋 ⌋ | |2
+ ||T𝑑 (𝑋𝑡𝑑 , ⌈𝑋 ⌋𝑐 ) − 𝑋 | |2 + ||T𝑑 (⌈𝑋 ⌋𝑡𝑑 , 𝑥𝑐 ) − ⌈𝑋 ⌋ | |2
+ _𝑐𝑚 | |𝑋𝑐 − ⌈𝑋 ⌋𝑐 | |2

(2)

After the training of T𝑑 , we expect the predicted tempo-density
represents the temporal features of the motion, while the motion
content vector carries the remaining motion related information.

After that, we build and train Music Tempo-Density Estimator
T𝑚 to predict 4-second motion tempo-density given the input 4-
second music Mel-features. The Music Tempo-Density Estimator
is composed of 2 transformer layers, 5 convolution blocks, and 5
deconvolution blocks. The training of T𝑚 is based on a pre-trained
T𝑑 and 8-second segments (𝑋 𝑡 ,𝑚𝑡 ) extracted from paired Music-
Dance Dataset X. Only the tempo-density part of the T𝑑 will be
used,𝑋𝑡𝑑 = T𝑑 (𝑋 ). As T𝑚 is designed to process 4-second segments,
the middle 4 seconds of the input music will be the input and the
middle 4 seconds of the tempo-density will be the target. By defining
Middle() as the function that extracts the middle 4 seconds from
the 8-second sequence, the training loss is described below:

L𝑡𝑒𝑚𝑝𝑜 (𝑋 𝑡 ,𝑚𝑡 ) = | |T𝑚 (Middle(𝑚𝑡 )) −Middle(T𝑑 (𝑋 𝑡 )) | |2 (3)

The idea of predicting motion tempo-density based on music
features is to make sure that the rhythmic features from music
and motion are in the same modality and can be efficiently com-
parable. It is expected that after training, T𝑚 will efficiently learn
the temporal-relevant features from the music, which means the
predicted motion tempo-density will show the expected tempo
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alignment for the music. The time-warped motion having a similar
tempo-density is expected to be well-aligned to the music.

During inference, the same 4-second music segment set {𝑚𝑡 }
produced in Sec. 3.1 will be processed byMusic Tempo-Density Esti-
mator T𝑚 to predict the set of 4-second tempo-densities {T𝑚 (𝑚𝑡 )}.
On the other hand, the selected motion segment set {𝑋 𝑡

𝑘
}𝐾
𝑘=1 for

eachmusic segment𝑚𝑡 will be processed byMotion Tempo-Density
Estimator T𝑑 to obtain 8-second tempo-density, while the motion
content vector part in T𝑑 will again be ignored. Instead of using the
Random Time-WarperD, we now use Dynamic Time-WarperW to
align predicted tempo-density from T𝑚 and motion tempo-density
from T𝑑 . W is based on subsequence extraction version of DTW
algorithm [19, 26] with slope constraint in [0.5, 2]. Given the target
4-second tempo-density predicted from audio features T𝑚 (𝑚𝑡 ) and
the 8-second source motion tempo-density from T𝑑 (𝑋 𝑡𝑘 ) for each
motion in the set, W produce an alignment path 𝑃 , which extract
a 4-second warped subsequence ⌈𝑋 ⌋𝑡

𝑘
from the 8-second motion

sequence 𝑋 𝑡
𝑘
. After warping all sequences in the selected motion

segment set, we obtain a warped motion segment set {⌈𝑋 ⌋𝑡
𝑘
}𝐾−1
𝑘=0 .

3.3 Dynamic graph for motion node transition
The Dynamic Graph will organize motion segments into motion
nodes. Similar to the Motion Graph, our Dynamic Graph motion
node represents 1 second of motion, and our edge connecting the
motion nodes represents the cost of node transition based on music
style cost, action completeness cost, and transition cost.

We denote Dynamic Graph asG which contains𝑁𝑔 numbers of 4-
second motion segments selected at different times. G is maintained
dynamically and updated every second. We use 𝑥𝑔𝑡 to denote the
motion node with index 𝑔 ∈ [1, 𝑁𝑔] at current time 𝑡 , and we use
{𝑥𝑔}4 to indicate the 4-second motion clip specified by the index 𝑔.

First, each warped motion segment in {⌈𝑋 ⌋𝑘𝑡 }𝐾−1𝑘=0 from Sec. 3.2
based on music segment𝑚𝑡 are organized into into 4 consecutive
motion nodes of 1 second each, ⌈𝑋 ⌋ = {𝑥 𝑗 }4𝑗=1. As the inserted
nodes of different 𝑗 are the candidate for music from time 𝑡 to 𝑡 + 3,
we will activate the corresponding node when we select motion
nodes for the corresponding music segment {𝑚𝑡 , ...,𝑚𝑡+3}. When
we synthesize motion using the Dynamic Graph based on input
music segments {𝑚𝑡 }, we select one motion node every second
from the activated nodes based on the current music style and
current motion node. The motion nodes that should be activated
for𝑚𝑡 are one of the nodes in each warped motion segment from
time 𝑡 − 3 to 𝑡 , so 𝑁𝑔 = 𝐾 ∗ 4 nodes will be considered every time,
and motion segments inserted before 𝑡 − 3 will be removed from
the graph.

Given that our current motion node is x𝑡−1 = 𝑥
𝑔0
𝑡−1, an active

motion node 𝑥𝑔1𝑡 , and current music style 𝑠𝑡𝑚 , we calculate the cost
of node transition between 𝑥𝑔0

𝑡−1 and 𝑥
𝑔1
𝑡 as follows:

L𝑛𝑜𝑑𝑒 (𝑥
𝑔0
𝑡−1, 𝑥

𝑔1
𝑡 , 𝑠

𝑡
𝑚) = _𝑠L𝑆 (𝑥

𝑔1
𝑡 , 𝑠

𝑡
𝑚) + _𝑐L𝐶 (𝑥

𝑔0
𝑡−1, 𝑥

𝑔1
𝑡 )

+ _𝑡L𝑇 (𝑥
𝑔0
𝑡−1, 𝑥

𝑔1
𝑡 )

(4)

Music Style cost L𝑆 calculates the difference between the current
music style embedding and the motion style embedding of the
motion node calculated in Sec. 3.1. We assume the style evaluated

for thewholemotion segment is temporally consistent, so all motion
nodes in the segment share the same motion style embedding. Due
to the style-based selection in Sec 3.1, the motion nodes selected at
the same time will have very similar style embedding, but the style
queried in adjacent timestamps may have significant difference
due to immense style change. Therefore, we reuse style embedding
to consider the style difference between motion nodes queried in
different timestamps. For motion node 𝑥𝑔1𝑡 ∈ {𝑥𝑔1 }4,

L𝑆 (𝑥
𝑔1
𝑡 , 𝑠

𝑡
𝑚) = | |S𝑑 ({𝑥𝑔1 }4) − 𝑠𝑡𝑚 | |2 (5)

Action Completeness costL𝐶 aims to check the action complete-
ness in the current motion node to avoid unpleasant artifacts such
as a sudden stop in spinning. We assume that no motion beats will
be detected when the sequence is not complete. Therefore, we calcu-
late the frame distance between the latest beat in the current node
𝑥
𝑔0
𝑡−1 and the earliest beat in the active node 𝑥𝑔1𝑡 if they come from
the same warped sequence. If the distance between that 2 beats is
large, the action performed is more likely to be not complete. In
such cases, L𝐶 will be low. Here, V(·) defines the distance between
the latest beat position of the first half and the first beat position in
the second half of the concatenated 2-second sequence. Note that
the distance should be offset by 20 (1 second) to standardize the
distance.

L𝐶 (𝑥
𝑔0
𝑡−1, 𝑥

𝑔1
𝑡 ) =

{
1 if 𝑔0 ≠ 𝑔1
Sigmoid(20 − V(𝑥𝑔0

𝑡−1, 𝑥
𝑔1
𝑡 )/5) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6)

Motion Transition cost L𝑇 calculates the joint coordinate differ-
ence between the last motion frame of current motion node and
the first motion frame of the active motion node. When we select
the first motion node, the transition cost is always 0.

L𝑇 (𝑥
𝑔0
𝑡−1, 𝑥

𝑔1
𝑡 ) =

{
0 if 𝑡 = 0
| | (𝑥𝑔0

𝑡−1)⌋ − ⌈(𝑥𝑔1𝑡 ) | |2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7)

Here (·)⌋ and ⌈(·) are the operators to extract the last frame and
the first frame of the motion sequence.

Finally, we select the motion node x𝑡 from all the active nodes
that have the minimum cost. As the motion node selection is based
on more than transition cost, the transition between nodes may
not be smooth and optimal. We apply linear blending between each
pair of motion nodes to generate predicted motion X̂.

4 EXPERIMENT
As the main focus of our model is to generate dance motion condi-
tioned on music, we compare our model to the two state-of-the-art
music-conditioned dance generation models, the Transflower [29]
and the AI Choreographer [17]. We want to test the Dynamic Graph
module’s effectiveness, so we also compare it to a different setup
of our model where the Dynamic Graph is replaced by Motion
Graph [13]. Although the motion source sequences will still be
selected by the Style-based Selector and warped by the Dynamic
Time-Warper, only the first second of the warped 4-second seg-
ment will be inserted into the Motion Graph. Note that the main
difference between the Motion Graph variant and the Dynamic
Graph variant is the absence of previously warped nodes. As the
subsequent nodes warped from previous timestamps are discarded
in the Motion Graph, the completeness cost is inapplicable in the
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Table 1: Objective metrics for evaluating the realism and beat alignment of the generated motion. The best and second best
performances are highlighted in red and blue, respectively.

AI Choreo Transflower Motion Graph Ours

Realism Metrics FPD↓ 9.8821 9.8729 9.8762 9.8682
FMD↓ 16.9582 16.9538 16.9575 16.9452

Beat Alignment motion2audio ↓ 121.2 173.6 120.7 87.8
Metrics audio2motion ↓ 1051.6 281.9 5485.6 1302.4

graph node selection. Also, as the nodes selected by the Style-based
Selector in the current timestamp will not be compared to stored
subsequent nodes that are selected and warped previously, the style
difference between motion nodes is small, and thus we remove
the style cost in the Motion Graph. All models will be trained on
AIST++ dataset [17] train set and tested on the corresponding test
set. The comparisons of our method with AI Choreographer and
Transflower show the difference between handling style correlation,
tempo alignment, and motion transition in a step-by-step pipeline
approach and an end-to-end combined approach. The comparison
of the Dynamic Graph and Motion Graph shows the influence of
the action completeness cost and the stored subsequent motion
nodes in the Dynamic Graph.

Apart from the comparison to othermodels, we also perform abla-
tion studies to evaluate the Style Embedding module, the Re-Tempo
module, and the Dynamic Graph in our ChoreoGraph framework.
Evaluations and Visualizations show how each module contributes
to improving the output motion quality. Finally, a user study is per-
formed to compare the ChoreoGraph performance to other models
from the human perspective on different aspects.

4.1 Implementation Details
We implement our framework in PyTorch [21]. As described in Sec.
3.1 and Sec. 3.2, we first train the Style Embedding modules S𝑚 and
S𝑑 . Then, the Tempo-Density Estimators T𝑑 and T𝑚 are trained in
two phases. First, we train motion Tempo-Density Estimator T𝑑
for 10000 epochs. Next, we train music Tempo-Density Estimator
T𝑚 for 10000 epochs while keeping the weight of T𝑑 fixed. Both
training phases utilize ADAM [12] optimizer with a batch size of
16 and a learning rate of 1 × 10−4.

4.2 Quantitative Evaluation
We quantitatively evaluate the quality of the generated dance in
terms of motion realism and alignment with music beats.

4.2.1 Motion Realism. We applied Fréchet pose distance (FPD) and
the Fréchet movement distance (FMD) [29] to measure the realism
of generated motions among different methods. FPD and FMD mea-
sure the Fréchet distance of the distribution of poses 𝑝𝑖 and that of
the distribution to the concatenations of three consecutive poses
(𝑝𝑖−1, 𝑝𝑖 , 𝑝𝑖+1). Following the settings from [29], the measures are
computed using the pose joint exponential map without normal-
ization. For each test music piece, the distribution of generated
motions of each method is compared to that of real data to check
which model captures the distribution of real movements best. The
results are shown in Table 1. It can be seen that our ChoreoGraph
produces the smallest FPD and FMD of all competing methods.

4.2.2 Music Beats Alignment. We also evaluate the music beat and
motion beat alignment, which shows important rhythmic attributes.
For the music beat extraction, we applied the beat check function
in the Librosa [19] music processing library. For the motion beat ex-
traction, we extract the local minima of the motion speed. Similar to
the AI Choreographer [17] and Transflower [29] approach, we cal-
culate the Beat Alignment Score (BAS), which is the mean squared
distance between every motion beat and its nearest music beat
(motion2music), and that between every music beat and its nearest
motion beat (music2motion). The results are shown in Table 1. It can
be seen that our method significantly outperforms AI Choreo and
Transflower in the motion2audio BAS, which is expected because
we explicitly warp the motion based on learned tempo-density func-
tions. The result of the Motion Graph also shows the effect of beat
alignment from the Re-Tempo module as motion nodes are selected
and warped every second. However, the processed motion nodes
are unlikely to match with previously selected motion as they are
warped differently, so the linear blending that smooths the motion
node transition may smooth out some beat information and lower
the beat alignment performance. In the audio2motion BAS score,
however, Transflower performs better, since it generates motion
based on every music window, while our ChoreoGraph imposes
several constraints on the distortion that can be applied to the con-
tent motion. As the number of motion beats is usually less than the
number of audio beats, there will be audio beats missed from time
to time. However, Transflower tends to generate repeated motion
just to align to the audio beats, which makes the dance less diverse
and less natural, as to be validated in our user study.

4.3 Ablation Study
4.3.1 The Style Embedding Module. As introduced in Sec. 3.1, we
select the motion source sequences based on the trained style vector.
As the style matching relation is implicit and hard to judge, we
asked professional artists to design quantifiable artist labels, and we
measured artist Label Distances (LD) between AIST++ dataset music
and paired motion, as well as the generated motions from different
methods. Table 3 shows the feature labels which are incorporated as
attributes to each data item in the MDR. Note that each of the labels
can be associated with quantifiable metrics and then normalized to
the same scale. The results are shown in Table 2.

As can be seen, the LD becomes smaller for all 4 artist labels,
especially on the motion intensity vs. rhythmic density and motion
asymmetry vs. spectral contents. The reason for motion intensity vs.
rhythmic density comes from our explicit Dynamic Time-Warper
W on beat alignment. For the motion asymmetry vs. spectral con-
tents, the selected input features for the Style Embedding modules,
which are the joint coordinates and Mel-spectrogram, can represent
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Table 2: Ablation studymeasures the artist Label Distances between themusic and themotion. Smaller Label Distances indicate
closer aesthetic styles between music and motion. The better one is highlighted in red.

Body openness Motion intensity Motion rhythm Motion Asymmetry
vs. vs. vs. vs.

Intervallic structure ↓ Rhythmic density ↓ Time between onsets ↓ Spectral contents ↓
Real Data 1.9193 2.0671 1.2870 1.1607
Transflower 1.9655 1.9992 1.2850 1.1344
AI Choreo 2.0501 2.0541 1.3583 1.1663

Motion Graph 1.7768 1.9772 1.2688 1.2460
Ours 1.7375 1.8888 1.2380 1.0514

Table 3: Motion-music feature pairs implemented for artis-
tic evaluation. Note that each feature is evaluated on a scale
of 1 to 10, and then associated with quantifiable metrics.

Dance Labels Music Labels
Body openness: total dis-
tance between head, limbs to
the body center

Intervallic structure: dis-
tance between fundamental
frequencies and pitch-sequence
repetitiveness.

Motion intensity: absolute
mean of all joints’ coordinate
variations.

Rhythmic density: number of
onsets per second.

Motion rhythm and
smoothness: accumulated
angular acceleration within a
given time window.

Time between onsets and
rhythmic density.

Asymmetry: independent
use of only the upper or
lower part of body.

Spectral contents: the rough/
smooth and aggressive/ mild
sound dualisms.

Table 4: Ablation study for Re-Tempomodule on Beat Align-
ment Scores. For without Re-Tempo, the middle 4-second in
the 8-second clip is selected instead of the warped segment

BAS without Re-Tempo with Re-Tempo
motion2audio ↓ 128.9 87.8
audio2motion ↓ 735.1 1302.4

and measure music spectral features and motion left-right body
asymmetry easily. Our Style Embedding modules capture such artis-
tic aspects and apply them to the style-based selection and Dynamic
Graph style cost evaluation. The other LDs also indicate that the
motion matches better the music style in our proposed method.

Apart from our ChoreoGraph result, we also notice that the LD
for the Motion Graph version of our framework performs better
than the other 2 methods. The reason is that the motion nodes are
selected from the Style-based Selector and warped by Dynamic
Time-Warper before inserting to the Motion Graph. This proves the
performance of the Style-based Selector and Dynamic Time-Warper
in generating style-matched and beat-aligned motion nodes.

4.3.2 The Re-Tempo Module. To show the influence of the Re-
Tempo module, we experiment and evaluate our model without

the Dynamic Time-Warper W for comparison. For the framework
withoutW, as we evaluate the style of the 8-second motion source
segment based on themiddle 4 seconds ofmotion as described in Sec.
3.1, we extract the middle 4 seconds directly and process that into
motion nodes. Then, we compare the beats alignment scores (BAS)
between the music and the motion with and without the Re-Tempo
module, the average BAS scores for the testing dance clips are
shown in Table 4. As we can see, the BAS scores for motion2audio
have significantly improved as the Re-Tempo module performs
explicit beat and tempo alignment to match each motion beat. As
described in Sec. 4.2.2, there will be audio beats without matched
motion beats, so the audio2motion score becomes worse.

Next, we visually demonstrate the Beats alignment and tempo
adjustment functions of the Re-Tempo module. The input 8-second
source motion and output warped 4-second motion processed by
Dynamic Time-WarperW are shown in yellow and green respec-
tively in Fig. 2. As can be seen, motion subsequence has been ex-
tracted from the source sequence and warped based on the dif-
ference between the Tempo-Density functions extracted from the
motion and the music. Both the beats and the overall tempo have
been modified to align with the music features. The effect of slope
constraint inW can also be seen in the first 20 frames of the queried
result, preventing the module from extracting too many frames and
producing an abnormally fast motion sequence.

4.3.3 The Dynamic Graph Module. As described above, we re-
placed Dynamic Graph by Motion Graph for comparison, and we
obtained better evaluation result using the Dynamic Graph. The
beat alignment motion2audio in the Motion Graph is very good
for almost all short sequences in the test set, but the performance
turns bad as the music duration increases. This is caused by the
increased percentage of linear interpolated frames for smoothing
motion node transition, as the motion beats will be wiped out in
the smoothing operation. On the other hand, our Dynamic Graph
stores beat-aligned subsequent nodes that are warped together in
previous timestamp with current motion node, and thus guarantee-
ing smooth transition and keeping the beat-alignment performance
consistent with different input music duration.

4.4 Human Evaluation
Although we used different quantitative metrics to show our model
performance, the evaluations on motion quality and its correlation
to music are still not sufficient as the numeric metrics still can-
not represent the generated motion quality clearly and effectively.
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Source Motion Segment (8s)
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Beats-aligned
Tempo-adjusted Motion (4s)

Motion tempo-density

Music tempo-density

Figure 2: Visual demonstration of the tempo adjustment and beats alignment function in the Dynamic Time-WarperW. Note
that the selection of motion frames is based on the tempo-density alignment.

Therefore, we evaluate our model performance with a user study.
We prepared 10 music segments of 6 seconds each, and generate
motions for each music segment using our proposed ChoreoGraph,
and compare with those generated by the AI Choreographer [17],
the Transflower [29], and Motion Graph version of our framework.

In the user study, each user watches 10 6-second videos generated
by each method, and is asked to rate them on a scale between 0 and
5 (5 being the best quality) in four aspects described below:

• Motion Variation. Are the generated motion based on dif-
ferent music segments diverse without repeating.

• MotionNaturalness.Hownatural and realistic is the dance
motion. Is the dance motion generated by a machine or per-
formed by a real human dancer.

• Style Match. Does the generated motion style match the
music style (beat alignment should not be considered).

• Rhythm Alignment. Do the generated motion rhythm
match the music beats.

We have collected answers from 20 independent judges, and the
results are shown in Fig. 3. As can be seen, our proposed Chore-
oGraph framework outperforms others significantly in all four
aspects. The largest advantage is in motion naturalness which is
expected since the generated motions from our framework are
based on real motion sequences stored in the dataset X. The node
selection handling the beat alignment and action completeness also
reduces the awkward dissonance between music and motion and
makes the generated motion more natural and compatible with the
input music.

1.5

2

2.5

3

3.5

4

4.5

Motion Variation Naturalness Style Match Rhythm Alignment

Dance Synthesis Quality User Study Outcomes

Transflower AI Choreo. Motion Graph Ours

4.0

3.0

2.0

Figure 3: Results of user evaluation on the generated mo-
tion.

5 CONCLUSIONS
We have proposed a dance generation framework, named Chore-
oGraph, which selects and warps dance clips to synthesize high-
quality dance motion for a given piece of music. A data-driven
learning strategy is proposed to efficiently correlate the style and
rhythmic connections between music and motion to enable the gen-
eration of beats-aligned motion nodes, which will be subsequently
used in the Dynamic Graph to generate motion sequences with
style and rhythmmatched to input music. Quantitative results, qual-
itative results, and human evaluations demonstrated the efficiency
of our proposed model. The proposed graph-based paradigm can
generate motions with impressive motion quality and diversity.
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