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ABSTRACT
Recognizing a target of interest from the UAVs is much more chal-
lenging than the existing object re-identification tasks across multi-
ple city cameras. The images taken by the UAVs usually suffer from
significant size difference when generating the object bounding
boxes and uncertain rotation variations. Existing methods are usu-
ally designed for city cameras, incapable of handing the rotation
issue in UAV scenarios. A straightforward solution is to perform
the image-level rotation augmentation, but it would cause loss of
useful information when inputting the powerful vision transformer
as patches. This motivates us to simulate the rotation operation at
the patch feature level, proposing a novel rotation invariant vision
transformer (RotTrans). This strategy builds on high-level features
with the help of the specificity of the vision transformer structure,
which enhances the robustness against large rotation differences.
In addition, we design invariance constraint to establish the re-
lationship between the original feature and the rotated features,
achieving stronger rotation invariance. Our proposed transformer
tested on the latest UAV datasets greatly outperforms the current
state-of-the-arts, which is 5.9% and 4.8% higher than the highest
mAP and Rank1. Notably, our model also performs competitively
for the person re-identification task on traditional city cameras.
In particular, our solution wins the first place in the UAV-based
person re-recognition track in the Multi-Modal Video Reasoning
and Analyzing Competition held in ICCV 2021. Code is available at
https://github.com/whucsy/RotTrans.
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1 INTRODUCTION
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Figure 1: Images taken by city cameras vs. Images taken by UAVs.
Recognizing person in UAV images faces two main challenges: sig-
nificant size difference and uncertain rotation variations.

Object re-identification (ReID) is a task of retrieving specific ob-
jects such as pedestrians, vehicles across non-overlapping cameras
[7, 51, 59]. A large number of existing ReID researches mainly focus
on city cameras. However, the commonly used city cameras have
several limitations in collecting images, especially in large open
areas. Specifically, the position of city cameras are fixed, which
results in a limited shooting range and some blind areas [55]. With
the rapid development of Unmanned Aerial Vehicles (UAVs) in the
field of video surveillance, UAVs can easily cover large and hard-to-
reach areas, presenting more diverse yet irreplaceable viewpoints
[20, 22]. The technique can be applied in various scenarios such as
urban security, large-scale public place management. In this paper,
we define a new task that is more challenging than normal ReID:
Object recognition in UAVs, which is to recognize specific object
among many aerial images captured from the moving bird-eye view.
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Figure 2: Image-level rotation vs. Feature-level rotation. Image-
level rotation would unavoidably lose discriminative information
(for cropping) or introduce additional noise (for padding), while the
feature-level rotation keeps all the information.

With the emergence of ReID in UAVs, several UAV-based ReID
datasets such as PRAI-1581 [55], VRAI[38] and UAV-Human [22]
have been newly published, which promote the progress of this field.
Compared to the fixed city cameras shown in Fig. 1, UAV moves
rapidly and the altitude of it always changes, resulting in great
differences in visual angle in the captured images [22]. In order
to recognize the identity, it is necessary to include the complete
body of the target. However, it faces two main problems: 1) The
shape of the generated bounding box varies greatly. It shows that
the bounding box contains more background areas than that in
the normal viewing angle, which makes the model easier to be
affected because of the interference of some meaningless content.
2) The body of the same identity in the bounding box has varying
rotation directions. This leads to a much large intra-class distance
than the traditional ReID. It is challenging for the widely-used CNN
models to identify objects with large rotation angles. Therefore, it
is crucial to design a rotation-invariant feature learning method for
UAV-ReID to solve the above problems.

A large number of convolutional neural networks (CNN) based
ReID methods such as PCB [33], MGN [37], BagTricks [25], OSNet
[62], AGW [51] have achieved great success in the city camera
scenarios, but they are sensitive to rotation in the scenario of UAVs.
Some recent works [16, 30] are also competitive in applying vision
transformer [12] to the field of ReID. Worse still, as mentioned
above, the UAV pedestrian image unavoidable contains large por-
tion of background, while the convolution of CNN is a typical local
operation between neighboring pixels [41]. As a result, the CNN-
based methods usually spend too much effort on the background,
which cannot explicitly model the informative target area, limit-
ing their applicability in UAV scenario. In comparison, the vision
transformer [12] has shown strong ability to model the global and
long-range relationship between each input image patches parts.
This property motivates us to investigate a rotation-invariant solu-
tion under the Transformer framework.

Some existing researches based on CNN to achieve rotation in-
variance are applied to image classification, object detection and
other visual tasks [2, 8, 18]. STN [18] is proposed to improve the
adaptability to image transformation by inserting learnablemodules
into CNN. RIFD-CNN [8] achieves rotation invariance by forcing
the training samples before and after the rotation to share similar
feature representations. For the characteristics of rotation symme-
try in biological and medical images, Dieleman et al. [10] introduce
four operations as layers and inserts them into the neural network
model, and make these models partially equivariant to rotations
through combination. However, these methods based on convolu-
tion and two-dimensional image level operations are difficult to
apply to transformers, due to the patching operations.

This paper proposes a rotation-invariant feature learningmethod
based on vision transformer [12], which can overcome rotation chal-
lenge of object recognition in UAVs. A straightforward solution is
to perform the random rotation augmentation at the input image
level by simulating rotation variations. However, this simple image-
level rotation will not work under the Transformer framework. As
shown in Fig. 2, there are two major drawbacks for image-level
rotation operations, where we need cropping or padding strategy
to match the fixed image size input. However, the cropping would
lose important discriminative information and padding introduces
more background noise, which further exacerbate the challenges
faced by ReID in UAVs as mentioned in Fig. 1. Instead, we design
a rotation strategy at the feature level. The basic idea is to simu-
late rotation operations on initially learned features to introduce
rotation diversity. This method can alleviate the information loss
caused by rotation, because as the network depth increases, the
model has the ability to integrate global information of the original
image [12], after which the feature level rotation operation is per-
formed. The experiment on the comparison of image-level rotation
and feature-level rotation is in §. 4.3. In addition, due to the random-
ness of the rotation, it may result in an ambiguity issue for feature
representation. We further incorporate a regularization constraint
to enhance the invariance by constraining the close relationship
between features of the same identity under varying rotations. Our
main contributions are summarized as follows:

• We analyze the difficulty of object recognition task in UAV
scenarios and propose a rotation invariant vision transformer
(RotTrans) which designs a feature-level rotation strategy to
enhance the generalization against rotation variations.

• We integrate the rotation invariance constraint into the fea-
ture learning process, enhancing the robustness against spa-
tial changes. This also reduces incorrect classification caused
by rotation transformation.

• We evaluate our method on both UAV and city-camera based
datasets, achieving much better performance than the state-
of-the-arts. Notably, on the challenging PRAI-1581 dataset,
the Rank-1/mAP is improved from 63.3%/55.1% to 70.8%/63.7%.

2 RELATEDWORK
Object Re-Identification in City Cameras.With the in-depth
development of person and vehicle re-identification research, many
important breakthroughs have been made in this field [3, 5, 6, 13,
19, 21, 26, 29, 36, 49, 50, 56]. Many existing methods focus on the
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convolutional neural network model to improve feature representa-
tion learning [43, 51, 60]. Luo et al. [25] propose a strong baseline
based on CNN, which can achieve good performance only by us-
ing a global feature and adding some tricks. In addition, there are
some ReID methods that use part-level features. PCB [33] provides
a baseline for learning local features. To provide fine-grained lo-
cal feature representation, a parsing-based view-aware embedding
network [26] is proposed. The attention mechanism has also been
extensively studied in the ReID [4, 23, 31, 32, 35, 44]. Recently, more
and more work have applied Transformer to the field of computer
vision, such as DETR [64], ViT [12], DeiT [34], T2T-ViT [53], PVT
[40]. TransReID [16] is the first work to use pure Transformer for
ReID research. It achieves good performance on both person and ve-
hicle ReID tasks by improving the vision transformer. The following
research [39] is based on TransReID, by using the pose information
and introducing the transformer decoder, to solve the occlusion
problem in the ReID task. Compared with CNN, Transformer has
more powerful modeling capabilities in modeling the relationship
between all patches and capture long-distance dependencies [9, 24].

Object Re-Identification in UAVs. Object Re-Identification
in UAVs has attracted attention in recent years. DRone HIT [14]
is a data set of 101 identities collected by UAVs, which is used for
an earlier attempt of person ReID under UAV conditions. Zhang
et al. [55] propose a large Person ReID dataset PRAI-1581 in real
UAV surveillance scenarios and utilize the subspace pooling layer
to get compact feature representations. VRAI [38] is a vehicle ReID
dataset captured by UAV. A multi-task learning framework that
utilizes manually labeled auxiliary information such as vehicle type
and color is presented. But the methods they proposed can also be
applied to common scenarios, not for the unique problems of UAV
scenarios. P-DESTRE [20] is a video-based UAV dataset that can
perform various tasks such as pedestrian detection, tracking, and
re-identification. Li et al. [22] present a large-scale UAV-Human
dataset for human behavior understanding with UAVs. Both of them
[20, 22] just provide datasets without designing methods for person
ReID task. In comparison, this paper studies the important rotation
and varying image sizes problems in UAVs, which are ignored in
existing methods.

Rotation Invariance. Objects under the view of UAVs usually
have multiple rotation angles. The existing object re-recognition
methods do not take the rotation invariance into account, because
this problem does not exist in the city camera scene. However,
there are some research on rotation invariance in tasks of image
classification and object detection [8, 18, 57]. The CNN structure
itself does not have strict invariance, even a small pixel change
may bring a big difference in detection results [2]. Jaderberg et
al. [18] propose to integrate the spatial transformer layer into the
CNN. It allows the network to automatically learn how to perform
spatial changes in the feature map, reducing the overall cost of
training. But this convolution-based layer cannot be applied to
the vision transformer. RIFD-CNN [8] uses data augmentation to
obtain multiple rotated images to expand the training set, and
optimize a new objective function to share similar features before
and after the rotation of images. But image rotation brings about
pixel changes and results in some loss of information. Besides, using
rotation detection [11, 15, 45–48] to generate the object bounding
boxes can be an effective strategy to reduce the background noise

problem. However, the re-detected rotated bounding box might be
non-vertical and cannot match the vertical rectangular input of the
network. It is difficult to obtain a vertical rectangular bounding
box without destroying the pedestrian body structure in the correct
orientation.

3 PROPOSED METHOD
The goal of our designed rotated transformer (RotTrans) is to learn
rotation-invariant feature representations based on images captured
by UAVs. The vision transformer has powerful modeling ability and
generalization ability [27], which makes an excellent performance
on common object recognition tasks. In order to make the model
able to cope with the challenge of rotation and utilize the effective
advantages of vision transformer, our method is built on the vision
transformer with two main components: 1) Feature Level Rotation:
due to the limitations of direct rotation at the image level, we
designed an operation that simulates the rotation of patch features
at the feature level to generate diverse rotated features. 2) Invariance
Constraint: establish strong constraints between multiple rotated
features and original features, jointly optimizing with the identity-
invariant target. Notably, the two strategies we propose above can
be embedded into any existing transformer architecture without
affecting the original network structure. This idea can be widely
used in different types of tasks as a solution to achieve rotation
invariance. The overall network architecture is shown in Fig. 3.

3.1 Vision Transformer Backbone
Our architecture follows the transformer baseline for the ReID task
proposed by He et al. [16], which improves the backbone of the
vision transformer. The detail will be introduced in this part. For an
image x ∈ R𝐻×𝑊 ×𝐶 , where 𝐻 ×𝑊 represents the image resolution
and 𝐶 represents the three channels of the RGB image, the vision
transformer divides it into 𝑁 patches through the patch embedding
operation, and the size of each patch is denoted by 𝑃 ×𝑃 during the
division. Then, the patches are projected to the space of dimension
𝐷 which is 𝑃2 ×𝐶 through linear transformation. The final input
is composed of N one-dimensional vectors, denoted as x ∈ R𝑁×𝐷 .
Due to the limitation of this direct division method that is diffi-
cult to learn the internal information of each patch, overlapping
patch embedding is adopted. The specific implementation is using
a convolutional layer with kernel size of 𝑃 and the stride size of 𝑆 ,
where 𝑆 < 𝑃 . In addition, the learnable embedding (class token) is
added to the patch embedding as a vector for classification and used
as the input of the Transformer together with the patch embed-
ding. Position embedding 𝐸𝑝𝑜𝑠 ∈ R(𝑁+1)×𝐷 is also added to patch
embedding to preserve the spatial position information, which is
also learnable. The class token (represented by 𝑐) obtained after
backbone learning is used as a global feature representation, and
the triplet loss [17] and cross entropy loss widely used in Re-ID
tasks are adopted to optimize the network.

3.2 Feature-level Rotation
Although the global feature already contains rich information and
has strong ability to identify the target, the transformer is entirely
based on the attention mechanism, which has no rotation invari-
ance and is sensitive to scenarios for recognizing rotating objects.
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Figure 3: The architecture of our proposed Rotated Vision Transformer. The feature-level rotation strategy enhances the generalization ability
of the rotation transformation by generating and learning multiple rotated features. In the invariance constraint strategy, the rotated features
are used to establish constraints with the original features learned by the vision transformer as the backbone.

Enhancing the generalization ability of the transformer for rotation
changes in the UAV scenario is a critical challenge. The data aug-
mentation of simple and direct random rotation at the image level
is not applicable in the vision transformer. Due to the defects of
both strategies of direct rotation operation at the image level, crop-
ping will cause the loss of effective information and padding will
increase the background noise. The rotated image is further divided
into patches as the input of the transformer, which increases the
negative impact. To ensure that the model can learn better feature
representations and achieve rotation invariance while maintain-
ing the complete information of the original image, we propose a
novel feature-level rotation. By simulating multiple rotation trans-
formations on patches at the feature level, the prior knowledge of
the rotation transformation is introduced in the training process.
This strategy guarantees the generalization ability while prevent-
ing the valid information from being destroyed. Furthermore, the
feature-level rotation design can be embedded into any existing
transformer architecture without affecting original updating and
network structure. The specific implementation steps are as follows:

Reshape. The global feature learned by backbone is denoted
as 𝑓 ∈ R(𝑁+1)×𝐷 , where 𝑁 + 1 represents a patch sequence with
length 𝑁 (denoted as 𝑓𝑝 ) and a class token (denoted as 𝑐𝑜 ). In order
to simulate the rotation operation in two-dimensional space, we
reshape 𝑓𝑝 ∈ R𝑁×𝐷 to 𝑓𝑟𝑒𝑠 ∈ R𝑋×𝑌×𝐷 where (𝑋,𝑌 ) represents the
spatial size of patches generated by overlapping patch embedding
with a stride size of 𝑆 . The calculation formulas of 𝑋 and 𝑌 are:

𝑋 = ⌊𝐻 − 𝑃

𝑆
⌋ + 1, 𝑌 = ⌊𝑊 − 𝑃

𝑆
⌋ + 1. (1)

Rotated Features Generation. We treat each patch as a pixel,
𝑓𝑟𝑒𝑠 can be visually regarded as a two-dimensional matrix. In this
way, we can apply the operation similar to rotating matrix to the
patch feature level. Due to the continuousmovement of the UAV, the
angle of the captured matrix changes unpredictably. We simulate
this angle diversity by randomly generating a set of degrees 𝐴 =

{𝜃𝑖 |𝑖 = 1, 2, · · · , 𝑛}. The coordinates of each patch vector in the
reshaped two-dimensional space are represented by (𝑥,𝑦), and the
operation of rotating a degree of 𝜃𝑖 can be formulated as:

𝑥𝑘𝑟 = 𝑥 cos𝜃𝑖 − 𝑦 sin𝜃𝑖 ,

𝑦𝑘𝑟 = 𝑥 sin𝜃𝑖 + 𝑦 cos𝜃𝑖 .
(2)

Unlike pixel-based image rotation, the feature-level rotation is
performed on larger patches, so that rotating a degree that looks
small in number actually simulates a relatively large rotation. There-
fore, we define a variable 𝛼 to constrain the size of the generated de-
grees, which is 𝜃𝑖 ∈ [−𝛼, 𝛼]. As shown in Fig. 4, a set of multi-angle
rotated features 𝐹𝑟 = {𝑓𝑟1, 𝑓𝑟2, · · · , 𝑓𝑟𝑛} are obtained by performing
the above-mentioned rotation operation. At this stage, the feature
representations with various angles in the UAV scene are integrated
into the model in advance to simulate rotation variation, and the
class token learns the complete information of the original image.

Model Training. Due to the randomness of rotation, each ro-
tated feature containing different information can be regarded as a
new feature representation. In order to learn a variety of features,
the two-dimensional 𝑓𝑟 ∈ R𝑋×𝑌×𝐷 should be flattened to 𝑓𝑟 ∈
R𝑁×𝐷 , so that the transformer can receive the one-dimensional
patch sequence. Each rotated feature has the same number of
patches of size 𝑁 as the original feature, and there is a problem
that it is difficult to include the information of all patches when
used for classification. The class token learned by multiple trans-
former layers integrates the global feature representation. We ob-
tain 𝑓𝑟 ∈ R(𝑁+1)×𝐷 by adding 𝑛 copies of the original feature’s
class token 𝑐𝑜 to each rotated feature. The purpose of this operation
is that each rotated feature can be classified using a learnable class
token as a representative of 𝑛 rotated patches. Then, we set up sepa-
rate transformer layers for each of them to ensure that the diversity
can be learned. The update of the class tokens representing the ro-
tated features 𝑐𝑟 during training is based on the original class token
𝑐𝑜 that already contains rich feature information, which effectively
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Figure 4: Details of the feature-level rotation strategy. The simulated rotation operation is performed on initially learned patch features. The
multiple rotation feature representations updated by the transformer layer enhance the generalization ability of the model.

avoids the loss caused by feature rotation. We set up 𝑛 classifiers for
the class tokens of the rotated feature updated by the transformer
layer. The most commonly used cross entropy loss (L𝐶𝐸 ) is adopted
after the batch normlization layer [25]. Furthermore, triplet loss
[17] (L𝑇 ) is used in each class token for fine-grained recognition
of objects. This final loss for rotated features is formulated as:

L𝑟𝑜𝑡 (𝑐𝑟𝑖 ) =
1
𝑛

𝑛∑︁
𝑖=1

(L𝑇 (𝑐𝑟𝑖 ) + L𝐶𝐸 (𝑐𝑟𝑖 )). (3)

Each class token representing rotated feature plays equal contribu-
tion in the overall model update.

3.3 Invariant Constraint
The feature level rotation module in the previous section improves
the model generalization ability for angle transformation from the
perspective of diversity. In addition, the rotated features and the
original feature both represent the same pedestrian. We artificially
incorporate additional invariance constraints for rotated features
and the original feature to the loss function to establish their corre-
lation between them [52]. In this way, the distance within the class
is shortened, which is more conducive to correct classification.

There is a many-to-one relationship between a group of class
tokens 𝐶𝑟 = {𝑐𝑟1, 𝑐𝑟2, · · · , 𝑐𝑟𝑛} of the rotated features and a class
token 𝑐′𝑜 of the original feature. A large computational cost will be
generated if the constraint is established for each pair of original
feature and each rotated feature. To avoid redundant computation,
the average of rotated features is used to establish the invariance
constraint, which is denoted by

𝑐𝑟 =
1
𝑛
(𝑐𝑟1 + 𝑐𝑟2 + · · · + 𝑐𝑟𝑛). (4)

Our goal is to constrain the difference between the average rotated
feature and the original feature. It is necessary to ensure that the
class discrimination of the rotated feature representation will not
be weakened. Mean Square Error (MSE) is the most commonly used

loss function, it represents the sum of squares of the difference
between the predicted value and the target value. We choose the
smooth L1 Loss to calculate the difference, which can effectively
prevent the problem of gradient explosion. The rotation invariance
constraint of this part is then formulated as:

L(𝑐′𝑜 , 𝑐𝑟 ) =
{

0.5(𝑐′𝑜 − 𝑐𝑟 )2
, | 𝑐′𝑜 − 𝑐𝑟 |< 1

| 𝑐′𝑜 − 𝑐𝑟 | −0.5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(5)

In the training phase, the overall loss function consists of three
parts. When the rotated features are updated, the original feature
is also input to a transformer layer to get a further updated class
token as the global representation. We denote the original feature
representation learned through multiple transformer layers as 𝑐′𝑜 .
The triplet loss is also adopted and the cross entropy loss is adopted
after the batch normlization layer:

L𝑜𝑟𝑖 (𝑐′𝑜 ) = L𝑇 (𝑐′𝑜 ) + L𝐶𝐸 (𝑐′𝑜 ) . (6)
Besides, the average rotated feature is an auxiliary feature repre-
sentation that adapts to the diversity of angles. The invariance
constraint controls the difference between the original feature and
the rotated features. In summary, the overall learning objective is

L = 𝜆L𝑜𝑟𝑖 (𝑐′𝑜 ) + (1 − 𝜆)L𝑟𝑜𝑡 (𝑐𝑟𝑖 ) + L(𝑐′𝑜 , 𝑐𝑟 ) (7)

where 𝜆 and 1 − 𝜆 respectively represent the weights of original
features and rotated features.

4 EXPERIMENTS
4.1 Object ReID in UAVs
Datasets. We evaluate our method on two recently published per-
son ReID datasets and one vehicle datasets (PRAI-1581 [55], UAV-
Human [22] and VRAI [38]) collected by UAVs and two widely-used
datasets (Market-1501 [58] and MSMT17[42]) captured by general
city cameras. Due to the continuous changes in altitude, angle,
and environment during the flight of UAVs, these images are more
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Table 1: Evaluation of the current state-of-the-arts on two person datasets (PRAI-1581 and UAV-Human) and one vehicle dataset captured
by UAVs. The performance of our proposed Rotated Vision Transformer is significantly improved compared to other methods, especially in
PRAI-1581 which is more challenge. Rank1 and Rank5 accuracy (%), mAP (%) and mINP (%) are reported.

Dataset PRAI-1581 UAV-Human VRAI

Method Venue Rank1 Rank5 mAP mINP Rank1 Rank5 mAP mINP Rank1 Rank5 mAP

(a) Evaluation of CNN based methods

PCB [33] ECCV-18 47.5 - 37.2 - 62.2 83.9 61.1 - - - -
MGN [37] ACM-18 49.6 - 40.9 - - - - - 67.8 82.8 69.5
DG-Net [61] CVPR-19 - - - - 65.8 85.7 62.0 - - - -
OSNET [62] ICCV-19 54.4 - 42.1 - - - - - - - -
BagTricks [25] TMM-19 50.1 67.3 42.5 19.9 61.6 84.8 62.1 52.6 - - -
SP[55] TMM-20 54.8 - 43.1 - - - - - - - -
AGW [51] TPAMI-21 53.0 69.3 45.6 22.9 66.2 86.2 66.6 57.8 67.6 79.9 68.1
Multi-task[38] ICCV-19 - - - - - - - - 80.3 88.5 78.6

(b) Evaluation of Transformer based methods

Baseline (VIT) [16] ICCV-21 63.3 78.7 55.1 30.3 72.0 89.4 71.7 64.2 - - -
TransReID [16] ICCV-21 66.0 79.6 57.8 33.1 73.6 89.0 73.0 66.3 81.0 89.8 82.37

RotTrans (Ours) - 70.8 84.1 63.7 39.6 75.6 90.1 74.4 67.8 83.5 90.9 84.8

complicated than the images captured by ordinary city cameras.
Regarding the privacy of person images in the dataset, the data
collection agreements are signed during the collection process. Cu-
mulative Matching Characteristic (CMC) and the mean Average
Precision (mAP), the two most commonly used metrics in ReID
tasks are used for our evaluation. In addition, we also adopt a new
evaluation metric mean Inverse Negative Penalty (mINP) [51], as a
supplement to CMC/mAP, which indicates the cost of finding the
hardest matching sample.

PRAI-1581 dataset [55] is proposed for person ReID task. It is
collected by two UAVs flying at the altitude of 20 to 60 meters,
including 39,461 images of 1581 person identities. It is a very typical
UAV scene from a bird’s-eye view. The traditional ReID task is
a cross-camera retrieval task, and the annotation information of
the camera is required for evaluation. The author uses the same
method as the traditional city camera scene when labeling the
dataset, and each UAV represents a camera number. However, for a
fixed city camera, the background and shooting angle of view are
static. The images taken by the same camera of the UAV are always
in a dynamically changing environment. In fact, Most images can
be considered as cross-camera scenes.

UAV-Human dataset [22] is mainly used for human behavior
understanding in UAVs, and can be applied to various tasks such
as person ReID, action recognition, and attitude estimation. The
dataset contains 41,290 pedestrian images and 1,144 identities. How-
ever, the flying height of the UAV is relatively low, between 2 and 8
meters, which is easier to be correctly identified. Its main difficulty
lies in the presence of some images in low-light conditions. Notably,
it also involves dynamic environmental changes.

VRAI dataset [38] is constructed for vehicle ReID task which
consists of 137,613 images of 13,022 vehicle instances. Vehicle pic-
tures are collected by UAVs flying at altitudes of 15 to 80 meters in
different places. At the same time, rich annotations are provided,
including colors, vehicle types, attributes, discriminative parts of

the images. This dataset is challenging because it contains diverse
viewpoints, larger pose variation and wider range of resolution.

Implementation Details. We divide the PRAI-1581 data set
according to the division method given by the author and the UAV-
Human and the VRAI are already divided. For the input image, the
generated bounding box of the object taken by the UAV has various
sizes and shapes, so we uniformly resize the image to 256*256. In
addition, padding with 10 pixels, random cropping and random
erasing with probability 0.5 are adopted in the training data. The
vision transformer [12] pre-trained on imageNet-1K is used as the
backbone for person feature extraction. The patch size is set to
16*16 and the stride size is set to 12*12 at the stage of overlapping
patch embedding. In the feature level rotation, the number of ro-
tated features 𝑁 is 4 and the range of the random rotation angle
is between -15 degrees and 15 degrees. Since it is based on patch
rotation, the angle should not be set too large. For the original
features and rotated features extracted by the backbone, triplet
loss without margin is used and the cross entropy loss is used af-
ter the features pass through the batch normalization layer. The
weigth of original feature 𝜆 is 0.5 and the weight of rotated features
1 − 𝜆 is 0.5. Smooth l1 loss is applied between the average rotated
feature and the original feature. During training, the Stochastic
Gradient Descent (SGD) optimizer is used. The initial learning rate
is 0.008, and the cosine learning rate decays is adopted. The number
of training epochs is 200. The batch size is set to 64, including 16
identities, each with 4 images. In the test phase, only the original
features are used to calculate the distance matrix. The experiment
is implemented based on both Pytorch and Huawei MindSpore [1].

4.2 Comparison with State-of-the-Art Methods
Table 1 shows the comparison between our method and the existing
state-of-the-arts on the two UAV datasets. The performance of our
proposed Rotated Vision Transformer is better than all CNN and
Transformer based ReID methods.
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Table 2: Ablation study of Feature Level Rotation and Invari-
ant Constraint we proposed on the PRAI-1581. Rank1, Rank5
and Rank10 accuracy (%), mAP (%) are reported.

PRAI-1581
Strategy mAP Rank1 Rank5 Rank10

Baseline (VIT) [16] 55.1 63.3 78.7 85.1

(a) Rotation operation at the image level

+ Random Rotation 50.2 58.3 74.8 81.6
↓4.9 ↓5.0 ↓3.9 ↓3.5

(b) Rotation operation at the feature level

+ Feature Level Rotation 61.4 68.9 82.2 87.5
↑6.3 ↑5.6 ↑3.5 ↑2.4

+ Invariant Constraint 63.7 70.8 84.1 89.0
↑2.3 ↑1.9 ↑1.9 ↑1.5

Result on PRAI-1581. The results of the transformer based
methods are experimentally obtained under the same settings as our
method. Among the methods based on CNN, AGW[51] achieved
the best mAP of 45.61% in the backbone of ResNet50. However, the
performance of the transformer methods are obviously much better,
even using the simplest baseline of the vision transformer, the mAP
obtained exceeds the best method of CNN by +7.45%. It proves that
the transformer has more powerful global modeling capabilities
in the extreme perspective scenes of UAVs. The dataset PRAI-1581
contains a large number of pedestrian images with varying angles.
Compared with the transformer methods which do not have space
invariance, our method has a good adaptability against the random
angle rotation. The performance of our method is significantly
better than all methods in the table, achieving the highest 70.8%
Rank1 accuracy rate and 63.7% mAP, which exceeds the best results
of other methods by 5.9%.

Result on UAV-Human. Transformer methods still outper-
forms CNN methods on this data set overall, but the improvement
is not as obvious as in PRAI-1581. Mainly due to the low flight
altitude when UAV-Human collects data, the angle of pedestrians
in space does not change much, and the influence of rotation is
small. But our method still achieves the best performance, with
mAP reaching 74.4% and rank1 reaching 75.6%. In particular, in the
first ICCV workshop competition on Multi-Modal Video Reason-
ing and Analyzing this year, we win the first place in the Person
Re-Identification based on UAV-Human track [28]. Among the 68
participating teams fromworld-renowned research institutions, our
team achieved 79.1% mAP, which is 4.6% higher than the second-
ranked team. However, tricks such as re-rank and muti-shot are
used in the competition, which cannot be directly compared with
the results in the table.

Result on VRAI. The VRAI dataset does not publish complete
test data, only by submitting the specified format to the challenge
they host to test the performance of the proposed method. Due
to the difficulty of the vehicle ReID task is different from that of
pedestrians, some methods designed for pedestrian ReID do not
work well for vehicles. In the CNN method, the Multi-task with
attribute annotation achieves better performance. However, the
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Figure 5: Experiments with different numbers of rotated
features and weights of the original feature in Feature Level
Rotation. Evaluation on dataset PRAI-1581.

vehicle image in the UAV scene also has a variety of rotation angles.
Our proposed RotTrans achieves 83.5% Rank1 accuracy rate and
84.8% mAP without using any auxiliary information, surpassing all
other methods.

4.3 Ablation Study on UAV Datasets
Why Feature-level Rotation? Direct rotation data augmentation
is not applicable in UAV scenarios. In order to verify the negative
effects of simple image-level rotation augmentation, we conducted
specific experiments. As shown in Table 2, we introduce the data
augmentation operation of - 30 to 30 degrees random rotation in
the training set based on the vision transformer baseline, which
causes mAP/Rank1 to drop by 4.9/5.0. Rotating the low-resolution
image of the UAV is easy to lose the discriminative information,
which makes the information learned by the model ambiguous.
However, Our proposed feature-level rotation strategy effectively
avoids the loss of discriminative information by integrating global
information through the learning of class tokens through multi-
layer transformer layers. On this basis, the rotation diversity is
increased to significantly improve the model performance. Our
experiments to verify the effectiveness of the feature-level rotation
strategy show that mAP and rank1 accuracy have increased by 6.3%
and 5.6% respectively compared to the baseline.

Effect of Rotation Invariant Constraint The rotation invari-
ant constraint strategy makes the network learning process more
stable. The constraint relationship between the original feature and
the rotated feature is established, which further avoids excessive
bias caused by feature-level rotation. The rotation-invariant con-
straint is based on feature-level rotation, and experiments after
adding this strategy show that mAP increased by 2.3% and rank1
accuracy increased by 1.9%. This shows that adding invariance
constraints can effectively improve model performance.

Parameter Experiments. Fig. 5 shows the two sets of param-
eter experiments we designed based on the feature level rotation.
The numbers of rotated features denoted by 𝑁 are tested. The place
where 𝑁 = 0 in the figure represents the result of the baseline. It
can be found that the accuracy gradually increases as the number of
rotated features increases. Since increasing the number of rotated
features introduces more diversity, it will also increase the compu-
tational cost of the model. After 𝑁 reaches 5, the accuracy of the
model no longer has a obvious upward trend. Besides, we evaluate
the influence of the weights of the original feature represented by 𝜆
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Figure 6: The feature distributions of our method and baseline under two different settings are compared.

Table 3: TransReID [16] with our method embedded is evaluated
on the two commonly used ReID datasets Market-1501 and MSMT17
based on city cameras. * represents the experimental results are
reproduced by running their released code.

Dataset Market-1501 MSMT17

Method mAP 𝑅𝑎𝑛𝑘1 mAP 𝑅𝑎𝑛𝑘1

(a) Evaluation of CNN based methods

MGN [37] 86.9 95.7 52.1 76.9
OSNET [62] 84.9 94.8 52.9 78.7
BagTricks [25] 85.9 94.5 45.1 63.4
AGW [51] 87.8 95.1 49.3 68.3

(b) Evaluation of Transformer based methods

AAformer [63] 87.7 95.4 63.2 83.6
HAT [54] 89.5 95.6 61.2 82.3
TransReID* [16] 89.5 95.2 62.0 81.8

RotTrans (Ours) 90.0 95.6 67.4 85.0

and the rotated feature represented by 1−𝜆. Experiments show that
increasing the weight of the rotated feature or the weight of the
original feature during the training process will make the model
performance worse. The effect is best when the original feature and
the rotated feature account for the same weight.

Feature Distribution Comparison. In order to show the rota-
tion invariance more intuitively, we visualize the feature distribu-
tion under the two settings shown in Fig. 6. In detail, we use the
widely-used t-SNE to reduce feature dimension to 2, and visual-
ize dimension reduced feature in the 2D space. a) Samples without
Rotating Operation:The first set of comparisons is the feature distri-
bution of the model trained by our method and the model trained
by the baseline on the same batch of test samples. The feature ex-
tracted by baseline has a relatively close distance between classes,
while the feature extracted by our method is easy to distinguish.
b) Samples with Rotating Operation: The second group is about the
further comparison of rotation invariance. On the basis of the first
group, we perform random rotation on this batch of test samples
when generating patch embeddings. In this setting, each test sam-
ple has both original and rotated forms. After introducing rotated

samples, the performance of the baseline is degraded. However, it
can be clearly seen that the rotated samples of the same class are
closely clustered from the original samples by using our method.

4.4 Evaluation on City Camera Datasets
The method we propose is not only suitable for UAV scenarios, but
also performs well in general city camera scenarios. To demonstrate
this, we conducted experiments as shown in Table 3. Benefiting
from the advantage that our method can be arbitrarily embedded
into transformer architectures, we can easily verify the perfor-
mance of our method based on existing methods. specifically, we
embed the proposed feature level rotation and invariance constraint
strategies into TransReID [16], and evaluate it on two commonly
used person ReID datasets (Market-1501 [58] and MSMT17 [42])
collected by city cameras. On the Market-1501 dataset, our method
achieves 90% mAP and 95.6% rank1 accuracy, which outperforms
most existing state-of-the-arts. Our method also performs well in
the more complex data set MSMT17. The results show that our
method also has strong generalization ability in common scenarios.

5 CONCLUSION
This paper proposes a transformer-based rotation invariance archi-
tecture, in order to solve the object recognition problem of large
angle and direction changes in the data collected under the extreme
viewing angle of the UAV. On multiple UAV datasets of pedestrians
and vehicles, the evaluation results of the feature level rotation and
invariance constraint strategies we designed for UAV scenario are
much better than the existing state-of-the-arts. In addition, embed-
ding our method into existing transformer based ReID models also
achieves very competitive performance on city camera scene. We
believe that our idea of rotation invariance at the feature level is
not limited to ReID tasks, and it can be more generalized to many
vision tasks with object rotation challenges in the future.
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