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ABSTRACT
Multi-person 3D pose estimation is a challenging task because of
occlusion and depth ambiguity, especially in the cases of crowd
scenes. To solve these problems, most existing methods explore
modeling body context cues by enhancing feature representation
with graph neural networks or adding structural constraints. How-
ever, these methods are not robust for their single-root formulation
that decoding 3D poses from a root node with a pre-defined graph.
In this paper, we propose GR-M3D, which models theMulti-person
3D pose estimation with dynamic Graph Reasoning. The decoding
graph in GR-M3D is predicted instead of pre-defined. In particular,
It firstly generates several data maps and enhances them with a
scale and depth aware refinement module (SDAR). Then multiple
root keypoints and dense decoding paths for each person are es-
timated from these data maps. Based on them, dynamic decoding
graphs are built by assigning path weights to the decoding paths,
while the path weights are inferred from those enhanced data maps.
And this process is named dynamic graph reasoning (DGR). Finally,
the 3D poses are decoded according to dynamic decoding graphs
for each detected person. GR-M3D can adjust the structure of the
decoding graph implicitly by adopting soft path weights according
to input data, which makes the decoding graphs be adaptive to
different input persons to the best extent and more capable of han-
dling occlusion and depth ambiguity than previous methods. We
empirically show that the proposed bottom-up approach even out-
performs top-down methods and achieves state-of-the-art results
on three 3D pose datasets.
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1 INTRODUCTION
The goal of multi-person 3D human pose estimation is to estimate
the 3D coordinates of human joints from multiple human bodies in
a monocular RGB image, which is a challenging and fundamental
task. Recently, 3D human pose estimation has drawn a lot of at-
tention because of its broad applications, such as human behavior
understanding [22, 48], human-object interaction detection [20],
and athletic training assistance [44]. Although remarkable pro-
gresses [24, 28, 37, 41, 43] have been achieved in 3D pose estimation,
the challenges of depth ambiguity and occlusions remain.

Existing multi-person 3D pose estimation methods mainly in-
clude top-down, bottom-up, and single-stage strategies. Top-down
strategy [28, 37, 38, 43] firstly predicts the human bounding box and
the absolute depth of root points in each person and then conducts
single-person 3D pose estimation in the bounding box. Bottom-up
strategy [26, 27, 51, 54] firstly estimates the 3D coordinates for each
human joint in an image and then assigns them to different human
instances. Single-stage strategy [31, 55] predicts keypoints offsets
for each place in the image to generate 3D poses. The top-down
methods are more accurate but more costly since the human detec-
tion and the repeated stages of extracting features for each person.
The bottom-up and single-stage approaches are more efficient but
uncompetitive in accuracy. The occlusions, non-uniform scales, and
variable depths of each person are more difficult to handle when
the input is a whole image, which are our interests.

For 3D human pose estimation, the common way to decode 3D
pose is based on heatmaps [23, 28, 41, 43, 54], which decodes 3D
coordinates from 3D heatmaps by an isolated structure as Figure
1 (a). To mitigate occlusion problem, [23, 54] model context infor-
mation in coordinate level and feature level, respectively. Recent
works [31, 55] bridge these two levels to some extent by estimating
the 3D keypoints offsets, directly decoding keypoints coordinates
from root point with 3D offsets. For example, based on single root
point, CenterNet [55] and SPM [31] estimate other 3D keypoints
by star structure propagation as Figure 1 (b), which suffers the
long-distance transmission problem. SPM further improves the in-
formation propagation path by tree structure decoding, as shown in
Figure 1 (c). The tree structure brings accumulation error since the
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Figure 1: (a) Heatmap-based approaches [28, 41] decode
human poses by locating the point with maximum confi-
dence on 3D heatmaps. Each node is isolated when decod-
ing. (b) Star graph approaches [31, 55] start from single-root
node, broadcasting information to other nodes by star graph,
which suffers from long-distance information transmission
problem. (c) Tree graph approach [31] starts from single-
root node, hierarchically transferring the message from the
parent node to the child node, which suffers from the occlu-
sion problem and cumulative error. (d) Our dynamic graph
reasoning (DGR) extracts dense decoding paths from multi-
ple root keypoints, further reasons the best dynamic decod-
ing graphs for each person in the image from the predicted
dense decoding paths. The final 3D poses are decoded with
the guidance of reasoned dynamic decoding graphs.

hierarchical decoding scheme, which is serious when the middle
nodes are occluded.

The single-root decoding strategy, such as star and tree structure
decoding, is unreliable since the depth ambiguity. Firstly, it is hard
to calculate the localization of a new joint when its root joint is
occluded. An incorrect starting point will result in a wrong whole
3D pose prediction. Secondly, the predicted depth from single root
points is not robust since lacking the global context of the human
body. Thirdly, the decoding graph is fixed for each person, which
may fail to build the message propagation path when the middle
nodes are occluded.

Based on the above analysis, we propose a dynamic graph rea-
soning method (DGR). As shown in Figure 1 (d), each joint in a
person serves as a root keypoint to generate dense decoding paths.
DGR reasons the dynamic decoding graph for each person from
these dense decoding paths. Each message propagation path in the
dynamic decoding graph is calculated by combining starting point,
target point, and message path score, which is adaptively adjusted
according to the occlusions in the input image. This mechanism en-
ables the best decoding paths for each target joint. Although some
works [23, 52, 53] use graph convolutional network or local human
structure to learn better structural features, the learned body graph
is also fixed. In the inference phase, this learned structural graph

can’t be adjusted adaptively with the occlusion of the input image.
But our DGR can self-adaptively adjust the decoding graph due to
the multi-root decoding and dynamic graph reasoning mechanism.

To better predict the depth and build a reliable message propaga-
tion graph, we further propose a scale and depth aware refinement
(SDAR) module. Inspired by the intuition of near big far small,
which is a basic perspective principle, SADR concatenates multiple
initial scale features and depth features and then generates refined
scale and depth features. The refined scale-aware feature and depth-
aware feature are beneficial to generating good root keypoints and
building robust pose graphs.

Our main contributions can be summarized as follows:
• We argue that decoding 3D poses from a single root point
is unreliable and propose a novel dynamic graph reasoning
(DGR) method to decode multi-person 3D poses.

• We propose SADR to generate better root keypoints and re-
liable decoding graph representations by aggregating global
depth and scale information.

• The proposed bottom-up approach outperforms even top-
down methods and achieves new state-of-the-art results on
three widely-used benchmarks: Human3.6M, MuPoTS-3D,
and CMU Panoptic datasets.

2 RELATEDWORK
2.1 2D Human Pose Estimation
Mainstream multi-person 2D pose estimation approaches include
top-down and bottom-upmethods. Top-down approaches [4, 39, 47]
firstly conduct human detection. Then, they crop images and per-
form single-person human pose estimation for each human in-
stance. Xiao et al. [47] propose a simple baseline for 2D pose es-
timation, which uses ResNet as the backbone and follows several
up-sample layers to generate heatmaps. Sun et al. [39] propose
HRNet to generate high-resolution representation. Bottom-up ap-
proaches [3, 17, 18] estimate the keypoints for all human instances
in an image and then group them into multiple instances. Cao et
al. [3] propose part affinity fields to group keypoints. Kocabas et
al. [17] propose Multiposenet, a framework to finish detection,
pose estimation, and grouping at the same time. The accuracy of
bottom-up approaches is lower than top-down approaches since
the different scales and low resolution of persons.

Some approaches [31, 42, 46, 55] discard the method of locating
from heatmaps, but learn 2D offset to decode pose. Nie et al. [31]
propose SPM to predict root points of the human body and offsets
of each keypoints. The coordinates of keypoints can be obtained
from the root points and offsets. DirectPose [42] and Point-set an-
chors [46] use deformable convolution to align the features of pose.
These offset-based methods provide insight for 3D pose estimation.

2.2 3D Human Pose Estimation
For single person cases, the main-stream methods follow the ar-
chitecture of top-down 2D pose estimation methods. They change
the 2D pose regression heads to 3D heads, including inferring and
lifting methods. The inferring methods [16, 25, 33, 40, 41] directly
regress 3D pose from learned 3D heatmaps. For example, Sun et
al. [41] conduct integral operation on 3D heatmaps to obtain 3D
pose coordinates. The liftingmethods [24, 29, 49, 52] firstly estimate
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2D pose by 2D pose estimator, and then lift 2D pose to 3D pose by
a sample neural network, such as SRNet [52].

Recently, some works [28, 37, 38, 43, 51] study multi-person 3D
pose estimation. Rogez et al. [37, 38] locate the human bounding
box and generate a set of anchor poses for each human. The anchor
poses are refined to the final pose by a regression module. Moon et
al. [28] propose a top-down pipeline as multi-person 2D pose esti-
mation. They locate the human bounding box and the depth of root
keypoints in each bounding box and then conduct single-person
3D pose estimation in the bounding box. Zanfir et al. [51] propose
MubyNet, which estimates keypoints and limb core at the same
time and then integrates limb score to group keypoints into dif-
ferent persons. Wang et al. [43] propose hierarchical multi-person
ordinal relations as an additional loss for depth learning. Cheng et
al. [5] integrate top-down and bottom-up networks to relieve the
problems of occlusion and close interactions.

2.3 Graph Reasoning in Pose Estimation
Since human joints can be naturally seemed as a graph structure,
many works [2, 6, 23, 31, 35, 36, 53] try to utilize this informa-
tion. Zhao et al. [53] take the human joints as the nodes of graph
and then build a semantic graph convolutional network to learn
joints relation. More works try to learn a better graph representa-
tion for human pose, such as spatial-temporal graph convolutional
network [2], dynamic graph convolutional network [36], context
pose [23] and so on. Other works [6, 52] study the local or global
structure of the human body. However, these methods just learn
graph representation for the human pose, the learned human graph
is fixed in the inference phase. In this paper, different from pre-
vious works, we propose a graph reasoning approach, which can
self-adaptively adjust the graph in the inference phase.

3 APPROACH
Let 𝑝 denotes the coordinate of a target joint, then the offset-based
methods [31, 55] can be formulated as:

𝑝 = 𝑝𝑟 + Δ𝑝 (1)

where 𝑝𝑟 is the coordinate of a root joint, such as body center or
the parent joint of 𝑝 based on the human skeleton. Δ𝑝 is a learned
offset from the root joint to the target joint.

However, predicting 3D pose from single root is not robust since
depth ambiguities and occlusions. Thus, we propose a new graph-
based method, which takes full advantage of the context, scale,
and depth information of multiple roots, and makes the 3D pose
prediction more robust for handing depth ambiguity and occlusion.

3.1 Framework
The overview of our dynamic graph reasoning is illustrated in
Figure 2. First of all, four maps and deep feature map F are ex-
tracted from the backbone network. These maps are denoted asM𝐼

ℎ
,

M𝐼
𝑑
, M𝐼

𝑠 and M𝐼
𝑜 of shapes (𝐾 + 1, 𝐻,𝑊 ), (𝐾,𝐻,𝑊 ), (2, 𝐻,𝑊 ) and

(3𝐾,𝐻,𝑊 ) respectively. 𝐾 is the number of joint categories, 𝐻 and
𝑊 are the height and width of these maps. M𝐼

ℎ
is the heat map for

𝐾 joints and one body center (the midpoint of left hip and right hip).
M𝐼
𝑑
is the depth map for 𝐾 joints. M𝐼

𝑠 is a map where each pixel
preserves the 2D offset from itself to the corresponding body center.

And it can be regarded as scale map since the 2D offset indicates the
scale of a person.M𝐼

𝑜 is a 3D offset map, where each pixel records
the 3D offsets from its 3D location to the corresponding 𝐾 joints.

Based on those maps, our method outputs multi-person 3D pose
by carrying out the following three parts successively, which are
Scale and Depth Aware Refinement (SDAR), Multi-person Root Key-
points Decoding (MRKD), and Dynamic Graph Reasoning (DGR).
Firstly, SDAR refines the four maps mentioned above by integrat-
ing scale and depth information, and the refined maps are denoted
as Mℎ , M𝑑 , M𝑠 , M𝑜 . Secondly, MRKD decodes multi-person root
keypoints from those refined maps.Mℎ ,M𝑑 ,M𝑠 are used to decode
3D root keypoints and M𝑜 is used to decode dense decoding paths.
Finally, based on the root keypoints and predicted dense decoding
paths, DGR reasons the dynamic decoding graphs for each person
in the input image, to further decode robust multi-person 3D poses
as equation 1 with the guidance of dynamic decoding graphs. The
details of the three parts and the training process are introduced in
the following.

3.2 Scale and Depth Aware Refinement
As demonstrated in Figure 3, SDAR firstly computes refined scale
map and depth map by the following operations:

M𝑅
𝑠 = 𝐶𝑜𝑛𝑣𝑠 (𝐶𝑜𝑛𝑐𝑎𝑡 (M𝐼

ℎ
,M𝐼

𝑠 )) (2)

M𝑅
𝑑
= 𝐶𝑜𝑛𝑣𝑑 (𝐶𝑜𝑛𝑐𝑎𝑡 (M𝐼

𝑜 ,M
𝐼
𝑑
)) (3)

where 𝐶𝑜𝑛𝑣𝑠 and 𝐶𝑜𝑛𝑣𝑑 are sequential modules including convo-
lution and normalization layers, and 𝐶𝑜𝑛𝑐𝑎𝑡 is an operator for
concatenating tensors in channel dimension. Equation 2 merges
heat map into scale map, which makesM𝑠 can provide both scale
information and attention cue for downstream operations. In Equa-
tion 3, depth map is refined to capture more global depth context
from𝑀𝐼

𝑜 .
Once got the refined scale map and depth map, we multiply them

with the feature map F respectively, and then sum up these products
as F𝑠𝑑 . Based on this enhanced feature, the refined heat map and
3D offset map can be predicted by the following calculation:

M𝑅
ℎ
,M𝑅

𝑜 = 𝑆𝑝𝑙𝑖𝑡 (𝐶𝑜𝑛𝑣 𝑓 (F𝑠𝑑 ))
F𝑠𝑑 = M𝑠 ⊙ F +M𝑑 ⊙ F

(4)

where 𝐶𝑜𝑛𝑣 𝑓 is also a sequential convolution module, 𝑆𝑝𝑙𝑖𝑡 is an
operator for splitting tensor in channel dimension, and ⊙ means
element-wise multiplication.

The final outputs are:

M∗ = M𝐼
∗ +M𝑅

∗ (5)

where ∗ is wildcard character for {ℎ, 𝑠, 𝑑, 𝑜}.
In the following,Mℎ ,M𝑠 andM𝑑 will serve for multi-person root

keypoints decoding, while Mℎ and M𝑜 will contribute for dynamic
graph reasoning. After the refining by SDAR as Equation 4, the
final multi-person pose predicted by DGR could be more precise
since the heatmap and 3D offset map had been enhanced by scale
and depth references.
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Figure 2: The framework of our approach includes: 1) Given an image, backbone network processes deep feature (𝐹 ) and
four maps (𝑀𝐼

ℎ
, 𝑀𝐼

𝑠 , 𝑀𝐼
𝑑
, 𝑀𝐼

𝑜 ). 2) Scale and Depth Aware Refinement (SDAR) module aggregates scale and depth information to
enhance feature 𝐹 and refine the four maps with the scale and depth context. 3) Multiple root keypoints are decoded from
𝑀ℎ, 𝑀𝑠 , 𝑀𝑑 by Multi-person Root Keypoints Decoding (MRKD). 4) Based on the multi-root keypoints, we conduct dynamic
graph reasoning on predicted dense paths to generate dynamic decoding graphs for each person, to further decode final 3D
poses.

3.3 Multi-person Root Keypoints Decoding
Before carrying out graph reasoning, we decode multi-person root
3D keypoints out of the maps outputted from SDAR. This pro-
cess is called multi-person root keypoints decoding (MRKD). At
first, 𝑁 × 𝐾 independent keypoints and 𝑁 body centers can be
detected fromMℎ by extracting local maximums, where 𝑁 repre-
sents the number of persons and is obtained by finding 𝑁 high-
confidence points according to a confidence threshold. Meanwhile,
the depth of each keypoint is the value ofM𝑑 at the corresponding
2D location. And then, we assign these keypoints to 𝑁 persons.
Let [𝑝1, ..., 𝑝𝑚, ..., 𝑝𝑀 ] as the𝑀 = 𝑁 × 𝐾 predicted keypoints and
[𝑐1, ..., 𝑐𝑛, ..., 𝑐𝑁 ] as the 𝑁 predicted body centers from Mℎ , where
𝑝𝑚 and 𝑐𝑛 are both 2D coordinates. Then each 𝑝𝑚 is corresponding
to a unique 𝑐𝑛 by solving a distance matrix 𝐸𝑀×𝑁 with hungarian
algorithm, while the definition of each element in 𝐸 is:

𝐸 [𝑚,𝑛] = E(𝑐̃𝑚, 𝑐𝑛)
𝑐̃𝑚 = M𝑠 |𝑝𝑚 + 𝑝𝑚

(6)

where E represents calculating euclidean distance, and 𝑐̃𝑚 is a
regressed 2D body center coordinate from 𝑝𝑚 depending on the
semantic information at 𝑝𝑚 , whileM𝑠 |𝑝𝑚 means the 2D offset from
𝑝𝑚 to this center, which can be assigned as the 2D vector at point
𝑝𝑚 onM𝑠 .

3.4 Dynamic Graph Reasoning
After obtaining root keypoints, the decoding graphs are inferred by
conducting dynamic graph reasoning (DGR) for the final 3D pose
estimation. Supposing that a person can be regarded as a undirected
acyclic graph, denoted as G(P,E), where P = {𝑝𝑖 , 𝑖 ∈ [1, 𝐾]} is the
set of joints for this person, 𝑝𝑖 is the 2D coordinate of the 𝑖𝑡ℎ joint.
Here P is initialized with the root joints detected from𝑀ℎ and𝑀𝑠 .
While, E = {𝑒𝑖 𝑗 , 𝑖 ∈ [1, 𝐾], 𝑗 ∈ [1, 𝐾]} is the set of dense decoding
paths and 𝑒𝑖 𝑗 means the decoding path from the 𝑖𝑡ℎ joint to the 𝑗𝑡ℎ
joint. And it is valued by the 3D offset which is expressed as:

𝑒𝑖 𝑗 = M𝑜 | 𝑗𝑝𝑖 (7)

where M𝑜 | 𝑗𝑝𝑖 means the 3D offset to the 𝑗𝑡ℎ target joint from M𝑜

at the position of root joint 𝑝𝑖 .
The goal of DGR is to reason the best decoding paths Ê from

dense decoding paths set E, to further construct decoding graph
G(P, Ê) for each person in the input image. Intuitively, we can
directly pick or drop candidate paths for generating Ê. However,
this hard selecting manner may not be optimal. Here, we adopt a
soft manner that assigning a weight on each candidate path for
reasoning the decoding graph. And the weights for all paths are
inferred from heat mapMℎ and offset mapM𝑜 . While the weighted
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decoding paths can be expressed as

Ê = {(𝑒𝑖 𝑗 ,W(𝑝𝑖 , 𝑝 𝑗 )), 𝑖 ∈ [1, 𝐾], 𝑗 ∈ [1, 𝐾]} (8)

where W(𝑝𝑖 , 𝑝 𝑗 ) means the corresponding path weight for 𝑒𝑖 𝑗 ,
which can be calculated as:

W(𝑝𝑖 , 𝑝 𝑗 ) = Mℎ |𝑖𝑝𝑖R(𝑝𝑖 , 𝑝 𝑗 )Mℎ |
𝑗

𝑝 𝑗 (9)

whereMℎ |𝑖𝑝𝑖 andMℎ |
𝑗

𝑝 𝑗 serve as confidence scores which are the
heat values of the 𝑖𝑡ℎ joint at point 𝑝𝑖 on Mℎ and the 𝑗𝑡ℎ joint at
point 𝑝 𝑗 . While R(𝑝𝑖 , 𝑝 𝑗 ) is a bone confidence formulated as:

𝑅(𝑝𝑖 , 𝑝 𝑗 ) = exp(−(
| |M𝑜 | 𝑗𝑝𝑖 | |2
| |M𝑜 |𝑐

𝑝ℎ
| |2

+ 𝛾 (𝑖, 𝑗))) (10)

where ℎ and 𝑐 mean the joint index of head-top and mid-hip, respec-
tively. M𝑜 |𝑐

𝑝ℎ
is the 3D offset from the head-top to mid-hip joint.

𝛾 (𝑖, 𝑗) = | | 𝜎 (𝑖, 𝑗)
𝜎 (ℎ,𝑐) | |2 is a priori ratio, and 𝜎 (𝑖, 𝑗) is the average bone

length between the 𝑖𝑡ℎ and the 𝑗𝑡ℎ joint, counted from the training
dataset, while 𝜎 (ℎ, 𝑐) is the average bone length between the ℎ𝑡ℎ
joint and the 𝑐𝑡ℎ joint. Thus, 𝑅(𝑝𝑖 , 𝑝 𝑗 ) indicates the confidence of
predicted edge in the human structural graph, which appears as a
production of instance-level propagation confidence and statistical
priori propagation confidence.

Given a pair of predicted root joint set P and decoding graph
G(P, Ê), the final 3D pose of a certain person can be decoded. Con-
cretely, we firstly extend 𝑝𝑖 in P as 𝑝𝑖

3𝑑
by concatenating 𝑝𝑖 with its

corresponding depth 𝑑𝑖 predicted from𝑀𝑑 . And the extended root
joint set is denoted as P3𝑑 . Then we decode G(P3𝑑 , Ê) and update
the 3D coordinates of each joint as:

𝑝
𝑗

3𝑑
=

∑𝐾
𝑖 W(𝑝𝑖 , 𝑝 𝑗 ) (𝑝𝑖

3𝑑
+ 𝑒𝑖 𝑗 )∑𝐾

𝑖 W(𝑝𝑖 , 𝑝 𝑗 )
, 𝑗 = [1, 𝐾] (11)

where 𝑝 𝑗
3𝑑

represents the estimated 3D coordinates of the 𝑗𝑡ℎ target
joint.

There are two reasons that the DGR can predict better 3D poses:
1) Compared with the single-root decoding mechanism, the depth
value predicted by the multi-root decoding mechanism are more
robust. 2) For each person, DGR builds a dynamic decoding graph,
which can be adjusted by the path weights according to the deep
feature of input image adaptively, even in the inference phase. As
stated in Equation 9, the graph path confidence is determined by
start point confidence, edge confidence, and endpoint confidence,
which perceives the occlusion of the inputs image. This makes the
3D pose decoding more robust to occlusion conditions.

3.5 Loss Function
For training the network, we impose supervision both on the input
and output maps of SDAR. The total loss is :

ℒ = ℒℎ + 𝛼ℒ𝑠 + 𝛽ℒ𝑑 +ℒ𝑜 , (12)
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Figure 3: The architecture of scale and depth refinement
(SDAR). SDAR aggregates scale and depth information to
learn scale-aware and depth-aware maps, further to re-
fine keypoints heatmaps and 3D offsets. ⊗ denotes concate-
nate operation, ⊕ denotes element-wise addition, ⊙ denotes
element-wise multiplication.

where 𝛼 = 0.1 and 𝛽 = 0.1 are loss weights. and

ℒℎ = L𝑀𝑆𝐸 (M𝐼
ℎ
,Mℎ) + L𝑀𝑆𝐸 (Mℎ,Mℎ)

ℒ𝑠 = L𝐿1 (M𝐼
𝑠 ,M𝑠 ) + L𝐿1 (M𝑠 ,M𝑠 )

ℒ𝑑 = L𝐿1 (𝛿 (M𝐼
𝑑
),M𝑑 ) + L𝐿1 (𝛿 (M𝑑 ),M𝑑 )

ℒ𝑜 = L𝐿1 (M𝐼
𝑜 ,M𝑜 ) + L𝐿1 (M𝑜 ,M𝑜 )

(13)

where M∗ represents ground truth map. L𝑀𝑆𝐸 is standard MSE
loss. L𝐿1 is L1 loss, and only pixels around body joints on M𝑠 ,
M𝑑 and M𝑜 are active for training. For training depth map, output
transformation 𝛿 (𝑥) = 1/𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) − 1 is applied on M𝐼

𝑑
and M𝑑

before computing loss, following [8].

4 EXPERIMENTS
4.1 Datasets and evaluation metrics
MuCo-3DHP and MuPoTS-3D MuCo-3DHP is a large-scale in-
door multi-person training dataset [25], including 400K frames for
training. For testing, MuPoTS-3D, which consists of real images
with various camera poses, are collected from indoor and outdoor
scenes. There are 20 real-world scenes in the MuPoTS-3D dataset,
which are labeled with ground-truth 3D poses for multiple person
subjects, making it a convincing benchmark to test the generaliza-
tion ability of the 3D pose model.

The widely-used evaluation metric for multi-person 3D pose
estimation is 3𝐷𝑃𝐶𝐾 . If the Euclidean distance between predicted
and ground-truth is smaller than the threshold (150mm), the pre-
diction is marked as a correct prediction. 𝑃𝐶𝐾𝑟𝑒𝑙 measures relative
pose accuracy after root alignment, and 𝑃𝐶𝐾𝑎𝑏𝑠 measures absolute
pose accuracy without root alignment. The area under the curve
of 3𝐷𝑃𝐶𝐾 over various thresholds is defined as 𝐴𝑈𝐶 . To evaluate
in the crowded scenes, we use Crowd Index to split hard cases and
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Table 1: The ablation study of SDAR and DGR on MuPoTS-
3D dataset. The star and tree decoding approaches are in-
troduced in [31]. The backbone of all results in this table
is ResNet-34.

Model Enhance Feature Decoding Graph 3DPCK Δ

Baseline × Star 75.4 -
Baseline × Tree 76.7 ↑1.7%
Ours(GR-M3D) × DGR 77.9 ↑3.3%
Ours(GR-M3D) SDAR DGR 78.6 ↑4.2%

Table 2: The ablation study of our approach (GR-M3D) based
on different backbone on MuPoTS-3D. HG2 denotes Hour-
glass with 2 blocks. RN denotes ResNet. HRN32 denotes
HRNet-32. Baseline is with star structure.

Model Backbone Params(MB) Time(s/img) 3DPCK Δ

Baseline RN34 32.1 0.022 75.4 ↑ 4.2%GR-M3D 34.4 0.026 78.6
Baseline RN50 40.6 0.029 77.1 ↑ 3.1%GR-M3D 42.9 0.034 79.5
Baseline RN101 59.6 0.041 79.1 ↑ 2.8%GR-M3D 61.9 0.045 81.3
Baseline HRN32 40.1 0.061 80.6 ↑ 2.9%GR-M3D 42.4 0.065 82.9
Baseline HG2 192.1 0.151 82.2 ↑ 2.9%GR-M3D 196.6 0.158 84.6

Table 3: The ablation study of GR-M3D on MuPoTS-3D
dataset with different crowd indexes. Backbone is ResNet-
50 here. Baseline is with star structure.

Crowd Index > 0.0 > 0.3 > 0.5 > 0.7

Baseline 77.1 76.4 74.8 73.2
GR-M3D 79.5↑2.7% 78.8↑3.1% 77.9↑4.1% 77.5↑5.9%

easy cases. 0 ≤ Crowd Index < 1 is introduced in [19]. The bigger
Crowd Index means the serious occlusion by human bodies.

Human3.6M Human3.6M [13] is the largest indoor benchmark
for single-person 3D pose estimation, which consists of 3.6M video
frames. Collectors use the motion capture system to obtain the
ground-truth 3D poses. MPJPE and PA-MPJPE are widely used to
measure the accuracy of the 3D root-relative pose. They calculate
the euclidean distance between predicted and ground-truth 3D joint
coordinates after root joint alignment and further rigid alignment
(i.e., Procrustes analysis [11]).

CMUPanoptic CMU Panoptic [15] is a large-scale multi-person
3D human pose estimation dataset, captured by multiple cameras.
It’s challenging to recover the multi-person 3D pose since heavy
mutual occlusion. Following the settings of [50, 54], 9600 images
of two cameras (16, 30) from four activities (Haggling, Mafia, Ul-
timatum, Pizza) as the testing set, and 160k images from different

videos as training set. For fair comparison with [50, 54], MPJPE is
the evaluation metric.

4.2 Implement details
GR-M3D is trained on 8 V100 GPUs with a batch size of 16/GPU and
input resolution is 512 × 512. Adam optimizer is adopted and the
initial learning rate is 5e-4, which decreases 10× at 60 and 90 epochs.
The total epoch number is 110. Random flip, random occlusion, ro-
tation, and color jittering are used, and the range of rotation is
[−𝜋, 𝜋]. The confidence threshold for root ketpoints is 0.5. Unless
otherwise specified, the backbone of GR-M3D is Hourglass net-
work. Following previous works [9, 28, 54], additional 2D images
in MPII [1] and COCO [21] are mixed into 3D datasets for training.

4.3 Ablation study
Our baseline is the recently-developed offset-based method. They
learn keypoint 3D offset and then decode human pose from single
root keypoint by the corresponding star or tree pose graphs [31, 55].

Effectiveness of SDAR and DGR For the ablation study, we
use ResNet-34 as the backbone. The ablation study of SDAR and
DGR is shown in table 1. We can observe that decoding the 3D
pose with the tree graph is better than the star graph, which gains
a relative improvement of 1.7%. Our DGR achieves 77.9 3DPCK,
which gains a relative improvement of 3.3%, compared with the star
graph decoding method. We further use the scale and depth aware
refinement module to improve the learned keypoints heatmaps,
scale maps, depth maps, and 3D offset maps. SDAR achieves 78.6
3DPCK based on our DGR decoding approach. The whole gain of
GR-M3Dwith SDAR and DGR is 3.2 3DPCK, a relative improvement
of 4.2%, compared with the star structure decoding approach [31].

We also make a comparison of star, tree, and DGR decoding in
Figure 4. As shown in Figure 4, the decoding methods based on
star and tree structure fail in occlusion cases. Our DGR performs
well on these challenging cases since the multi-root-based dynamic
graph reasoning mechanism.

Different backbones To evaluate the effectiveness of SDAR
and DGR on different backbones, we use several widely used net-
works ( Hourglass [30] , ResNet [12], HRNet-32 [39]) as backbone.
As shown in table 2, our GR-M3D outperforms baseline over a rel-
ative of 3% in different backbones. GR-M3D achieves 84.6 3DPCK
on the MuPoTS-3D dataset, which is based on the Hourglass back-
bone. GR-M3D is lightweight and fast. GR-M3D only increases 2MB
parameters, compared with baseline methods. GR-M3D achieves
real-time based on ResNet-34 and ResNet-50. Even with the heavy
backbones (ResNet-101, HRNet-32), GR-M3D achieves 15-23 fps,
which indicates that GR-M3D has broad application potential.

Evaluation in crowded scenes To evaluate the ability of GR-
M3D to handle the occlusion cases, which are often seen in the
crowded scenes, we evaluate GR-M3D on MuPoTS-3D with differ-
ent Crowd Index. The bigger value of Index means more crowded
cases in the image. That represents the pose variances and occlu-
sions are more serious. As shown in table 3, with the increase of
Crowd Index, the 3DPCK of baseline decreases. At the same time,
our GR-M3D outperforms baseline in all Crowd Index. Even in the
most challenging cases, with a crowd index of over 0.7, GR-M3D
outperforms baseline with a relative improvement of 5.9%. These
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(a) Star structure decoding (b) Tree structure decoding (c) Dynamic Graph Reasoning  

Figure 4: The comparison of (a) star structure decoding, (b) tree structure decoding, and (c) our dynamic graph reasoning (DGR).
DGR generates better results on these cases with occlusions or strange poses than star and tree structure decoding.

Table 4: Comparison with state-of-the-art approaches on Human3.6M dataset.

MPJPE(mm) Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SitingD Smoke Wait WalkD Walk WalkT Avg
Jahangiri et al. [14] 74.4 66.7 67.9 75.2 77.3 70.6 64.5 95.6 127.3 79.6 79.1 73.4 67.4 71.8 72.8 77.6
Mehta et al. [25] 57.5 68.6 59.6 67.3 78.1 56.9 69.1 98.0 117.5 69.5 82.4 68.0 55.3 76.5 61.4 72.9
Martinez et al. [24] 51.8 56.2 58.1 59.0 69.5 55.2 58.1 74.0 94.6 62.3 78.4 59.1 49.5 65.1 52.4 62.9
Sun et al. [40] 52.8 54.8 54.2 54.3 61.8 53.1 53.6 71.7 86.7 61.5 67.2 53.4 47.1 61.6 63.4 59.1
Pavlakos et al. [32] 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2
Sun et al. [41] 47.5 47.7 49.5 50.2 51.4 43.8 46.4 58.9 65.7 49.4 55.8 47.8 38.9 49.0 43.8 49.6
Moon et al. [28] 50.5 55.7 50.1 51.7 53.9 46.8 50.0 61.9 68.0 52.5 55.9 49.9 41.8 56.1 46.9 53.3
Cai et al. [2] 46.5 48.8 47.6 50.9 52.9 61.3 48.3 45.8 59.2 64.4 51.2 48.4 53.5 39.2 41.2 50.6
Zeng et al. [52] - - - - - - - - - - - - - - - 49.9
Wehrbein et al. [45] 38.5 42.6 39.9 41.7 46.5 51.6 39.9 40.8 49.5 56.8 45.3 46.4 46.8 37.8 40.4 44.3
Ma et al. [23] 36.3 42.8 39.5 40.0 43.9 48.8 36.7 44.0 51.0 63.1 44.3 40.6 44.4 34.9 36.7 43.4
Ours(GR-M3D) 37.1 40.4 39.3 41.2 43.1 43.2 31.8 44.7 47.2 59.9 41.1 37.2 42.1 33.7 37.6 41.3

PA MPJPE(mm) Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SitingD Smoke Wait WalkD Walk WalkT Avg
Martinez et al. [24] 39.5 43.2 46.4 47.0 51.0 41.4 40.6 56.5 69.4 49.2 56.0 45.0 38.0 49.5 43.1 47.7
Fang et al. [10] 38.2 41.7 43.7 44.9 48.5 40.2 38.2 54.5 64.4 47.2 55.3 44.3 36.7 47.3 41.7 45.7
Sun et al. [41] 36.9 36.2 40.6 40.4 41.9 34.9 35.7 50.1 59.4 40.4 44.9 39.0 30.8 39.8 36.7 40.6
Cai et al. [2] 36.8 38.7 38.2 41.7 40.7 46.8 37.9 35.6 47.6 51.7 41.3 36.8 42.7 31.0 34.7 40.2
Ma et al. [23] 30.5 34.9 32.0 32.2 35.0 37.8 28.6 32.6 40.8 52.0 35.0 31.9 35.6 26.6 28.5 34.6
Moon et al. [28] 31.0 30.6 39.9 35.5 34.8 30.2 32.1 35.0 43.8 35.7 37.6 30.1 24.6 35.7 29.3 34.0
Wehrbein et al. [45] 27.9 31.4 29.7 30.2 34.9 37.1 27.3 28.2 39.0 46.1 34.2 32.3 33.6 26.1 27.5 32.4
Ours(GR-M3D) 24.4 26.3 25.4 26.5 30.6 31.4 24.3 29.7 30.2 36.4 27.5 23.4 22.9 24.8 25.2 27.3

results show that our GR-M3D can handle the problems of pose
variances and heavy occlusions.

4.4 Comparison with state-of-the-art methods
Following the settings of SOTA methods, we report the results of
GR-M3D on the Human3.6M dataset. As shown in table 4, GR-M3D
outperforms SOTA methods and achieves gains of 5% and 16% in
MPJPE and PA MPJPE based on Hourglass backbone, respectively.

For multi-person cases, the commonly used dataset is the MuCo-
3DHP and MuPoTS-3D dataset. We train GR-M3D on the MuCo-
3DHP and test on the MuPoTS-3D. The results are shown in table
5. Based on Hourglass backbone, GR-M3D achieves the state-of-
the-art results and obtains relative improvements of 2.5%, 6.5%, and
3.3% in 𝑃𝐶𝐾𝑟𝑒𝑙 , 𝑃𝐶𝐾𝑎𝑏𝑠 , and 𝐴𝑈𝐶𝑟𝑒𝑙 , respectively.
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Figure 5: Visualization of the predicted 3D poses by GR-M3D.

Table 5: Comparison onMuPoTS-3D, a 3Dmulti-person pose
estimation dataset. “-" shows that the results are not avail-
able. GR-M3D outperforms the SOTAmethods. Bigger is bet-
ter.

Methods Category 𝑃𝐶𝐾𝑟𝑒𝑙 𝑃𝐶𝐾𝑎𝑏𝑠 𝐴𝑈𝐶𝑟𝑒𝑙

Lcr-net [37]

Top-down

62.4 - -
Lcr-net++ [38] 74.0 - -
HG-RCNN [7] 74.2 - -
HMOR [43] 82.0 - -
PoseNet [28] 82.5 31.8 40.9

ORPM [27]
Bottom-up

69.8 - -
Xnect [26] 75.8 - -
SMAP [54] 80.5 38.7 42.7

Ours(GR-M3D) Bottom-up 84.6↑2.5% 41.2↑6.5% 44.1↑3.3%

CMU Panoptic dataset is another widely-used benchmark for
multi-person 3D pose estimation. Following [51, 54], we take exper-
iments on this dataset and show results in table 6. Compared with
state-of-the-art methods, GR-M3D obtains a relative improvement
of 6.3% in MPJPE based on the Hourglass backbone.

Table 6: Comparison with state-of-the-art methods on CMU
Panoptic dataset, 3Dmulti-person pose estimation dataset. ∗
denotes refining results by an extra network. Lower is better.

MPJPE(mm) Hagg. Mafia Ultim. Pizza Avg.
DMHS [34] 217.9 187.3 193.6 221.3 203.4
SemanticFB [50] 140.0 165.9 150.7 156.0 153.4
PoseNet [28] 89.6 91.3 79.6 90.1 87.6
MubyNet [51] 72.4 78.8 66.8 94.3 78.1
SMAP [54] 71.8 72.5 65.9 82.1 73.1
LoCO [9] 45.0 95.0 58.0 79.0 69.0
SMAP [54]∗ 63.1 60.3 56.6 67.1 61.8
Ours(GR-M3D) 57.1 58.3 53.4 62.7 57.9↓ 6.3%

4.5 Generalization in the wild
The images in MuPoTS-3D are collected in the wild scenes. Table 5
has shown that GR-M3D outperforms the state-of-the-art methods,
which demonstrate the generalization ability of GR-M3D in the
wild scenes. We also conduct experiments on COCO [21], a larger
scale 2D pose estimation dataset. All of the images are collected
in challenging, uncontrolled conditions. We directly predict the
3D pose on the COCO images since no 3D pose annotations. The
model is based on Hourglass and trained on MuCo-3DHP. The
results are shown in Figure 5. The visualization results in Figure
5 are from COCO, Human3.6M, MuPoTS-3D, and CMU Panoptic
datasets, respectively. GR-M3D performs well on these challenging
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cases, even on the images collected in the outdoor scenes in the
COCO dataset, which shows the generalization ability of GR-M3D.

5 CONCLUSION
We propose a novel bottom-up approach (GR-M3D) for 3D multi-
person pose estimation, which mitigates occlusions and depth am-
biguity by capturing more global context information. We firstly
design a scale and depth refinement (SDAR) module to enhance the
learned feature maps, to further generate better root keypoints and
build robust message propagation paths. DGR reasons the dynamic
decoding graphs from the predicted message propagation paths
to decoding 3D poses. GR-M3D outperforms previous works and
achieves state-of-the-art results on three widely-used benchmarks.
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SUPPLEMENTARY MATERIAL
In this supplementary material, we introduce the algorithm details
in Section A. To better understand the dynamic graph reasoning
(DGR) in our approach, we show the visualization of the dynamic
decoding graph in Section B. The limitations and failure cases of
our approaches are shown in Section C. More visualization cases
are shown in Section D.

A ALGORITHM DETAILS
The algorithm details of our GR-M3D are shown in Algorithm 1. In
Algorithm 1, the backbone network can be ResNet [12], HRNet [39],
and Hourglass [30], etc. Unless otherwise specified, the backbone of
GR-M3D is the Hourglass network. 𝑐𝑜𝑛𝑣 means the convolutional
layers with a kernel size of 1 × 1 to generate the four data maps.

Algorithm 1 GR-M3D with dynamic graph reasoning (DGR)
Input: 𝐼 : Input image;𝐾 : Joint number;𝑁 : Person number;𝜙 ( ·) : Backbone

network; 𝐹 : Deep features; 𝑐𝑜𝑛𝑣: Convolution layers with kernel size
of 1 × 1; 𝑆𝐷𝐴𝑅 ( ·) : The Scale and Depth Aware Refinement module.

Output: P3𝑑 : {𝑝 𝑗

3𝑑
, 𝑗 ∈ [1, 𝐾 ] };

1: 𝐹 = 𝜙 (𝐼 ) ;
2: 𝑀𝐼

ℎ
, 𝑀𝐼

𝑠 , 𝑀
𝐼
𝑑
, 𝑀𝐼

𝑜 = 𝑐𝑜𝑛𝑣 (𝐹 ) ;
3: 𝑀ℎ, 𝑀𝑠 , 𝑀𝑑 , 𝑀𝑜 = 𝑆𝐷𝐴𝑅 (𝑀𝐼

ℎ
, 𝑀𝐼

𝑠 , 𝑀
𝐼
𝑑
, 𝑀𝐼

𝑜 , 𝐹 ) ;
4: Obtain center points set𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑁 } from𝑀ℎ ;
5: Obtain 2D keypoints set 𝑃2𝐷 = {𝑝1, 𝑝2, ..., 𝑝𝑀 } from𝑀ℎ ;
6: Assign 𝑃2𝐷 to𝐶 as Eq.(6);
7: Obtain dense decoding paths E = {𝑒𝑖 𝑗 , 𝑖 ∈ [1, 𝐾 ], 𝑗 ∈ [1, 𝐾 ] };
8: Calculate dynamic decoding graphs Ê = {(𝑒𝑖 𝑗 ,W(𝑝𝑖 , 𝑝 𝑗 )), 𝑖 ∈

[1, 𝐾 ], 𝑗 ∈ [1, 𝐾 ] } according to Eq.(8), Eq.(9), and Eq.(10);
9: Calculate 3D coordinates 𝑝 𝑗

3𝑑
as Eq.(11).

B DYNAMIC DECODING GRAPH
To better understand the proposed dynamic graph reasoning (DGR)
in GR-M3D for 3D human pose estimation, we visualize the path
weights in dynamic decoding graphs of different people in Figure 6.

As shown in Figure 6, for the two input cases performed by the
same person, our GR-M3D predicted different decoding graphs as
Figure 6 (c). As shown in Figure 6 (b), for the cases in the second
row, the decoding graph contains more decoding paths with high
weights (> 0.1) from the hip, left hip, and left foot since occlusion.
Compared with these two cases, it shows that the predicted de-
coding graph is self-adapting due to the dynamic graph reasoning
(DGR) mechanism.

C LIMITATIONS AND FAILURE CASES
We discuss the limitations of the proposed GR-M3D in this section
and show some failure cases in Figure 7. As shown in Figure 7
(a), for some small instances, our approach can not handle and
misses them. Due to the input is whole image for GR-M3D, the
small instances with limited resolution lack sufficient information
for GR-M3D to handle. As shown in Figure 7 (b), for some cases
with heavy occlusions, it is hard for GM-M3D to tackle.
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Figure 6: The visualization of dynamic decoding graphs. (a)
Different actions from the same person, (b) The illustration
of dynamic decoding paths (Green arrows show the decod-
ing paths that weight is greater than 0.1), (c) The weight
matrix of the predicted dynamic decoding graph(DDG). The
DDGs for the two cases from the same person are different,
which demonstrates that our method can self-adaptively es-
timate the best decoding graph for each person according to
the different inputs.

(a) (b)

Figure 7: The visualization of failure cases from COCO [21]
dataset. (a) Some missed instances since they are too small,
(b) Some wrong predictions since heavy occlusions.

D MORE VISUALIZATION RESULTS
To demonstrate the generalization ability of proposed GR-M3D,
the more visualization results on COCO [21] and MuPoTS-3D [25]
datasets are shown in Figure 8 and Figure 9. The images in COCO [21]
dataset are collected in unconstraint and in-the-wild conditions.
There is no 3D pose annotations in COCO dataset. The images in
MuPoTS-3D [25] dataset are collected in constraint and in-the-wild
conditions. All the results in Figure 8 and Figure 9 are predicted by
GR-M3D, which is trained on MuCo-3DHP dataset [25].
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Figure 8: Visualization of the predicted 3D poses by GR-M3D on COCO [21] dataset.

As shown in Figure 8, our GR-M3D performs well on these in-
the-wild images with strange poses, occlusions, and variational
backgrounds. As shown in Figure 9, our GR-M3D still can handle

these images with different human actions, changing camera view-
point, and occlusions. These results show that our GR-M3D has a
strong generalization ability on handling these in-the-wild cases.
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Figure 9: Visualization of the predicted 3D poses by GR-M3D on MuPoTS-3D [25] dataset.
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